timers: fix itimer/many thread hang
[deliverable/linux.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48 int, int, unsigned long);
49
50 /*
51 * If we don't support core dumping, then supply a NULL so we
52 * don't even try.
53 */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75 .module = THIS_MODULE,
76 .load_binary = load_elf_binary,
77 .load_shlib = load_elf_library,
78 .core_dump = elf_core_dump,
79 .min_coredump = ELF_EXEC_PAGESIZE,
80 .hasvdso = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87 start = ELF_PAGEALIGN(start);
88 end = ELF_PAGEALIGN(end);
89 if (end > start) {
90 unsigned long addr;
91 down_write(&current->mm->mmap_sem);
92 addr = do_brk(start, end - start);
93 up_write(&current->mm->mmap_sem);
94 if (BAD_ADDR(addr))
95 return addr;
96 }
97 current->mm->start_brk = current->mm->brk = end;
98 return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
104 be in memory
105 */
106 static int padzero(unsigned long elf_bss)
107 {
108 unsigned long nbyte;
109
110 nbyte = ELF_PAGEOFFSET(elf_bss);
111 if (nbyte) {
112 nbyte = ELF_MIN_ALIGN - nbyte;
113 if (clear_user((void __user *) elf_bss, nbyte))
114 return -EFAULT;
115 }
116 return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
139 */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 unsigned long p = bprm->p;
148 int argc = bprm->argc;
149 int envc = bprm->envc;
150 elf_addr_t __user *argv;
151 elf_addr_t __user *envp;
152 elf_addr_t __user *sp;
153 elf_addr_t __user *u_platform;
154 elf_addr_t __user *u_base_platform;
155 const char *k_platform = ELF_PLATFORM;
156 const char *k_base_platform = ELF_BASE_PLATFORM;
157 int items;
158 elf_addr_t *elf_info;
159 int ei_index = 0;
160 struct task_struct *tsk = current;
161 struct vm_area_struct *vma;
162
163 /*
164 * In some cases (e.g. Hyper-Threading), we want to avoid L1
165 * evictions by the processes running on the same package. One
166 * thing we can do is to shuffle the initial stack for them.
167 */
168
169 p = arch_align_stack(p);
170
171 /*
172 * If this architecture has a platform capability string, copy it
173 * to userspace. In some cases (Sparc), this info is impossible
174 * for userspace to get any other way, in others (i386) it is
175 * merely difficult.
176 */
177 u_platform = NULL;
178 if (k_platform) {
179 size_t len = strlen(k_platform) + 1;
180
181 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182 if (__copy_to_user(u_platform, k_platform, len))
183 return -EFAULT;
184 }
185
186 /*
187 * If this architecture has a "base" platform capability
188 * string, copy it to userspace.
189 */
190 u_base_platform = NULL;
191 if (k_base_platform) {
192 size_t len = strlen(k_base_platform) + 1;
193
194 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195 if (__copy_to_user(u_base_platform, k_base_platform, len))
196 return -EFAULT;
197 }
198
199 /* Create the ELF interpreter info */
200 elf_info = (elf_addr_t *)current->mm->saved_auxv;
201 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203 do { \
204 elf_info[ei_index++] = id; \
205 elf_info[ei_index++] = val; \
206 } while (0)
207
208 #ifdef ARCH_DLINFO
209 /*
210 * ARCH_DLINFO must come first so PPC can do its special alignment of
211 * AUXV.
212 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213 * ARCH_DLINFO changes
214 */
215 ARCH_DLINFO;
216 #endif
217 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223 NEW_AUX_ENT(AT_BASE, interp_load_addr);
224 NEW_AUX_ENT(AT_FLAGS, 0);
225 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226 NEW_AUX_ENT(AT_UID, tsk->uid);
227 NEW_AUX_ENT(AT_EUID, tsk->euid);
228 NEW_AUX_ENT(AT_GID, tsk->gid);
229 NEW_AUX_ENT(AT_EGID, tsk->egid);
230 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232 if (k_platform) {
233 NEW_AUX_ENT(AT_PLATFORM,
234 (elf_addr_t)(unsigned long)u_platform);
235 }
236 if (k_base_platform) {
237 NEW_AUX_ENT(AT_BASE_PLATFORM,
238 (elf_addr_t)(unsigned long)u_base_platform);
239 }
240 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
242 }
243 #undef NEW_AUX_ENT
244 /* AT_NULL is zero; clear the rest too */
245 memset(&elf_info[ei_index], 0,
246 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
247
248 /* And advance past the AT_NULL entry. */
249 ei_index += 2;
250
251 sp = STACK_ADD(p, ei_index);
252
253 items = (argc + 1) + (envc + 1) + 1;
254 bprm->p = STACK_ROUND(sp, items);
255
256 /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261 sp = (elf_addr_t __user *)bprm->p;
262 #endif
263
264
265 /*
266 * Grow the stack manually; some architectures have a limit on how
267 * far ahead a user-space access may be in order to grow the stack.
268 */
269 vma = find_extend_vma(current->mm, bprm->p);
270 if (!vma)
271 return -EFAULT;
272
273 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274 if (__put_user(argc, sp++))
275 return -EFAULT;
276 argv = sp;
277 envp = argv + argc + 1;
278
279 /* Populate argv and envp */
280 p = current->mm->arg_end = current->mm->arg_start;
281 while (argc-- > 0) {
282 size_t len;
283 if (__put_user((elf_addr_t)p, argv++))
284 return -EFAULT;
285 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286 if (!len || len > MAX_ARG_STRLEN)
287 return -EINVAL;
288 p += len;
289 }
290 if (__put_user(0, argv))
291 return -EFAULT;
292 current->mm->arg_end = current->mm->env_start = p;
293 while (envc-- > 0) {
294 size_t len;
295 if (__put_user((elf_addr_t)p, envp++))
296 return -EFAULT;
297 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 if (!len || len > MAX_ARG_STRLEN)
299 return -EINVAL;
300 p += len;
301 }
302 if (__put_user(0, envp))
303 return -EFAULT;
304 current->mm->env_end = p;
305
306 /* Put the elf_info on the stack in the right place. */
307 sp = (elf_addr_t __user *)envp + 1;
308 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309 return -EFAULT;
310 return 0;
311 }
312
313 #ifndef elf_map
314
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316 struct elf_phdr *eppnt, int prot, int type,
317 unsigned long total_size)
318 {
319 unsigned long map_addr;
320 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322 addr = ELF_PAGESTART(addr);
323 size = ELF_PAGEALIGN(size);
324
325 /* mmap() will return -EINVAL if given a zero size, but a
326 * segment with zero filesize is perfectly valid */
327 if (!size)
328 return addr;
329
330 down_write(&current->mm->mmap_sem);
331 /*
332 * total_size is the size of the ELF (interpreter) image.
333 * The _first_ mmap needs to know the full size, otherwise
334 * randomization might put this image into an overlapping
335 * position with the ELF binary image. (since size < total_size)
336 * So we first map the 'big' image - and unmap the remainder at
337 * the end. (which unmap is needed for ELF images with holes.)
