affs: be*_add_cpu conversion
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19
20 #define DEBUG 0
21
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
44
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
53
54 static struct workqueue_struct *aio_wq;
55
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
69 */
70 static int __init aio_setup(void)
71 {
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74
75 aio_wq = create_workqueue("aio");
76
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78
79 return 0;
80 }
81
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 struct aio_ring_info *info = &ctx->ring_info;
85 long i;
86
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
89
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
94 }
95
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
99 info->nr = 0;
100 }
101
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size;
108 int nr_pages;
109
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
112
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116
117 if (nr_pages < 0)
118 return -EINVAL;
119
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121
122 info->nr = 0;
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
127 return -ENOMEM;
128 }
129
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 0);
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0;
139 aio_free_ring(ctx);
140 return -EAGAIN;
141 }
142
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
148
149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx);
151 return -EAGAIN;
152 }
153
154 ctx->user_id = info->mmap_base;
155
156 info->nr = nr_events; /* trusted copy */
157
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
167
168 return 0;
169 }
170
171
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
174 */
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \
186 })
187
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193
194
195 /* __put_ioctx
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
198 */
199 static void __put_ioctx(struct kioctx *ctx)
200 {
201 unsigned nr_events = ctx->max_reqs;
202
203 BUG_ON(ctx->reqs_active);
204
205 cancel_delayed_work(&ctx->wq);
206 cancel_work_sync(&ctx->wq.work);
207 aio_free_ring(ctx);
208 mmdrop(ctx->mm);
209 ctx->mm = NULL;
210 pr_debug("__put_ioctx: freeing %p\n", ctx);
211 kmem_cache_free(kioctx_cachep, ctx);
212
213 if (nr_events) {
214 spin_lock(&aio_nr_lock);
215 BUG_ON(aio_nr - nr_events > aio_nr);
216 aio_nr -= nr_events;
217 spin_unlock(&aio_nr_lock);
218 }
219 }
220
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
224 } while (0)
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
229 } while (0)
230
231 /* ioctx_alloc
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
233 */
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
235 {
236 struct mm_struct *mm;
237 struct kioctx *ctx;
238
239 /* Prevent overflows */
240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL);
244 }
245
246 if ((unsigned long)nr_events > aio_max_nr)
247 return ERR_PTR(-EAGAIN);
248
249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 if (!ctx)
251 return ERR_PTR(-ENOMEM);
252
253 ctx->max_reqs = nr_events;
254 mm = ctx->mm = current->mm;
255 atomic_inc(&mm->mm_count);
256
257 atomic_set(&ctx->users, 1);
258 spin_lock_init(&ctx->ctx_lock);
259 spin_lock_init(&ctx->ring_info.ring_lock);
260 init_waitqueue_head(&ctx->wait);
261
262 INIT_LIST_HEAD(&ctx->active_reqs);
263 INIT_LIST_HEAD(&ctx->run_list);
264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
265
266 if (aio_setup_ring(ctx) < 0)
267 goto out_freectx;
268
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock);
271 if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 aio_nr + ctx->max_reqs < aio_nr)
273 ctx->max_reqs = 0;
274 else
275 aio_nr += ctx->max_reqs;
276 spin_unlock(&aio_nr_lock);
277 if (ctx->max_reqs == 0)
278 goto out_cleanup;
279
280 /* now link into global list. */
281 write_lock(&mm->ioctx_list_lock);
282 ctx->next = mm->ioctx_list;
283 mm->ioctx_list = ctx;
284 write_unlock(&mm->ioctx_list_lock);
285
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 return ctx;
289
290 out_cleanup:
291 __put_ioctx(ctx);
292 return ERR_PTR(-EAGAIN);
293
294 out_freectx:
295 mmdrop(mm);
296 kmem_cache_free(kioctx_cachep, ctx);
297 ctx = ERR_PTR(-ENOMEM);
298
299 dprintk("aio: error allocating ioctx %p\n", ctx);
300 return ctx;
301 }
302
303 /* aio_cancel_all
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
307 */
308 static void aio_cancel_all(struct kioctx *ctx)
309 {
310 int (*cancel)(struct kiocb *, struct io_event *);
311 struct io_event res;
312 spin_lock_irq(&ctx->ctx_lock);
313 ctx->dead = 1;
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
320 if (cancel) {
321 iocb->ki_users++;
322 spin_unlock_irq(&ctx->ctx_lock);
323 cancel(iocb, &res);
324 spin_lock_irq(&ctx->ctx_lock);
325 }
326 }
327 spin_unlock_irq(&ctx->ctx_lock);
328 }
329
330 static void wait_for_all_aios(struct kioctx *ctx)
331 {
332 struct task_struct *tsk = current;
333 DECLARE_WAITQUEUE(wait, tsk);
334
335 spin_lock_irq(&ctx->ctx_lock);
336 if (!ctx->reqs_active)
337 goto out;
338
339 add_wait_queue(&ctx->wait, &wait);
340 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 while (ctx->reqs_active) {
342 spin_unlock_irq(&ctx->ctx_lock);
343 io_schedule();
344 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 spin_lock_irq(&ctx->ctx_lock);
346 }
347 __set_task_state(tsk, TASK_RUNNING);
348 remove_wait_queue(&ctx->wait, &wait);
349
350 out:
351 spin_unlock_irq(&ctx->ctx_lock);
352 }
353
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
356 */
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
358 {
359 while (iocb->ki_users) {
360 set_current_state(TASK_UNINTERRUPTIBLE);
361 if (!iocb->ki_users)
362 break;
363 io_schedule();
364 }
365 __set_current_state(TASK_RUNNING);
366 return iocb->ki_user_data;
367 }
368
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
375 */
376 void exit_aio(struct mm_struct *mm)
377 {
378 struct kioctx *ctx = mm->ioctx_list;
379 mm->ioctx_list = NULL;
380 while (ctx) {
381 struct kioctx *next = ctx->next;
382 ctx->next = NULL;
383 aio_cancel_all(ctx);
384
385 wait_for_all_aios(ctx);
