Merge commit 'ccbf62d8a284cf181ac28c8e8407dd077d90dd4b' into for-next
[deliverable/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct kioctx {
81 struct percpu_ref users;
82 atomic_t dead;
83
84 struct percpu_ref reqs;
85
86 unsigned long user_id;
87
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
99 * The real limit is nr_events - 1, which will be larger (see
100 * aio_setup_ring())
101 */
102 unsigned max_reqs;
103
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
106
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
113 struct work_struct free_work;
114
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
120 struct {
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
126 *
127 * We batch accesses to it with a percpu version.
128 */
129 atomic_t reqs_available;
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 struct mutex ring_lock;
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 unsigned tail;
144 spinlock_t completion_lock;
145 } ____cacheline_aligned_in_smp;
146
147 struct page *internal_pages[AIO_RING_PAGES];
148 struct file *aio_ring_file;
149
150 unsigned id;
151 };
152
153 /*------ sysctl variables----*/
154 static DEFINE_SPINLOCK(aio_nr_lock);
155 unsigned long aio_nr; /* current system wide number of aio requests */
156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
157 /*----end sysctl variables---*/
158
159 static struct kmem_cache *kiocb_cachep;
160 static struct kmem_cache *kioctx_cachep;
161
162 static struct vfsmount *aio_mnt;
163
164 static const struct file_operations aio_ring_fops;
165 static const struct address_space_operations aio_ctx_aops;
166
167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
168 {
169 struct qstr this = QSTR_INIT("[aio]", 5);
170 struct file *file;
171 struct path path;
172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
173 if (IS_ERR(inode))
174 return ERR_CAST(inode);
175
176 inode->i_mapping->a_ops = &aio_ctx_aops;
177 inode->i_mapping->private_data = ctx;
178 inode->i_size = PAGE_SIZE * nr_pages;
179
180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
181 if (!path.dentry) {
182 iput(inode);
183 return ERR_PTR(-ENOMEM);
184 }
185 path.mnt = mntget(aio_mnt);
186
187 d_instantiate(path.dentry, inode);
188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
189 if (IS_ERR(file)) {
190 path_put(&path);
191 return file;
192 }
193
194 file->f_flags = O_RDWR;
195 file->private_data = ctx;
196 return file;
197 }
198
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
201 {
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
204 };
205 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
206 }
207
208 /* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
211 */
212 static int __init aio_setup(void)
213 {
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
218 };
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
222
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227
228 return 0;
229 }
230 __initcall(aio_setup);
231
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
237
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243
244 fput(aio_ring_file);
245 }
246 }
247
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 int i;
251
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
254 */
255 put_aio_ring_file(ctx);
256
257 for (i = 0; i < ctx->nr_pages; i++) {
258 struct page *page;
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
266 }
267
268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 kfree(ctx->ring_pages);
270 ctx->ring_pages = NULL;
271 }
272 }
273
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 vma->vm_ops = &generic_file_vm_ops;
277 return 0;
278 }
279
280 static const struct file_operations aio_ring_fops = {
281 .mmap = aio_ring_mmap,
282 };
283
284 static int aio_set_page_dirty(struct page *page)
285 {
286 return 0;
287 }
288
289 #if IS_ENABLED(CONFIG_MIGRATION)
290 static int aio_migratepage(struct address_space *mapping, struct page *new,
291 struct page *old, enum migrate_mode mode)
292 {
293 struct kioctx *ctx;
294 unsigned long flags;
295 pgoff_t idx;
296 int rc;
297
298 rc = 0;
299
300 /* mapping->private_lock here protects against the kioctx teardown. */
301 spin_lock(&mapping->private_lock);
302 ctx = mapping->private_data;
303 if (!ctx) {
304 rc = -EINVAL;
305 goto out;
306 }
307
308 /* The ring_lock mutex. The prevents aio_read_events() from writing
309 * to the ring's head, and prevents page migration from mucking in
310 * a partially initialized kiotx.
311 */
312 if (!mutex_trylock(&ctx->ring_lock)) {
313 rc = -EAGAIN;
314 goto out;
315 }
316
317 idx = old->index;
318 if (idx < (pgoff_t)ctx->nr_pages) {
319 /* Make sure the old page hasn't already been changed */
320 if (ctx->ring_pages[idx] != old)
321 rc = -EAGAIN;
322 } else
323 rc = -EINVAL;
324
325 if (rc != 0)
326 goto out_unlock;
327
328 /* Writeback must be complete */
329 BUG_ON(PageWriteback(old));
330 get_page(new);
331
332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333 if (rc != MIGRATEPAGE_SUCCESS) {
334 put_page(new);
335 goto out_unlock;
336 }
337
338 /* Take completion_lock to prevent other writes to the ring buffer
339 * while the old page is copied to the new. This prevents new
340 * events from being lost.