338 */
339 if (total_size) {
340 total_size = ELF_PAGEALIGN(total_size);
341 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342 if (!BAD_ADDR(map_addr))
343 do_munmap(current->mm, map_addr+size, total_size-size);
344 } else
345 map_addr = do_mmap(filep, addr, size, prot, type, off);
346
347 up_write(&current->mm->mmap_sem);
348 return(map_addr);
349 }
350
351 #endif /* !elf_map */
352
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
354 {
355 int i, first_idx = -1, last_idx = -1;
356
357 for (i = 0; i < nr; i++) {
358 if (cmds[i].p_type == PT_LOAD) {
359 last_idx = i;
360 if (first_idx == -1)
361 first_idx = i;
362 }
363 }
364 if (first_idx == -1)
365 return 0;
366
367 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368 ELF_PAGESTART(cmds[first_idx].p_vaddr);
369 }
370
371
372 /* This is much more generalized than the library routine read function,
373 so we keep this separate. Technically the library read function
374 is only provided so that we can read a.out libraries that have
375 an ELF header */
376
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378 struct file *interpreter, unsigned long *interp_map_addr,
379 unsigned long no_base)
380 {
381 struct elf_phdr *elf_phdata;
382 struct elf_phdr *eppnt;
383 unsigned long load_addr = 0;
384 int load_addr_set = 0;
385 unsigned long last_bss = 0, elf_bss = 0;
386 unsigned long error = ~0UL;
387 unsigned long total_size;
388 int retval, i, size;
389
390 /* First of all, some simple consistency checks */
391 if (interp_elf_ex->e_type != ET_EXEC &&
392 interp_elf_ex->e_type != ET_DYN)
393 goto out;
394 if (!elf_check_arch(interp_elf_ex))
395 goto out;
396 if (!interpreter->f_op || !interpreter->f_op->mmap)
397 goto out;
398
399 /*
400 * If the size of this structure has changed, then punt, since
401 * we will be doing the wrong thing.
402 */
403 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404 goto out;
405 if (interp_elf_ex->e_phnum < 1 ||
406 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407 goto out;
408
409 /* Now read in all of the header information */
410 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411 if (size > ELF_MIN_ALIGN)
412 goto out;
413 elf_phdata = kmalloc(size, GFP_KERNEL);
414 if (!elf_phdata)
415 goto out;
416
417 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418 (char *)elf_phdata,size);
419 error = -EIO;
420 if (retval != size) {
421 if (retval < 0)
422 error = retval;
423 goto out_close;
424 }
425
426 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427 if (!total_size) {
428 error = -EINVAL;
429 goto out_close;
430 }
431
432 eppnt = elf_phdata;
433 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434 if (eppnt->p_type == PT_LOAD) {
435 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436 int elf_prot = 0;
437 unsigned long vaddr = 0;
438 unsigned long k, map_addr;
439
440 if (eppnt->p_flags & PF_R)
441 elf_prot = PROT_READ;
442 if (eppnt->p_flags & PF_W)
443 elf_prot |= PROT_WRITE;
444 if (eppnt->p_flags & PF_X)
445 elf_prot |= PROT_EXEC;
446 vaddr = eppnt->p_vaddr;
447 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448 elf_type |= MAP_FIXED;
449 else if (no_base && interp_elf_ex->e_type == ET_DYN)
450 load_addr = -vaddr;
451
452 map_addr = elf_map(interpreter, load_addr + vaddr,
453 eppnt, elf_prot, elf_type, total_size);
454 total_size = 0;
455 if (!*interp_map_addr)
456 *interp_map_addr = map_addr;
457 error = map_addr;
458 if (BAD_ADDR(map_addr))
459 goto out_close;
460
461 if (!load_addr_set &&
462 interp_elf_ex->e_type == ET_DYN) {
463 load_addr = map_addr - ELF_PAGESTART(vaddr);
464 load_addr_set = 1;
465 }
466
467 /*
468 * Check to see if the section's size will overflow the
469 * allowed task size. Note that p_filesz must always be
470 * <= p_memsize so it's only necessary to check p_memsz.
471 */
472 k = load_addr + eppnt->p_vaddr;
473 if (BAD_ADDR(k) ||
474 eppnt->p_filesz > eppnt->p_memsz ||
475 eppnt->p_memsz > TASK_SIZE ||
476 TASK_SIZE - eppnt->p_memsz < k) {
477 error = -ENOMEM;
478 goto out_close;
479 }
480
481 /*
482 * Find the end of the file mapping for this phdr, and
483 * keep track of the largest address we see for this.
484 */
485 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486 if (k > elf_bss)
487 elf_bss = k;
488
489 /*
490 * Do the same thing for the memory mapping - between
491 * elf_bss and last_bss is the bss section.
492 */
493 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494 if (k > last_bss)
495 last_bss = k;
496 }
497 }
498
499 /*
500 * Now fill out the bss section. First pad the last page up
501 * to the page boundary, and then perform a mmap to make sure
502 * that there are zero-mapped pages up to and including the
503 * last bss page.
504 */
505 if (padzero(elf_bss)) {
506 error = -EFAULT;
507 goto out_close;
508 }
509
510 /* What we have mapped so far */
511 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
512
513 /* Map the last of the bss segment */
514 if (last_bss > elf_bss) {
515 down_write(&current->mm->mmap_sem);
516 error = do_brk(elf_bss, last_bss - elf_bss);
517 up_write(&current->mm->mmap_sem);
518 if (BAD_ADDR(error))
519 goto out_close;
520 }
521
522 error = load_addr;
523
524 out_close:
525 kfree(elf_phdata);
526 out:
527 return error;
528 }
529
530 /*
531 * These are the functions used to load ELF style executables and shared
532 * libraries. There is no binary dependent code anywhere else.
533 */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544 unsigned int random_variable = 0;
545
546 if ((current->flags & PF_RANDOMIZE) &&
547 !(current->personality & ADDR_NO_RANDOMIZE)) {
548 random_variable = get_random_int() & STACK_RND_MASK;
549 random_variable <<= PAGE_SHIFT;
550 }
551 #ifdef CONFIG_STACK_GROWSUP
552 return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554 return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560 struct file *interpreter = NULL; /* to shut gcc up */
561 unsigned long load_addr = 0, load_bias = 0;
562 int load_addr_set = 0;
563 char * elf_interpreter = NULL;
564 unsigned long error;
565 struct elf_phdr *elf_ppnt, *elf_phdata;
566 unsigned long elf_bss, elf_brk;
567 int elf_exec_fileno;
568 int retval, i;
569 unsigned int size;
570 unsigned long elf_entry;
571 unsigned long interp_load_addr = 0;
572 unsigned long start_code, end_code, start_data, end_data;
573 unsigned long reloc_func_desc = 0;
574 int executable_stack = EXSTACK_DEFAULT;
575 unsigned long def_flags = 0;
576 struct {
577 struct elfhdr elf_ex;
578 struct elfhdr interp_elf_ex;
579 } *loc;
580
581 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 if (!loc) {
583 retval = -ENOMEM;
584 goto out_ret;
585 }
586
587 /* Get the exec-header */
588 loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590 retval = -ENOEXEC;
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 goto out;
594
595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 goto out;
597 if (!elf_check_arch(&loc->elf_ex))
598 goto out;
599 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600 goto out;
601
602 /* Now read in all of the header information */
603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 goto out;
605 if (loc->elf_ex.e_phnum < 1 ||
606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 goto out;
608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 retval = -ENOMEM;
610 elf_phdata = kmalloc(size, GFP_KERNEL);
611 if (!elf_phdata)
612 goto out;
613
614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 (char *)elf_phdata, size);
616 if (retval != size) {
617 if (retval >= 0)
618 retval = -EIO;
619 goto out_free_ph;
620 }
621
622 retval = get_unused_fd();
623 if (retval < 0)
624 goto out_free_ph;
625 get_file(bprm->file);
626 fd_install(elf_exec_fileno = retval, bprm->file);
627
628 elf_ppnt = elf_phdata;
629 elf_bss = 0;
630 elf_brk = 0;
631
632 start_code = ~0UL;
633 end_code = 0;
634 start_data = 0;
635 end_data = 0;
636
637 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638 if (elf_ppnt->p_type == PT_INTERP) {
639 /* This is the program interpreter used for
640 * shared libraries - for now assume that this
641 * is an a.out format binary
642 */
643 retval = -ENOEXEC;
644 if (elf_ppnt->p_filesz > PATH_MAX ||
645 elf_ppnt->p_filesz < 2)
646 goto out_free_file;
647
648 retval = -ENOMEM;
649 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650 GFP_KERNEL);
651 if (!elf_interpreter)
652 goto out_free_file;
653
654 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655 elf_interpreter,
656 elf_ppnt->p_filesz);
657 if (retval != elf_ppnt->p_filesz) {
658 if (retval >= 0)
659 retval = -EIO;
660 goto out_free_interp;
661 }
662 /* make sure path is NULL terminated */
663 retval = -ENOEXEC;
664 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665 goto out_free_interp;
666
667 /*
668 * The early SET_PERSONALITY here is so that the lookup
669 * for the interpreter happens in the namespace of the
670 * to-be-execed image. SET_PERSONALITY can select an
671 * alternate root.
