aio: add missing smp_rmb() in read_events_ring
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
83
84 struct percpu_ref reqs;
85
86 unsigned long user_id;
87
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
101 */
102 unsigned max_reqs;
103
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
106
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
113 struct work_struct free_work;
114
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
120 struct {
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
126 *
127 * We batch accesses to it with a percpu version.
128 */
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 unsigned tail;
144 unsigned completed_events;
145 spinlock_t completion_lock;
146 } ____cacheline_aligned_in_smp;
147
148 struct page *internal_pages[AIO_RING_PAGES];
149 struct file *aio_ring_file;
150
151 unsigned id;
152 };
153
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr; /* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
159
160 static struct kmem_cache *kiocb_cachep;
161 static struct kmem_cache *kioctx_cachep;
162
163 static struct vfsmount *aio_mnt;
164
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
167
168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169 {
170 struct qstr this = QSTR_INIT("[aio]", 5);
171 struct file *file;
172 struct path path;
173 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174 if (IS_ERR(inode))
175 return ERR_CAST(inode);
176
177 inode->i_mapping->a_ops = &aio_ctx_aops;
178 inode->i_mapping->private_data = ctx;
179 inode->i_size = PAGE_SIZE * nr_pages;
180
181 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 if (!path.dentry) {
183 iput(inode);
184 return ERR_PTR(-ENOMEM);
185 }
186 path.mnt = mntget(aio_mnt);
187
188 d_instantiate(path.dentry, inode);
189 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 if (IS_ERR(file)) {
191 path_put(&path);
192 return file;
193 }
194
195 file->f_flags = O_RDWR;
196 return file;
197 }
198
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
201 {
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
204 };
205 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
206 }
207
208 /* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
211 */
212 static int __init aio_setup(void)
213 {
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
218 };
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
222
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227
228 return 0;
229 }
230 __initcall(aio_setup);
231
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
237
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243
244 fput(aio_ring_file);
245 }
246 }
247
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 int i;
251
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
254 */
255 put_aio_ring_file(ctx);
256
257 for (i = 0; i < ctx->nr_pages; i++) {
258 struct page *page;
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
266 }
267
268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 kfree(ctx->ring_pages);
270 ctx->ring_pages = NULL;
271 }
272 }
273
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 vma->vm_ops = &generic_file_vm_ops;
277 return 0;
278 }
279
280 static const struct file_operations aio_ring_fops = {
281 .mmap = aio_ring_mmap,
282 };
283
284 static int aio_set_page_dirty(struct page *page)
285 {
286 return 0;
287 }
288
289 #if IS_ENABLED(CONFIG_MIGRATION)
290 static int aio_migratepage(struct address_space *mapping, struct page *new,
291 struct page *old, enum migrate_mode mode)
292 {
293 struct kioctx *ctx;
294 unsigned long flags;
295 pgoff_t idx;
296 int rc;
297
298 rc = 0;
299
300 /* mapping->private_lock here protects against the kioctx teardown. */
301 spin_lock(&mapping->private_lock);
302 ctx = mapping->private_data;
303 if (!ctx) {
304 rc = -EINVAL;
305 goto out;
306 }
307
308 /* The ring_lock mutex. The prevents aio_read_events() from writing
309 * to the ring's head, and prevents page migration from mucking in
310 * a partially initialized kiotx.
311 */
312 if (!mutex_trylock(&ctx->ring_lock)) {
313 rc = -EAGAIN;
314 goto out;
315 }
316
317 idx = old->index;
318 if (idx < (pgoff_t)ctx->nr_pages) {
319 /* Make sure the old page hasn't already been changed */
320 if (ctx->ring_pages[idx] != old)
321 rc = -EAGAIN;
322 } else
323 rc = -EINVAL;
324
325 if (rc != 0)
326 goto out_unlock;
327
328 /* Writeback must be complete */
329 BUG_ON(PageWriteback(old));
330 get_page(new);
331
332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333 if (rc != MIGRATEPAGE_SUCCESS) {
334 put_page(new);
335 goto out_unlock;
336 }
337
338 /* Take completion_lock to prevent other writes to the ring buffer
339 * while the old page is copied to the new. This prevents new
340 * events from being lost.
