Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48 int, int, unsigned long);
49
50 /*
51 * If we don't support core dumping, then supply a NULL so we
52 * don't even try.
53 */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75 .module = THIS_MODULE,
76 .load_binary = load_elf_binary,
77 .load_shlib = load_elf_library,
78 .core_dump = elf_core_dump,
79 .min_coredump = ELF_EXEC_PAGESIZE,
80 .hasvdso = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87 start = ELF_PAGEALIGN(start);
88 end = ELF_PAGEALIGN(end);
89 if (end > start) {
90 unsigned long addr;
91 down_write(&current->mm->mmap_sem);
92 addr = do_brk(start, end - start);
93 up_write(&current->mm->mmap_sem);
94 if (BAD_ADDR(addr))
95 return addr;
96 }
97 current->mm->start_brk = current->mm->brk = end;
98 return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
104 be in memory
105 */
106 static int padzero(unsigned long elf_bss)
107 {
108 unsigned long nbyte;
109
110 nbyte = ELF_PAGEOFFSET(elf_bss);
111 if (nbyte) {
112 nbyte = ELF_MIN_ALIGN - nbyte;
113 if (clear_user((void __user *) elf_bss, nbyte))
114 return -EFAULT;
115 }
116 return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
139 */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147 unsigned long p = bprm->p;
148 int argc = bprm->argc;
149 int envc = bprm->envc;
150 elf_addr_t __user *argv;
151 elf_addr_t __user *envp;
152 elf_addr_t __user *sp;
153 elf_addr_t __user *u_platform;
154 elf_addr_t __user *u_base_platform;
155 const char *k_platform = ELF_PLATFORM;
156 const char *k_base_platform = ELF_BASE_PLATFORM;
157 int items;
158 elf_addr_t *elf_info;
159 int ei_index = 0;
160 struct task_struct *tsk = current;
161 struct vm_area_struct *vma;
162
163 /*
164 * In some cases (e.g. Hyper-Threading), we want to avoid L1
165 * evictions by the processes running on the same package. One
166 * thing we can do is to shuffle the initial stack for them.
167 */
168
169 p = arch_align_stack(p);
170
171 /*
172 * If this architecture has a platform capability string, copy it
173 * to userspace. In some cases (Sparc), this info is impossible
174 * for userspace to get any other way, in others (i386) it is
175 * merely difficult.
176 */
177 u_platform = NULL;
178 if (k_platform) {
179 size_t len = strlen(k_platform) + 1;
180
181 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182 if (__copy_to_user(u_platform, k_platform, len))
183 return -EFAULT;
184 }
185
186 /*
187 * If this architecture has a "base" platform capability
188 * string, copy it to userspace.
189 */
190 u_base_platform = NULL;
191 if (k_base_platform) {
192 size_t len = strlen(k_base_platform) + 1;
193
194 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195 if (__copy_to_user(u_base_platform, k_base_platform, len))
196 return -EFAULT;
197 }
198
199 /* Create the ELF interpreter info */
200 elf_info = (elf_addr_t *)current->mm->saved_auxv;
201 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203 do { \
204 elf_info[ei_index++] = id; \
205 elf_info[ei_index++] = val; \
206 } while (0)
207
208 #ifdef ARCH_DLINFO
209 /*
210 * ARCH_DLINFO must come first so PPC can do its special alignment of
211 * AUXV.
212 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213 * ARCH_DLINFO changes
214 */
215 ARCH_DLINFO;
216 #endif
217 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223 NEW_AUX_ENT(AT_BASE, interp_load_addr);
224 NEW_AUX_ENT(AT_FLAGS, 0);
225 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226 NEW_AUX_ENT(AT_UID, tsk->uid);
227 NEW_AUX_ENT(AT_EUID, tsk->euid);
228 NEW_AUX_ENT(AT_GID, tsk->gid);
229 NEW_AUX_ENT(AT_EGID, tsk->egid);
230 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232 if (k_platform) {
233 NEW_AUX_ENT(AT_PLATFORM,
234 (elf_addr_t)(unsigned long)u_platform);
235 }
236 if (k_base_platform) {
237 NEW_AUX_ENT(AT_BASE_PLATFORM,
238 (elf_addr_t)(unsigned long)u_base_platform);
239 }
240 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
242 }
243 #undef NEW_AUX_ENT
244 /* AT_NULL is zero; clear the rest too */
245 memset(&elf_info[ei_index], 0,
246 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
247
248 /* And advance past the AT_NULL entry. */
249 ei_index += 2;
250
251 sp = STACK_ADD(p, ei_index);
252
253 items = (argc + 1) + (envc + 1) + 1;
254 bprm->p = STACK_ROUND(sp, items);
255
256 /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261 sp = (elf_addr_t __user *)bprm->p;
262 #endif
263
264
265 /*
266 * Grow the stack manually; some architectures have a limit on how
267 * far ahead a user-space access may be in order to grow the stack.
268 */
269 vma = find_extend_vma(current->mm, bprm->p);
270 if (!vma)
271 return -EFAULT;
272
273 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274 if (__put_user(argc, sp++))
275 return -EFAULT;
276 argv = sp;
277 envp = argv + argc + 1;
278
279 /* Populate argv and envp */
280 p = current->mm->arg_end = current->mm->arg_start;
281 while (argc-- > 0) {
282 size_t len;
283 if (__put_user((elf_addr_t)p, argv++))
284 return -EFAULT;
285 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286 if (!len || len > MAX_ARG_STRLEN)
287 return -EINVAL;
288 p += len;
289 }
290 if (__put_user(0, argv))
291 return -EFAULT;
292 current->mm->arg_end = current->mm->env_start = p;
293 while (envc-- > 0) {
294 size_t len;
295 if (__put_user((elf_addr_t)p, envp++))
296 return -EFAULT;
297 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 if (!len || len > MAX_ARG_STRLEN)
299 return -EINVAL;
300 p += len;
301 }
302 if (__put_user(0, envp))
303 return -EFAULT;
304 current->mm->env_end = p;
305
306 /* Put the elf_info on the stack in the right place. */
307 sp = (elf_addr_t __user *)envp + 1;
308 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309 return -EFAULT;
310 return 0;
311 }
312
313 #ifndef elf_map
314
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316 struct elf_phdr *eppnt, int prot, int type,
317 unsigned long total_size)
318 {
319 unsigned long map_addr;
320 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322 addr = ELF_PAGESTART(addr);
323 size = ELF_PAGEALIGN(size);
324
325 /* mmap() will return -EINVAL if given a zero size, but a
326 * segment with zero filesize is perfectly valid */
327 if (!size)
328 return addr;
329
330 down_write(&current->mm->mmap_sem);
331 /*
332 * total_size is the size of the ELF (interpreter) image.
333 * The _first_ mmap needs to know the full size, otherwise
334 * randomization might put this image into an overlapping
335 * position with the ELF binary image. (since size < total_size)
336 * So we first map the 'big' image - and unmap the remainder at
337 * the end. (which unmap is needed for ELF images with holes.)