386 /*
387 * Ensure we don't leave the ctx on the aio_wq
388 */
389 cancel_work_sync(&ctx->wq.work);
390
391 if (1 != atomic_read(&ctx->users))
392 printk(KERN_DEBUG
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx->users), ctx->dead,
395 ctx->reqs_active);
396 put_ioctx(ctx);
397 ctx = next;
398 }
399 }
400
401 /* aio_get_req
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
405 *
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
410 */
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
412 {
413 struct kiocb *req = NULL;
414 struct aio_ring *ring;
415 int okay = 0;
416
417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 if (unlikely(!req))
419 return NULL;
420
421 req->ki_flags = 0;
422 req->ki_users = 2;
423 req->ki_key = 0;
424 req->ki_ctx = ctx;
425 req->ki_cancel = NULL;
426 req->ki_retry = NULL;
427 req->ki_dtor = NULL;
428 req->private = NULL;
429 req->ki_iovec = NULL;
430 INIT_LIST_HEAD(&req->ki_run_list);
431 req->ki_eventfd = ERR_PTR(-EINVAL);
432
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
435 */
436 spin_lock_irq(&ctx->ctx_lock);
437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 list_add(&req->ki_list, &ctx->active_reqs);
440 ctx->reqs_active++;
441 okay = 1;
442 }
443 kunmap_atomic(ring, KM_USER0);
444 spin_unlock_irq(&ctx->ctx_lock);
445
446 if (!okay) {
447 kmem_cache_free(kiocb_cachep, req);
448 req = NULL;
449 }
450
451 return req;
452 }
453
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
455 {
456 struct kiocb *req;
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
460 */
461 req = __aio_get_req(ctx);
462 if (unlikely(NULL == req)) {
463 aio_fput_routine(NULL);
464 req = __aio_get_req(ctx);
465 }
466 return req;
467 }
468
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
470 {
471 assert_spin_locked(&ctx->ctx_lock);
472
473 if (!IS_ERR(req->ki_eventfd))
474 fput(req->ki_eventfd);
475 if (req->ki_dtor)
476 req->ki_dtor(req);
477 if (req->ki_iovec != &req->ki_inline_vec)
478 kfree(req->ki_iovec);
479 kmem_cache_free(kiocb_cachep, req);
480 ctx->reqs_active--;
481
482 if (unlikely(!ctx->reqs_active && ctx->dead))
483 wake_up(&ctx->wait);
484 }
485
486 static void aio_fput_routine(struct work_struct *data)
487 {
488 spin_lock_irq(&fput_lock);
489 while (likely(!list_empty(&fput_head))) {
490 struct kiocb *req = list_kiocb(fput_head.next);
491 struct kioctx *ctx = req->ki_ctx;
492
493 list_del(&req->ki_list);
494 spin_unlock_irq(&fput_lock);
495
496 /* Complete the fput */
497 __fput(req->ki_filp);
498
499 /* Link the iocb into the context's free list */
500 spin_lock_irq(&ctx->ctx_lock);
501 really_put_req(ctx, req);
502 spin_unlock_irq(&ctx->ctx_lock);
503
504 put_ioctx(ctx);
505 spin_lock_irq(&fput_lock);
506 }
507 spin_unlock_irq(&fput_lock);
508 }
509
510 /* __aio_put_req
511 * Returns true if this put was the last user of the request.
512 */
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
514 {
515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
516 req, atomic_read(&req->ki_filp->f_count));
517
518 assert_spin_locked(&ctx->ctx_lock);
519
520 req->ki_users --;
521 BUG_ON(req->ki_users < 0);
522 if (likely(req->ki_users))
523 return 0;
524 list_del(&req->ki_list); /* remove from active_reqs */
525 req->ki_cancel = NULL;
526 req->ki_retry = NULL;
527
528 /* Must be done under the lock to serialise against cancellation.
529 * Call this aio_fput as it duplicates fput via the fput_work.
530 */
531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
532 get_ioctx(ctx);
533 spin_lock(&fput_lock);
534 list_add(&req->ki_list, &fput_head);
535 spin_unlock(&fput_lock);
536 queue_work(aio_wq, &fput_work);
537 } else
538 really_put_req(ctx, req);
539 return 1;
540 }
541
542 /* aio_put_req
543 * Returns true if this put was the last user of the kiocb,
544 * false if the request is still in use.
545 */
546 int aio_put_req(struct kiocb *req)
547 {
548 struct kioctx *ctx = req->ki_ctx;
549 int ret;
550 spin_lock_irq(&ctx->ctx_lock);
551 ret = __aio_put_req(ctx, req);
552 spin_unlock_irq(&ctx->ctx_lock);
553 return ret;
554 }
555
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
557 {
558 struct kioctx *ioctx;
559 struct mm_struct *mm;
560
561 mm = current->mm;
562 read_lock(&mm->ioctx_list_lock);
563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
565 get_ioctx(ioctx);
566 break;
567 }
568 read_unlock(&mm->ioctx_list_lock);
569
570 return ioctx;
571 }
572
573 /*
574 * use_mm
575 * Makes the calling kernel thread take on the specified
576 * mm context.
577 * Called by the retry thread execute retries within the
578 * iocb issuer's mm context, so that copy_from/to_user
579 * operations work seamlessly for aio.
580 * (Note: this routine is intended to be called only
581 * from a kernel thread context)
582 */
583 static void use_mm(struct mm_struct *mm)
584 {
585 struct mm_struct *active_mm;
586 struct task_struct *tsk = current;
587
588 task_lock(tsk);
589 tsk->flags |= PF_BORROWED_MM;
590 active_mm = tsk->active_mm;
591 atomic_inc(&mm->mm_count);
592 tsk->mm = mm;
593 tsk->active_mm = mm;
594 /*
595 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
596 * it won't work. Update it accordingly if you change it here
597 */
598 switch_mm(active_mm, mm, tsk);
599 task_unlock(tsk);
600
601 mmdrop(active_mm);
602 }
603
604 /*
605 * unuse_mm
606 * Reverses the effect of use_mm, i.e. releases the
607 * specified mm context which was earlier taken on
608 * by the calling kernel thread
609 * (Note: this routine is intended to be called only
610 * from a kernel thread context)
611 */
612 static void unuse_mm(struct mm_struct *mm)
613 {
614 struct task_struct *tsk = current;
615
616 task_lock(tsk);
617 tsk->flags &= ~PF_BORROWED_MM;
618 tsk->mm = NULL;
619 /* active_mm is still 'mm' */
620 enter_lazy_tlb(mm, tsk);
621 task_unlock(tsk);
622 }
623
624 /*
625 * Queue up a kiocb to be retried. Assumes that the kiocb
626 * has already been marked as kicked, and places it on
627 * the retry run list for the corresponding ioctx, if it
628 * isn't already queued. Returns 1 if it actually queued
629 * the kiocb (to tell the caller to activate the work
630 * queue to process it), or 0, if it found that it was
631 * already queued.