341 */
342 spin_lock_irqsave(&ctx->completion_lock, flags);
343 migrate_page_copy(new, old);
344 BUG_ON(ctx->ring_pages[idx] != old);
345 ctx->ring_pages[idx] = new;
346 spin_unlock_irqrestore(&ctx->completion_lock, flags);
347
348 /* The old page is no longer accessible. */
349 put_page(old);
350
351 out_unlock:
352 mutex_unlock(&ctx->ring_lock);
353 out:
354 spin_unlock(&mapping->private_lock);
355 return rc;
356 }
357 #endif
358
359 static const struct address_space_operations aio_ctx_aops = {
360 .set_page_dirty = aio_set_page_dirty,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 .migratepage = aio_migratepage,
363 #endif
364 };
365
366 static int aio_setup_ring(struct kioctx *ctx)
367 {
368 struct aio_ring *ring;
369 unsigned nr_events = ctx->max_reqs;
370 struct mm_struct *mm = current->mm;
371 unsigned long size, unused;
372 int nr_pages;
373 int i;
374 struct file *file;
375
376 /* Compensate for the ring buffer's head/tail overlap entry */
377 nr_events += 2; /* 1 is required, 2 for good luck */
378
379 size = sizeof(struct aio_ring);
380 size += sizeof(struct io_event) * nr_events;
381
382 nr_pages = PFN_UP(size);
383 if (nr_pages < 0)
384 return -EINVAL;
385
386 file = aio_private_file(ctx, nr_pages);
387 if (IS_ERR(file)) {
388 ctx->aio_ring_file = NULL;
389 return -ENOMEM;
390 }
391
392 ctx->aio_ring_file = file;
393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 / sizeof(struct io_event);
395
396 ctx->ring_pages = ctx->internal_pages;
397 if (nr_pages > AIO_RING_PAGES) {
398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 GFP_KERNEL);
400 if (!ctx->ring_pages) {
401 put_aio_ring_file(ctx);
402 return -ENOMEM;
403 }
404 }
405
406 for (i = 0; i < nr_pages; i++) {
407 struct page *page;
408 page = find_or_create_page(file->f_inode->i_mapping,
409 i, GFP_HIGHUSER | __GFP_ZERO);
410 if (!page)
411 break;
412 pr_debug("pid(%d) page[%d]->count=%d\n",
413 current->pid, i, page_count(page));
414 SetPageUptodate(page);
415 SetPageDirty(page);
416 unlock_page(page);
417
418 ctx->ring_pages[i] = page;
419 }
420 ctx->nr_pages = i;
421
422 if (unlikely(i != nr_pages)) {
423 aio_free_ring(ctx);
424 return -ENOMEM;
425 }
426
427 ctx->mmap_size = nr_pages * PAGE_SIZE;
428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429
430 down_write(&mm->mmap_sem);
431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 PROT_READ | PROT_WRITE,
433 MAP_SHARED, 0, &unused);
434 up_write(&mm->mmap_sem);
435 if (IS_ERR((void *)ctx->mmap_base)) {
436 ctx->mmap_size = 0;
437 aio_free_ring(ctx);
438 return -ENOMEM;
439 }
440
441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442
443 ctx->user_id = ctx->mmap_base;
444 ctx->nr_events = nr_events; /* trusted copy */
445
446 ring = kmap_atomic(ctx->ring_pages[0]);
447 ring->nr = nr_events; /* user copy */
448 ring->id = ~0U;
449 ring->head = ring->tail = 0;
450 ring->magic = AIO_RING_MAGIC;
451 ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 ring->header_length = sizeof(struct aio_ring);
454 kunmap_atomic(ring);
455 flush_dcache_page(ctx->ring_pages[0]);
456
457 return 0;
458 }
459
460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463
464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465 {
466 struct kioctx *ctx = req->ki_ctx;
467 unsigned long flags;
468
469 spin_lock_irqsave(&ctx->ctx_lock, flags);
470
471 if (!req->ki_list.next)
472 list_add(&req->ki_list, &ctx->active_reqs);
473
474 req->ki_cancel = cancel;
475
476 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477 }
478 EXPORT_SYMBOL(kiocb_set_cancel_fn);
479
480 static int kiocb_cancel(struct kiocb *kiocb)
481 {
482 kiocb_cancel_fn *old, *cancel;
483
484 /*
485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 * actually has a cancel function, hence the cmpxchg()
487 */
488
489 cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 do {
491 if (!cancel || cancel == KIOCB_CANCELLED)
492 return -EINVAL;
493
494 old = cancel;
495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 } while (cancel != old);
497
498 return cancel(kiocb);
499 }
500
501 static void free_ioctx(struct work_struct *work)
502 {
503 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504
505 pr_debug("freeing %p\n", ctx);
506
507 aio_free_ring(ctx);
508 free_percpu(ctx->cpu);
509 percpu_ref_exit(&ctx->reqs);
510 percpu_ref_exit(&ctx->users);
511 kmem_cache_free(kioctx_cachep, ctx);
512 }
513
514 static void free_ioctx_reqs(struct percpu_ref *ref)
515 {
516 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
517
518 /* At this point we know that there are no any in-flight requests */
519 if (ctx->requests_done)
520 complete(ctx->requests_done);
521
522 INIT_WORK(&ctx->free_work, free_ioctx);
523 schedule_work(&ctx->free_work);
524 }
525
526 /*
527 * When this function runs, the kioctx has been removed from the "hash table"
528 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
529 * now it's safe to cancel any that need to be.
530 */
531 static void free_ioctx_users(struct percpu_ref *ref)
532 {
533 struct kioctx *ctx = container_of(ref, struct kioctx, users);
534 struct kiocb *req;
535
536 spin_lock_irq(&ctx->ctx_lock);
537
538 while (!list_empty(&ctx->active_reqs)) {
539 req = list_first_entry(&ctx->active_reqs,
540 struct kiocb, ki_list);
541
542 list_del_init(&req->ki_list);
543 kiocb_cancel(req);
544 }
545
546 spin_unlock_irq(&ctx->ctx_lock);
547
548 percpu_ref_kill(&ctx->reqs);
549 percpu_ref_put(&ctx->reqs);
550 }
551
552 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
553 {
554 unsigned i, new_nr;
555 struct kioctx_table *table, *old;
556 struct aio_ring *ring;
557
558 spin_lock(&mm->ioctx_lock);
559 table = rcu_dereference_raw(mm->ioctx_table);
560
561 while (1) {
562 if (table)
563 for (i = 0; i < table->nr; i++)
564 if (!table->table[i]) {
565 ctx->id = i;
566 table->table[i] = ctx;
567 spin_unlock(&mm->ioctx_lock);
568
569 /* While kioctx setup is in progress,
570 * we are protected from page migration
571 * changes ring_pages by ->ring_lock.