338 */
339 if (total_size) {
340 total_size = ELF_PAGEALIGN(total_size);
341 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342 if (!BAD_ADDR(map_addr))
343 do_munmap(current->mm, map_addr+size, total_size-size);
344 } else
345 map_addr = do_mmap(filep, addr, size, prot, type, off);
346
347 up_write(&current->mm->mmap_sem);
348 return(map_addr);
349 }
350
351 #endif /* !elf_map */
352
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
354 {
355 int i, first_idx = -1, last_idx = -1;
356
357 for (i = 0; i < nr; i++) {
358 if (cmds[i].p_type == PT_LOAD) {
359 last_idx = i;
360 if (first_idx == -1)
361 first_idx = i;
362 }
363 }
364 if (first_idx == -1)
365 return 0;
366
367 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368 ELF_PAGESTART(cmds[first_idx].p_vaddr);
369 }
370
371
372 /* This is much more generalized than the library routine read function,
373 so we keep this separate. Technically the library read function
374 is only provided so that we can read a.out libraries that have
375 an ELF header */
376
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378 struct file *interpreter, unsigned long *interp_map_addr,
379 unsigned long no_base)
380 {
381 struct elf_phdr *elf_phdata;
382 struct elf_phdr *eppnt;
383 unsigned long load_addr = 0;
384 int load_addr_set = 0;
385 unsigned long last_bss = 0, elf_bss = 0;
386 unsigned long error = ~0UL;
387 unsigned long total_size;
388 int retval, i, size;
389
390 /* First of all, some simple consistency checks */
391 if (interp_elf_ex->e_type != ET_EXEC &&
392 interp_elf_ex->e_type != ET_DYN)
393 goto out;
394 if (!elf_check_arch(interp_elf_ex))
395 goto out;
396 if (!interpreter->f_op || !interpreter->f_op->mmap)
397 goto out;
398
399 /*
400 * If the size of this structure has changed, then punt, since
401 * we will be doing the wrong thing.
402 */
403 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404 goto out;
405 if (interp_elf_ex->e_phnum < 1 ||
406 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407 goto out;
408
409 /* Now read in all of the header information */
410 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411 if (size > ELF_MIN_ALIGN)
412 goto out;
413 elf_phdata = kmalloc(size, GFP_KERNEL);
414 if (!elf_phdata)
415 goto out;
416
417 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418 (char *)elf_phdata,size);
419 error = -EIO;
420 if (retval != size) {
421 if (retval < 0)
422 error = retval;
423 goto out_close;
424 }
425
426 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427 if (!total_size) {
428 error = -EINVAL;
429 goto out_close;
430 }
431
432 eppnt = elf_phdata;
433 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434 if (eppnt->p_type == PT_LOAD) {
435 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436 int elf_prot = 0;
437 unsigned long vaddr = 0;
438 unsigned long k, map_addr;
439
440 if (eppnt->p_flags & PF_R)
441 elf_prot = PROT_READ;
442 if (eppnt->p_flags & PF_W)
443 elf_prot |= PROT_WRITE;
444 if (eppnt->p_flags & PF_X)
445 elf_prot |= PROT_EXEC;
446 vaddr = eppnt->p_vaddr;
447 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448 elf_type |= MAP_FIXED;
449 else if (no_base && interp_elf_ex->e_type == ET_DYN)
450 load_addr = -vaddr;
451
452 map_addr = elf_map(interpreter, load_addr + vaddr,
453 eppnt, elf_prot, elf_type, total_size);
454 total_size = 0;
455 if (!*interp_map_addr)
456 *interp_map_addr = map_addr;
457 error = map_addr;
458 if (BAD_ADDR(map_addr))
459 goto out_close;
460
461 if (!load_addr_set &&
462 interp_elf_ex->e_type == ET_DYN) {
463 load_addr = map_addr - ELF_PAGESTART(vaddr);
464 load_addr_set = 1;
465 }
466
467 /*
468 * Check to see if the section's size will overflow the
469 * allowed task size. Note that p_filesz must always be
470 * <= p_memsize so it's only necessary to check p_memsz.
471 */
472 k = load_addr + eppnt->p_vaddr;
473 if (BAD_ADDR(k) ||
474 eppnt->p_filesz > eppnt->p_memsz ||
475 eppnt->p_memsz > TASK_SIZE ||
476 TASK_SIZE - eppnt->p_memsz < k) {
477 error = -ENOMEM;
478 goto out_close;
479 }
480
481 /*
482 * Find the end of the file mapping for this phdr, and
483 * keep track of the largest address we see for this.
484 */
485 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486 if (k > elf_bss)
487 elf_bss = k;
488
489 /*
490 * Do the same thing for the memory mapping - between
491 * elf_bss and last_bss is the bss section.
492 */
493 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494 if (k > last_bss)
495 last_bss = k;
496 }
497 }
498
499 /*
500 * Now fill out the bss section. First pad the last page up
501 * to the page boundary, and then perform a mmap to make sure
502 * that there are zero-mapped pages up to and including the
503 * last bss page.
504 */
505 if (padzero(elf_bss)) {
506 error = -EFAULT;
507 goto out_close;
508 }
509
510 /* What we have mapped so far */
511 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
512
513 /* Map the last of the bss segment */
514 if (last_bss > elf_bss) {
515 down_write(&current->mm->mmap_sem);
516 error = do_brk(elf_bss, last_bss - elf_bss);
517 up_write(&current->mm->mmap_sem);
518 if (BAD_ADDR(error))
519 goto out_close;
520 }
521
522 error = load_addr;
523
524 out_close:
525 kfree(elf_phdata);
526 out:
527 return error;
528 }
529
530 /*
531 * These are the functions used to load ELF style executables and shared
532 * libraries. There is no binary dependent code anywhere else.
533 */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544 unsigned int random_variable = 0;
545
546 if ((current->flags & PF_RANDOMIZE) &&
547 !(current->personality & ADDR_NO_RANDOMIZE)) {
548 random_variable = get_random_int() & STACK_RND_MASK;
549 random_variable <<= PAGE_SHIFT;
550 }
551 #ifdef CONFIG_STACK_GROWSUP
552 return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554 return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560 struct file *interpreter = NULL; /* to shut gcc up */
561 unsigned long load_addr = 0, load_bias = 0;
562 int load_addr_set = 0;
563 char * elf_interpreter = NULL;
564 unsigned long error;
565 struct elf_phdr *elf_ppnt, *elf_phdata;
566 unsigned long elf_bss, elf_brk;
567 int elf_exec_fileno;
568 int retval, i;
569 unsigned int size;
570 unsigned long elf_entry;
571 unsigned long interp_load_addr = 0;
572 unsigned long start_code, end_code, start_data, end_data;
573 unsigned long reloc_func_desc = 0;
574 int executable_stack = EXSTACK_DEFAULT;
575 unsigned long def_flags = 0;
576 struct {
577 struct elfhdr elf_ex;
578 struct elfhdr interp_elf_ex;
579 } *loc;
580
581 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 if (!loc) {
583 retval = -ENOMEM;
584 goto out_ret;
585 }
586
587 /* Get the exec-header */
588 loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590 retval = -ENOEXEC;
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 goto out;
594
595 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 goto out;
597 if (!elf_check_arch(&loc->elf_ex))
598 goto out;
599 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600 goto out;
601
602 /* Now read in all of the header information */
603 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 goto out;
605 if (loc->elf_ex.e_phnum < 1 ||
606 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 goto out;
608 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 retval = -ENOMEM;
610 elf_phdata = kmalloc(size, GFP_KERNEL);
611 if (!elf_phdata)
612 goto out;
613
614 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 (char *)elf_phdata, size);
616 if (retval != size) {
617 if (retval >= 0)
618 retval = -EIO;
619 goto out_free_ph;
620 }
621
622 retval = get_unused_fd();
623 if (retval < 0)
624 goto out_free_ph;
625 get_file(bprm->file);
626 fd_install(elf_exec_fileno = retval, bprm->file);
627
628 elf_ppnt = elf_phdata;
629 elf_bss = 0;
630 elf_brk = 0;
631
632 start_code = ~0UL;
633 end_code = 0;
634 start_data = 0;
635 end_data = 0;
636
637 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638 if (elf_ppnt->p_type == PT_INTERP) {
639 /* This is the program interpreter used for
640 * shared libraries - for now assume that this
641 * is an a.out format binary
642 */
643 retval = -ENOEXEC;
644 if (elf_ppnt->p_filesz > PATH_MAX ||
645 elf_ppnt->p_filesz < 2)
646 goto out_free_file;
647
648 retval = -ENOMEM;
649 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650 GFP_KERNEL);
651 if (!elf_interpreter)
652 goto out_free_file;
653
654 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655 elf_interpreter,
656 elf_ppnt->p_filesz);
657 if (retval != elf_ppnt->p_filesz) {
658 if (retval >= 0)
659 retval = -EIO;
660 goto out_free_interp;
661 }
662 /* make sure path is NULL terminated */
663 retval = -ENOEXEC;
664 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665 goto out_free_interp;
666
667 /*
668 * The early SET_PERSONALITY here is so that the lookup
669 * for the interpreter happens in the namespace of the
670 * to-be-execed image. SET_PERSONALITY can select an
671 * alternate root.