632 */
633 static inline int __queue_kicked_iocb(struct kiocb *iocb)
634 {
635 struct kioctx *ctx = iocb->ki_ctx;
636
637 assert_spin_locked(&ctx->ctx_lock);
638
639 if (list_empty(&iocb->ki_run_list)) {
640 list_add_tail(&iocb->ki_run_list,
641 &ctx->run_list);
642 return 1;
643 }
644 return 0;
645 }
646
647 /* aio_run_iocb
648 * This is the core aio execution routine. It is
649 * invoked both for initial i/o submission and
650 * subsequent retries via the aio_kick_handler.
651 * Expects to be invoked with iocb->ki_ctx->lock
652 * already held. The lock is released and reacquired
653 * as needed during processing.
654 *
655 * Calls the iocb retry method (already setup for the
656 * iocb on initial submission) for operation specific
657 * handling, but takes care of most of common retry
658 * execution details for a given iocb. The retry method
659 * needs to be non-blocking as far as possible, to avoid
660 * holding up other iocbs waiting to be serviced by the
661 * retry kernel thread.
662 *
663 * The trickier parts in this code have to do with
664 * ensuring that only one retry instance is in progress
665 * for a given iocb at any time. Providing that guarantee
666 * simplifies the coding of individual aio operations as
667 * it avoids various potential races.
668 */
669 static ssize_t aio_run_iocb(struct kiocb *iocb)
670 {
671 struct kioctx *ctx = iocb->ki_ctx;
672 ssize_t (*retry)(struct kiocb *);
673 ssize_t ret;
674
675 if (!(retry = iocb->ki_retry)) {
676 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
677 return 0;
678 }
679
680 /*
681 * We don't want the next retry iteration for this
682 * operation to start until this one has returned and
683 * updated the iocb state. However, wait_queue functions
684 * can trigger a kick_iocb from interrupt context in the
685 * meantime, indicating that data is available for the next
686 * iteration. We want to remember that and enable the
687 * next retry iteration _after_ we are through with
688 * this one.
689 *
690 * So, in order to be able to register a "kick", but
691 * prevent it from being queued now, we clear the kick
692 * flag, but make the kick code *think* that the iocb is
693 * still on the run list until we are actually done.
694 * When we are done with this iteration, we check if
695 * the iocb was kicked in the meantime and if so, queue
696 * it up afresh.
697 */
698
699 kiocbClearKicked(iocb);
700
701 /*
702 * This is so that aio_complete knows it doesn't need to
703 * pull the iocb off the run list (We can't just call
704 * INIT_LIST_HEAD because we don't want a kick_iocb to
705 * queue this on the run list yet)
706 */
707 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
708 spin_unlock_irq(&ctx->ctx_lock);
709
710 /* Quit retrying if the i/o has been cancelled */
711 if (kiocbIsCancelled(iocb)) {
712 ret = -EINTR;
713 aio_complete(iocb, ret, 0);
714 /* must not access the iocb after this */
715 goto out;
716 }
717
718 /*
719 * Now we are all set to call the retry method in async
720 * context.
721 */
722 ret = retry(iocb);
723
724 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
725 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
726 aio_complete(iocb, ret, 0);
727 }
728 out:
729 spin_lock_irq(&ctx->ctx_lock);
730
731 if (-EIOCBRETRY == ret) {
732 /*
733 * OK, now that we are done with this iteration
734 * and know that there is more left to go,
735 * this is where we let go so that a subsequent
736 * "kick" can start the next iteration
737 */
738
739 /* will make __queue_kicked_iocb succeed from here on */
740 INIT_LIST_HEAD(&iocb->ki_run_list);
741 /* we must queue the next iteration ourselves, if it
742 * has already been kicked */
743 if (kiocbIsKicked(iocb)) {
744 __queue_kicked_iocb(iocb);
745
746 /*
747 * __queue_kicked_iocb will always return 1 here, because
748 * iocb->ki_run_list is empty at this point so it should
749 * be safe to unconditionally queue the context into the
750 * work queue.
751 */
752 aio_queue_work(ctx);
753 }
754 }
755 return ret;
756 }
757
758 /*
759 * __aio_run_iocbs:
760 * Process all pending retries queued on the ioctx
761 * run list.
762 * Assumes it is operating within the aio issuer's mm
763 * context.
764 */
765 static int __aio_run_iocbs(struct kioctx *ctx)
766 {
767 struct kiocb *iocb;
768 struct list_head run_list;
769
770 assert_spin_locked(&ctx->ctx_lock);
771
772 list_replace_init(&ctx->run_list, &run_list);
773 while (!list_empty(&run_list)) {
774 iocb = list_entry(run_list.next, struct kiocb,
775 ki_run_list);
776 list_del(&iocb->ki_run_list);
777 /*
778 * Hold an extra reference while retrying i/o.
779 */
780 iocb->ki_users++; /* grab extra reference */
781 aio_run_iocb(iocb);
782 __aio_put_req(ctx, iocb);
783 }
784 if (!list_empty(&ctx->run_list))
785 return 1;
786 return 0;
787 }
788
789 static void aio_queue_work(struct kioctx * ctx)
790 {
791 unsigned long timeout;
792 /*
793 * if someone is waiting, get the work started right
794 * away, otherwise, use a longer delay
795 */
796 smp_mb();
797 if (waitqueue_active(&ctx->wait))
798 timeout = 1;
799 else
800 timeout = HZ/10;
801 queue_delayed_work(aio_wq, &ctx->wq, timeout);
802 }
803
804
805 /*
806 * aio_run_iocbs:
807 * Process all pending retries queued on the ioctx
808 * run list.
809 * Assumes it is operating within the aio issuer's mm
810 * context.