672 *
673 * However, SET_PERSONALITY is NOT allowed to switch
674 * this task into the new images's memory mapping
675 * policy - that is, TASK_SIZE must still evaluate to
676 * that which is appropriate to the execing application.
677 * This is because exit_mmap() needs to have TASK_SIZE
678 * evaluate to the size of the old image.
679 *
680 * So if (say) a 64-bit application is execing a 32-bit
681 * application it is the architecture's responsibility
682 * to defer changing the value of TASK_SIZE until the
683 * switch really is going to happen - do this in
684 * flush_thread(). - akpm
685 */
686 SET_PERSONALITY(loc->elf_ex, 0);
687
688 interpreter = open_exec(elf_interpreter);
689 retval = PTR_ERR(interpreter);
690 if (IS_ERR(interpreter))
691 goto out_free_interp;
692
693 /*
694 * If the binary is not readable then enforce
695 * mm->dumpable = 0 regardless of the interpreter's
696 * permissions.
697 */
698 if (file_permission(interpreter, MAY_READ) < 0)
699 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
700
701 retval = kernel_read(interpreter, 0, bprm->buf,
702 BINPRM_BUF_SIZE);
703 if (retval != BINPRM_BUF_SIZE) {
704 if (retval >= 0)
705 retval = -EIO;
706 goto out_free_dentry;
707 }
708
709 /* Get the exec headers */
710 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711 break;
712 }
713 elf_ppnt++;
714 }
715
716 elf_ppnt = elf_phdata;
717 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718 if (elf_ppnt->p_type == PT_GNU_STACK) {
719 if (elf_ppnt->p_flags & PF_X)
720 executable_stack = EXSTACK_ENABLE_X;
721 else
722 executable_stack = EXSTACK_DISABLE_X;
723 break;
724 }
725
726 /* Some simple consistency checks for the interpreter */
727 if (elf_interpreter) {
728 retval = -ELIBBAD;
729 /* Not an ELF interpreter */
730 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731 goto out_free_dentry;
732 /* Verify the interpreter has a valid arch */
733 if (!elf_check_arch(&loc->interp_elf_ex))
734 goto out_free_dentry;
735 } else {
736 /* Executables without an interpreter also need a personality */
737 SET_PERSONALITY(loc->elf_ex, 0);
738 }
739
740 /* Flush all traces of the currently running executable */
741 retval = flush_old_exec(bprm);
742 if (retval)
743 goto out_free_dentry;
744
745 /* OK, This is the point of no return */
746 current->flags &= ~PF_FORKNOEXEC;
747 current->mm->def_flags = def_flags;
748
749 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750 may depend on the personality. */
751 SET_PERSONALITY(loc->elf_ex, 0);
752 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753 current->personality |= READ_IMPLIES_EXEC;
754
755 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756 current->flags |= PF_RANDOMIZE;
757 arch_pick_mmap_layout(current->mm);
758
759 /* Do this so that we can load the interpreter, if need be. We will
760 change some of these later */
761 current->mm->free_area_cache = current->mm->mmap_base;
762 current->mm->cached_hole_size = 0;
763 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764 executable_stack);
765 if (retval < 0) {
766 send_sig(SIGKILL, current, 0);
767 goto out_free_dentry;
768 }
769
770 current->mm->start_stack = bprm->p;
771
772 /* Now we do a little grungy work by mmaping the ELF image into
773 the correct location in memory. */
774 for(i = 0, elf_ppnt = elf_phdata;
775 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776 int elf_prot = 0, elf_flags;
777 unsigned long k, vaddr;
778
779 if (elf_ppnt->p_type != PT_LOAD)
780 continue;
781
782 if (unlikely (elf_brk > elf_bss)) {
783 unsigned long nbyte;
784
785 /* There was a PT_LOAD segment with p_memsz > p_filesz
786 before this one. Map anonymous pages, if needed,
787 and clear the area. */
788 retval = set_brk (elf_bss + load_bias,
789 elf_brk + load_bias);
790 if (retval) {
791 send_sig(SIGKILL, current, 0);
792 goto out_free_dentry;
793 }
794 nbyte = ELF_PAGEOFFSET(elf_bss);
795 if (nbyte) {
796 nbyte = ELF_MIN_ALIGN - nbyte;
797 if (nbyte > elf_brk - elf_bss)
798 nbyte = elf_brk - elf_bss;
799 if (clear_user((void __user *)elf_bss +
800 load_bias, nbyte)) {
801 /*
802 * This bss-zeroing can fail if the ELF
803 * file specifies odd protections. So
804 * we don't check the return value
805 */
806 }
807 }
808 }
809
810 if (elf_ppnt->p_flags & PF_R)
811 elf_prot |= PROT_READ;
812 if (elf_ppnt->p_flags & PF_W)
813 elf_prot |= PROT_WRITE;
814 if (elf_ppnt->p_flags & PF_X)
815 elf_prot |= PROT_EXEC;
816
817 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
818
819 vaddr = elf_ppnt->p_vaddr;
820 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821 elf_flags |= MAP_FIXED;
822 } else if (loc->elf_ex.e_type == ET_DYN) {
823 /* Try and get dynamic programs out of the way of the
824 * default mmap base, as well as whatever program they
825 * might try to exec. This is because the brk will
826 * follow the loader, and is not movable. */
827 #ifdef CONFIG_X86
828 load_bias = 0;
829 #else
830 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
832 }
833
834 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835 elf_prot, elf_flags, 0);
836 if (BAD_ADDR(error)) {
837 send_sig(SIGKILL, current, 0);
838 retval = IS_ERR((void *)error) ?