672 *
673 * However, SET_PERSONALITY is NOT allowed to switch
674 * this task into the new images's memory mapping
675 * policy - that is, TASK_SIZE must still evaluate to
676 * that which is appropriate to the execing application.
677 * This is because exit_mmap() needs to have TASK_SIZE
678 * evaluate to the size of the old image.
679 *
680 * So if (say) a 64-bit application is execing a 32-bit
681 * application it is the architecture's responsibility
682 * to defer changing the value of TASK_SIZE until the
683 * switch really is going to happen - do this in
684 * flush_thread(). - akpm
685 */
686 SET_PERSONALITY(loc->elf_ex);
687
688 interpreter = open_exec(elf_interpreter);
689 retval = PTR_ERR(interpreter);
690 if (IS_ERR(interpreter))
691 goto out_free_interp;
692
693 /*
694 * If the binary is not readable then enforce
695 * mm->dumpable = 0 regardless of the interpreter's
696 * permissions.
697 */
698 if (file_permission(interpreter, MAY_READ) < 0)
699 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
700
701 retval = kernel_read(interpreter, 0, bprm->buf,
702 BINPRM_BUF_SIZE);
703 if (retval != BINPRM_BUF_SIZE) {
704 if (retval >= 0)
705 retval = -EIO;
706 goto out_free_dentry;
707 }
708
709 /* Get the exec headers */
710 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711 break;
712 }
713 elf_ppnt++;
714 }
715
716 elf_ppnt = elf_phdata;
717 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718 if (elf_ppnt->p_type == PT_GNU_STACK) {
719 if (elf_ppnt->p_flags & PF_X)
720 executable_stack = EXSTACK_ENABLE_X;
721 else
722 executable_stack = EXSTACK_DISABLE_X;
723 break;
724 }
725
726 /* Some simple consistency checks for the interpreter */
727 if (elf_interpreter) {
728 retval = -ELIBBAD;
729 /* Not an ELF interpreter */
730 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731 goto out_free_dentry;
732 /* Verify the interpreter has a valid arch */
733 if (!elf_check_arch(&loc->interp_elf_ex))
734 goto out_free_dentry;
735 } else {
736 /* Executables without an interpreter also need a personality */
737 SET_PERSONALITY(loc->elf_ex);
738 }
739
740 /* Flush all traces of the currently running executable */
741 retval = flush_old_exec(bprm);
742 if (retval)
743 goto out_free_dentry;
744
745 /* OK, This is the point of no return */
746 current->flags &= ~PF_FORKNOEXEC;
747 current->mm->def_flags = def_flags;
748
749 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750 may depend on the personality. */
751 SET_PERSONALITY(loc->elf_ex);
752 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753 current->personality |= READ_IMPLIES_EXEC;
754
755 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756 current->flags |= PF_RANDOMIZE;
757 arch_pick_mmap_layout(current->mm);
758
759 /* Do this so that we can load the interpreter, if need be. We will
760 change some of these later */
761 current->mm->free_area_cache = current->mm->mmap_base;
762 current->mm->cached_hole_size = 0;
763 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764 executable_stack);
765 if (retval < 0) {
766 send_sig(SIGKILL, current, 0);
767 goto out_free_dentry;
768 }
769
770 current->mm->start_stack = bprm->p;
771
772 /* Now we do a little grungy work by mmaping the ELF image into
773 the correct location in memory. */
774 for(i = 0, elf_ppnt = elf_phdata;
775 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776 int elf_prot = 0, elf_flags;
777 unsigned long k, vaddr;
778
779 if (elf_ppnt->p_type != PT_LOAD)
780 continue;
781
782 if (unlikely (elf_brk > elf_bss)) {
783 unsigned long nbyte;
784
785 /* There was a PT_LOAD segment with p_memsz > p_filesz
786 before this one. Map anonymous pages, if needed,
787 and clear the area. */
788 retval = set_brk (elf_bss + load_bias,
789 elf_brk + load_bias);
790 if (retval) {
791 send_sig(SIGKILL, current, 0);
792 goto out_free_dentry;
793 }
794 nbyte = ELF_PAGEOFFSET(elf_bss);
795 if (nbyte) {
796 nbyte = ELF_MIN_ALIGN - nbyte;
797 if (nbyte > elf_brk - elf_bss)
798 nbyte = elf_brk - elf_bss;
799 if (clear_user((void __user *)elf_bss +
800 load_bias, nbyte)) {
801 /*
802 * This bss-zeroing can fail if the ELF
803 * file specifies odd protections. So
804 * we don't check the return value
805 */
806 }
807 }
808 }
809
810 if (elf_ppnt->p_flags & PF_R)
811 elf_prot |= PROT_READ;
812 if (elf_ppnt->p_flags & PF_W)
813 elf_prot |= PROT_WRITE;
814 if (elf_ppnt->p_flags & PF_X)
815 elf_prot |= PROT_EXEC;
816
817 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
818
819 vaddr = elf_ppnt->p_vaddr;
820 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821 elf_flags |= MAP_FIXED;
822 } else if (loc->elf_ex.e_type == ET_DYN) {
823 /* Try and get dynamic programs out of the way of the
824 * default mmap base, as well as whatever program they
825 * might try to exec. This is because the brk will
826 * follow the loader, and is not movable. */
827 #ifdef CONFIG_X86
828 load_bias = 0;
829 #else
830 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
832 }
833
834 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835 elf_prot, elf_flags, 0);
836 if (BAD_ADDR(error)) {
837 send_sig(SIGKILL, current, 0);
838 retval = IS_ERR((void *)error) ?
839 PTR_ERR((void*)error) : -EINVAL;
840 goto out_free_dentry;
841 }
842
843 if (!load_addr_set) {
844 load_addr_set = 1;
845 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846 if (loc->elf_ex.e_type == ET_DYN) {
847 load_bias += error -
848 ELF_PAGESTART(load_bias + vaddr);
849 load_addr += load_bias;
850 reloc_func_desc = load_bias;
851 }
852 }
853 k = elf_ppnt->p_vaddr;
854 if (k < start_code)
855 start_code = k;
856 if (start_data < k)
857 start_data = k;
858
859 /*
860 * Check to see if the section's size will overflow the
861 * allowed task size. Note that p_filesz must always be
862 * <= p_memsz so it is only necessary to check p_memsz.