341 */
342 spin_lock_irqsave(&ctx->completion_lock, flags);
343 migrate_page_copy(new, old);
344 BUG_ON(ctx->ring_pages[idx] != old);
345 ctx->ring_pages[idx] = new;
346 spin_unlock_irqrestore(&ctx->completion_lock, flags);
347
348 /* The old page is no longer accessible. */
349 put_page(old);
350
351 out_unlock:
352 mutex_unlock(&ctx->ring_lock);
353 out:
354 spin_unlock(&mapping->private_lock);
355 return rc;
356 }
357 #endif
358
359 static const struct address_space_operations aio_ctx_aops = {
360 .set_page_dirty = aio_set_page_dirty,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 .migratepage = aio_migratepage,
363 #endif
364 };
365
366 static int aio_setup_ring(struct kioctx *ctx)
367 {
368 struct aio_ring *ring;
369 unsigned nr_events = ctx->max_reqs;
370 struct mm_struct *mm = current->mm;
371 unsigned long size, unused;
372 int nr_pages;
373 int i;
374 struct file *file;
375
376 /* Compensate for the ring buffer's head/tail overlap entry */
377 nr_events += 2; /* 1 is required, 2 for good luck */
378
379 size = sizeof(struct aio_ring);
380 size += sizeof(struct io_event) * nr_events;
381
382 nr_pages = PFN_UP(size);
383 if (nr_pages < 0)
384 return -EINVAL;
385
386 file = aio_private_file(ctx, nr_pages);
387 if (IS_ERR(file)) {
388 ctx->aio_ring_file = NULL;
389 return -ENOMEM;
390 }
391
392 ctx->aio_ring_file = file;
393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 / sizeof(struct io_event);
395
396 ctx->ring_pages = ctx->internal_pages;
397 if (nr_pages > AIO_RING_PAGES) {
398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 GFP_KERNEL);
400 if (!ctx->ring_pages) {
401 put_aio_ring_file(ctx);
402 return -ENOMEM;
403 }
404 }
405
406 for (i = 0; i < nr_pages; i++) {
407 struct page *page;
408 page = find_or_create_page(file->f_inode->i_mapping,
409 i, GFP_HIGHUSER | __GFP_ZERO);
410 if (!page)
411 break;
412 pr_debug("pid(%d) page[%d]->count=%d\n",
413 current->pid, i, page_count(page));
414 SetPageUptodate(page);
415 SetPageDirty(page);
416 unlock_page(page);
417
418 ctx->ring_pages[i] = page;
419 }
420 ctx->nr_pages = i;
421
422 if (unlikely(i != nr_pages)) {
423 aio_free_ring(ctx);
424 return -ENOMEM;
425 }
426
427 ctx->mmap_size = nr_pages * PAGE_SIZE;
428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429
430 down_write(&mm->mmap_sem);
431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 PROT_READ | PROT_WRITE,
433 MAP_SHARED, 0, &unused);
434 up_write(&mm->mmap_sem);
435 if (IS_ERR((void *)ctx->mmap_base)) {
436 ctx->mmap_size = 0;
437 aio_free_ring(ctx);
438 return -ENOMEM;
439 }
440
441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442
443 ctx->user_id = ctx->mmap_base;
444 ctx->nr_events = nr_events; /* trusted copy */
445
446 ring = kmap_atomic(ctx->ring_pages[0]);
447 ring->nr = nr_events; /* user copy */
448 ring->id = ~0U;
449 ring->head = ring->tail = 0;
450 ring->magic = AIO_RING_MAGIC;
451 ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 ring->header_length = sizeof(struct aio_ring);
454 kunmap_atomic(ring);
455 flush_dcache_page(ctx->ring_pages[0]);
456
457 return 0;
458 }
459
460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463
464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465 {
466 struct kioctx *ctx = req->ki_ctx;
467 unsigned long flags;
468
469 spin_lock_irqsave(&ctx->ctx_lock, flags);
470
471 if (!req->ki_list.next)
472 list_add(&req->ki_list, &ctx->active_reqs);
473
474 req->ki_cancel = cancel;
475
476 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477 }
478 EXPORT_SYMBOL(kiocb_set_cancel_fn);
479
480 static int kiocb_cancel(struct kiocb *kiocb)
481 {
482 kiocb_cancel_fn *old, *cancel;
483
484 /*
485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 * actually has a cancel function, hence the cmpxchg()
487 */
488
489 cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 do {
491 if (!cancel || cancel == KIOCB_CANCELLED)
492 return -EINVAL;
493
494 old = cancel;
495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 } while (cancel != old);
497
498 return cancel(kiocb);
499 }
500
501 static void free_ioctx(struct work_struct *work)
502 {
503 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504
505 pr_debug("freeing %p\n", ctx);
506
507 aio_free_ring(ctx);
508 free_percpu(ctx->cpu);
509 kmem_cache_free(kioctx_cachep, ctx);
510 }
511
512 static void free_ioctx_reqs(struct percpu_ref *ref)
513 {
514 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
515
516 /* At this point we know that there are no any in-flight requests */
517 if (ctx->requests_done)
518 complete(ctx->requests_done);
519
520 INIT_WORK(&ctx->free_work, free_ioctx);
521 schedule_work(&ctx->free_work);
522 }
523
524 /*
525 * When this function runs, the kioctx has been removed from the "hash table"
526 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
527 * now it's safe to cancel any that need to be.
528 */
529 static void free_ioctx_users(struct percpu_ref *ref)
530 {
531 struct kioctx *ctx = container_of(ref, struct kioctx, users);
532 struct kiocb *req;
533
534 spin_lock_irq(&ctx->ctx_lock);
535
536 while (!list_empty(&ctx->active_reqs)) {
537 req = list_first_entry(&ctx->active_reqs,
538 struct kiocb, ki_list);
539
540 list_del_init(&req->ki_list);
541 kiocb_cancel(req);
542 }
543
544 spin_unlock_irq(&ctx->ctx_lock);
545
546 percpu_ref_kill(&ctx->reqs);
547 percpu_ref_put(&ctx->reqs);
548 }
549
550 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
551 {
552 unsigned i, new_nr;
553 struct kioctx_table *table, *old;
554 struct aio_ring *ring;
555
556 spin_lock(&mm->ioctx_lock);
557 rcu_read_lock();
558 table = rcu_dereference(mm->ioctx_table);
559
560 while (1) {
561 if (table)
562 for (i = 0; i < table->nr; i++)
563 if (!table->table[i]) {
564 ctx->id = i;
565 table->table[i] = ctx;
566 rcu_read_unlock();
567 spin_unlock(&mm->ioctx_lock);
568
569 /* While kioctx setup is in progress,
570 * we are protected from page migration
571 * changes ring_pages by ->ring_lock.