572 */
573 ring = kmap_atomic(ctx->ring_pages[0]);
574 ring->id = ctx->id;
575 kunmap_atomic(ring);
576 return 0;
577 }
578
579 new_nr = (table ? table->nr : 1) * 4;
580 spin_unlock(&mm->ioctx_lock);
581
582 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
583 new_nr, GFP_KERNEL);
584 if (!table)
585 return -ENOMEM;
586
587 table->nr = new_nr;
588
589 spin_lock(&mm->ioctx_lock);
590 old = rcu_dereference_raw(mm->ioctx_table);
591
592 if (!old) {
593 rcu_assign_pointer(mm->ioctx_table, table);
594 } else if (table->nr > old->nr) {
595 memcpy(table->table, old->table,
596 old->nr * sizeof(struct kioctx *));
597
598 rcu_assign_pointer(mm->ioctx_table, table);
599 kfree_rcu(old, rcu);
600 } else {
601 kfree(table);
602 table = old;
603 }
604 }
605 }
606
607 static void aio_nr_sub(unsigned nr)
608 {
609 spin_lock(&aio_nr_lock);
610 if (WARN_ON(aio_nr - nr > aio_nr))
611 aio_nr = 0;
612 else
613 aio_nr -= nr;
614 spin_unlock(&aio_nr_lock);
615 }
616
617 /* ioctx_alloc
618 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
619 */
620 static struct kioctx *ioctx_alloc(unsigned nr_events)
621 {
622 struct mm_struct *mm = current->mm;
623 struct kioctx *ctx;
624 int err = -ENOMEM;
625
626 /*
627 * We keep track of the number of available ringbuffer slots, to prevent
628 * overflow (reqs_available), and we also use percpu counters for this.
629 *
630 * So since up to half the slots might be on other cpu's percpu counters
631 * and unavailable, double nr_events so userspace sees what they
632 * expected: additionally, we move req_batch slots to/from percpu
633 * counters at a time, so make sure that isn't 0:
634 */
635 nr_events = max(nr_events, num_possible_cpus() * 4);
636 nr_events *= 2;
637
638 /* Prevent overflows */
639 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
640 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
641 pr_debug("ENOMEM: nr_events too high\n");
642 return ERR_PTR(-EINVAL);
643 }
644
645 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
646 return ERR_PTR(-EAGAIN);
647
648 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
649 if (!ctx)
650 return ERR_PTR(-ENOMEM);
651
652 ctx->max_reqs = nr_events;
653
654 spin_lock_init(&ctx->ctx_lock);
655 spin_lock_init(&ctx->completion_lock);
656 mutex_init(&ctx->ring_lock);
657 /* Protect against page migration throughout kiotx setup by keeping
658 * the ring_lock mutex held until setup is complete. */
659 mutex_lock(&ctx->ring_lock);
660 init_waitqueue_head(&ctx->wait);
661
662 INIT_LIST_HEAD(&ctx->active_reqs);
663
664 if (percpu_ref_init(&ctx->users, free_ioctx_users))
665 goto err;
666
667 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
668 goto err;
669
670 ctx->cpu = alloc_percpu(struct kioctx_cpu);
671 if (!ctx->cpu)
672 goto err;
673
674 err = aio_setup_ring(ctx);
675 if (err < 0)
676 goto err;
677
678 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
679 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
680 if (ctx->req_batch < 1)
681 ctx->req_batch = 1;
682
683 /* limit the number of system wide aios */
684 spin_lock(&aio_nr_lock);
685 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
686 aio_nr + nr_events < aio_nr) {
687 spin_unlock(&aio_nr_lock);
688 err = -EAGAIN;
689 goto err_ctx;
690 }
691 aio_nr += ctx->max_reqs;
692 spin_unlock(&aio_nr_lock);
693
694 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
695 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
696
697 err = ioctx_add_table(ctx, mm);
698 if (err)
699 goto err_cleanup;
700
701 /* Release the ring_lock mutex now that all setup is complete. */
702 mutex_unlock(&ctx->ring_lock);
703
704 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
705 ctx, ctx->user_id, mm, ctx->nr_events);
706 return ctx;
707
708 err_cleanup:
709 aio_nr_sub(ctx->max_reqs);
710 err_ctx:
711 aio_free_ring(ctx);
712 err:
713 mutex_unlock(&ctx->ring_lock);
714 free_percpu(ctx->cpu);
715 percpu_ref_exit(&ctx->reqs);
716 percpu_ref_exit(&ctx->users);
717 kmem_cache_free(kioctx_cachep, ctx);
718 pr_debug("error allocating ioctx %d\n", err);
719 return ERR_PTR(err);
720 }
721
722 /* kill_ioctx
723 * Cancels all outstanding aio requests on an aio context. Used
724 * when the processes owning a context have all exited to encourage
725 * the rapid destruction of the kioctx.
726 */
727 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
728 struct completion *requests_done)
729 {
730 struct kioctx_table *table;
731
732 if (atomic_xchg(&ctx->dead, 1))
733 return -EINVAL;
734
735
736 spin_lock(&mm->ioctx_lock);
737 table = rcu_dereference_raw(mm->ioctx_table);
738 WARN_ON(ctx != table->table[ctx->id]);
739 table->table[ctx->id] = NULL;
740 spin_unlock(&mm->ioctx_lock);
741
742 /* percpu_ref_kill() will do the necessary call_rcu() */
743 wake_up_all(&ctx->wait);
744
745 /*
746 * It'd be more correct to do this in free_ioctx(), after all
747 * the outstanding kiocbs have finished - but by then io_destroy
748 * has already returned, so io_setup() could potentially return
749 * -EAGAIN with no ioctxs actually in use (as far as userspace
750 * could tell).
751 */
752 aio_nr_sub(ctx->max_reqs);
753
754 if (ctx->mmap_size)
755 vm_munmap(ctx->mmap_base, ctx->mmap_size);
756
757 ctx->requests_done = requests_done;
758 percpu_ref_kill(&ctx->users);
759 return 0;
760 }
761
762 /* wait_on_sync_kiocb:
763 * Waits on the given sync kiocb to complete.