811 */
812 static inline void aio_run_iocbs(struct kioctx *ctx)
813 {
814 int requeue;
815
816 spin_lock_irq(&ctx->ctx_lock);
817
818 requeue = __aio_run_iocbs(ctx);
819 spin_unlock_irq(&ctx->ctx_lock);
820 if (requeue)
821 aio_queue_work(ctx);
822 }
823
824 /*
825 * just like aio_run_iocbs, but keeps running them until
826 * the list stays empty
827 */
828 static inline void aio_run_all_iocbs(struct kioctx *ctx)
829 {
830 spin_lock_irq(&ctx->ctx_lock);
831 while (__aio_run_iocbs(ctx))
832 ;
833 spin_unlock_irq(&ctx->ctx_lock);
834 }
835
836 /*
837 * aio_kick_handler:
838 * Work queue handler triggered to process pending
839 * retries on an ioctx. Takes on the aio issuer's
840 * mm context before running the iocbs, so that
841 * copy_xxx_user operates on the issuer's address
842 * space.
843 * Run on aiod's context.
844 */
845 static void aio_kick_handler(struct work_struct *work)
846 {
847 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
848 mm_segment_t oldfs = get_fs();
849 struct mm_struct *mm;
850 int requeue;
851
852 set_fs(USER_DS);
853 use_mm(ctx->mm);
854 spin_lock_irq(&ctx->ctx_lock);
855 requeue =__aio_run_iocbs(ctx);
856 mm = ctx->mm;
857 spin_unlock_irq(&ctx->ctx_lock);
858 unuse_mm(mm);
859 set_fs(oldfs);
860 /*
861 * we're in a worker thread already, don't use queue_delayed_work,
862 */
863 if (requeue)
864 queue_delayed_work(aio_wq, &ctx->wq, 0);
865 }
866
867
868 /*
869 * Called by kick_iocb to queue the kiocb for retry
870 * and if required activate the aio work queue to process
871 * it
872 */
873 static void try_queue_kicked_iocb(struct kiocb *iocb)
874 {
875 struct kioctx *ctx = iocb->ki_ctx;
876 unsigned long flags;
877 int run = 0;
878
879 /* We're supposed to be the only path putting the iocb back on the run
880 * list. If we find that the iocb is *back* on a wait queue already
881 * than retry has happened before we could queue the iocb. This also
882 * means that the retry could have completed and freed our iocb, no
883 * good. */
884 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
885
886 spin_lock_irqsave(&ctx->ctx_lock, flags);
887 /* set this inside the lock so that we can't race with aio_run_iocb()
888 * testing it and putting the iocb on the run list under the lock */
889 if (!kiocbTryKick(iocb))
890 run = __queue_kicked_iocb(iocb);
891 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
892 if (run)
893 aio_queue_work(ctx);
894 }
895
896 /*
897 * kick_iocb:
898 * Called typically from a wait queue callback context
899 * (aio_wake_function) to trigger a retry of the iocb.
900 * The retry is usually executed by aio workqueue
901 * threads (See aio_kick_handler).
902 */
903 void kick_iocb(struct kiocb *iocb)
904 {
905 /* sync iocbs are easy: they can only ever be executing from a
906 * single context. */
907 if (is_sync_kiocb(iocb)) {
908 kiocbSetKicked(iocb);
909 wake_up_process(iocb->ki_obj.tsk);
910 return;
911 }
912
913 try_queue_kicked_iocb(iocb);
914 }
915 EXPORT_SYMBOL(kick_iocb);
916
917 /* aio_complete
918 * Called when the io request on the given iocb is complete.
919 * Returns true if this is the last user of the request. The
920 * only other user of the request can be the cancellation code.
921 */
922 int aio_complete(struct kiocb *iocb, long res, long res2)
923 {
924 struct kioctx *ctx = iocb->ki_ctx;
925 struct aio_ring_info *info;
926 struct aio_ring *ring;
927 struct io_event *event;
928 unsigned long flags;
929 unsigned long tail;
930 int ret;
931
932 /*
933 * Special case handling for sync iocbs:
934 * - events go directly into the iocb for fast handling
935 * - the sync task with the iocb in its stack holds the single iocb
936 * ref, no other paths have a way to get another ref
937 * - the sync task helpfully left a reference to itself in the iocb
938 */
939 if (is_sync_kiocb(iocb)) {
940 BUG_ON(iocb->ki_users != 1);
941 iocb->ki_user_data = res;
942 iocb->ki_users = 0;
943 wake_up_process(iocb->ki_obj.tsk);
944 return 1;
945 }
946
947 info = &ctx->ring_info;
948
949 /* add a completion event to the ring buffer.
950 * must be done holding ctx->ctx_lock to prevent
951 * other code from messing with the tail
952 * pointer since we might be called from irq
953 * context.
954 */
955 spin_lock_irqsave(&ctx->ctx_lock, flags);
956
957 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
958 list_del_init(&iocb->ki_run_list);
959
960 /*
961 * cancelled requests don't get events, userland was given one
962 * when the event got cancelled.
963 */
964 if (kiocbIsCancelled(iocb))
965 goto put_rq;
966
967 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
968
969 tail = info->tail;
970 event = aio_ring_event(info, tail, KM_IRQ0);
971 if (++tail >= info->nr)
972 tail = 0;
973
974 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
975 event->data = iocb->ki_user_data;
976 event->res = res;
977 event->res2 = res2;
978
979 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
980 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
981 res, res2);
982
983 /* after flagging the request as done, we
984 * must never even look at it again
985 */
986 smp_wmb(); /* make event visible before updating tail */
987
988 info->tail = tail;
989 ring->tail = tail;
990
991 put_aio_ring_event(event, KM_IRQ0);
992 kunmap_atomic(ring, KM_IRQ1);
993
994 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
995
996 /*
997 * Check if the user asked us to deliver the result through an
998 * eventfd. The eventfd_signal() function is safe to be called
999 * from IRQ context.
1000 */
1001 if (!IS_ERR(iocb->ki_eventfd))
1002 eventfd_signal(iocb->ki_eventfd, 1);
1003
1004 put_rq:
1005 /* everything turned out well, dispose of the aiocb. */
1006 ret = __aio_put_req(ctx, iocb);
1007
1008 /*
1009 * We have to order our ring_info tail store above and test
1010 * of the wait list below outside the wait lock. This is
1011 * like in wake_up_bit() where clearing a bit has to be
1012 * ordered with the unlocked test.