572 */
573 ring = kmap_atomic(ctx->ring_pages[0]);
574 ring->id = ctx->id;
575 kunmap_atomic(ring);
576 return 0;
577 }
578
579 new_nr = (table ? table->nr : 1) * 4;
580
581 rcu_read_unlock();
582 spin_unlock(&mm->ioctx_lock);
583
584 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
585 new_nr, GFP_KERNEL);
586 if (!table)
587 return -ENOMEM;
588
589 table->nr = new_nr;
590
591 spin_lock(&mm->ioctx_lock);
592 rcu_read_lock();
593 old = rcu_dereference(mm->ioctx_table);
594
595 if (!old) {
596 rcu_assign_pointer(mm->ioctx_table, table);
597 } else if (table->nr > old->nr) {
598 memcpy(table->table, old->table,
599 old->nr * sizeof(struct kioctx *));
600
601 rcu_assign_pointer(mm->ioctx_table, table);
602 kfree_rcu(old, rcu);
603 } else {
604 kfree(table);
605 table = old;
606 }
607 }
608 }
609
610 static void aio_nr_sub(unsigned nr)
611 {
612 spin_lock(&aio_nr_lock);
613 if (WARN_ON(aio_nr - nr > aio_nr))
614 aio_nr = 0;
615 else
616 aio_nr -= nr;
617 spin_unlock(&aio_nr_lock);
618 }
619
620 /* ioctx_alloc
621 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
622 */
623 static struct kioctx *ioctx_alloc(unsigned nr_events)
624 {
625 struct mm_struct *mm = current->mm;
626 struct kioctx *ctx;
627 int err = -ENOMEM;
628
629 /*
630 * We keep track of the number of available ringbuffer slots, to prevent
631 * overflow (reqs_available), and we also use percpu counters for this.
632 *
633 * So since up to half the slots might be on other cpu's percpu counters
634 * and unavailable, double nr_events so userspace sees what they
635 * expected: additionally, we move req_batch slots to/from percpu
636 * counters at a time, so make sure that isn't 0:
637 */
638 nr_events = max(nr_events, num_possible_cpus() * 4);
639 nr_events *= 2;
640
641 /* Prevent overflows */
642 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
643 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
644 pr_debug("ENOMEM: nr_events too high\n");
645 return ERR_PTR(-EINVAL);
646 }
647
648 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
649 return ERR_PTR(-EAGAIN);
650
651 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
652 if (!ctx)
653 return ERR_PTR(-ENOMEM);
654
655 ctx->max_reqs = nr_events;
656
657 spin_lock_init(&ctx->ctx_lock);
658 spin_lock_init(&ctx->completion_lock);
659 mutex_init(&ctx->ring_lock);
660 /* Protect against page migration throughout kiotx setup by keeping
661 * the ring_lock mutex held until setup is complete. */
662 mutex_lock(&ctx->ring_lock);
663 init_waitqueue_head(&ctx->wait);
664
665 INIT_LIST_HEAD(&ctx->active_reqs);
666
667 if (percpu_ref_init(&ctx->users, free_ioctx_users))
668 goto err;
669
670 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
671 goto err;
672
673 ctx->cpu = alloc_percpu(struct kioctx_cpu);
674 if (!ctx->cpu)
675 goto err;
676
677 err = aio_setup_ring(ctx);
678 if (err < 0)
679 goto err;
680
681 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
682 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
683 if (ctx->req_batch < 1)
684 ctx->req_batch = 1;
685
686 /* limit the number of system wide aios */
687 spin_lock(&aio_nr_lock);
688 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
689 aio_nr + nr_events < aio_nr) {
690 spin_unlock(&aio_nr_lock);
691 err = -EAGAIN;
692 goto err_ctx;
693 }
694 aio_nr += ctx->max_reqs;
695 spin_unlock(&aio_nr_lock);
696
697 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
698 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
699
700 err = ioctx_add_table(ctx, mm);
701 if (err)
702 goto err_cleanup;
703
704 /* Release the ring_lock mutex now that all setup is complete. */
705 mutex_unlock(&ctx->ring_lock);
706
707 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
708 ctx, ctx->user_id, mm, ctx->nr_events);
709 return ctx;
710
711 err_cleanup:
712 aio_nr_sub(ctx->max_reqs);
713 err_ctx:
714 aio_free_ring(ctx);
715 err:
716 mutex_unlock(&ctx->ring_lock);
717 free_percpu(ctx->cpu);
718 free_percpu(ctx->reqs.pcpu_count);
719 free_percpu(ctx->users.pcpu_count);
720 kmem_cache_free(kioctx_cachep, ctx);
721 pr_debug("error allocating ioctx %d\n", err);
722 return ERR_PTR(err);
723 }
724
725 /* kill_ioctx
726 * Cancels all outstanding aio requests on an aio context. Used
727 * when the processes owning a context have all exited to encourage
728 * the rapid destruction of the kioctx.