764 */
765 ssize_t wait_on_sync_kiocb(struct kiocb *req)
766 {
767 while (!req->ki_ctx) {
768 set_current_state(TASK_UNINTERRUPTIBLE);
769 if (req->ki_ctx)
770 break;
771 io_schedule();
772 }
773 __set_current_state(TASK_RUNNING);
774 return req->ki_user_data;
775 }
776 EXPORT_SYMBOL(wait_on_sync_kiocb);
777
778 /*
779 * exit_aio: called when the last user of mm goes away. At this point, there is
780 * no way for any new requests to be submited or any of the io_* syscalls to be
781 * called on the context.
782 *
783 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
784 * them.
785 */
786 void exit_aio(struct mm_struct *mm)
787 {
788 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
789 int i;
790
791 if (!table)
792 return;
793
794 for (i = 0; i < table->nr; ++i) {
795 struct kioctx *ctx = table->table[i];
796
797 if (!ctx)
798 continue;
799 /*
800 * We don't need to bother with munmap() here - exit_mmap(mm)
801 * is coming and it'll unmap everything. And we simply can't,
802 * this is not necessarily our ->mm.
803 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
804 * that it needs to unmap the area, just set it to 0.
805 */
806 ctx->mmap_size = 0;
807 kill_ioctx(mm, ctx, NULL);
808 }
809
810 RCU_INIT_POINTER(mm->ioctx_table, NULL);
811 kfree(table);
812 }
813
814 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
815 {
816 struct kioctx_cpu *kcpu;
817 unsigned long flags;
818
819 local_irq_save(flags);
820 kcpu = this_cpu_ptr(ctx->cpu);
821 kcpu->reqs_available += nr;
822
823 while (kcpu->reqs_available >= ctx->req_batch * 2) {
824 kcpu->reqs_available -= ctx->req_batch;
825 atomic_add(ctx->req_batch, &ctx->reqs_available);
826 }
827
828 local_irq_restore(flags);
829 }
830
831 static bool get_reqs_available(struct kioctx *ctx)
832 {
833 struct kioctx_cpu *kcpu;
834 bool ret = false;
835 unsigned long flags;
836
837 local_irq_save(flags);
838 kcpu = this_cpu_ptr(ctx->cpu);
839 if (!kcpu->reqs_available) {
840 int old, avail = atomic_read(&ctx->reqs_available);
841
842 do {
843 if (avail < ctx->req_batch)
844 goto out;
845
846 old = avail;
847 avail = atomic_cmpxchg(&ctx->reqs_available,
848 avail, avail - ctx->req_batch);
849 } while (avail != old);
850
851 kcpu->reqs_available += ctx->req_batch;
852 }
853
854 ret = true;
855 kcpu->reqs_available--;
856 out:
857 local_irq_restore(flags);
858 return ret;
859 }
860
861 /* refill_reqs_available
862 * Updates the reqs_available reference counts used for tracking the
863 * number of free slots in the completion ring. This can be called
864 * from aio_complete() (to optimistically update reqs_available) or
865 * from aio_get_req() (the we're out of events case). It must be
866 * called holding ctx->completion_lock.
867 */
868 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
869 unsigned tail)
870 {
871 unsigned events_in_ring, completed;
872
873 /* Clamp head since userland can write to it. */
874 head %= ctx->nr_events;
875 if (head <= tail)
876 events_in_ring = tail - head;
877 else
878 events_in_ring = ctx->nr_events - (head - tail);
879
880 completed = ctx->completed_events;
881 if (events_in_ring < completed)
882 completed -= events_in_ring;
883 else
884 completed = 0;
885
886 if (!completed)
887 return;
888
889 ctx->completed_events -= completed;
890 put_reqs_available(ctx, completed);
891 }
892
893 /* user_refill_reqs_available
894 * Called to refill reqs_available when aio_get_req() encounters an
895 * out of space in the completion ring.
896 */
897 static void user_refill_reqs_available(struct kioctx *ctx)
898 {
899 spin_lock_irq(&ctx->completion_lock);
900 if (ctx->completed_events) {
901 struct aio_ring *ring;
902 unsigned head;
903
904 /* Access of ring->head may race with aio_read_events_ring()
905 * here, but that's okay since whether we read the old version
906 * or the new version, and either will be valid. The important
907 * part is that head cannot pass tail since we prevent
908 * aio_complete() from updating tail by holding
909 * ctx->completion_lock. Even if head is invalid, the check
910 * against ctx->completed_events below will make sure we do the
911 * safe/right thing.
912 */
913 ring = kmap_atomic(ctx->ring_pages[0]);
914 head = ring->head;
915 kunmap_atomic(ring);
916
917 refill_reqs_available(ctx, head, ctx->tail);
918 }
919
920 spin_unlock_irq(&ctx->completion_lock);
921 }
922
923 /* aio_get_req
924 * Allocate a slot for an aio request.
925 * Returns NULL if no requests are free.
926 */
927 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
928 {
929 struct kiocb *req;
930
931 if (!get_reqs_available(ctx)) {
932 user_refill_reqs_available(ctx);
933 if (!get_reqs_available(ctx))
934 return NULL;
935 }
936
937 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
938 if (unlikely(!req))
939 goto out_put;
940
941 percpu_ref_get(&ctx->reqs);
942
943 req->ki_ctx = ctx;
944 return req;
945 out_put:
946 put_reqs_available(ctx, 1);
947 return NULL;
948 }
949
950 static void kiocb_free(struct kiocb *req)
951 {
952 if (req->ki_filp)
953 fput(req->ki_filp);
954 if (req->ki_eventfd != NULL)
955 eventfd_ctx_put(req->ki_eventfd);
956 kmem_cache_free(kiocb_cachep, req);
957 }
958
959 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
960 {
961 struct aio_ring __user *ring = (void __user *)ctx_id;
962 struct mm_struct *mm = current->mm;
963 struct kioctx *ctx, *ret = NULL;
964 struct kioctx_table *table;
965 unsigned id;
966
967 if (get_user(id, &ring->id))
968 return NULL;
969
970 rcu_read_lock();
971 table = rcu_dereference(mm->ioctx_table);
972
973 if (!table || id >= table->nr)
974 goto out;
975
976 ctx = table->table[id];
977 if (ctx && ctx->user_id == ctx_id) {
978 percpu_ref_get(&ctx->users);
979 ret = ctx;
980 }
981 out:
982 rcu_read_unlock();
983 return ret;
984 }
985
986 /* aio_complete
987 * Called when the io request on the given iocb is complete.