1013 */
1014 smp_mb();
1015
1016 if (waitqueue_active(&ctx->wait))
1017 wake_up(&ctx->wait);
1018
1019 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1020 return ret;
1021 }
1022
1023 /* aio_read_evt
1024 * Pull an event off of the ioctx's event ring. Returns the number of
1025 * events fetched (0 or 1 ;-)
1026 * FIXME: make this use cmpxchg.
1027 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1028 */
1029 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1030 {
1031 struct aio_ring_info *info = &ioctx->ring_info;
1032 struct aio_ring *ring;
1033 unsigned long head;
1034 int ret = 0;
1035
1036 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1037 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1038 (unsigned long)ring->head, (unsigned long)ring->tail,
1039 (unsigned long)ring->nr);
1040
1041 if (ring->head == ring->tail)
1042 goto out;
1043
1044 spin_lock(&info->ring_lock);
1045
1046 head = ring->head % info->nr;
1047 if (head != ring->tail) {
1048 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1049 *ent = *evp;
1050 head = (head + 1) % info->nr;
1051 smp_mb(); /* finish reading the event before updatng the head */
1052 ring->head = head;
1053 ret = 1;
1054 put_aio_ring_event(evp, KM_USER1);
1055 }
1056 spin_unlock(&info->ring_lock);
1057
1058 out:
1059 kunmap_atomic(ring, KM_USER0);
1060 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1061 (unsigned long)ring->head, (unsigned long)ring->tail);
1062 return ret;
1063 }
1064
1065 struct aio_timeout {
1066 struct timer_list timer;
1067 int timed_out;
1068 struct task_struct *p;
1069 };
1070
1071 static void timeout_func(unsigned long data)
1072 {
1073 struct aio_timeout *to = (struct aio_timeout *)data;
1074
1075 to->timed_out = 1;
1076 wake_up_process(to->p);
1077 }
1078
1079 static inline void init_timeout(struct aio_timeout *to)
1080 {
1081 init_timer(&to->timer);
1082 to->timer.data = (unsigned long)to;
1083 to->timer.function = timeout_func;
1084 to->timed_out = 0;
1085 to->p = current;
1086 }
1087
1088 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1089 const struct timespec *ts)
1090 {
1091 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1092 if (time_after(to->timer.expires, jiffies))
1093 add_timer(&to->timer);
1094 else
1095 to->timed_out = 1;
1096 }
1097
1098 static inline void clear_timeout(struct aio_timeout *to)
1099 {
1100 del_singleshot_timer_sync(&to->timer);
1101 }
1102
1103 static int read_events(struct kioctx *ctx,
1104 long min_nr, long nr,
1105 struct io_event __user *event,
1106 struct timespec __user *timeout)
1107 {
1108 long start_jiffies = jiffies;
1109 struct task_struct *tsk = current;
1110 DECLARE_WAITQUEUE(wait, tsk);
1111 int ret;
1112 int i = 0;
1113 struct io_event ent;
1114 struct aio_timeout to;
1115 int retry = 0;
1116
1117 /* needed to zero any padding within an entry (there shouldn't be
1118 * any, but C is fun!
1119 */
1120 memset(&ent, 0, sizeof(ent));
1121 retry:
1122 ret = 0;
1123 while (likely(i < nr)) {
1124 ret = aio_read_evt(ctx, &ent);
1125 if (unlikely(ret <= 0))
1126 break;
1127
1128 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1129 ent.data, ent.obj, ent.res, ent.res2);
1130
1131 /* Could we split the check in two? */
1132 ret = -EFAULT;
1133 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1134 dprintk("aio: lost an event due to EFAULT.\n");
1135 break;
1136 }
1137 ret = 0;
1138
1139 /* Good, event copied to userland, update counts. */
1140 event ++;
1141 i ++;
1142 }
1143
1144 if (min_nr <= i)
1145 return i;
1146 if (ret)
1147 return ret;
1148
1149 /* End fast path */
1150
1151 /* racey check, but it gets redone */
1152 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1153 retry = 1;
1154 aio_run_all_iocbs(ctx);
1155 goto retry;
1156 }
1157
1158 init_timeout(&to);
1159 if (timeout) {
1160 struct timespec ts;
1161 ret = -EFAULT;
1162 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1163 goto out;
1164
1165 set_timeout(start_jiffies, &to, &ts);
1166 }
1167
1168 while (likely(i < nr)) {
1169 add_wait_queue_exclusive(&ctx->wait, &wait);
1170 do {
1171 set_task_state(tsk, TASK_INTERRUPTIBLE);
1172 ret = aio_read_evt(ctx, &ent);
1173 if (ret)
1174 break;
1175 if (min_nr <= i)
1176 break;
1177 if (unlikely(ctx->dead)) {
1178 ret = -EINVAL;
1179 break;
1180 }
1181 if (to.timed_out) /* Only check after read evt */
1182 break;
1183 /* Try to only show up in io wait if there are ops
1184 * in flight */
1185 if (ctx->reqs_active)
1186 io_schedule();
1187 else
1188 schedule();
1189 if (signal_pending(tsk)) {
1190 ret = -EINTR;
1191 break;
1192 }
1193 /*ret = aio_read_evt(ctx, &ent);*/
1194 } while (1) ;
1195
1196 set_task_state(tsk, TASK_RUNNING);
1197 remove_wait_queue(&ctx->wait, &wait);
1198
1199 if (unlikely(ret <= 0))
1200 break;
1201
1202 ret = -EFAULT;
1203 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1204 dprintk("aio: lost an event due to EFAULT.\n");
1205 break;
1206 }
1207
1208 /* Good, event copied to userland, update counts. */
1209 event ++;
1210 i ++;
1211 }
1212
1213 if (timeout)
1214 clear_timeout(&to);
1215 out:
1216 return i ? i : ret;
1217 }
1218
1219 /* Take an ioctx and remove it from the list of ioctx's. Protects
1220 * against races with itself via ->dead.