729 */
730 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
731 struct completion *requests_done)
732 {
733 struct kioctx_table *table;
734
735 if (atomic_xchg(&ctx->dead, 1))
736 return -EINVAL;
737
738
739 spin_lock(&mm->ioctx_lock);
740 rcu_read_lock();
741 table = rcu_dereference(mm->ioctx_table);
742
743 WARN_ON(ctx != table->table[ctx->id]);
744 table->table[ctx->id] = NULL;
745 rcu_read_unlock();
746 spin_unlock(&mm->ioctx_lock);
747
748 /* percpu_ref_kill() will do the necessary call_rcu() */
749 wake_up_all(&ctx->wait);
750
751 /*
752 * It'd be more correct to do this in free_ioctx(), after all
753 * the outstanding kiocbs have finished - but by then io_destroy
754 * has already returned, so io_setup() could potentially return
755 * -EAGAIN with no ioctxs actually in use (as far as userspace
756 * could tell).
757 */
758 aio_nr_sub(ctx->max_reqs);
759
760 if (ctx->mmap_size)
761 vm_munmap(ctx->mmap_base, ctx->mmap_size);
762
763 ctx->requests_done = requests_done;
764 percpu_ref_kill(&ctx->users);
765 return 0;
766 }
767
768 /* wait_on_sync_kiocb:
769 * Waits on the given sync kiocb to complete.
770 */
771 ssize_t wait_on_sync_kiocb(struct kiocb *req)
772 {
773 while (!req->ki_ctx) {
774 set_current_state(TASK_UNINTERRUPTIBLE);
775 if (req->ki_ctx)
776 break;
777 io_schedule();
778 }
779 __set_current_state(TASK_RUNNING);
780 return req->ki_user_data;
781 }
782 EXPORT_SYMBOL(wait_on_sync_kiocb);
783
784 /*
785 * exit_aio: called when the last user of mm goes away. At this point, there is
786 * no way for any new requests to be submited or any of the io_* syscalls to be
787 * called on the context.
788 *
789 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
790 * them.
791 */
792 void exit_aio(struct mm_struct *mm)
793 {
794 struct kioctx_table *table;
795 struct kioctx *ctx;
796 unsigned i = 0;
797
798 while (1) {
799 rcu_read_lock();
800 table = rcu_dereference(mm->ioctx_table);
801
802 do {
803 if (!table || i >= table->nr) {
804 rcu_read_unlock();
805 rcu_assign_pointer(mm->ioctx_table, NULL);
806 if (table)
807 kfree(table);
808 return;
809 }
810
811 ctx = table->table[i++];
812 } while (!ctx);
813
814 rcu_read_unlock();
815
816 /*
817 * We don't need to bother with munmap() here -
818 * exit_mmap(mm) is coming and it'll unmap everything.
819 * Since aio_free_ring() uses non-zero ->mmap_size
820 * as indicator that it needs to unmap the area,
821 * just set it to 0; aio_free_ring() is the only
822 * place that uses ->mmap_size, so it's safe.
823 */
824 ctx->mmap_size = 0;
825
826 kill_ioctx(mm, ctx, NULL);
827 }
828 }
829
830 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
831 {
832 struct kioctx_cpu *kcpu;
833 unsigned long flags;
834
835 preempt_disable();
836 kcpu = this_cpu_ptr(ctx->cpu);
837
838 local_irq_save(flags);
839 kcpu->reqs_available += nr;
840
841 while (kcpu->reqs_available >= ctx->req_batch * 2) {
842 kcpu->reqs_available -= ctx->req_batch;
843 atomic_add(ctx->req_batch, &ctx->reqs_available);
844 }
845
846 local_irq_restore(flags);
847 preempt_enable();
848 }
849
850 static bool get_reqs_available(struct kioctx *ctx)
851 {
852 struct kioctx_cpu *kcpu;
853 bool ret = false;
854 unsigned long flags;
855
856 preempt_disable();
857 kcpu = this_cpu_ptr(ctx->cpu);
858
859 local_irq_save(flags);
860 if (!kcpu->reqs_available) {
861 int old, avail = atomic_read(&ctx->reqs_available);
862
863 do {
864 if (avail < ctx->req_batch)
865 goto out;
866
867 old = avail;
868 avail = atomic_cmpxchg(&ctx->reqs_available,
869 avail, avail - ctx->req_batch);
870 } while (avail != old);
871
872 kcpu->reqs_available += ctx->req_batch;
873 }
874
875 ret = true;
876 kcpu->reqs_available--;
877 out:
878 local_irq_restore(flags);
879 preempt_enable();
880 return ret;
881 }
882
883 /* aio_get_req
884 * Allocate a slot for an aio request.
885 * Returns NULL if no requests are free.
886 */
887 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
888 {
889 struct kiocb *req;
890
891 if (!get_reqs_available(ctx))
892 return NULL;
893
894 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
895 if (unlikely(!req))
896 goto out_put;
897
898 percpu_ref_get(&ctx->reqs);
899
900 req->ki_ctx = ctx;
901 return req;
902 out_put:
903 put_reqs_available(ctx, 1);
904 return NULL;
905 }
906
907 static void kiocb_free(struct kiocb *req)
908 {
909 if (req->ki_filp)
910 fput(req->ki_filp);
911 if (req->ki_eventfd != NULL)
912 eventfd_ctx_put(req->ki_eventfd);
913 kmem_cache_free(kiocb_cachep, req);
914 }
915
916 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
917 {
918 struct aio_ring __user *ring = (void __user *)ctx_id;
919 struct mm_struct *mm = current->mm;
920 struct kioctx *ctx, *ret = NULL;
921 struct kioctx_table *table;
922 unsigned id;
923
924 if (get_user(id, &ring->id))
925 return NULL;
926
927 rcu_read_lock();
928 table = rcu_dereference(mm->ioctx_table);
929
930 if (!table || id >= table->nr)
931 goto out;
932
933 ctx = table->table[id];
934 if (ctx && ctx->user_id == ctx_id) {
935 percpu_ref_get(&ctx->users);
936 ret = ctx;
937 }
938 out:
939 rcu_read_unlock();
940 return ret;
941 }
942
943 /* aio_complete
944 * Called when the io request on the given iocb is complete.