988 */
989 void aio_complete(struct kiocb *iocb, long res, long res2)
990 {
991 struct kioctx *ctx = iocb->ki_ctx;
992 struct aio_ring *ring;
993 struct io_event *ev_page, *event;
994 unsigned tail, pos, head;
995 unsigned long flags;
996
997 /*
998 * Special case handling for sync iocbs:
999 * - events go directly into the iocb for fast handling
1000 * - the sync task with the iocb in its stack holds the single iocb
1001 * ref, no other paths have a way to get another ref
1002 * - the sync task helpfully left a reference to itself in the iocb
1003 */
1004 if (is_sync_kiocb(iocb)) {
1005 iocb->ki_user_data = res;
1006 smp_wmb();
1007 iocb->ki_ctx = ERR_PTR(-EXDEV);
1008 wake_up_process(iocb->ki_obj.tsk);
1009 return;
1010 }
1011
1012 if (iocb->ki_list.next) {
1013 unsigned long flags;
1014
1015 spin_lock_irqsave(&ctx->ctx_lock, flags);
1016 list_del(&iocb->ki_list);
1017 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1018 }
1019
1020 /*
1021 * Add a completion event to the ring buffer. Must be done holding
1022 * ctx->completion_lock to prevent other code from messing with the tail
1023 * pointer since we might be called from irq context.
1024 */
1025 spin_lock_irqsave(&ctx->completion_lock, flags);
1026
1027 tail = ctx->tail;
1028 pos = tail + AIO_EVENTS_OFFSET;
1029
1030 if (++tail >= ctx->nr_events)
1031 tail = 0;
1032
1033 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1034 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1035
1036 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1037 event->data = iocb->ki_user_data;
1038 event->res = res;
1039 event->res2 = res2;
1040
1041 kunmap_atomic(ev_page);
1042 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1043
1044 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1045 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1046 res, res2);
1047
1048 /* after flagging the request as done, we
1049 * must never even look at it again
1050 */
1051 smp_wmb(); /* make event visible before updating tail */
1052
1053 ctx->tail = tail;
1054
1055 ring = kmap_atomic(ctx->ring_pages[0]);
1056 head = ring->head;
1057 ring->tail = tail;
1058 kunmap_atomic(ring);
1059 flush_dcache_page(ctx->ring_pages[0]);
1060
1061 ctx->completed_events++;
1062 if (ctx->completed_events > 1)
1063 refill_reqs_available(ctx, head, tail);
1064 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1065
1066 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1067
1068 /*
1069 * Check if the user asked us to deliver the result through an
1070 * eventfd. The eventfd_signal() function is safe to be called
1071 * from IRQ context.
1072 */
1073 if (iocb->ki_eventfd != NULL)
1074 eventfd_signal(iocb->ki_eventfd, 1);
1075
1076 /* everything turned out well, dispose of the aiocb. */
1077 kiocb_free(iocb);
1078
1079 /*
1080 * We have to order our ring_info tail store above and test
1081 * of the wait list below outside the wait lock. This is
1082 * like in wake_up_bit() where clearing a bit has to be
1083 * ordered with the unlocked test.
1084 */
1085 smp_mb();
1086
1087 if (waitqueue_active(&ctx->wait))
1088 wake_up(&ctx->wait);
1089
1090 percpu_ref_put(&ctx->reqs);
1091 }
1092 EXPORT_SYMBOL(aio_complete);
1093
1094 /* aio_read_events_ring
1095 * Pull an event off of the ioctx's event ring. Returns the number of
1096 * events fetched
1097 */
1098 static long aio_read_events_ring(struct kioctx *ctx,
1099 struct io_event __user *event, long nr)
1100 {
1101 struct aio_ring *ring;
1102 unsigned head, tail, pos;
1103 long ret = 0;
1104 int copy_ret;
1105
1106 mutex_lock(&ctx->ring_lock);
1107
1108 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1109 ring = kmap_atomic(ctx->ring_pages[0]);
1110 head = ring->head;
1111 tail = ring->tail;
1112 kunmap_atomic(ring);
1113
1114 /*
1115 * Ensure that once we've read the current tail pointer, that
1116 * we also see the events that were stored up to the tail.