863 */
864 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865 elf_ppnt->p_memsz > TASK_SIZE ||
866 TASK_SIZE - elf_ppnt->p_memsz < k) {
867 /* set_brk can never work. Avoid overflows. */
868 send_sig(SIGKILL, current, 0);
869 retval = -EINVAL;
870 goto out_free_dentry;
871 }
872
873 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
874
875 if (k > elf_bss)
876 elf_bss = k;
877 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878 end_code = k;
879 if (end_data < k)
880 end_data = k;
881 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882 if (k > elf_brk)
883 elf_brk = k;
884 }
885
886 loc->elf_ex.e_entry += load_bias;
887 elf_bss += load_bias;
888 elf_brk += load_bias;
889 start_code += load_bias;
890 end_code += load_bias;
891 start_data += load_bias;
892 end_data += load_bias;
893
894 /* Calling set_brk effectively mmaps the pages that we need
895 * for the bss and break sections. We must do this before
896 * mapping in the interpreter, to make sure it doesn't wind
897 * up getting placed where the bss needs to go.
898 */
899 retval = set_brk(elf_bss, elf_brk);
900 if (retval) {
901 send_sig(SIGKILL, current, 0);
902 goto out_free_dentry;
903 }
904 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905 send_sig(SIGSEGV, current, 0);
906 retval = -EFAULT; /* Nobody gets to see this, but.. */
907 goto out_free_dentry;
908 }
909
910 if (elf_interpreter) {
911 unsigned long uninitialized_var(interp_map_addr);
912
913 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914 interpreter,
915 &interp_map_addr,
916 load_bias);
917 if (!IS_ERR((void *)elf_entry)) {
918 /*
919 * load_elf_interp() returns relocation
920 * adjustment
921 */
922 interp_load_addr = elf_entry;
923 elf_entry += loc->interp_elf_ex.e_entry;
924 }
925 if (BAD_ADDR(elf_entry)) {
926 force_sig(SIGSEGV, current);
927 retval = IS_ERR((void *)elf_entry) ?
928 (int)elf_entry : -EINVAL;
929 goto out_free_dentry;
930 }
931 reloc_func_desc = interp_load_addr;
932
933 allow_write_access(interpreter);
934 fput(interpreter);
935 kfree(elf_interpreter);
936 } else {
937 elf_entry = loc->elf_ex.e_entry;
938 if (BAD_ADDR(elf_entry)) {
939 force_sig(SIGSEGV, current);
940 retval = -EINVAL;
941 goto out_free_dentry;
942 }
943 }
944
945 kfree(elf_phdata);
946
947 sys_close(elf_exec_fileno);
948
949 set_binfmt(&elf_format);
950
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952 retval = arch_setup_additional_pages(bprm, executable_stack);
953 if (retval < 0) {
954 send_sig(SIGKILL, current, 0);
955 goto out;
956 }
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
958
959 compute_creds(bprm);
960 current->flags &= ~PF_FORKNOEXEC;
961 retval = create_elf_tables(bprm, &loc->elf_ex,
962 load_addr, interp_load_addr);
963 if (retval < 0) {
964 send_sig(SIGKILL, current, 0);
965 goto out;
966 }
967 /* N.B. passed_fileno might not be initialized? */
968 current->mm->end_code = end_code;
969 current->mm->start_code = start_code;
970 current->mm->start_data = start_data;
971 current->mm->end_data = end_data;
972 current->mm->start_stack = bprm->p;
973
974 #ifdef arch_randomize_brk
975 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976 current->mm->brk = current->mm->start_brk =
977 arch_randomize_brk(current->mm);
978 #endif
979
980 if (current->personality & MMAP_PAGE_ZERO) {
981 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
982 and some applications "depend" upon this behavior.
983 Since we do not have the power to recompile these, we
984 emulate the SVr4 behavior. Sigh. */
985 down_write(&current->mm->mmap_sem);
986 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987 MAP_FIXED | MAP_PRIVATE, 0);
988 up_write(&current->mm->mmap_sem);
989 }
990
991 #ifdef ELF_PLAT_INIT
992 /*
993 * The ABI may specify that certain registers be set up in special
994 * ways (on i386 %edx is the address of a DT_FINI function, for
995 * example. In addition, it may also specify (eg, PowerPC64 ELF)
996 * that the e_entry field is the address of the function descriptor
997 * for the startup routine, rather than the address of the startup
998 * routine itself. This macro performs whatever initialization to
999 * the regs structure is required as well as any relocations to the
1000 * function descriptor entries when executing dynamically links apps.
1001 */
1002 ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1004
1005 start_thread(regs, elf_entry, bprm->p);
1006 retval = 0;
1007 out:
1008 kfree(loc);
1009 out_ret:
1010 return retval;
1011
1012 /* error cleanup */
1013 out_free_dentry:
1014 allow_write_access(interpreter);
1015 if (interpreter)
1016 fput(interpreter);
1017 out_free_interp:
1018 kfree(elf_interpreter);
1019 out_free_file:
1020 sys_close(elf_exec_fileno);
1021 out_free_ph:
1022 kfree(elf_phdata);
1023 goto out;
1024 }
1025
1026 /* This is really simpleminded and specialized - we are loading an
1027 a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1029 {
1030 struct elf_phdr *elf_phdata;
1031 struct elf_phdr *eppnt;
1032 unsigned long elf_bss, bss, len;
1033 int retval, error, i, j;
1034 struct elfhdr elf_ex;
1035
1036 error = -ENOEXEC;
1037 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038 if (retval != sizeof(elf_ex))
1039 goto out;
1040
1041 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042 goto out;
1043
1044 /* First of all, some simple consistency checks */
1045 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047 goto out;
1048
1049 /* Now read in all of the header information */
1050
1051 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1053
1054 error = -ENOMEM;
1055 elf_phdata = kmalloc(j, GFP_KERNEL);
1056 if (!elf_phdata)
1057 goto out;
1058
1059 eppnt = elf_phdata;
1060 error = -ENOEXEC;
1061 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062 if (retval != j)
1063 goto out_free_ph;
1064
1065 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066 if ((eppnt + i)->p_type == PT_LOAD)
1067 j++;
1068 if (j != 1)
1069 goto out_free_ph;
1070
1071 while (eppnt->p_type != PT_LOAD)
1072 eppnt++;
1073
1074 /* Now use mmap to map the library into memory. */
1075 down_write(&current->mm->mmap_sem);
1076 error = do_mmap(file,
1077 ELF_PAGESTART(eppnt->p_vaddr),
1078 (eppnt->p_filesz +
1079 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080 PROT_READ | PROT_WRITE | PROT_EXEC,
1081 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082 (eppnt->p_offset -
1083 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084 up_write(&current->mm->mmap_sem);
1085 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086 goto out_free_ph;
1087
1088 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089 if (padzero(elf_bss)) {
1090 error = -EFAULT;
1091 goto out_free_ph;
1092 }
1093
1094 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095 ELF_MIN_ALIGN - 1);
1096 bss = eppnt->p_memsz + eppnt->p_vaddr;
1097 if (bss > len) {
1098 down_write(&current->mm->mmap_sem);
1099 do_brk(len, bss - len);
1100 up_write(&current->mm->mmap_sem);
1101 }
1102 error = 0;
1103
1104 out_free_ph:
1105 kfree(elf_phdata);
1106 out:
1107 return error;
1108 }
1109
1110 /*
1111 * Note that some platforms still use traditional core dumps and not
1112 * the ELF core dump. Each platform can select it as appropriate.