945 */
946 void aio_complete(struct kiocb *iocb, long res, long res2)
947 {
948 struct kioctx *ctx = iocb->ki_ctx;
949 struct aio_ring *ring;
950 struct io_event *ev_page, *event;
951 unsigned long flags;
952 unsigned tail, pos;
953
954 /*
955 * Special case handling for sync iocbs:
956 * - events go directly into the iocb for fast handling
957 * - the sync task with the iocb in its stack holds the single iocb
958 * ref, no other paths have a way to get another ref
959 * - the sync task helpfully left a reference to itself in the iocb
960 */
961 if (is_sync_kiocb(iocb)) {
962 iocb->ki_user_data = res;
963 smp_wmb();
964 iocb->ki_ctx = ERR_PTR(-EXDEV);
965 wake_up_process(iocb->ki_obj.tsk);
966 return;
967 }
968
969 if (iocb->ki_list.next) {
970 unsigned long flags;
971
972 spin_lock_irqsave(&ctx->ctx_lock, flags);
973 list_del(&iocb->ki_list);
974 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
975 }
976
977 /*
978 * Add a completion event to the ring buffer. Must be done holding
979 * ctx->completion_lock to prevent other code from messing with the tail
980 * pointer since we might be called from irq context.
981 */
982 spin_lock_irqsave(&ctx->completion_lock, flags);
983
984 tail = ctx->tail;
985 pos = tail + AIO_EVENTS_OFFSET;
986
987 if (++tail >= ctx->nr_events)
988 tail = 0;
989
990 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
991 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
992
993 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
994 event->data = iocb->ki_user_data;
995 event->res = res;
996 event->res2 = res2;
997
998 kunmap_atomic(ev_page);
999 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1000
1001 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1002 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1003 res, res2);
1004
1005 /* after flagging the request as done, we
1006 * must never even look at it again
1007 */
1008 smp_wmb(); /* make event visible before updating tail */
1009
1010 ctx->tail = tail;
1011
1012 ring = kmap_atomic(ctx->ring_pages[0]);
1013 ring->tail = tail;
1014 kunmap_atomic(ring);
1015 flush_dcache_page(ctx->ring_pages[0]);
1016
1017 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1018
1019 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1020
1021 /*
1022 * Check if the user asked us to deliver the result through an
1023 * eventfd. The eventfd_signal() function is safe to be called
1024 * from IRQ context.
1025 */
1026 if (iocb->ki_eventfd != NULL)
1027 eventfd_signal(iocb->ki_eventfd, 1);
1028
1029 /* everything turned out well, dispose of the aiocb. */
1030 kiocb_free(iocb);
1031 put_reqs_available(ctx, 1);
1032
1033 /*
1034 * We have to order our ring_info tail store above and test
1035 * of the wait list below outside the wait lock. This is
1036 * like in wake_up_bit() where clearing a bit has to be
1037 * ordered with the unlocked test.
1038 */
1039 smp_mb();
1040
1041 if (waitqueue_active(&ctx->wait))
1042 wake_up(&ctx->wait);
1043
1044 percpu_ref_put(&ctx->reqs);
1045 }
1046 EXPORT_SYMBOL(aio_complete);
1047
1048 /* aio_read_events
1049 * Pull an event off of the ioctx's event ring. Returns the number of
1050 * events fetched
1051 */
1052 static long aio_read_events_ring(struct kioctx *ctx,
1053 struct io_event __user *event, long nr)
1054 {
1055 struct aio_ring *ring;
1056 unsigned head, tail, pos;
1057 long ret = 0;
1058 int copy_ret;
1059
1060 mutex_lock(&ctx->ring_lock);
1061
1062 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1063 ring = kmap_atomic(ctx->ring_pages[0]);
1064 head = ring->head;
1065 tail = ring->tail;
1066 kunmap_atomic(ring);
1067
1068 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1069
1070 if (head == tail)
1071 goto out;
1072
1073 head %= ctx->nr_events;
1074 tail %= ctx->nr_events;
1075
1076 while (ret < nr) {
1077 long avail;
1078 struct io_event *ev;
1079 struct page *page;
1080
1081 avail = (head <= tail ? tail : ctx->nr_events) - head;
1082 if (head == tail)
1083 break;
1084
1085 avail = min(avail, nr - ret);
1086 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1087 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1088
1089 pos = head + AIO_EVENTS_OFFSET;
1090 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1091 pos %= AIO_EVENTS_PER_PAGE;
1092
1093 ev = kmap(page);
1094 copy_ret = copy_to_user(event + ret, ev + pos,
1095 sizeof(*ev) * avail);
1096 kunmap(page);
1097
1098 if (unlikely(copy_ret)) {
1099 ret = -EFAULT;
1100 goto out;
1101 }
1102
1103 ret += avail;
1104 head += avail;
1105 head %= ctx->nr_events;
1106 }
1107
1108 ring = kmap_atomic(ctx->ring_pages[0]);
1109 ring->head = head;
1110 kunmap_atomic(ring);
1111 flush_dcache_page(ctx->ring_pages[0]);
1112
1113 pr_debug("%li h%u t%u\n", ret, head, tail);
1114 out:
1115 mutex_unlock(&ctx->ring_lock);
1116
1117 return ret;
1118 }
1119
1120 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1121 struct io_event __user *event, long *i)
1122 {
1123 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1124
1125 if (ret > 0)
1126 *i += ret;
1127
1128 if (unlikely(atomic_read(&ctx->dead)))
1129 ret = -EINVAL;
1130
1131 if (!*i)
1132 *i = ret;
1133
1134 return ret < 0 || *i >= min_nr;
1135 }
1136
1137 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1138 struct io_event __user *event,
1139 struct timespec __user *timeout)
1140 {
1141 ktime_t until = { .tv64 = KTIME_MAX };
1142 long ret = 0;
1143
1144 if (timeout) {
1145 struct timespec ts;
1146
1147 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1148 return -EFAULT;
1149
1150 until = timespec_to_ktime(ts);
1151 }
1152
1153 /*
1154 * Note that aio_read_events() is being called as the conditional - i.e.