1117 */
1118 smp_rmb();
1119
1120 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1121
1122 if (head == tail)
1123 goto out;
1124
1125 head %= ctx->nr_events;
1126 tail %= ctx->nr_events;
1127
1128 while (ret < nr) {
1129 long avail;
1130 struct io_event *ev;
1131 struct page *page;
1132
1133 avail = (head <= tail ? tail : ctx->nr_events) - head;
1134 if (head == tail)
1135 break;
1136
1137 avail = min(avail, nr - ret);
1138 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1139 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1140
1141 pos = head + AIO_EVENTS_OFFSET;
1142 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1143 pos %= AIO_EVENTS_PER_PAGE;
1144
1145 ev = kmap(page);
1146 copy_ret = copy_to_user(event + ret, ev + pos,
1147 sizeof(*ev) * avail);
1148 kunmap(page);
1149
1150 if (unlikely(copy_ret)) {
1151 ret = -EFAULT;
1152 goto out;
1153 }
1154
1155 ret += avail;
1156 head += avail;
1157 head %= ctx->nr_events;
1158 }
1159
1160 ring = kmap_atomic(ctx->ring_pages[0]);
1161 ring->head = head;
1162 kunmap_atomic(ring);
1163 flush_dcache_page(ctx->ring_pages[0]);
1164
1165 pr_debug("%li h%u t%u\n", ret, head, tail);
1166 out:
1167 mutex_unlock(&ctx->ring_lock);
1168
1169 return ret;
1170 }
1171
1172 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1173 struct io_event __user *event, long *i)
1174 {
1175 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1176
1177 if (ret > 0)
1178 *i += ret;
1179
1180 if (unlikely(atomic_read(&ctx->dead)))
1181 ret = -EINVAL;
1182
1183 if (!*i)
1184 *i = ret;
1185
1186 return ret < 0 || *i >= min_nr;
1187 }
1188
1189 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1190 struct io_event __user *event,
1191 struct timespec __user *timeout)
1192 {
1193 ktime_t until = { .tv64 = KTIME_MAX };
1194 long ret = 0;
1195
1196 if (timeout) {
1197 struct timespec ts;
1198
1199 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1200 return -EFAULT;
1201
1202 until = timespec_to_ktime(ts);
1203 }
1204
1205 /*
1206 * Note that aio_read_events() is being called as the conditional - i.e.
1207 * we're calling it after prepare_to_wait() has set task state to
1208 * TASK_INTERRUPTIBLE.
1209 *
1210 * But aio_read_events() can block, and if it blocks it's going to flip
1211 * the task state back to TASK_RUNNING.
1212 *
1213 * This should be ok, provided it doesn't flip the state back to
1214 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1215 * will only happen if the mutex_lock() call blocks, and we then find
1216 * the ringbuffer empty. So in practice we should be ok, but it's
1217 * something to be aware of when touching this code.
1218 */
1219 wait_event_interruptible_hrtimeout(ctx->wait,
1220 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1221
1222 if (!ret && signal_pending(current))
1223 ret = -EINTR;
1224
1225 return ret;
1226 }
1227
1228 /* sys_io_setup:
1229 * Create an aio_context capable of receiving at least nr_events.
1230 * ctxp must not point to an aio_context that already exists, and
1231 * must be initialized to 0 prior to the call. On successful
1232 * creation of the aio_context, *ctxp is filled in with the resulting
1233 * handle. May fail with -EINVAL if *ctxp is not initialized,
1234 * if the specified nr_events exceeds internal limits. May fail
1235 * with -EAGAIN if the specified nr_events exceeds the user's limit
1236 * of available events. May fail with -ENOMEM if insufficient kernel
1237 * resources are available. May fail with -EFAULT if an invalid
1238 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1239 * implemented.
1240 */
1241 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1242 {
1243 struct kioctx *ioctx = NULL;
1244 unsigned long ctx;
1245 long ret;
1246
1247 ret = get_user(ctx, ctxp);
1248 if (unlikely(ret))
1249 goto out;
1250
1251 ret = -EINVAL;
1252 if (unlikely(ctx || nr_events == 0)) {
1253 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1254 ctx, nr_events);
1255 goto out;
1256 }
1257
1258 ioctx = ioctx_alloc(nr_events);
1259 ret = PTR_ERR(ioctx);
1260 if (!IS_ERR(ioctx)) {
1261 ret = put_user(ioctx->user_id, ctxp);
1262 if (ret)
1263 kill_ioctx(current->mm, ioctx, NULL);
1264 percpu_ref_put(&ioctx->users);
1265 }
1266
1267 out:
1268 return ret;
1269 }
1270
1271 /* sys_io_destroy:
1272 * Destroy the aio_context specified. May cancel any outstanding
1273 * AIOs and block on completion. Will fail with -ENOSYS if not
1274 * implemented. May fail with -EINVAL if the context pointed to
1275 * is invalid.
1276 */
1277 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1278 {
1279 struct kioctx *ioctx = lookup_ioctx(ctx);
1280 if (likely(NULL != ioctx)) {
1281 struct completion requests_done =
1282 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1283 int ret;
1284
1285 /* Pass requests_done to kill_ioctx() where it can be set
1286 * in a thread-safe way. If we try to set it here then we have
1287 * a race condition if two io_destroy() called simultaneously.
1288 */
1289 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1290 percpu_ref_put(&ioctx->users);
1291
1292 /* Wait until all IO for the context are done. Otherwise kernel
1293 * keep using user-space buffers even if user thinks the context
1294 * is destroyed.
1295 */
1296 if (!ret)
1297 wait_for_completion(&requests_done);
1298
1299 return ret;
1300 }
1301 pr_debug("EINVAL: io_destroy: invalid context id\n");
1302 return -EINVAL;
1303 }
1304
1305 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1306 unsigned long, loff_t);
1307 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1308
1309 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1310 int rw, char __user *buf,
1311 unsigned long *nr_segs,
1312 struct iovec **iovec,
1313 bool compat)
1314 {
1315 ssize_t ret;
1316
1317 *nr_segs = kiocb->ki_nbytes;
1318
1319 #ifdef CONFIG_COMPAT
1320 if (compat)
1321 ret = compat_rw_copy_check_uvector(rw,
1322 (struct compat_iovec __user *)buf,
1323 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1324 else
1325 #endif
1326 ret = rw_copy_check_uvector(rw,
1327 (struct iovec __user *)buf,
1328 *nr_segs, UIO_FASTIOV, *iovec, iovec);
1329 if (ret < 0)
1330 return ret;
1331
1332 /* ki_nbytes now reflect bytes instead of segs */
1333 kiocb->ki_nbytes = ret;
1334 return 0;
1335 }
1336
1337 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1338 int rw, char __user *buf,
1339 unsigned long *nr_segs,
1340 struct iovec *iovec)
1341 {
1342 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1343 return -EFAULT;
1344
1345 iovec->iov_base = buf;
1346 iovec->iov_len = kiocb->ki_nbytes;
1347 *nr_segs = 1;
1348 return 0;
1349 }
1350
1351 /*
1352 * aio_run_iocb:
1353 * Performs the initial checks and io submission.