1113 */
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1115
1116 /*
1117 * ELF core dumper
1118 *
1119 * Modelled on fs/exec.c:aout_core_dump()
1120 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1121 */
1122 /*
1123 * These are the only things you should do on a core-file: use only these
1124 * functions to write out all the necessary info.
1125 */
1126 static int dump_write(struct file *file, const void *addr, int nr)
1127 {
1128 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1129 }
1130
1131 static int dump_seek(struct file *file, loff_t off)
1132 {
1133 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135 return 0;
1136 } else {
1137 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138 if (!buf)
1139 return 0;
1140 while (off > 0) {
1141 unsigned long n = off;
1142 if (n > PAGE_SIZE)
1143 n = PAGE_SIZE;
1144 if (!dump_write(file, buf, n))
1145 return 0;
1146 off -= n;
1147 }
1148 free_page((unsigned long)buf);
1149 }
1150 return 1;
1151 }
1152
1153 /*
1154 * Decide what to dump of a segment, part, all or none.
1155 */
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157 unsigned long mm_flags)
1158 {
1159 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1160
1161 /* The vma can be set up to tell us the answer directly. */
1162 if (vma->vm_flags & VM_ALWAYSDUMP)
1163 goto whole;
1164
1165 /* Hugetlb memory check */
1166 if (vma->vm_flags & VM_HUGETLB) {
1167 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1168 goto whole;
1169 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1170 goto whole;
1171 }
1172
1173 /* Do not dump I/O mapped devices or special mappings */
1174 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1175 return 0;
1176
1177 /* By default, dump shared memory if mapped from an anonymous file. */
1178 if (vma->vm_flags & VM_SHARED) {
1179 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1180 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1181 goto whole;
1182 return 0;
1183 }
1184
1185 /* Dump segments that have been written to. */
1186 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1187 goto whole;
1188 if (vma->vm_file == NULL)
1189 return 0;
1190
1191 if (FILTER(MAPPED_PRIVATE))
1192 goto whole;
1193
1194 /*
1195 * If this looks like the beginning of a DSO or executable mapping,
1196 * check for an ELF header. If we find one, dump the first page to
1197 * aid in determining what was mapped here.
1198 */
1199 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1200 u32 __user *header = (u32 __user *) vma->vm_start;
1201 u32 word;
1202 /*
1203 * Doing it this way gets the constant folded by GCC.
1204 */
1205 union {
1206 u32 cmp;
1207 char elfmag[SELFMAG];
1208 } magic;
1209 BUILD_BUG_ON(SELFMAG != sizeof word);
1210 magic.elfmag[EI_MAG0] = ELFMAG0;
1211 magic.elfmag[EI_MAG1] = ELFMAG1;
1212 magic.elfmag[EI_MAG2] = ELFMAG2;
1213 magic.elfmag[EI_MAG3] = ELFMAG3;
1214 if (get_user(word, header) == 0 && word == magic.cmp)
1215 return PAGE_SIZE;
1216 }
1217
1218 #undef FILTER
1219
1220 return 0;
1221
1222 whole:
1223 return vma->vm_end - vma->vm_start;
1224 }
1225
1226 /* An ELF note in memory */
1227 struct memelfnote
1228 {
1229 const char *name;
1230 int type;
1231 unsigned int datasz;
1232 void *data;
1233 };
1234
1235 static int notesize(struct memelfnote *en)
1236 {
1237 int sz;
1238
1239 sz = sizeof(struct elf_note);
1240 sz += roundup(strlen(en->name) + 1, 4);
1241 sz += roundup(en->datasz, 4);
1242
1243 return sz;
1244 }
1245
1246 #define DUMP_WRITE(addr, nr, foffset) \
1247 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1248
1249 static int alignfile(struct file *file, loff_t *foffset)
1250 {
1251 static const char buf[4] = { 0, };
1252 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1253 return 1;
1254 }
1255
1256 static int writenote(struct memelfnote *men, struct file *file,
1257 loff_t *foffset)
1258 {
1259 struct elf_note en;
1260 en.n_namesz = strlen(men->name) + 1;
1261 en.n_descsz = men->datasz;
1262 en.n_type = men->type;
1263
1264 DUMP_WRITE(&en, sizeof(en), foffset);
1265 DUMP_WRITE(men->name, en.n_namesz, foffset);
1266 if (!alignfile(file, foffset))
1267 return 0;
1268 DUMP_WRITE(men->data, men->datasz, foffset);
1269 if (!alignfile(file, foffset))
1270 return 0;
1271
1272 return 1;
1273 }
1274 #undef DUMP_WRITE
1275
1276 #define DUMP_WRITE(addr, nr) \
1277 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1278 goto end_coredump;
1279 #define DUMP_SEEK(off) \
1280 if (!dump_seek(file, (off))) \
1281 goto end_coredump;
1282
1283 static void fill_elf_header(struct elfhdr *elf, int segs,
1284 u16 machine, u32 flags, u8 osabi)
1285 {
1286 memset(elf, 0, sizeof(*elf));
1287
1288 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1289 elf->e_ident[EI_CLASS] = ELF_CLASS;
1290 elf->e_ident[EI_DATA] = ELF_DATA;
1291 elf->e_ident[EI_VERSION] = EV_CURRENT;
1292 elf->e_ident[EI_OSABI] = ELF_OSABI;
1293
1294 elf->e_type = ET_CORE;
1295 elf->e_machine = machine;
1296 elf->e_version = EV_CURRENT;
1297 elf->e_phoff = sizeof(struct elfhdr);
1298 elf->e_flags = flags;
1299 elf->e_ehsize = sizeof(struct elfhdr);
1300 elf->e_phentsize = sizeof(struct elf_phdr);
1301 elf->e_phnum = segs;
1302
1303 return;
1304 }
1305
1306 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1307 {
1308 phdr->p_type = PT_NOTE;
1309 phdr->p_offset = offset;
1310 phdr->p_vaddr = 0;
1311 phdr->p_paddr = 0;
1312 phdr->p_filesz = sz;
1313 phdr->p_memsz = 0;
1314 phdr->p_flags = 0;
1315 phdr->p_align = 0;
1316 return;
1317 }
1318
1319 static void fill_note(struct memelfnote *note, const char *name, int type,
1320 unsigned int sz, void *data)
1321 {
1322 note->name = name;
1323 note->type = type;
1324 note->datasz = sz;
1325 note->data = data;
1326 return;
1327 }
1328
1329 /*
1330 * fill up all the fields in prstatus from the given task struct, except
1331 * registers which need to be filled up separately.
1332 */
1333 static void fill_prstatus(struct elf_prstatus *prstatus,
1334 struct task_struct *p, long signr)
1335 {
1336 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1337 prstatus->pr_sigpend = p->pending.signal.sig[0];
1338 prstatus->pr_sighold = p->blocked.sig[0];
1339 prstatus->pr_pid = task_pid_vnr(p);
1340 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1341 prstatus->pr_pgrp = task_pgrp_vnr(p);
1342 prstatus->pr_sid = task_session_vnr(p);
1343 if (thread_group_leader(p)) {
1344 /*
1345 * This is the record for the group leader. Add in the
1346 * cumulative times of previous dead threads. This total
1347 * won't include the time of each live thread whose state
1348 * is included in the core dump. The final total reported
1349 * to our parent process when it calls wait4 will include
1350 * those sums as well as the little bit more time it takes
1351 * this and each other thread to finish dying after the
1352 * core dump synchronization phase.