1155 * we're calling it after prepare_to_wait() has set task state to
1156 * TASK_INTERRUPTIBLE.
1157 *
1158 * But aio_read_events() can block, and if it blocks it's going to flip
1159 * the task state back to TASK_RUNNING.
1160 *
1161 * This should be ok, provided it doesn't flip the state back to
1162 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1163 * will only happen if the mutex_lock() call blocks, and we then find
1164 * the ringbuffer empty. So in practice we should be ok, but it's
1165 * something to be aware of when touching this code.
1166 */
1167 wait_event_interruptible_hrtimeout(ctx->wait,
1168 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1169
1170 if (!ret && signal_pending(current))
1171 ret = -EINTR;
1172
1173 return ret;
1174 }
1175
1176 /* sys_io_setup:
1177 * Create an aio_context capable of receiving at least nr_events.
1178 * ctxp must not point to an aio_context that already exists, and
1179 * must be initialized to 0 prior to the call. On successful
1180 * creation of the aio_context, *ctxp is filled in with the resulting
1181 * handle. May fail with -EINVAL if *ctxp is not initialized,
1182 * if the specified nr_events exceeds internal limits. May fail
1183 * with -EAGAIN if the specified nr_events exceeds the user's limit
1184 * of available events. May fail with -ENOMEM if insufficient kernel
1185 * resources are available. May fail with -EFAULT if an invalid
1186 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1187 * implemented.
1188 */
1189 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1190 {
1191 struct kioctx *ioctx = NULL;
1192 unsigned long ctx;
1193 long ret;
1194
1195 ret = get_user(ctx, ctxp);
1196 if (unlikely(ret))
1197 goto out;
1198
1199 ret = -EINVAL;
1200 if (unlikely(ctx || nr_events == 0)) {
1201 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1202 ctx, nr_events);
1203 goto out;
1204 }
1205
1206 ioctx = ioctx_alloc(nr_events);
1207 ret = PTR_ERR(ioctx);
1208 if (!IS_ERR(ioctx)) {
1209 ret = put_user(ioctx->user_id, ctxp);
1210 if (ret)
1211 kill_ioctx(current->mm, ioctx, NULL);
1212 percpu_ref_put(&ioctx->users);
1213 }
1214
1215 out:
1216 return ret;
1217 }
1218
1219 /* sys_io_destroy:
1220 * Destroy the aio_context specified. May cancel any outstanding
1221 * AIOs and block on completion. Will fail with -ENOSYS if not
1222 * implemented. May fail with -EINVAL if the context pointed to
1223 * is invalid.
1224 */
1225 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1226 {
1227 struct kioctx *ioctx = lookup_ioctx(ctx);
1228 if (likely(NULL != ioctx)) {
1229 struct completion requests_done =
1230 COMPLETION_INITIALIZER_ONSTACK(requests_done);
1231 int ret;
1232
1233 /* Pass requests_done to kill_ioctx() where it can be set
1234 * in a thread-safe way. If we try to set it here then we have
1235 * a race condition if two io_destroy() called simultaneously.
1236 */
1237 ret = kill_ioctx(current->mm, ioctx, &requests_done);
1238 percpu_ref_put(&ioctx->users);
1239
1240 /* Wait until all IO for the context are done. Otherwise kernel
1241 * keep using user-space buffers even if user thinks the context
1242 * is destroyed.
1243 */
1244 if (!ret)
1245 wait_for_completion(&requests_done);
1246
1247 return ret;
1248 }
1249 pr_debug("EINVAL: io_destroy: invalid context id\n");
1250 return -EINVAL;
1251 }
1252
1253 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1254 unsigned long, loff_t);
1255 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1256
1257 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1258 int rw, char __user *buf,
1259 unsigned long *nr_segs,
1260 struct iovec **iovec,
1261 bool compat)
1262 {
1263 ssize_t ret;
1264
1265 *nr_segs = kiocb->ki_nbytes;
1266
1267 #ifdef CONFIG_COMPAT
1268 if (compat)
1269 ret = compat_rw_copy_check_uvector(rw,
1270 (struct compat_iovec __user *)buf,
1271 *nr_segs, 1, *iovec, iovec);
1272 else
1273 #endif
1274 ret = rw_copy_check_uvector(rw,
1275 (struct iovec __user *)buf,
1276 *nr_segs, 1, *iovec, iovec);
1277 if (ret < 0)
1278 return ret;
1279
1280 /* ki_nbytes now reflect bytes instead of segs */
1281 kiocb->ki_nbytes = ret;
1282 return 0;
1283 }
1284
1285 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1286 int rw, char __user *buf,
1287 unsigned long *nr_segs,
1288 struct iovec *iovec)
1289 {
1290 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1291 return -EFAULT;
1292
1293 iovec->iov_base = buf;
1294 iovec->iov_len = kiocb->ki_nbytes;
1295 *nr_segs = 1;
1296 return 0;
1297 }
1298
1299 /*
1300 * aio_setup_iocb:
1301 * Performs the initial checks and aio retry method
1302 * setup for the kiocb at the time of io submission.