1354 */
1355 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1356 char __user *buf, bool compat)
1357 {
1358 struct file *file = req->ki_filp;
1359 ssize_t ret;
1360 unsigned long nr_segs;
1361 int rw;
1362 fmode_t mode;
1363 aio_rw_op *rw_op;
1364 rw_iter_op *iter_op;
1365 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1366 struct iov_iter iter;
1367
1368 switch (opcode) {
1369 case IOCB_CMD_PREAD:
1370 case IOCB_CMD_PREADV:
1371 mode = FMODE_READ;
1372 rw = READ;
1373 rw_op = file->f_op->aio_read;
1374 iter_op = file->f_op->read_iter;
1375 goto rw_common;
1376
1377 case IOCB_CMD_PWRITE:
1378 case IOCB_CMD_PWRITEV:
1379 mode = FMODE_WRITE;
1380 rw = WRITE;
1381 rw_op = file->f_op->aio_write;
1382 iter_op = file->f_op->write_iter;
1383 goto rw_common;
1384 rw_common:
1385 if (unlikely(!(file->f_mode & mode)))
1386 return -EBADF;
1387
1388 if (!rw_op && !iter_op)
1389 return -EINVAL;
1390
1391 ret = (opcode == IOCB_CMD_PREADV ||
1392 opcode == IOCB_CMD_PWRITEV)
1393 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1394 &iovec, compat)
1395 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1396 iovec);
1397 if (!ret)
1398 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1399 if (ret < 0) {
1400 if (iovec != inline_vecs)
1401 kfree(iovec);
1402 return ret;
1403 }
1404
1405 req->ki_nbytes = ret;
1406
1407 /* XXX: move/kill - rw_verify_area()? */
1408 /* This matches the pread()/pwrite() logic */
1409 if (req->ki_pos < 0) {
1410 ret = -EINVAL;
1411 break;
1412 }
1413
1414 if (rw == WRITE)
1415 file_start_write(file);
1416
1417 if (iter_op) {
1418 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1419 ret = iter_op(req, &iter);
1420 } else {
1421 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1422 }
1423
1424 if (rw == WRITE)
1425 file_end_write(file);
1426 break;
1427
1428 case IOCB_CMD_FDSYNC:
1429 if (!file->f_op->aio_fsync)
1430 return -EINVAL;
1431
1432 ret = file->f_op->aio_fsync(req, 1);
1433 break;
1434
1435 case IOCB_CMD_FSYNC:
1436 if (!file->f_op->aio_fsync)
1437 return -EINVAL;
1438
1439 ret = file->f_op->aio_fsync(req, 0);
1440 break;
1441
1442 default:
1443 pr_debug("EINVAL: no operation provided\n");
1444 return -EINVAL;
1445 }
1446
1447 if (iovec != inline_vecs)
1448 kfree(iovec);
1449
1450 if (ret != -EIOCBQUEUED) {
1451 /*
1452 * There's no easy way to restart the syscall since other AIO's
1453 * may be already running. Just fail this IO with EINTR.
1454 */
1455 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1456 ret == -ERESTARTNOHAND ||
1457 ret == -ERESTART_RESTARTBLOCK))
1458 ret = -EINTR;
1459 aio_complete(req, ret, 0);
1460 }
1461
1462 return 0;
1463 }
1464
1465 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1466 struct iocb *iocb, bool compat)
1467 {
1468 struct kiocb *req;
1469 ssize_t ret;
1470
1471 /* enforce forwards compatibility on users */
1472 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1473 pr_debug("EINVAL: reserve field set\n");
1474 return -EINVAL;
1475 }
1476
1477 /* prevent overflows */
1478 if (unlikely(
1479 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1480 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1481 ((ssize_t)iocb->aio_nbytes < 0)
1482 )) {
1483 pr_debug("EINVAL: io_submit: overflow check\n");
1484 return -EINVAL;
1485 }
1486
1487 req = aio_get_req(ctx);
1488 if (unlikely(!req))
1489 return -EAGAIN;
1490
1491 req->ki_filp = fget(iocb->aio_fildes);
1492 if (unlikely(!req->ki_filp)) {
1493 ret = -EBADF;
1494 goto out_put_req;
1495 }
1496
1497 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1498 /*
1499 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1500 * instance of the file* now. The file descriptor must be
1501 * an eventfd() fd, and will be signaled for each completed
1502 * event using the eventfd_signal() function.