1353 */
1354 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1355 &prstatus->pr_utime);
1356 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1357 &prstatus->pr_stime);
1358 } else {
1359 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1360 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1361 }
1362 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1363 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1364 }
1365
1366 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1367 struct mm_struct *mm)
1368 {
1369 unsigned int i, len;
1370
1371 /* first copy the parameters from user space */
1372 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1373
1374 len = mm->arg_end - mm->arg_start;
1375 if (len >= ELF_PRARGSZ)
1376 len = ELF_PRARGSZ-1;
1377 if (copy_from_user(&psinfo->pr_psargs,
1378 (const char __user *)mm->arg_start, len))
1379 return -EFAULT;
1380 for(i = 0; i < len; i++)
1381 if (psinfo->pr_psargs[i] == 0)
1382 psinfo->pr_psargs[i] = ' ';
1383 psinfo->pr_psargs[len] = 0;
1384
1385 psinfo->pr_pid = task_pid_vnr(p);
1386 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1387 psinfo->pr_pgrp = task_pgrp_vnr(p);
1388 psinfo->pr_sid = task_session_vnr(p);
1389
1390 i = p->state ? ffz(~p->state) + 1 : 0;
1391 psinfo->pr_state = i;
1392 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1393 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1394 psinfo->pr_nice = task_nice(p);
1395 psinfo->pr_flag = p->flags;
1396 SET_UID(psinfo->pr_uid, p->uid);
1397 SET_GID(psinfo->pr_gid, p->gid);
1398 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1399
1400 return 0;
1401 }
1402
1403 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1404 {
1405 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1406 int i = 0;
1407 do
1408 i += 2;
1409 while (auxv[i - 2] != AT_NULL);
1410 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1411 }
1412
1413 #ifdef CORE_DUMP_USE_REGSET
1414 #include <linux/regset.h>
1415
1416 struct elf_thread_core_info {
1417 struct elf_thread_core_info *next;
1418 struct task_struct *task;
1419 struct elf_prstatus prstatus;
1420 struct memelfnote notes[0];
1421 };
1422
1423 struct elf_note_info {
1424 struct elf_thread_core_info *thread;
1425 struct memelfnote psinfo;
1426 struct memelfnote auxv;
1427 size_t size;
1428 int thread_notes;
1429 };
1430
1431 /*
1432 * When a regset has a writeback hook, we call it on each thread before
1433 * dumping user memory. On register window machines, this makes sure the
1434 * user memory backing the register data is up to date before we read it.
1435 */
1436 static void do_thread_regset_writeback(struct task_struct *task,
1437 const struct user_regset *regset)
1438 {
1439 if (regset->writeback)
1440 regset->writeback(task, regset, 1);
1441 }
1442
1443 static int fill_thread_core_info(struct elf_thread_core_info *t,
1444 const struct user_regset_view *view,
1445 long signr, size_t *total)
1446 {
1447 unsigned int i;
1448
1449 /*
1450 * NT_PRSTATUS is the one special case, because the regset data
1451 * goes into the pr_reg field inside the note contents, rather
1452 * than being the whole note contents. We fill the reset in here.
1453 * We assume that regset 0 is NT_PRSTATUS.
1454 */
1455 fill_prstatus(&t->prstatus, t->task, signr);
1456 (void) view->regsets[0].get(t->task, &view->regsets[0],
1457 0, sizeof(t->prstatus.pr_reg),
1458 &t->prstatus.pr_reg, NULL);
1459
1460 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1461 sizeof(t->prstatus), &t->prstatus);
1462 *total += notesize(&t->notes[0]);
1463
1464 do_thread_regset_writeback(t->task, &view->regsets[0]);
1465
1466 /*
1467 * Each other regset might generate a note too. For each regset
1468 * that has no core_note_type or is inactive, we leave t->notes[i]
1469 * all zero and we'll know to skip writing it later.
1470 */
1471 for (i = 1; i < view->n; ++i) {
1472 const struct user_regset *regset = &view->regsets[i];
1473 do_thread_regset_writeback(t->task, regset);
1474 if (regset->core_note_type &&
1475 (!regset->active || regset->active(t->task, regset))) {
1476 int ret;
1477 size_t size = regset->n * regset->size;
1478 void *data = kmalloc(size, GFP_KERNEL);
1479 if (unlikely(!data))
1480 return 0;
1481 ret = regset->get(t->task, regset,
1482 0, size, data, NULL);
1483 if (unlikely(ret))
1484 kfree(data);
1485 else {
1486 if (regset->core_note_type != NT_PRFPREG)
1487 fill_note(&t->notes[i], "LINUX",
1488 regset->core_note_type,
1489 size, data);
1490 else {
1491 t->prstatus.pr_fpvalid = 1;
1492 fill_note(&t->notes[i], "CORE",
1493 NT_PRFPREG, size, data);
1494 }
1495 *total += notesize(&t->notes[i]);
1496 }
1497 }
1498 }
1499
1500 return 1;
1501 }
1502
1503 static int fill_note_info(struct elfhdr *elf, int phdrs,
1504 struct elf_note_info *info,
1505 long signr, struct pt_regs *regs)
1506 {
1507 struct task_struct *dump_task = current;
1508 const struct user_regset_view *view = task_user_regset_view(dump_task);
1509 struct elf_thread_core_info *t;
1510 struct elf_prpsinfo *psinfo;
1511 struct core_thread *ct;
1512 unsigned int i;
1513
1514 info->size = 0;
1515 info->thread = NULL;
1516
1517 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1518 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1519
1520 if (psinfo == NULL)
1521 return 0;
1522
1523 /*
1524 * Figure out how many notes we're going to need for each thread.
1525 */
1526 info->thread_notes = 0;
1527 for (i = 0; i < view->n; ++i)
1528 if (view->regsets[i].core_note_type != 0)
1529 ++info->thread_notes;
1530
1531 /*
1532 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1533 * since it is our one special case.
1534 */
1535 if (unlikely(info->thread_notes == 0) ||
1536 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1537 WARN_ON(1);
1538 return 0;
1539 }
1540
1541 /*
1542 * Initialize the ELF file header.
1543 */
1544 fill_elf_header(elf, phdrs,
1545 view->e_machine, view->e_flags, view->ei_osabi);
1546
1547 /*
1548 * Allocate a structure for each thread.
1549 */
1550 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1551 t = kzalloc(offsetof(struct elf_thread_core_info,
1552 notes[info->thread_notes]),
1553 GFP_KERNEL);
1554 if (unlikely(!t))
1555 return 0;
1556
1557 t->task = ct->task;
1558 if (ct->task == dump_task || !info->thread) {
1559 t->next = info->thread;
1560 info->thread = t;
1561 } else {
1562 /*
1563 * Make sure to keep the original task at
1564 * the head of the list.
1565 */
1566 t->next = info->thread->next;
1567 info->thread->next = t;
1568 }
1569 }
1570
1571 /*
1572 * Now fill in each thread's information.
1573 */
1574 for (t = info->thread; t != NULL; t = t->next)
1575 if (!fill_thread_core_info(t, view, signr, &info->size))
1576 return 0;
1577
1578 /*
1579 * Fill in the two process-wide notes.