1221 */
1222 static void io_destroy(struct kioctx *ioctx)
1223 {
1224 struct mm_struct *mm = current->mm;
1225 struct kioctx **tmp;
1226 int was_dead;
1227
1228 /* delete the entry from the list is someone else hasn't already */
1229 write_lock(&mm->ioctx_list_lock);
1230 was_dead = ioctx->dead;
1231 ioctx->dead = 1;
1232 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1233 tmp = &(*tmp)->next)
1234 ;
1235 if (*tmp)
1236 *tmp = ioctx->next;
1237 write_unlock(&mm->ioctx_list_lock);
1238
1239 dprintk("aio_release(%p)\n", ioctx);
1240 if (likely(!was_dead))
1241 put_ioctx(ioctx); /* twice for the list */
1242
1243 aio_cancel_all(ioctx);
1244 wait_for_all_aios(ioctx);
1245
1246 /*
1247 * Wake up any waiters. The setting of ctx->dead must be seen
1248 * by other CPUs at this point. Right now, we rely on the
1249 * locking done by the above calls to ensure this consistency.
1250 */
1251 wake_up(&ioctx->wait);
1252 put_ioctx(ioctx); /* once for the lookup */
1253 }
1254
1255 /* sys_io_setup:
1256 * Create an aio_context capable of receiving at least nr_events.
1257 * ctxp must not point to an aio_context that already exists, and
1258 * must be initialized to 0 prior to the call. On successful
1259 * creation of the aio_context, *ctxp is filled in with the resulting
1260 * handle. May fail with -EINVAL if *ctxp is not initialized,
1261 * if the specified nr_events exceeds internal limits. May fail
1262 * with -EAGAIN if the specified nr_events exceeds the user's limit
1263 * of available events. May fail with -ENOMEM if insufficient kernel
1264 * resources are available. May fail with -EFAULT if an invalid
1265 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1266 * implemented.
1267 */
1268 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1269 {
1270 struct kioctx *ioctx = NULL;
1271 unsigned long ctx;
1272 long ret;
1273
1274 ret = get_user(ctx, ctxp);
1275 if (unlikely(ret))
1276 goto out;
1277
1278 ret = -EINVAL;
1279 if (unlikely(ctx || nr_events == 0)) {
1280 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1281 ctx, nr_events);
1282 goto out;
1283 }
1284
1285 ioctx = ioctx_alloc(nr_events);
1286 ret = PTR_ERR(ioctx);
1287 if (!IS_ERR(ioctx)) {
1288 ret = put_user(ioctx->user_id, ctxp);
1289 if (!ret)
1290 return 0;
1291
1292 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1293 io_destroy(ioctx);
1294 }
1295
1296 out:
1297 return ret;
1298 }
1299
1300 /* sys_io_destroy:
1301 * Destroy the aio_context specified. May cancel any outstanding
1302 * AIOs and block on completion. Will fail with -ENOSYS if not
1303 * implemented. May fail with -EFAULT if the context pointed to
1304 * is invalid.
1305 */
1306 asmlinkage long sys_io_destroy(aio_context_t ctx)
1307 {
1308 struct kioctx *ioctx = lookup_ioctx(ctx);
1309 if (likely(NULL != ioctx)) {
1310 io_destroy(ioctx);
1311 return 0;
1312 }
1313 pr_debug("EINVAL: io_destroy: invalid context id\n");
1314 return -EINVAL;
1315 }
1316
1317 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1318 {
1319 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1320
1321 BUG_ON(ret <= 0);
1322
1323 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1324 ssize_t this = min((ssize_t)iov->iov_len, ret);
1325 iov->iov_base += this;
1326 iov->iov_len -= this;
1327 iocb->ki_left -= this;
1328 ret -= this;
1329 if (iov->iov_len == 0) {
1330 iocb->ki_cur_seg++;
1331 iov++;
1332 }
1333 }
1334
1335 /* the caller should not have done more io than what fit in
1336 * the remaining iovecs */
1337 BUG_ON(ret > 0 && iocb->ki_left == 0);
1338 }
1339
1340 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1341 {
1342 struct file *file = iocb->ki_filp;
1343 struct address_space *mapping = file->f_mapping;
1344 struct inode *inode = mapping->host;
1345 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1346 unsigned long, loff_t);
1347 ssize_t ret = 0;
1348 unsigned short opcode;
1349
1350 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1351 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1352 rw_op = file->f_op->aio_read;
1353 opcode = IOCB_CMD_PREADV;
1354 } else {
1355 rw_op = file->f_op->aio_write;
1356 opcode = IOCB_CMD_PWRITEV;
1357 }
1358
1359 /* This matches the pread()/pwrite() logic */
1360 if (iocb->ki_pos < 0)
1361 return -EINVAL;
1362
1363 do {
1364 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1365 iocb->ki_nr_segs - iocb->ki_cur_seg,
1366 iocb->ki_pos);
1367 if (ret > 0)
1368 aio_advance_iovec(iocb, ret);
1369
1370 /* retry all partial writes. retry partial reads as long as its a
1371 * regular file. */
1372 } while (ret > 0 && iocb->ki_left > 0 &&
1373 (opcode == IOCB_CMD_PWRITEV ||
1374 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1375
1376 /* This means we must have transferred all that we could */
1377 /* No need to retry anymore */
1378 if ((ret == 0) || (iocb->ki_left == 0))
1379 ret = iocb->ki_nbytes - iocb->ki_left;
1380
1381 /* If we managed to write some out we return that, rather than
1382 * the eventual error. */
1383 if (opcode == IOCB_CMD_PWRITEV
1384 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1385 && iocb->ki_nbytes - iocb->ki_left)
1386 ret = iocb->ki_nbytes - iocb->ki_left;
1387
1388 return ret;
1389 }
1390
1391 static ssize_t aio_fdsync(struct kiocb *iocb)
1392 {
1393 struct file *file = iocb->ki_filp;
1394 ssize_t ret = -EINVAL;
1395
1396 if (file->f_op->aio_fsync)
1397 ret = file->f_op->aio_fsync(iocb, 1);
1398 return ret;
1399 }
1400
1401 static ssize_t aio_fsync(struct kiocb *iocb)
1402 {
1403 struct file *file = iocb->ki_filp;
1404 ssize_t ret = -EINVAL;
1405
1406 if (file->f_op->aio_fsync)
1407 ret = file->f_op->aio_fsync(iocb, 0);
1408 return ret;
1409 }
1410
1411 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1412 {
1413 ssize_t ret;
1414
1415 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1416 kiocb->ki_nbytes, 1,
1417 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1418 if (ret < 0)
1419 goto out;
1420
1421 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1422 kiocb->ki_cur_seg = 0;
1423 /* ki_nbytes/left now reflect bytes instead of segs */
1424 kiocb->ki_nbytes = ret;
1425 kiocb->ki_left = ret;
1426
1427 ret = 0;
1428 out:
1429 return ret;
1430 }
1431
1432 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1433 {
1434 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1435 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1436 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1437 kiocb->ki_nr_segs = 1;
1438 kiocb->ki_cur_seg = 0;
1439 return 0;
1440 }
1441
1442 /*
1443 * aio_setup_iocb:
1444 * Performs the initial checks and aio retry method
1445 * setup for the kiocb at the time of io submission.