1303 */
1304 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1305 char __user *buf, bool compat)
1306 {
1307 struct file *file = req->ki_filp;
1308 ssize_t ret;
1309 unsigned long nr_segs;
1310 int rw;
1311 fmode_t mode;
1312 aio_rw_op *rw_op;
1313 rw_iter_op *iter_op;
1314 struct iovec inline_vec, *iovec = &inline_vec;
1315 struct iov_iter iter;
1316
1317 switch (opcode) {
1318 case IOCB_CMD_PREAD:
1319 case IOCB_CMD_PREADV:
1320 mode = FMODE_READ;
1321 rw = READ;
1322 rw_op = file->f_op->aio_read;
1323 iter_op = file->f_op->read_iter;
1324 goto rw_common;
1325
1326 case IOCB_CMD_PWRITE:
1327 case IOCB_CMD_PWRITEV:
1328 mode = FMODE_WRITE;
1329 rw = WRITE;
1330 rw_op = file->f_op->aio_write;
1331 iter_op = file->f_op->write_iter;
1332 goto rw_common;
1333 rw_common:
1334 if (unlikely(!(file->f_mode & mode)))
1335 return -EBADF;
1336
1337 if (!rw_op && !iter_op)
1338 return -EINVAL;
1339
1340 ret = (opcode == IOCB_CMD_PREADV ||
1341 opcode == IOCB_CMD_PWRITEV)
1342 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1343 &iovec, compat)
1344 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1345 iovec);
1346 if (!ret)
1347 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1348 if (ret < 0) {
1349 if (iovec != &inline_vec)
1350 kfree(iovec);
1351 return ret;
1352 }
1353
1354 req->ki_nbytes = ret;
1355
1356 /* XXX: move/kill - rw_verify_area()? */
1357 /* This matches the pread()/pwrite() logic */
1358 if (req->ki_pos < 0) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362
1363 if (rw == WRITE)
1364 file_start_write(file);
1365
1366 if (iter_op) {
1367 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1368 ret = iter_op(req, &iter);
1369 } else {
1370 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1371 }
1372
1373 if (rw == WRITE)
1374 file_end_write(file);
1375 break;
1376
1377 case IOCB_CMD_FDSYNC:
1378 if (!file->f_op->aio_fsync)
1379 return -EINVAL;
1380
1381 ret = file->f_op->aio_fsync(req, 1);
1382 break;
1383
1384 case IOCB_CMD_FSYNC:
1385 if (!file->f_op->aio_fsync)
1386 return -EINVAL;
1387
1388 ret = file->f_op->aio_fsync(req, 0);
1389 break;
1390
1391 default:
1392 pr_debug("EINVAL: no operation provided\n");
1393 return -EINVAL;
1394 }
1395
1396 if (iovec != &inline_vec)
1397 kfree(iovec);
1398
1399 if (ret != -EIOCBQUEUED) {
1400 /*
1401 * There's no easy way to restart the syscall since other AIO's
1402 * may be already running. Just fail this IO with EINTR.
1403 */
1404 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1405 ret == -ERESTARTNOHAND ||
1406 ret == -ERESTART_RESTARTBLOCK))
1407 ret = -EINTR;
1408 aio_complete(req, ret, 0);
1409 }
1410
1411 return 0;
1412 }
1413
1414 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1415 struct iocb *iocb, bool compat)
1416 {
1417 struct kiocb *req;
1418 ssize_t ret;
1419
1420 /* enforce forwards compatibility on users */
1421 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1422 pr_debug("EINVAL: reserve field set\n");
1423 return -EINVAL;
1424 }
1425
1426 /* prevent overflows */
1427 if (unlikely(
1428 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1429 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1430 ((ssize_t)iocb->aio_nbytes < 0)
1431 )) {
1432 pr_debug("EINVAL: io_submit: overflow check\n");
1433 return -EINVAL;
1434 }
1435
1436 req = aio_get_req(ctx);
1437 if (unlikely(!req))
1438 return -EAGAIN;
1439
1440 req->ki_filp = fget(iocb->aio_fildes);
1441 if (unlikely(!req->ki_filp)) {
1442 ret = -EBADF;
1443 goto out_put_req;
1444 }
1445
1446 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1447 /*
1448 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1449 * instance of the file* now. The file descriptor must be
1450 * an eventfd() fd, and will be signaled for each completed
1451 * event using the eventfd_signal() function.
1452 */
1453 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1454 if (IS_ERR(req->ki_eventfd)) {
1455 ret = PTR_ERR(req->ki_eventfd);
1456 req->ki_eventfd = NULL;
1457 goto out_put_req;
1458 }
1459 }
1460
1461 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1462 if (unlikely(ret)) {
1463 pr_debug("EFAULT: aio_key\n");
1464 goto out_put_req;
1465 }
1466
1467 req->ki_obj.user = user_iocb;
1468 req->ki_user_data = iocb->aio_data;
1469 req->ki_pos = iocb->aio_offset;
1470 req->ki_nbytes = iocb->aio_nbytes;
1471
1472 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1473 (char __user *)(unsigned long)iocb->aio_buf,
1474 compat);
1475 if (ret)
1476 goto out_put_req;
1477
1478 return 0;
1479 out_put_req:
1480 put_reqs_available(ctx, 1);
1481 percpu_ref_put(&ctx->reqs);
1482 kiocb_free(req);
1483 return ret;
1484 }
1485
1486 long do_io_submit(aio_context_t ctx_id, long nr,
1487 struct iocb __user *__user *iocbpp, bool compat)
1488 {
1489 struct kioctx *ctx;
1490 long ret = 0;
1491 int i = 0;
1492 struct blk_plug plug;
1493
1494 if (unlikely(nr < 0))
1495 return -EINVAL;
1496
1497 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1498 nr = LONG_MAX/sizeof(*iocbpp);
1499
1500 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1501 return -EFAULT;
1502
1503 ctx = lookup_ioctx(ctx_id);
1504 if (unlikely(!ctx)) {
1505 pr_debug("EINVAL: invalid context id\n");
1506 return -EINVAL;
1507 }
1508
1509 blk_start_plug(&plug);
1510
1511 /*
1512 * AKPM: should this return a partial result if some of the IOs were
1513 * successfully submitted?