839 PTR_ERR((void*)error) : -EINVAL;
840 goto out_free_dentry;
841 }
842
843 if (!load_addr_set) {
844 load_addr_set = 1;
845 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846 if (loc->elf_ex.e_type == ET_DYN) {
847 load_bias += error -
848 ELF_PAGESTART(load_bias + vaddr);
849 load_addr += load_bias;
850 reloc_func_desc = load_bias;
851 }
852 }
853 k = elf_ppnt->p_vaddr;
854 if (k < start_code)
855 start_code = k;
856 if (start_data < k)
857 start_data = k;
858
859 /*
860 * Check to see if the section's size will overflow the
861 * allowed task size. Note that p_filesz must always be
862 * <= p_memsz so it is only necessary to check p_memsz.
863 */
864 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865 elf_ppnt->p_memsz > TASK_SIZE ||
866 TASK_SIZE - elf_ppnt->p_memsz < k) {
867 /* set_brk can never work. Avoid overflows. */
868 send_sig(SIGKILL, current, 0);
869 retval = -EINVAL;
870 goto out_free_dentry;
871 }
872
873 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
874
875 if (k > elf_bss)
876 elf_bss = k;
877 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878 end_code = k;
879 if (end_data < k)
880 end_data = k;
881 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882 if (k > elf_brk)
883 elf_brk = k;
884 }
885
886 loc->elf_ex.e_entry += load_bias;
887 elf_bss += load_bias;
888 elf_brk += load_bias;
889 start_code += load_bias;
890 end_code += load_bias;
891 start_data += load_bias;
892 end_data += load_bias;
893
894 /* Calling set_brk effectively mmaps the pages that we need
895 * for the bss and break sections. We must do this before
896 * mapping in the interpreter, to make sure it doesn't wind
897 * up getting placed where the bss needs to go.
898 */
899 retval = set_brk(elf_bss, elf_brk);
900 if (retval) {
901 send_sig(SIGKILL, current, 0);
902 goto out_free_dentry;
903 }
904 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905 send_sig(SIGSEGV, current, 0);
906 retval = -EFAULT; /* Nobody gets to see this, but.. */
907 goto out_free_dentry;
908 }
909
910 if (elf_interpreter) {
911 unsigned long uninitialized_var(interp_map_addr);
912
913 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914 interpreter,
915 &interp_map_addr,
916 load_bias);
917 if (!IS_ERR((void *)elf_entry)) {
918 /*
919 * load_elf_interp() returns relocation
920 * adjustment
921 */
922 interp_load_addr = elf_entry;
923 elf_entry += loc->interp_elf_ex.e_entry;
924 }
925 if (BAD_ADDR(elf_entry)) {
926 force_sig(SIGSEGV, current);
927 retval = IS_ERR((void *)elf_entry) ?
928 (int)elf_entry : -EINVAL;
929 goto out_free_dentry;
930 }
931 reloc_func_desc = interp_load_addr;
932
933 allow_write_access(interpreter);
934 fput(interpreter);
935 kfree(elf_interpreter);
936 } else {
937 elf_entry = loc->elf_ex.e_entry;
938 if (BAD_ADDR(elf_entry)) {
939 force_sig(SIGSEGV, current);
940 retval = -EINVAL;
941 goto out_free_dentry;
942 }
943 }
944
945 kfree(elf_phdata);
946
947 sys_close(elf_exec_fileno);
948
949 set_binfmt(&elf_format);
950
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952 retval = arch_setup_additional_pages(bprm, executable_stack);
953 if (retval < 0) {
954 send_sig(SIGKILL, current, 0);
955 goto out;
956 }
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
958
959 compute_creds(bprm);
960 current->flags &= ~PF_FORKNOEXEC;
961 retval = create_elf_tables(bprm, &loc->elf_ex,
962 load_addr, interp_load_addr);
963 if (retval < 0) {
964 send_sig(SIGKILL, current, 0);
965 goto out;
966 }
967 /* N.B. passed_fileno might not be initialized? */
968 current->mm->end_code = end_code;
969 current->mm->start_code = start_code;
970 current->mm->start_data = start_data;
971 current->mm->end_data = end_data;
972 current->mm->start_stack = bprm->p;
973
974 #ifdef arch_randomize_brk
975 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976 current->mm->brk = current->mm->start_brk =
977 arch_randomize_brk(current->mm);
978 #endif
979
980 if (current->personality & MMAP_PAGE_ZERO) {
981 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
982 and some applications "depend" upon this behavior.
983 Since we do not have the power to recompile these, we
984 emulate the SVr4 behavior. Sigh. */
985 down_write(&current->mm->mmap_sem);
986 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987 MAP_FIXED | MAP_PRIVATE, 0);
988 up_write(&current->mm->mmap_sem);
989 }
990
991 #ifdef ELF_PLAT_INIT
992 /*
993 * The ABI may specify that certain registers be set up in special
994 * ways (on i386 %edx is the address of a DT_FINI function, for
995 * example. In addition, it may also specify (eg, PowerPC64 ELF)
996 * that the e_entry field is the address of the function descriptor
997 * for the startup routine, rather than the address of the startup
998 * routine itself. This macro performs whatever initialization to
999 * the regs structure is required as well as any relocations to the
1000 * function descriptor entries when executing dynamically links apps.
1001 */
1002 ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1004
1005 start_thread(regs, elf_entry, bprm->p);
1006 retval = 0;
1007 out:
1008 kfree(loc);
1009 out_ret:
1010 return retval;
1011
1012 /* error cleanup */
1013 out_free_dentry:
1014 allow_write_access(interpreter);
1015 if (interpreter)
1016 fput(interpreter);
1017 out_free_interp:
1018 kfree(elf_interpreter);
1019 out_free_file:
1020 sys_close(elf_exec_fileno);
1021 out_free_ph:
1022 kfree(elf_phdata);
1023 goto out;
1024 }
1025
1026 /* This is really simpleminded and specialized - we are loading an
1027 a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1029 {
1030 struct elf_phdr *elf_phdata;
1031 struct elf_phdr *eppnt;
1032 unsigned long elf_bss, bss, len;
1033 int retval, error, i, j;
1034 struct elfhdr elf_ex;
1035
1036 error = -ENOEXEC;
1037 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038 if (retval != sizeof(elf_ex))
1039 goto out;
1040
1041 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042 goto out;
1043
1044 /* First of all, some simple consistency checks */
1045 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047 goto out;
1048
1049 /* Now read in all of the header information */
1050
1051 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1053
1054 error = -ENOMEM;
1055 elf_phdata = kmalloc(j, GFP_KERNEL);
1056 if (!elf_phdata)
1057 goto out;
1058
1059 eppnt = elf_phdata;
1060 error = -ENOEXEC;
1061 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062 if (retval != j)
1063 goto out_free_ph;
1064
1065 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066 if ((eppnt + i)->p_type == PT_LOAD)
1067 j++;
1068 if (j != 1)
1069 goto out_free_ph;
1070
1071 while (eppnt->p_type != PT_LOAD)
1072 eppnt++;
1073
1074 /* Now use mmap to map the library into memory. */
1075 down_write(&current->mm->mmap_sem);
1076 error = do_mmap(file,
1077 ELF_PAGESTART(eppnt->p_vaddr),
1078 (eppnt->p_filesz +
1079 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080 PROT_READ | PROT_WRITE | PROT_EXEC,
1081 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082 (eppnt->p_offset -
1083 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084 up_write(&current->mm->mmap_sem);
1085 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086 goto out_free_ph;
1087
1088 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089 if (padzero(elf_bss)) {
1090 error = -EFAULT;
1091 goto out_free_ph;
1092 }
1093
1094 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095 ELF_MIN_ALIGN - 1);
1096 bss = eppnt->p_memsz + eppnt->p_vaddr;
1097 if (bss > len) {
1098 down_write(&current->mm->mmap_sem);
1099 do_brk(len, bss - len);
1100 up_write(&current->mm->mmap_sem);
1101 }
1102 error = 0;
1103
1104 out_free_ph:
1105 kfree(elf_phdata);
1106 out:
1107 return error;
1108 }
1109
1110 /*
1111 * Note that some platforms still use traditional core dumps and not
1112 * the ELF core dump. Each platform can select it as appropriate.