1503 */
1504 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1505 if (IS_ERR(req->ki_eventfd)) {
1506 ret = PTR_ERR(req->ki_eventfd);
1507 req->ki_eventfd = NULL;
1508 goto out_put_req;
1509 }
1510 }
1511
1512 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1513 if (unlikely(ret)) {
1514 pr_debug("EFAULT: aio_key\n");
1515 goto out_put_req;
1516 }
1517
1518 req->ki_obj.user = user_iocb;
1519 req->ki_user_data = iocb->aio_data;
1520 req->ki_pos = iocb->aio_offset;
1521 req->ki_nbytes = iocb->aio_nbytes;
1522
1523 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1524 (char __user *)(unsigned long)iocb->aio_buf,
1525 compat);
1526 if (ret)
1527 goto out_put_req;
1528
1529 return 0;
1530 out_put_req:
1531 put_reqs_available(ctx, 1);
1532 percpu_ref_put(&ctx->reqs);
1533 kiocb_free(req);
1534 return ret;
1535 }
1536
1537 long do_io_submit(aio_context_t ctx_id, long nr,
1538 struct iocb __user *__user *iocbpp, bool compat)
1539 {
1540 struct kioctx *ctx;
1541 long ret = 0;
1542 int i = 0;
1543 struct blk_plug plug;
1544
1545 if (unlikely(nr < 0))
1546 return -EINVAL;
1547
1548 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1549 nr = LONG_MAX/sizeof(*iocbpp);
1550
1551 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1552 return -EFAULT;
1553
1554 ctx = lookup_ioctx(ctx_id);
1555 if (unlikely(!ctx)) {
1556 pr_debug("EINVAL: invalid context id\n");
1557 return -EINVAL;
1558 }
1559
1560 blk_start_plug(&plug);
1561
1562 /*
1563 * AKPM: should this return a partial result if some of the IOs were
1564 * successfully submitted?
1565 */
1566 for (i=0; i<nr; i++) {
1567 struct iocb __user *user_iocb;
1568 struct iocb tmp;
1569
1570 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1571 ret = -EFAULT;
1572 break;
1573 }
1574
1575 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1576 ret = -EFAULT;
1577 break;
1578 }
1579
1580 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1581 if (ret)
1582 break;
1583 }
1584 blk_finish_plug(&plug);
1585
1586 percpu_ref_put(&ctx->users);
1587 return i ? i : ret;
1588 }
1589
1590 /* sys_io_submit:
1591 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1592 * the number of iocbs queued. May return -EINVAL if the aio_context
1593 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1594 * *iocbpp[0] is not properly initialized, if the operation specified
1595 * is invalid for the file descriptor in the iocb. May fail with
1596 * -EFAULT if any of the data structures point to invalid data. May
1597 * fail with -EBADF if the file descriptor specified in the first
1598 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1599 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1600 * fail with -ENOSYS if not implemented.
1601 */
1602 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1603 struct iocb __user * __user *, iocbpp)
1604 {
1605 return do_io_submit(ctx_id, nr, iocbpp, 0);
1606 }
1607
1608 /* lookup_kiocb
1609 * Finds a given iocb for cancellation.
1610 */
1611 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1612 u32 key)
1613 {
1614 struct list_head *pos;
1615
1616 assert_spin_locked(&ctx->ctx_lock);
1617
1618 if (key != KIOCB_KEY)
1619 return NULL;
1620
1621 /* TODO: use a hash or array, this sucks. */
1622 list_for_each(pos, &ctx->active_reqs) {
1623 struct kiocb *kiocb = list_kiocb(pos);
1624 if (kiocb->ki_obj.user == iocb)
1625 return kiocb;
1626 }
1627 return NULL;
1628 }
1629
1630 /* sys_io_cancel:
1631 * Attempts to cancel an iocb previously passed to io_submit. If
1632 * the operation is successfully cancelled, the resulting event is
1633 * copied into the memory pointed to by result without being placed
1634 * into the completion queue and 0 is returned. May fail with
1635 * -EFAULT if any of the data structures pointed to are invalid.
1636 * May fail with -EINVAL if aio_context specified by ctx_id is
1637 * invalid. May fail with -EAGAIN if the iocb specified was not
1638 * cancelled. Will fail with -ENOSYS if not implemented.
1639 */
1640 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1641 struct io_event __user *, result)
1642 {
1643 struct kioctx *ctx;
1644 struct kiocb *kiocb;
1645 u32 key;
1646 int ret;
1647
1648 ret = get_user(key, &iocb->aio_key);
1649 if (unlikely(ret))
1650 return -EFAULT;
1651
1652 ctx = lookup_ioctx(ctx_id);
1653 if (unlikely(!ctx))
1654 return -EINVAL;
1655
1656 spin_lock_irq(&ctx->ctx_lock);
1657
1658 kiocb = lookup_kiocb(ctx, iocb, key);
1659 if (kiocb)
1660 ret = kiocb_cancel(kiocb);
1661 else
1662 ret = -EINVAL;
1663
1664 spin_unlock_irq(&ctx->ctx_lock);
1665
1666 if (!ret) {
1667 /*
1668 * The result argument is no longer used - the io_event is
1669 * always delivered via the ring buffer. -EINPROGRESS indicates
1670 * cancellation is progress:
1671 */
1672 ret = -EINPROGRESS;
1673 }
1674
1675 percpu_ref_put(&ctx->users);
1676
1677 return ret;
1678 }
1679
1680 /* io_getevents:
1681 * Attempts to read at least min_nr events and up to nr events from
1682 * the completion queue for the aio_context specified by ctx_id. If
1683 * it succeeds, the number of read events is returned. May fail with
1684 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1685 * out of range, if timeout is out of range. May fail with -EFAULT
1686 * if any of the memory specified is invalid. May return 0 or
1687 * < min_nr if the timeout specified by timeout has elapsed
1688 * before sufficient events are available, where timeout == NULL
1689 * specifies an infinite timeout. Note that the timeout pointed to by
1690 * timeout is relative. Will fail with -ENOSYS if not implemented.
1691 */
1692 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1693 long, min_nr,
1694 long, nr,
1695 struct io_event __user *, events,
1696 struct timespec __user *, timeout)
1697 {
1698 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1699 long ret = -EINVAL;
1700
1701 if (likely(ioctx)) {
1702 if (likely(min_nr <= nr && min_nr >= 0))
1703 ret = read_events(ioctx, min_nr, nr, events, timeout);
1704 percpu_ref_put(&ioctx->users);
1705 }
1706 return ret;
1707 }
This page took 0.064643 seconds and 6 git commands to generate.