1446 */
1447 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1448 {
1449 struct file *file = kiocb->ki_filp;
1450 ssize_t ret = 0;
1451
1452 switch (kiocb->ki_opcode) {
1453 case IOCB_CMD_PREAD:
1454 ret = -EBADF;
1455 if (unlikely(!(file->f_mode & FMODE_READ)))
1456 break;
1457 ret = -EFAULT;
1458 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1459 kiocb->ki_left)))
1460 break;
1461 ret = security_file_permission(file, MAY_READ);
1462 if (unlikely(ret))
1463 break;
1464 ret = aio_setup_single_vector(kiocb);
1465 if (ret)
1466 break;
1467 ret = -EINVAL;
1468 if (file->f_op->aio_read)
1469 kiocb->ki_retry = aio_rw_vect_retry;
1470 break;
1471 case IOCB_CMD_PWRITE:
1472 ret = -EBADF;
1473 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1474 break;
1475 ret = -EFAULT;
1476 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1477 kiocb->ki_left)))
1478 break;
1479 ret = security_file_permission(file, MAY_WRITE);
1480 if (unlikely(ret))
1481 break;
1482 ret = aio_setup_single_vector(kiocb);
1483 if (ret)
1484 break;
1485 ret = -EINVAL;
1486 if (file->f_op->aio_write)
1487 kiocb->ki_retry = aio_rw_vect_retry;
1488 break;
1489 case IOCB_CMD_PREADV:
1490 ret = -EBADF;
1491 if (unlikely(!(file->f_mode & FMODE_READ)))
1492 break;
1493 ret = security_file_permission(file, MAY_READ);
1494 if (unlikely(ret))
1495 break;
1496 ret = aio_setup_vectored_rw(READ, kiocb);
1497 if (ret)
1498 break;
1499 ret = -EINVAL;
1500 if (file->f_op->aio_read)
1501 kiocb->ki_retry = aio_rw_vect_retry;
1502 break;
1503 case IOCB_CMD_PWRITEV:
1504 ret = -EBADF;
1505 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1506 break;
1507 ret = security_file_permission(file, MAY_WRITE);
1508 if (unlikely(ret))
1509 break;
1510 ret = aio_setup_vectored_rw(WRITE, kiocb);
1511 if (ret)
1512 break;
1513 ret = -EINVAL;
1514 if (file->f_op->aio_write)
1515 kiocb->ki_retry = aio_rw_vect_retry;
1516 break;
1517 case IOCB_CMD_FDSYNC:
1518 ret = -EINVAL;
1519 if (file->f_op->aio_fsync)
1520 kiocb->ki_retry = aio_fdsync;
1521 break;
1522 case IOCB_CMD_FSYNC:
1523 ret = -EINVAL;
1524 if (file->f_op->aio_fsync)
1525 kiocb->ki_retry = aio_fsync;
1526 break;
1527 default:
1528 dprintk("EINVAL: io_submit: no operation provided\n");
1529 ret = -EINVAL;
1530 }
1531
1532 if (!kiocb->ki_retry)
1533 return ret;
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * aio_wake_function:
1540 * wait queue callback function for aio notification,
1541 * Simply triggers a retry of the operation via kick_iocb.
1542 *
1543 * This callback is specified in the wait queue entry in
1544 * a kiocb.
1545 *
1546 * Note:
1547 * This routine is executed with the wait queue lock held.
1548 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1549 * the ioctx lock inside the wait queue lock. This is safe
1550 * because this callback isn't used for wait queues which
1551 * are nested inside ioctx lock (i.e. ctx->wait)
1552 */
1553 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1554 int sync, void *key)
1555 {
1556 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1557
1558 list_del_init(&wait->task_list);
1559 kick_iocb(iocb);
1560 return 1;
1561 }
1562
1563 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1564 struct iocb *iocb)
1565 {
1566 struct kiocb *req;
1567 struct file *file;
1568 ssize_t ret;
1569
1570 /* enforce forwards compatibility on users */
1571 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1572 pr_debug("EINVAL: io_submit: reserve field set\n");
1573 return -EINVAL;
1574 }
1575
1576 /* prevent overflows */
1577 if (unlikely(
1578 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1579 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1580 ((ssize_t)iocb->aio_nbytes < 0)
1581 )) {
1582 pr_debug("EINVAL: io_submit: overflow check\n");
1583 return -EINVAL;
1584 }
1585
1586 file = fget(iocb->aio_fildes);
1587 if (unlikely(!file))
1588 return -EBADF;
1589
1590 req = aio_get_req(ctx); /* returns with 2 references to req */
1591 if (unlikely(!req)) {
1592 fput(file);
1593 return -EAGAIN;
1594 }
1595 req->ki_filp = file;
1596 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1597 /*
1598 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1599 * instance of the file* now. The file descriptor must be
1600 * an eventfd() fd, and will be signaled for each completed
1601 * event using the eventfd_signal() function.