1113 */
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1115
1116 /*
1117 * ELF core dumper
1118 *
1119 * Modelled on fs/exec.c:aout_core_dump()
1120 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1121 */
1122 /*
1123 * These are the only things you should do on a core-file: use only these
1124 * functions to write out all the necessary info.
1125 */
1126 static int dump_write(struct file *file, const void *addr, int nr)
1127 {
1128 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1129 }
1130
1131 static int dump_seek(struct file *file, loff_t off)
1132 {
1133 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135 return 0;
1136 } else {
1137 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138 if (!buf)
1139 return 0;
1140 while (off > 0) {
1141 unsigned long n = off;
1142 if (n > PAGE_SIZE)
1143 n = PAGE_SIZE;
1144 if (!dump_write(file, buf, n))
1145 return 0;
1146 off -= n;
1147 }
1148 free_page((unsigned long)buf);
1149 }
1150 return 1;
1151 }
1152
1153 /*
1154 * Decide what to dump of a segment, part, all or none.
1155 */
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157 unsigned long mm_flags)
1158 {
1159 /* The vma can be set up to tell us the answer directly. */
1160 if (vma->vm_flags & VM_ALWAYSDUMP)
1161 goto whole;
1162
1163 /* Do not dump I/O mapped devices or special mappings */
1164 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1165 return 0;
1166
1167 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1168
1169 /* By default, dump shared memory if mapped from an anonymous file. */
1170 if (vma->vm_flags & VM_SHARED) {
1171 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1172 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1173 goto whole;
1174 return 0;
1175 }
1176
1177 /* Dump segments that have been written to. */
1178 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1179 goto whole;
1180 if (vma->vm_file == NULL)
1181 return 0;
1182
1183 if (FILTER(MAPPED_PRIVATE))
1184 goto whole;
1185
1186 /*
1187 * If this looks like the beginning of a DSO or executable mapping,
1188 * check for an ELF header. If we find one, dump the first page to
1189 * aid in determining what was mapped here.
1190 */
1191 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1192 u32 __user *header = (u32 __user *) vma->vm_start;
1193 u32 word;
1194 /*
1195 * Doing it this way gets the constant folded by GCC.
1196 */
1197 union {
1198 u32 cmp;
1199 char elfmag[SELFMAG];
1200 } magic;
1201 BUILD_BUG_ON(SELFMAG != sizeof word);
1202 magic.elfmag[EI_MAG0] = ELFMAG0;
1203 magic.elfmag[EI_MAG1] = ELFMAG1;
1204 magic.elfmag[EI_MAG2] = ELFMAG2;
1205 magic.elfmag[EI_MAG3] = ELFMAG3;
1206 if (get_user(word, header) == 0 && word == magic.cmp)
1207 return PAGE_SIZE;
1208 }
1209
1210 #undef FILTER
1211
1212 return 0;
1213
1214 whole:
1215 return vma->vm_end - vma->vm_start;
1216 }
1217
1218 /* An ELF note in memory */
1219 struct memelfnote
1220 {
1221 const char *name;
1222 int type;
1223 unsigned int datasz;
1224 void *data;
1225 };
1226
1227 static int notesize(struct memelfnote *en)
1228 {
1229 int sz;
1230
1231 sz = sizeof(struct elf_note);
1232 sz += roundup(strlen(en->name) + 1, 4);
1233 sz += roundup(en->datasz, 4);
1234
1235 return sz;
1236 }
1237
1238 #define DUMP_WRITE(addr, nr, foffset) \
1239 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1240
1241 static int alignfile(struct file *file, loff_t *foffset)
1242 {
1243 static const char buf[4] = { 0, };
1244 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1245 return 1;
1246 }
1247
1248 static int writenote(struct memelfnote *men, struct file *file,
1249 loff_t *foffset)
1250 {
1251 struct elf_note en;
1252 en.n_namesz = strlen(men->name) + 1;
1253 en.n_descsz = men->datasz;
1254 en.n_type = men->type;
1255
1256 DUMP_WRITE(&en, sizeof(en), foffset);
1257 DUMP_WRITE(men->name, en.n_namesz, foffset);
1258 if (!alignfile(file, foffset))
1259 return 0;
1260 DUMP_WRITE(men->data, men->datasz, foffset);
1261 if (!alignfile(file, foffset))
1262 return 0;
1263
1264 return 1;
1265 }
1266 #undef DUMP_WRITE
1267
1268 #define DUMP_WRITE(addr, nr) \
1269 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1270 goto end_coredump;
1271 #define DUMP_SEEK(off) \
1272 if (!dump_seek(file, (off))) \
1273 goto end_coredump;
1274
1275 static void fill_elf_header(struct elfhdr *elf, int segs,
1276 u16 machine, u32 flags, u8 osabi)
1277 {
1278 memset(elf, 0, sizeof(*elf));
1279
1280 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1281 elf->e_ident[EI_CLASS] = ELF_CLASS;
1282 elf->e_ident[EI_DATA] = ELF_DATA;
1283 elf->e_ident[EI_VERSION] = EV_CURRENT;
1284 elf->e_ident[EI_OSABI] = ELF_OSABI;
1285
1286 elf->e_type = ET_CORE;
1287 elf->e_machine = machine;
1288 elf->e_version = EV_CURRENT;
1289 elf->e_phoff = sizeof(struct elfhdr);
1290 elf->e_flags = flags;
1291 elf->e_ehsize = sizeof(struct elfhdr);
1292 elf->e_phentsize = sizeof(struct elf_phdr);
1293 elf->e_phnum = segs;
1294
1295 return;
1296 }
1297
1298 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1299 {
1300 phdr->p_type = PT_NOTE;
1301 phdr->p_offset = offset;
1302 phdr->p_vaddr = 0;
1303 phdr->p_paddr = 0;
1304 phdr->p_filesz = sz;
1305 phdr->p_memsz = 0;
1306 phdr->p_flags = 0;
1307 phdr->p_align = 0;
1308 return;
1309 }
1310
1311 static void fill_note(struct memelfnote *note, const char *name, int type,
1312 unsigned int sz, void *data)
1313 {
1314 note->name = name;
1315 note->type = type;
1316 note->datasz = sz;
1317 note->data = data;
1318 return;
1319 }
1320
1321 /*
1322 * fill up all the fields in prstatus from the given task struct, except
1323 * registers which need to be filled up separately.
1324 */
1325 static void fill_prstatus(struct elf_prstatus *prstatus,
1326 struct task_struct *p, long signr)
1327 {
1328 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1329 prstatus->pr_sigpend = p->pending.signal.sig[0];
1330 prstatus->pr_sighold = p->blocked.sig[0];
1331 prstatus->pr_pid = task_pid_vnr(p);
1332 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1333 prstatus->pr_pgrp = task_pgrp_vnr(p);
1334 prstatus->pr_sid = task_session_vnr(p);
1335 if (thread_group_leader(p)) {
1336 struct task_cputime cputime;
1337
1338 /*
1339 * This is the record for the group leader. It shows the
1340 * group-wide total, not its individual thread total.