1580 */
1581 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1582 info->size += notesize(&info->psinfo);
1583
1584 fill_auxv_note(&info->auxv, current->mm);
1585 info->size += notesize(&info->auxv);
1586
1587 return 1;
1588 }
1589
1590 static size_t get_note_info_size(struct elf_note_info *info)
1591 {
1592 return info->size;
1593 }
1594
1595 /*
1596 * Write all the notes for each thread. When writing the first thread, the
1597 * process-wide notes are interleaved after the first thread-specific note.
1598 */
1599 static int write_note_info(struct elf_note_info *info,
1600 struct file *file, loff_t *foffset)
1601 {
1602 bool first = 1;
1603 struct elf_thread_core_info *t = info->thread;
1604
1605 do {
1606 int i;
1607
1608 if (!writenote(&t->notes[0], file, foffset))
1609 return 0;
1610
1611 if (first && !writenote(&info->psinfo, file, foffset))
1612 return 0;
1613 if (first && !writenote(&info->auxv, file, foffset))
1614 return 0;
1615
1616 for (i = 1; i < info->thread_notes; ++i)
1617 if (t->notes[i].data &&
1618 !writenote(&t->notes[i], file, foffset))
1619 return 0;
1620
1621 first = 0;
1622 t = t->next;
1623 } while (t);
1624
1625 return 1;
1626 }
1627
1628 static void free_note_info(struct elf_note_info *info)
1629 {
1630 struct elf_thread_core_info *threads = info->thread;
1631 while (threads) {
1632 unsigned int i;
1633 struct elf_thread_core_info *t = threads;
1634 threads = t->next;
1635 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1636 for (i = 1; i < info->thread_notes; ++i)
1637 kfree(t->notes[i].data);
1638 kfree(t);
1639 }
1640 kfree(info->psinfo.data);
1641 }
1642
1643 #else
1644
1645 /* Here is the structure in which status of each thread is captured. */
1646 struct elf_thread_status
1647 {
1648 struct list_head list;
1649 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1650 elf_fpregset_t fpu; /* NT_PRFPREG */
1651 struct task_struct *thread;
1652 #ifdef ELF_CORE_COPY_XFPREGS
1653 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1654 #endif
1655 struct memelfnote notes[3];
1656 int num_notes;
1657 };
1658
1659 /*
1660 * In order to add the specific thread information for the elf file format,
1661 * we need to keep a linked list of every threads pr_status and then create
1662 * a single section for them in the final core file.
1663 */
1664 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1665 {
1666 int sz = 0;
1667 struct task_struct *p = t->thread;
1668 t->num_notes = 0;
1669
1670 fill_prstatus(&t->prstatus, p, signr);
1671 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1672
1673 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1674 &(t->prstatus));
1675 t->num_notes++;
1676 sz += notesize(&t->notes[0]);
1677
1678 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1679 &t->fpu))) {
1680 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1681 &(t->fpu));
1682 t->num_notes++;
1683 sz += notesize(&t->notes[1]);
1684 }
1685
1686 #ifdef ELF_CORE_COPY_XFPREGS
1687 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1688 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1689 sizeof(t->xfpu), &t->xfpu);
1690 t->num_notes++;
1691 sz += notesize(&t->notes[2]);
1692 }
1693 #endif
1694 return sz;
1695 }
1696
1697 struct elf_note_info {
1698 struct memelfnote *notes;
1699 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1700 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1701 struct list_head thread_list;
1702 elf_fpregset_t *fpu;
1703 #ifdef ELF_CORE_COPY_XFPREGS
1704 elf_fpxregset_t *xfpu;
1705 #endif
1706 int thread_status_size;
1707 int numnote;
1708 };
1709
1710 static int fill_note_info(struct elfhdr *elf, int phdrs,
1711 struct elf_note_info *info,
1712 long signr, struct pt_regs *regs)
1713 {
1714 #define NUM_NOTES 6
1715 struct list_head *t;
1716
1717 info->notes = NULL;
1718 info->prstatus = NULL;
1719 info->psinfo = NULL;
1720 info->fpu = NULL;
1721 #ifdef ELF_CORE_COPY_XFPREGS
1722 info->xfpu = NULL;
1723 #endif
1724 INIT_LIST_HEAD(&info->thread_list);
1725
1726 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1727 GFP_KERNEL);
1728 if (!info->notes)
1729 return 0;
1730 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1731 if (!info->psinfo)
1732 return 0;
1733 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1734 if (!info->prstatus)
1735 return 0;
1736 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1737 if (!info->fpu)
1738 return 0;
1739 #ifdef ELF_CORE_COPY_XFPREGS
1740 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1741 if (!info->xfpu)
1742 return 0;
1743 #endif
1744
1745 info->thread_status_size = 0;
1746 if (signr) {
1747 struct core_thread *ct;
1748 struct elf_thread_status *ets;
1749
1750 for (ct = current->mm->core_state->dumper.next;
1751 ct; ct = ct->next) {
1752 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1753 if (!ets)
1754 return 0;
1755
1756 ets->thread = ct->task;
1757 list_add(&ets->list, &info->thread_list);
1758 }
1759
1760 list_for_each(t, &info->thread_list) {
1761 int sz;
1762
1763 ets = list_entry(t, struct elf_thread_status, list);
1764 sz = elf_dump_thread_status(signr, ets);
1765 info->thread_status_size += sz;
1766 }
1767 }
1768 /* now collect the dump for the current */
1769 memset(info->prstatus, 0, sizeof(*info->prstatus));
1770 fill_prstatus(info->prstatus, current, signr);
1771 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1772
1773 /* Set up header */
1774 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1775
1776 /*
1777 * Set up the notes in similar form to SVR4 core dumps made
1778 * with info from their /proc.
1779 */
1780
1781 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1782 sizeof(*info->prstatus), info->prstatus);
1783 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1784 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1785 sizeof(*info->psinfo), info->psinfo);
1786
1787 info->numnote = 2;
1788
1789 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1790
1791 /* Try to dump the FPU. */
1792 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1793 info->fpu);
1794 if (info->prstatus->pr_fpvalid)
1795 fill_note(info->notes + info->numnote++,
1796 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1799 fill_note(info->notes + info->numnote++,
1800 "LINUX", ELF_CORE_XFPREG_TYPE,
1801 sizeof(*info->xfpu), info->xfpu);
1802 #endif
1803
1804 return 1;
1805
1806 #undef NUM_NOTES
1807 }
1808
1809 static size_t get_note_info_size(struct elf_note_info *info)
1810 {
1811 int sz = 0;
1812 int i;
1813
1814 for (i = 0; i < info->numnote; i++)
1815 sz += notesize(info->notes + i);
1816
1817 sz += info->thread_status_size;
1818
1819 return sz;
1820 }
1821
1822 static int write_note_info(struct elf_note_info *info,
1823 struct file *file, loff_t *foffset)
1824 {
1825 int i;
1826 struct list_head *t;
1827
1828 for (i = 0; i < info->numnote; i++)
1829 if (!writenote(info->notes + i, file, foffset))
1830 return 0;
1831
1832 /* write out the thread status notes section */
1833 list_for_each(t, &info->thread_list) {
1834 struct elf_thread_status *tmp =
1835 list_entry(t, struct elf_thread_status, list);
1836
1837 for (i = 0; i < tmp->num_notes; i++)
1838 if (!writenote(&tmp->notes[i], file, foffset))
1839 return 0;
1840 }
1841
1842 return 1;
1843 }
1844
1845 static void free_note_info(struct elf_note_info *info)
1846 {
1847 while (!list_empty(&info->thread_list)) {
1848 struct list_head *tmp = info->thread_list.next;
1849 list_del(tmp);
1850 kfree(list_entry(tmp, struct elf_thread_status, list));
1851 }
1852
1853 kfree(info->prstatus);
1854 kfree(info->psinfo);
1855 kfree(info->notes);
1856 kfree(info->fpu);
1857 #ifdef ELF_CORE_COPY_XFPREGS
1858 kfree(info->xfpu);
1859 #endif
1860 }
1861
1862 #endif
1863
1864 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1865 struct vm_area_struct *gate_vma)
1866 {
1867 struct vm_area_struct *ret = tsk->mm->mmap;
1868
1869 if (ret)
1870 return ret;
1871 return gate_vma;
1872 }
1873 /*
1874 * Helper function for iterating across a vma list. It ensures that the caller
1875 * will visit `gate_vma' prior to terminating the search.