1602 */
1603 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1604 if (IS_ERR(req->ki_eventfd)) {
1605 ret = PTR_ERR(req->ki_eventfd);
1606 goto out_put_req;
1607 }
1608 }
1609
1610 ret = put_user(req->ki_key, &user_iocb->aio_key);
1611 if (unlikely(ret)) {
1612 dprintk("EFAULT: aio_key\n");
1613 goto out_put_req;
1614 }
1615
1616 req->ki_obj.user = user_iocb;
1617 req->ki_user_data = iocb->aio_data;
1618 req->ki_pos = iocb->aio_offset;
1619
1620 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1621 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1622 req->ki_opcode = iocb->aio_lio_opcode;
1623 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1624 INIT_LIST_HEAD(&req->ki_wait.task_list);
1625
1626 ret = aio_setup_iocb(req);
1627
1628 if (ret)
1629 goto out_put_req;
1630
1631 spin_lock_irq(&ctx->ctx_lock);
1632 aio_run_iocb(req);
1633 if (!list_empty(&ctx->run_list)) {
1634 /* drain the run list */
1635 while (__aio_run_iocbs(ctx))
1636 ;
1637 }
1638 spin_unlock_irq(&ctx->ctx_lock);
1639 aio_put_req(req); /* drop extra ref to req */
1640 return 0;
1641
1642 out_put_req:
1643 aio_put_req(req); /* drop extra ref to req */
1644 aio_put_req(req); /* drop i/o ref to req */
1645 return ret;
1646 }
1647
1648 /* sys_io_submit:
1649 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1650 * the number of iocbs queued. May return -EINVAL if the aio_context
1651 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1652 * *iocbpp[0] is not properly initialized, if the operation specified
1653 * is invalid for the file descriptor in the iocb. May fail with
1654 * -EFAULT if any of the data structures point to invalid data. May
1655 * fail with -EBADF if the file descriptor specified in the first
1656 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1657 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1658 * fail with -ENOSYS if not implemented.
1659 */
1660 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1661 struct iocb __user * __user *iocbpp)
1662 {
1663 struct kioctx *ctx;
1664 long ret = 0;
1665 int i;
1666
1667 if (unlikely(nr < 0))
1668 return -EINVAL;
1669
1670 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1671 return -EFAULT;
1672
1673 ctx = lookup_ioctx(ctx_id);
1674 if (unlikely(!ctx)) {
1675 pr_debug("EINVAL: io_submit: invalid context id\n");
1676 return -EINVAL;
1677 }
1678
1679 /*
1680 * AKPM: should this return a partial result if some of the IOs were
1681 * successfully submitted?
1682 */
1683 for (i=0; i<nr; i++) {
1684 struct iocb __user *user_iocb;
1685 struct iocb tmp;
1686
1687 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1688 ret = -EFAULT;
1689 break;
1690 }
1691
1692 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1693 ret = -EFAULT;
1694 break;
1695 }
1696
1697 ret = io_submit_one(ctx, user_iocb, &tmp);
1698 if (ret)
1699 break;
1700 }
1701
1702 put_ioctx(ctx);
1703 return i ? i : ret;
1704 }
1705
1706 /* lookup_kiocb
1707 * Finds a given iocb for cancellation.
1708 */
1709 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1710 u32 key)
1711 {
1712 struct list_head *pos;
1713
1714 assert_spin_locked(&ctx->ctx_lock);
1715
1716 /* TODO: use a hash or array, this sucks. */
1717 list_for_each(pos, &ctx->active_reqs) {
1718 struct kiocb *kiocb = list_kiocb(pos);
1719 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1720 return kiocb;
1721 }
1722 return NULL;
1723 }
1724
1725 /* sys_io_cancel:
1726 * Attempts to cancel an iocb previously passed to io_submit. If
1727 * the operation is successfully cancelled, the resulting event is
1728 * copied into the memory pointed to by result without being placed
1729 * into the completion queue and 0 is returned. May fail with
1730 * -EFAULT if any of the data structures pointed to are invalid.
1731 * May fail with -EINVAL if aio_context specified by ctx_id is
1732 * invalid. May fail with -EAGAIN if the iocb specified was not
1733 * cancelled. Will fail with -ENOSYS if not implemented.
1734 */
1735 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1736 struct io_event __user *result)
1737 {
1738 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1739 struct kioctx *ctx;
1740 struct kiocb *kiocb;
1741 u32 key;
1742 int ret;
1743
1744 ret = get_user(key, &iocb->aio_key);
1745 if (unlikely(ret))
1746 return -EFAULT;
1747
1748 ctx = lookup_ioctx(ctx_id);
1749 if (unlikely(!ctx))
1750 return -EINVAL;
1751
1752 spin_lock_irq(&ctx->ctx_lock);
1753 ret = -EAGAIN;
1754 kiocb = lookup_kiocb(ctx, iocb, key);
1755 if (kiocb && kiocb->ki_cancel) {
1756 cancel = kiocb->ki_cancel;
1757 kiocb->ki_users ++;
1758 kiocbSetCancelled(kiocb);
1759 } else
1760 cancel = NULL;
1761 spin_unlock_irq(&ctx->ctx_lock);
1762
1763 if (NULL != cancel) {
1764 struct io_event tmp;
1765 pr_debug("calling cancel\n");
1766 memset(&tmp, 0, sizeof(tmp));
1767 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1768 tmp.data = kiocb->ki_user_data;
1769 ret = cancel(kiocb, &tmp);
1770 if (!ret) {
1771 /* Cancellation succeeded -- copy the result
1772 * into the user's buffer.
1773 */
1774 if (copy_to_user(result, &tmp, sizeof(tmp)))
1775 ret = -EFAULT;
1776 }
1777 } else
1778 ret = -EINVAL;
1779
1780 put_ioctx(ctx);
1781
1782 return ret;
1783 }
1784
1785 /* io_getevents:
1786 * Attempts to read at least min_nr events and up to nr events from
1787 * the completion queue for the aio_context specified by ctx_id. May
1788 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1789 * if nr is out of range, if when is out of range. May fail with
1790 * -EFAULT if any of the memory specified to is invalid. May return
1791 * 0 or < min_nr if no events are available and the timeout specified
1792 * by when has elapsed, where when == NULL specifies an infinite
1793 * timeout. Note that the timeout pointed to by when is relative and
1794 * will be updated if not NULL and the operation blocks. Will fail
1795 * with -ENOSYS if not implemented.
1796 */
1797 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1798 long min_nr,
1799 long nr,
1800 struct io_event __user *events,
1801 struct timespec __user *timeout)
1802 {
1803 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1804 long ret = -EINVAL;
1805
1806 if (likely(ioctx)) {
1807 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1808 ret = read_events(ioctx, min_nr, nr, events, timeout);
1809 put_ioctx(ioctx);
1810 }
1811
1812 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1813 return ret;
1814 }
1815
1816 __initcall(aio_setup);
1817
1818 EXPORT_SYMBOL(aio_complete);
1819 EXPORT_SYMBOL(aio_put_req);
1820 EXPORT_SYMBOL(wait_on_sync_kiocb);
This page took 0.06875 seconds and 5 git commands to generate.