1341 */
1342 thread_group_cputime(p, &cputime);
1343 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1344 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1345 } else {
1346 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1347 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1348 }
1349 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1350 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1351 }
1352
1353 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1354 struct mm_struct *mm)
1355 {
1356 unsigned int i, len;
1357
1358 /* first copy the parameters from user space */
1359 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1360
1361 len = mm->arg_end - mm->arg_start;
1362 if (len >= ELF_PRARGSZ)
1363 len = ELF_PRARGSZ-1;
1364 if (copy_from_user(&psinfo->pr_psargs,
1365 (const char __user *)mm->arg_start, len))
1366 return -EFAULT;
1367 for(i = 0; i < len; i++)
1368 if (psinfo->pr_psargs[i] == 0)
1369 psinfo->pr_psargs[i] = ' ';
1370 psinfo->pr_psargs[len] = 0;
1371
1372 psinfo->pr_pid = task_pid_vnr(p);
1373 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1374 psinfo->pr_pgrp = task_pgrp_vnr(p);
1375 psinfo->pr_sid = task_session_vnr(p);
1376
1377 i = p->state ? ffz(~p->state) + 1 : 0;
1378 psinfo->pr_state = i;
1379 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1380 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1381 psinfo->pr_nice = task_nice(p);
1382 psinfo->pr_flag = p->flags;
1383 SET_UID(psinfo->pr_uid, p->uid);
1384 SET_GID(psinfo->pr_gid, p->gid);
1385 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1386
1387 return 0;
1388 }
1389
1390 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1391 {
1392 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1393 int i = 0;
1394 do
1395 i += 2;
1396 while (auxv[i - 2] != AT_NULL);
1397 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1398 }
1399
1400 #ifdef CORE_DUMP_USE_REGSET
1401 #include <linux/regset.h>
1402
1403 struct elf_thread_core_info {
1404 struct elf_thread_core_info *next;
1405 struct task_struct *task;
1406 struct elf_prstatus prstatus;
1407 struct memelfnote notes[0];
1408 };
1409
1410 struct elf_note_info {
1411 struct elf_thread_core_info *thread;
1412 struct memelfnote psinfo;
1413 struct memelfnote auxv;
1414 size_t size;
1415 int thread_notes;
1416 };
1417
1418 /*
1419 * When a regset has a writeback hook, we call it on each thread before
1420 * dumping user memory. On register window machines, this makes sure the
1421 * user memory backing the register data is up to date before we read it.
1422 */
1423 static void do_thread_regset_writeback(struct task_struct *task,
1424 const struct user_regset *regset)
1425 {
1426 if (regset->writeback)
1427 regset->writeback(task, regset, 1);
1428 }
1429
1430 static int fill_thread_core_info(struct elf_thread_core_info *t,
1431 const struct user_regset_view *view,
1432 long signr, size_t *total)
1433 {
1434 unsigned int i;
1435
1436 /*
1437 * NT_PRSTATUS is the one special case, because the regset data
1438 * goes into the pr_reg field inside the note contents, rather
1439 * than being the whole note contents. We fill the reset in here.
1440 * We assume that regset 0 is NT_PRSTATUS.
1441 */
1442 fill_prstatus(&t->prstatus, t->task, signr);
1443 (void) view->regsets[0].get(t->task, &view->regsets[0],
1444 0, sizeof(t->prstatus.pr_reg),
1445 &t->prstatus.pr_reg, NULL);
1446
1447 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1448 sizeof(t->prstatus), &t->prstatus);
1449 *total += notesize(&t->notes[0]);
1450
1451 do_thread_regset_writeback(t->task, &view->regsets[0]);
1452
1453 /*
1454 * Each other regset might generate a note too. For each regset
1455 * that has no core_note_type or is inactive, we leave t->notes[i]
1456 * all zero and we'll know to skip writing it later.
1457 */
1458 for (i = 1; i < view->n; ++i) {
1459 const struct user_regset *regset = &view->regsets[i];
1460 do_thread_regset_writeback(t->task, regset);
1461 if (regset->core_note_type &&
1462 (!regset->active || regset->active(t->task, regset))) {
1463 int ret;
1464 size_t size = regset->n * regset->size;
1465 void *data = kmalloc(size, GFP_KERNEL);
1466 if (unlikely(!data))
1467 return 0;
1468 ret = regset->get(t->task, regset,
1469 0, size, data, NULL);
1470 if (unlikely(ret))
1471 kfree(data);
1472 else {
1473 if (regset->core_note_type != NT_PRFPREG)
1474 fill_note(&t->notes[i], "LINUX",
1475 regset->core_note_type,
1476 size, data);
1477 else {
1478 t->prstatus.pr_fpvalid = 1;
1479 fill_note(&t->notes[i], "CORE",
1480 NT_PRFPREG, size, data);
1481 }
1482 *total += notesize(&t->notes[i]);
1483 }
1484 }
1485 }
1486
1487 return 1;
1488 }
1489
1490 static int fill_note_info(struct elfhdr *elf, int phdrs,
1491 struct elf_note_info *info,
1492 long signr, struct pt_regs *regs)
1493 {
1494 struct task_struct *dump_task = current;
1495 const struct user_regset_view *view = task_user_regset_view(dump_task);
1496 struct elf_thread_core_info *t;
1497 struct elf_prpsinfo *psinfo;
1498 struct core_thread *ct;
1499 unsigned int i;
1500
1501 info->size = 0;
1502 info->thread = NULL;
1503
1504 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1505 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1506
1507 if (psinfo == NULL)
1508 return 0;
1509
1510 /*
1511 * Figure out how many notes we're going to need for each thread.
1512 */
1513 info->thread_notes = 0;
1514 for (i = 0; i < view->n; ++i)
1515 if (view->regsets[i].core_note_type != 0)
1516 ++info->thread_notes;
1517
1518 /*
1519 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1520 * since it is our one special case.
1521 */
1522 if (unlikely(info->thread_notes == 0) ||
1523 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1524 WARN_ON(1);
1525 return 0;
1526 }
1527
1528 /*
1529 * Initialize the ELF file header.
1530 */
1531 fill_elf_header(elf, phdrs,
1532 view->e_machine, view->e_flags, view->ei_osabi);
1533
1534 /*
1535 * Allocate a structure for each thread.
1536 */
1537 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1538 t = kzalloc(offsetof(struct elf_thread_core_info,
1539 notes[info->thread_notes]),
1540 GFP_KERNEL);
1541 if (unlikely(!t))
1542 return 0;
1543
1544 t->task = ct->task;
1545 if (ct->task == dump_task || !info->thread) {
1546 t->next = info->thread;
1547 info->thread = t;
1548 } else {
1549 /*
1550 * Make sure to keep the original task at
1551 * the head of the list.
1552 */
1553 t->next = info->thread->next;
1554 info->thread->next = t;
1555 }
1556 }
1557
1558 /*
1559 * Now fill in each thread's information.
1560 */
1561 for (t = info->thread; t != NULL; t = t->next)
1562 if (!fill_thread_core_info(t, view, signr, &info->size))
1563 return 0;
1564
1565 /*
1566 * Fill in the two process-wide notes.