1514 */
1515 for (i=0; i<nr; i++) {
1516 struct iocb __user *user_iocb;
1517 struct iocb tmp;
1518
1519 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1520 ret = -EFAULT;
1521 break;
1522 }
1523
1524 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1525 ret = -EFAULT;
1526 break;
1527 }
1528
1529 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1530 if (ret)
1531 break;
1532 }
1533 blk_finish_plug(&plug);
1534
1535 percpu_ref_put(&ctx->users);
1536 return i ? i : ret;
1537 }
1538
1539 /* sys_io_submit:
1540 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1541 * the number of iocbs queued. May return -EINVAL if the aio_context
1542 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1543 * *iocbpp[0] is not properly initialized, if the operation specified
1544 * is invalid for the file descriptor in the iocb. May fail with
1545 * -EFAULT if any of the data structures point to invalid data. May
1546 * fail with -EBADF if the file descriptor specified in the first
1547 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1548 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1549 * fail with -ENOSYS if not implemented.
1550 */
1551 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1552 struct iocb __user * __user *, iocbpp)
1553 {
1554 return do_io_submit(ctx_id, nr, iocbpp, 0);
1555 }
1556
1557 /* lookup_kiocb
1558 * Finds a given iocb for cancellation.
1559 */
1560 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1561 u32 key)
1562 {
1563 struct list_head *pos;
1564
1565 assert_spin_locked(&ctx->ctx_lock);
1566
1567 if (key != KIOCB_KEY)
1568 return NULL;
1569
1570 /* TODO: use a hash or array, this sucks. */
1571 list_for_each(pos, &ctx->active_reqs) {
1572 struct kiocb *kiocb = list_kiocb(pos);
1573 if (kiocb->ki_obj.user == iocb)
1574 return kiocb;
1575 }
1576 return NULL;
1577 }
1578
1579 /* sys_io_cancel:
1580 * Attempts to cancel an iocb previously passed to io_submit. If
1581 * the operation is successfully cancelled, the resulting event is
1582 * copied into the memory pointed to by result without being placed
1583 * into the completion queue and 0 is returned. May fail with
1584 * -EFAULT if any of the data structures pointed to are invalid.
1585 * May fail with -EINVAL if aio_context specified by ctx_id is
1586 * invalid. May fail with -EAGAIN if the iocb specified was not
1587 * cancelled. Will fail with -ENOSYS if not implemented.
1588 */
1589 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1590 struct io_event __user *, result)
1591 {
1592 struct kioctx *ctx;
1593 struct kiocb *kiocb;
1594 u32 key;
1595 int ret;
1596
1597 ret = get_user(key, &iocb->aio_key);
1598 if (unlikely(ret))
1599 return -EFAULT;
1600
1601 ctx = lookup_ioctx(ctx_id);
1602 if (unlikely(!ctx))
1603 return -EINVAL;
1604
1605 spin_lock_irq(&ctx->ctx_lock);
1606
1607 kiocb = lookup_kiocb(ctx, iocb, key);
1608 if (kiocb)
1609 ret = kiocb_cancel(kiocb);
1610 else
1611 ret = -EINVAL;
1612
1613 spin_unlock_irq(&ctx->ctx_lock);
1614
1615 if (!ret) {
1616 /*
1617 * The result argument is no longer used - the io_event is
1618 * always delivered via the ring buffer. -EINPROGRESS indicates
1619 * cancellation is progress:
1620 */
1621 ret = -EINPROGRESS;
1622 }
1623
1624 percpu_ref_put(&ctx->users);
1625
1626 return ret;
1627 }
1628
1629 /* io_getevents:
1630 * Attempts to read at least min_nr events and up to nr events from
1631 * the completion queue for the aio_context specified by ctx_id. If
1632 * it succeeds, the number of read events is returned. May fail with
1633 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1634 * out of range, if timeout is out of range. May fail with -EFAULT
1635 * if any of the memory specified is invalid. May return 0 or
1636 * < min_nr if the timeout specified by timeout has elapsed
1637 * before sufficient events are available, where timeout == NULL
1638 * specifies an infinite timeout. Note that the timeout pointed to by
1639 * timeout is relative. Will fail with -ENOSYS if not implemented.
1640 */
1641 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1642 long, min_nr,
1643 long, nr,
1644 struct io_event __user *, events,
1645 struct timespec __user *, timeout)
1646 {
1647 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1648 long ret = -EINVAL;
1649
1650 if (likely(ioctx)) {
1651 if (likely(min_nr <= nr && min_nr >= 0))
1652 ret = read_events(ioctx, min_nr, nr, events, timeout);
1653 percpu_ref_put(&ioctx->users);
1654 }
1655 return ret;
1656 }
This page took 0.064612 seconds and 6 git commands to generate.