1876 */
1877 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1878 struct vm_area_struct *gate_vma)
1879 {
1880 struct vm_area_struct *ret;
1881
1882 ret = this_vma->vm_next;
1883 if (ret)
1884 return ret;
1885 if (this_vma == gate_vma)
1886 return NULL;
1887 return gate_vma;
1888 }
1889
1890 /*
1891 * Actual dumper
1892 *
1893 * This is a two-pass process; first we find the offsets of the bits,
1894 * and then they are actually written out. If we run out of core limit
1895 * we just truncate.
1896 */
1897 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1898 {
1899 int has_dumped = 0;
1900 mm_segment_t fs;
1901 int segs;
1902 size_t size = 0;
1903 struct vm_area_struct *vma, *gate_vma;
1904 struct elfhdr *elf = NULL;
1905 loff_t offset = 0, dataoff, foffset;
1906 unsigned long mm_flags;
1907 struct elf_note_info info;
1908
1909 /*
1910 * We no longer stop all VM operations.
1911 *
1912 * This is because those proceses that could possibly change map_count
1913 * or the mmap / vma pages are now blocked in do_exit on current
1914 * finishing this core dump.
1915 *
1916 * Only ptrace can touch these memory addresses, but it doesn't change
1917 * the map_count or the pages allocated. So no possibility of crashing
1918 * exists while dumping the mm->vm_next areas to the core file.
1919 */
1920
1921 /* alloc memory for large data structures: too large to be on stack */
1922 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1923 if (!elf)
1924 goto out;
1925
1926 segs = current->mm->map_count;
1927 #ifdef ELF_CORE_EXTRA_PHDRS
1928 segs += ELF_CORE_EXTRA_PHDRS;
1929 #endif
1930
1931 gate_vma = get_gate_vma(current);
1932 if (gate_vma != NULL)
1933 segs++;
1934
1935 /*
1936 * Collect all the non-memory information about the process for the
1937 * notes. This also sets up the file header.
1938 */
1939 if (!fill_note_info(elf, segs + 1, /* including notes section */
1940 &info, signr, regs))
1941 goto cleanup;
1942
1943 has_dumped = 1;
1944 current->flags |= PF_DUMPCORE;
1945
1946 fs = get_fs();
1947 set_fs(KERNEL_DS);
1948
1949 DUMP_WRITE(elf, sizeof(*elf));
1950 offset += sizeof(*elf); /* Elf header */
1951 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1952 foffset = offset;
1953
1954 /* Write notes phdr entry */
1955 {
1956 struct elf_phdr phdr;
1957 size_t sz = get_note_info_size(&info);
1958
1959 sz += elf_coredump_extra_notes_size();
1960
1961 fill_elf_note_phdr(&phdr, sz, offset);
1962 offset += sz;
1963 DUMP_WRITE(&phdr, sizeof(phdr));
1964 }
1965
1966 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1967
1968 /*
1969 * We must use the same mm->flags while dumping core to avoid
1970 * inconsistency between the program headers and bodies, otherwise an
1971 * unusable core file can be generated.
1972 */
1973 mm_flags = current->mm->flags;
1974
1975 /* Write program headers for segments dump */
1976 for (vma = first_vma(current, gate_vma); vma != NULL;
1977 vma = next_vma(vma, gate_vma)) {
1978 struct elf_phdr phdr;
1979
1980 phdr.p_type = PT_LOAD;
1981 phdr.p_offset = offset;
1982 phdr.p_vaddr = vma->vm_start;
1983 phdr.p_paddr = 0;
1984 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1985 phdr.p_memsz = vma->vm_end - vma->vm_start;
1986 offset += phdr.p_filesz;
1987 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1988 if (vma->vm_flags & VM_WRITE)
1989 phdr.p_flags |= PF_W;
1990 if (vma->vm_flags & VM_EXEC)
1991 phdr.p_flags |= PF_X;
1992 phdr.p_align = ELF_EXEC_PAGESIZE;
1993
1994 DUMP_WRITE(&phdr, sizeof(phdr));
1995 }
1996
1997 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1998 ELF_CORE_WRITE_EXTRA_PHDRS;
1999 #endif
2000
2001 /* write out the notes section */
2002 if (!write_note_info(&info, file, &foffset))
2003 goto end_coredump;
2004
2005 if (elf_coredump_extra_notes_write(file, &foffset))
2006 goto end_coredump;
2007
2008 /* Align to page */
2009 DUMP_SEEK(dataoff - foffset);
2010
2011 for (vma = first_vma(current, gate_vma); vma != NULL;
2012 vma = next_vma(vma, gate_vma)) {
2013 unsigned long addr;
2014 unsigned long end;
2015
2016 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2017
2018 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2019 struct page *page;
2020 struct vm_area_struct *tmp_vma;
2021
2022 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2023 &page, &tmp_vma) <= 0) {
2024 DUMP_SEEK(PAGE_SIZE);
2025 } else {
2026 if (page == ZERO_PAGE(0)) {
2027 if (!dump_seek(file, PAGE_SIZE)) {
2028 page_cache_release(page);
2029 goto end_coredump;
2030 }
2031 } else {
2032 void *kaddr;
2033 flush_cache_page(tmp_vma, addr,
2034 page_to_pfn(page));
2035 kaddr = kmap(page);
2036 if ((size += PAGE_SIZE) > limit ||
2037 !dump_write(file, kaddr,
2038 PAGE_SIZE)) {
2039 kunmap(page);
2040 page_cache_release(page);
2041 goto end_coredump;
2042 }
2043 kunmap(page);
2044 }
2045 page_cache_release(page);
2046 }
2047 }
2048 }
2049
2050 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2051 ELF_CORE_WRITE_EXTRA_DATA;
2052 #endif
2053
2054 end_coredump:
2055 set_fs(fs);
2056
2057 cleanup:
2058 free_note_info(&info);
2059 kfree(elf);
2060 out:
2061 return has_dumped;
2062 }
2063
2064 #endif /* USE_ELF_CORE_DUMP */
2065
2066 static int __init init_elf_binfmt(void)
2067 {
2068 return register_binfmt(&elf_format);
2069 }
2070
2071 static void __exit exit_elf_binfmt(void)
2072 {
2073 /* Remove the COFF and ELF loaders. */
2074 unregister_binfmt(&elf_format);
2075 }
2076
2077 core_initcall(init_elf_binfmt);
2078 module_exit(exit_elf_binfmt);
2079 MODULE_LICENSE("GPL");
This page took 0.069813 seconds and 6 git commands to generate.