1567 */
1568 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1569 info->size += notesize(&info->psinfo);
1570
1571 fill_auxv_note(&info->auxv, current->mm);
1572 info->size += notesize(&info->auxv);
1573
1574 return 1;
1575 }
1576
1577 static size_t get_note_info_size(struct elf_note_info *info)
1578 {
1579 return info->size;
1580 }
1581
1582 /*
1583 * Write all the notes for each thread. When writing the first thread, the
1584 * process-wide notes are interleaved after the first thread-specific note.
1585 */
1586 static int write_note_info(struct elf_note_info *info,
1587 struct file *file, loff_t *foffset)
1588 {
1589 bool first = 1;
1590 struct elf_thread_core_info *t = info->thread;
1591
1592 do {
1593 int i;
1594
1595 if (!writenote(&t->notes[0], file, foffset))
1596 return 0;
1597
1598 if (first && !writenote(&info->psinfo, file, foffset))
1599 return 0;
1600 if (first && !writenote(&info->auxv, file, foffset))
1601 return 0;
1602
1603 for (i = 1; i < info->thread_notes; ++i)
1604 if (t->notes[i].data &&
1605 !writenote(&t->notes[i], file, foffset))
1606 return 0;
1607
1608 first = 0;
1609 t = t->next;
1610 } while (t);
1611
1612 return 1;
1613 }
1614
1615 static void free_note_info(struct elf_note_info *info)
1616 {
1617 struct elf_thread_core_info *threads = info->thread;
1618 while (threads) {
1619 unsigned int i;
1620 struct elf_thread_core_info *t = threads;
1621 threads = t->next;
1622 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1623 for (i = 1; i < info->thread_notes; ++i)
1624 kfree(t->notes[i].data);
1625 kfree(t);
1626 }
1627 kfree(info->psinfo.data);
1628 }
1629
1630 #else
1631
1632 /* Here is the structure in which status of each thread is captured. */
1633 struct elf_thread_status
1634 {
1635 struct list_head list;
1636 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1637 elf_fpregset_t fpu; /* NT_PRFPREG */
1638 struct task_struct *thread;
1639 #ifdef ELF_CORE_COPY_XFPREGS
1640 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1641 #endif
1642 struct memelfnote notes[3];
1643 int num_notes;
1644 };
1645
1646 /*
1647 * In order to add the specific thread information for the elf file format,
1648 * we need to keep a linked list of every threads pr_status and then create
1649 * a single section for them in the final core file.
1650 */
1651 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1652 {
1653 int sz = 0;
1654 struct task_struct *p = t->thread;
1655 t->num_notes = 0;
1656
1657 fill_prstatus(&t->prstatus, p, signr);
1658 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1659
1660 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1661 &(t->prstatus));
1662 t->num_notes++;
1663 sz += notesize(&t->notes[0]);
1664
1665 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1666 &t->fpu))) {
1667 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1668 &(t->fpu));
1669 t->num_notes++;
1670 sz += notesize(&t->notes[1]);
1671 }
1672
1673 #ifdef ELF_CORE_COPY_XFPREGS
1674 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1675 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1676 sizeof(t->xfpu), &t->xfpu);
1677 t->num_notes++;
1678 sz += notesize(&t->notes[2]);
1679 }
1680 #endif
1681 return sz;
1682 }
1683
1684 struct elf_note_info {
1685 struct memelfnote *notes;
1686 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1687 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1688 struct list_head thread_list;
1689 elf_fpregset_t *fpu;
1690 #ifdef ELF_CORE_COPY_XFPREGS
1691 elf_fpxregset_t *xfpu;
1692 #endif
1693 int thread_status_size;
1694 int numnote;
1695 };
1696
1697 static int fill_note_info(struct elfhdr *elf, int phdrs,
1698 struct elf_note_info *info,
1699 long signr, struct pt_regs *regs)
1700 {
1701 #define NUM_NOTES 6
1702 struct list_head *t;
1703
1704 info->notes = NULL;
1705 info->prstatus = NULL;
1706 info->psinfo = NULL;
1707 info->fpu = NULL;
1708 #ifdef ELF_CORE_COPY_XFPREGS
1709 info->xfpu = NULL;
1710 #endif
1711 INIT_LIST_HEAD(&info->thread_list);
1712
1713 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1714 GFP_KERNEL);
1715 if (!info->notes)
1716 return 0;
1717 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1718 if (!info->psinfo)
1719 return 0;
1720 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1721 if (!info->prstatus)
1722 return 0;
1723 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1724 if (!info->fpu)
1725 return 0;
1726 #ifdef ELF_CORE_COPY_XFPREGS
1727 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1728 if (!info->xfpu)
1729 return 0;
1730 #endif
1731
1732 info->thread_status_size = 0;
1733 if (signr) {
1734 struct core_thread *ct;
1735 struct elf_thread_status *ets;
1736
1737 for (ct = current->mm->core_state->dumper.next;
1738 ct; ct = ct->next) {
1739 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1740 if (!ets)
1741 return 0;
1742
1743 ets->thread = ct->task;
1744 list_add(&ets->list, &info->thread_list);
1745 }
1746
1747 list_for_each(t, &info->thread_list) {
1748 int sz;
1749
1750 ets = list_entry(t, struct elf_thread_status, list);
1751 sz = elf_dump_thread_status(signr, ets);
1752 info->thread_status_size += sz;
1753 }
1754 }
1755 /* now collect the dump for the current */
1756 memset(info->prstatus, 0, sizeof(*info->prstatus));
1757 fill_prstatus(info->prstatus, current, signr);
1758 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1759
1760 /* Set up header */
1761 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1762
1763 /*
1764 * Set up the notes in similar form to SVR4 core dumps made
1765 * with info from their /proc.
1766 */
1767
1768 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1769 sizeof(*info->prstatus), info->prstatus);
1770 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1771 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1772 sizeof(*info->psinfo), info->psinfo);
1773
1774 info->numnote = 2;
1775
1776 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1777
1778 /* Try to dump the FPU. */
1779 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1780 info->fpu);
1781 if (info->prstatus->pr_fpvalid)
1782 fill_note(info->notes + info->numnote++,
1783 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1784 #ifdef ELF_CORE_COPY_XFPREGS
1785 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1786 fill_note(info->notes + info->numnote++,
1787 "LINUX", ELF_CORE_XFPREG_TYPE,
1788 sizeof(*info->xfpu), info->xfpu);
1789 #endif
1790
1791 return 1;
1792
1793 #undef NUM_NOTES
1794 }
1795
1796 static size_t get_note_info_size(struct elf_note_info *info)
1797 {
1798 int sz = 0;
1799 int i;
1800
1801 for (i = 0; i < info->numnote; i++)
1802 sz += notesize(info->notes + i);
1803
1804 sz += info->thread_status_size;
1805
1806 return sz;
1807 }
1808
1809 static int write_note_info(struct elf_note_info *info,
1810 struct file *file, loff_t *foffset)
1811 {
1812 int i;
1813 struct list_head *t;
1814
1815 for (i = 0; i < info->numnote; i++)
1816 if (!writenote(info->notes + i, file, foffset))
1817 return 0;
1818
1819 /* write out the thread status notes section */
1820 list_for_each(t, &info->thread_list) {
1821 struct elf_thread_status *tmp =
1822 list_entry(t, struct elf_thread_status, list);
1823
1824 for (i = 0; i < tmp->num_notes; i++)
1825 if (!writenote(&tmp->notes[i], file, foffset))
1826 return 0;
1827 }
1828
1829 return 1;
1830 }
1831
1832 static void free_note_info(struct elf_note_info *info)
1833 {
1834 while (!list_empty(&info->thread_list)) {
1835 struct list_head *tmp = info->thread_list.next;
1836 list_del(tmp);
1837 kfree(list_entry(tmp, struct elf_thread_status, list));
1838 }
1839
1840 kfree(info->prstatus);
1841 kfree(info->psinfo);
1842 kfree(info->notes);
1843 kfree(info->fpu);
1844 #ifdef ELF_CORE_COPY_XFPREGS
1845 kfree(info->xfpu);
1846 #endif
1847 }
1848
1849 #endif
1850
1851 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1852 struct vm_area_struct *gate_vma)
1853 {
1854 struct vm_area_struct *ret = tsk->mm->mmap;
1855
1856 if (ret)
1857 return ret;
1858 return gate_vma;
1859 }
1860 /*
1861 * Helper function for iterating across a vma list. It ensures that the caller
1862 * will visit `gate_vma' prior to terminating the search.
1863 */
1864 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1865 struct vm_area_struct *gate_vma)
1866 {
1867 struct vm_area_struct *ret;
1868
1869 ret = this_vma->vm_next;
1870 if (ret)
1871 return ret;
1872 if (this_vma == gate_vma)
1873 return NULL;
1874 return gate_vma;
1875 }
1876
1877 /*
1878 * Actual dumper
1879 *
1880 * This is a two-pass process; first we find the offsets of the bits,
1881 * and then they are actually written out. If we run out of core limit
1882 * we just truncate.
1883 */
1884 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1885 {
1886 int has_dumped = 0;
1887 mm_segment_t fs;
1888 int segs;
1889 size_t size = 0;
1890 struct vm_area_struct *vma, *gate_vma;
1891 struct elfhdr *elf = NULL;
1892 loff_t offset = 0, dataoff, foffset;
1893 unsigned long mm_flags;
1894 struct elf_note_info info;
1895
1896 /*
1897 * We no longer stop all VM operations.
1898 *
1899 * This is because those proceses that could possibly change map_count
1900 * or the mmap / vma pages are now blocked in do_exit on current
1901 * finishing this core dump.
1902 *
1903 * Only ptrace can touch these memory addresses, but it doesn't change
1904 * the map_count or the pages allocated. So no possibility of crashing
1905 * exists while dumping the mm->vm_next areas to the core file.
1906 */
1907
1908 /* alloc memory for large data structures: too large to be on stack */
1909 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1910 if (!elf)
1911 goto out;
1912
1913 segs = current->mm->map_count;
1914 #ifdef ELF_CORE_EXTRA_PHDRS
1915 segs += ELF_CORE_EXTRA_PHDRS;
1916 #endif
1917
1918 gate_vma = get_gate_vma(current);
1919 if (gate_vma != NULL)
1920 segs++;
1921
1922 /*
1923 * Collect all the non-memory information about the process for the
1924 * notes. This also sets up the file header.
1925 */
1926 if (!fill_note_info(elf, segs + 1, /* including notes section */
1927 &info, signr, regs))
1928 goto cleanup;
1929
1930 has_dumped = 1;
1931 current->flags |= PF_DUMPCORE;
1932
1933 fs = get_fs();
1934 set_fs(KERNEL_DS);
1935
1936 DUMP_WRITE(elf, sizeof(*elf));
1937 offset += sizeof(*elf); /* Elf header */
1938 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1939 foffset = offset;
1940
1941 /* Write notes phdr entry */
1942 {
1943 struct elf_phdr phdr;
1944 size_t sz = get_note_info_size(&info);
1945
1946 sz += elf_coredump_extra_notes_size();
1947
1948 fill_elf_note_phdr(&phdr, sz, offset);
1949 offset += sz;
1950 DUMP_WRITE(&phdr, sizeof(phdr));
1951 }
1952
1953 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1954
1955 /*
1956 * We must use the same mm->flags while dumping core to avoid
1957 * inconsistency between the program headers and bodies, otherwise an
1958 * unusable core file can be generated.
1959 */
1960 mm_flags = current->mm->flags;
1961
1962 /* Write program headers for segments dump */
1963 for (vma = first_vma(current, gate_vma); vma != NULL;
1964 vma = next_vma(vma, gate_vma)) {
1965 struct elf_phdr phdr;
1966
1967 phdr.p_type = PT_LOAD;
1968 phdr.p_offset = offset;
1969 phdr.p_vaddr = vma->vm_start;
1970 phdr.p_paddr = 0;
1971 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1972 phdr.p_memsz = vma->vm_end - vma->vm_start;
1973 offset += phdr.p_filesz;
1974 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1975 if (vma->vm_flags & VM_WRITE)
1976 phdr.p_flags |= PF_W;
1977 if (vma->vm_flags & VM_EXEC)
1978 phdr.p_flags |= PF_X;
1979 phdr.p_align = ELF_EXEC_PAGESIZE;
1980
1981 DUMP_WRITE(&phdr, sizeof(phdr));
1982 }
1983
1984 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1985 ELF_CORE_WRITE_EXTRA_PHDRS;
1986 #endif
1987
1988 /* write out the notes section */
1989 if (!write_note_info(&info, file, &foffset))
1990 goto end_coredump;
1991
1992 if (elf_coredump_extra_notes_write(file, &foffset))
1993 goto end_coredump;
1994
1995 /* Align to page */
1996 DUMP_SEEK(dataoff - foffset);
1997
1998 for (vma = first_vma(current, gate_vma); vma != NULL;
1999 vma = next_vma(vma, gate_vma)) {
2000 unsigned long addr;
2001 unsigned long end;
2002
2003 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2004
2005 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2006 struct page *page;
2007 struct vm_area_struct *tmp_vma;
2008
2009 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2010 &page, &tmp_vma) <= 0) {
2011 DUMP_SEEK(PAGE_SIZE);
2012 } else {
2013 if (page == ZERO_PAGE(0)) {
2014 if (!dump_seek(file, PAGE_SIZE)) {
2015 page_cache_release(page);
2016 goto end_coredump;
2017 }
2018 } else {
2019 void *kaddr;
2020 flush_cache_page(tmp_vma, addr,
2021 page_to_pfn(page));
2022 kaddr = kmap(page);
2023 if ((size += PAGE_SIZE) > limit ||
2024 !dump_write(file, kaddr,
2025 PAGE_SIZE)) {
2026 kunmap(page);
2027 page_cache_release(page);
2028 goto end_coredump;
2029 }
2030 kunmap(page);
2031 }
2032 page_cache_release(page);
2033 }
2034 }
2035 }
2036
2037 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2038 ELF_CORE_WRITE_EXTRA_DATA;
2039 #endif
2040
2041 end_coredump:
2042 set_fs(fs);
2043
2044 cleanup:
2045 free_note_info(&info);
2046 kfree(elf);
2047 out:
2048 return has_dumped;
2049 }
2050
2051 #endif /* USE_ELF_CORE_DUMP */
2052
2053 static int __init init_elf_binfmt(void)
2054 {
2055 return register_binfmt(&elf_format);
2056 }
2057
2058 static void __exit exit_elf_binfmt(void)
2059 {
2060 /* Remove the COFF and ELF loaders. */
2061 unregister_binfmt(&elf_format);
2062 }
2063
2064 core_initcall(init_elf_binfmt);
2065 module_exit(exit_elf_binfmt);
2066 MODULE_LICENSE("GPL");
This page took 0.075631 seconds and 5 git commands to generate.