iwlwifi: rs: split rs_collect_tx_data
[deliverable/linux.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165
166 if (idx == BIOVEC_MAX_IDX)
167 mempool_free(bv, pool);
168 else {
169 struct biovec_slab *bvs = bvec_slabs + idx;
170
171 kmem_cache_free(bvs->slab, bv);
172 }
173 }
174
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176 mempool_t *pool)
177 {
178 struct bio_vec *bvl;
179
180 /*
181 * see comment near bvec_array define!
182 */
183 switch (nr) {
184 case 1:
185 *idx = 0;
186 break;
187 case 2 ... 4:
188 *idx = 1;
189 break;
190 case 5 ... 16:
191 *idx = 2;
192 break;
193 case 17 ... 64:
194 *idx = 3;
195 break;
196 case 65 ... 128:
197 *idx = 4;
198 break;
199 case 129 ... BIO_MAX_PAGES:
200 *idx = 5;
201 break;
202 default:
203 return NULL;
204 }
205
206 /*
207 * idx now points to the pool we want to allocate from. only the
208 * 1-vec entry pool is mempool backed.
209 */
210 if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212 bvl = mempool_alloc(pool, gfp_mask);
213 } else {
214 struct biovec_slab *bvs = bvec_slabs + *idx;
215 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216
217 /*
218 * Make this allocation restricted and don't dump info on
219 * allocation failures, since we'll fallback to the mempool
220 * in case of failure.
221 */
222 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223
224 /*
225 * Try a slab allocation. If this fails and __GFP_WAIT
226 * is set, retry with the 1-entry mempool
227 */
228 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 *idx = BIOVEC_MAX_IDX;
231 goto fallback;
232 }
233 }
234
235 return bvl;
236 }
237
238 static void __bio_free(struct bio *bio)
239 {
240 bio_disassociate_task(bio);
241
242 if (bio_integrity(bio))
243 bio_integrity_free(bio);
244 }
245
246 static void bio_free(struct bio *bio)
247 {
248 struct bio_set *bs = bio->bi_pool;
249 void *p;
250
251 __bio_free(bio);
252
253 if (bs) {
254 if (bio_flagged(bio, BIO_OWNS_VEC))
255 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256
257 /*
258 * If we have front padding, adjust the bio pointer before freeing
259 */
260 p = bio;
261 p -= bs->front_pad;
262
263 mempool_free(p, bs->bio_pool);
264 } else {
265 /* Bio was allocated by bio_kmalloc() */
266 kfree(bio);
267 }
268 }
269
270 void bio_init(struct bio *bio)
271 {
272 memset(bio, 0, sizeof(*bio));
273 bio->bi_flags = 1 << BIO_UPTODATE;
274 atomic_set(&bio->bi_remaining, 1);
275 atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278
279 /**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289 void bio_reset(struct bio *bio)
290 {
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293 __bio_free(bio);
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303 bio_endio(bio->bi_private, error);
304 bio_put(bio);
305 }
306
307 /**
308 * bio_chain - chain bio completions
309 *
310 * The caller won't have a bi_end_io called when @bio completes - instead,
311 * @parent's bi_end_io won't be called until both @parent and @bio have
312 * completed; the chained bio will also be freed when it completes.
313 *
314 * The caller must not set bi_private or bi_end_io in @bio.
315 */
316 void bio_chain(struct bio *bio, struct bio *parent)
317 {
318 BUG_ON(bio->bi_private || bio->bi_end_io);
319
320 bio->bi_private = parent;
321 bio->bi_end_io = bio_chain_endio;
322 atomic_inc(&parent->bi_remaining);
323 }
324 EXPORT_SYMBOL(bio_chain);
325
326 static void bio_alloc_rescue(struct work_struct *work)
327 {
328 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
329 struct bio *bio;
330
331 while (1) {
332 spin_lock(&bs->rescue_lock);
333 bio = bio_list_pop(&bs->rescue_list);
334 spin_unlock(&bs->rescue_lock);
335
336 if (!bio)
337 break;
338
339 generic_make_request(bio);
340 }
341 }
342
343 static void punt_bios_to_rescuer(struct bio_set *bs)
344 {
345 struct bio_list punt, nopunt;
346 struct bio *bio;
347
348 /*
349 * In order to guarantee forward progress we must punt only bios that
350 * were allocated from this bio_set; otherwise, if there was a bio on
351 * there for a stacking driver higher up in the stack, processing it
352 * could require allocating bios from this bio_set, and doing that from
353 * our own rescuer would be bad.
354 *
355 * Since bio lists are singly linked, pop them all instead of trying to
356 * remove from the middle of the list:
357 */
358
359 bio_list_init(&punt);
360 bio_list_init(&nopunt);
361
362 while ((bio = bio_list_pop(current->bio_list)))
363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
364
365 *current->bio_list = nopunt;
366
367 spin_lock(&bs->rescue_lock);
368 bio_list_merge(&bs->rescue_list, &punt);
369 spin_unlock(&bs->rescue_lock);
370
371 queue_work(bs->rescue_workqueue, &bs->rescue_work);
372 }
373
374 /**
375 * bio_alloc_bioset - allocate a bio for I/O
376 * @gfp_mask: the GFP_ mask given to the slab allocator
377 * @nr_iovecs: number of iovecs to pre-allocate
378 * @bs: the bio_set to allocate from.
379 *
380 * Description:
381 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
382 * backed by the @bs's mempool.
383 *
384 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
385 * able to allocate a bio. This is due to the mempool guarantees. To make this
386 * work, callers must never allocate more than 1 bio at a time from this pool.
387 * Callers that need to allocate more than 1 bio must always submit the
388 * previously allocated bio for IO before attempting to allocate a new one.
389 * Failure to do so can cause deadlocks under memory pressure.
390 *
391 * Note that when running under generic_make_request() (i.e. any block
392 * driver), bios are not submitted until after you return - see the code in
393 * generic_make_request() that converts recursion into iteration, to prevent
394 * stack overflows.
395 *
396 * This would normally mean allocating multiple bios under
397 * generic_make_request() would be susceptible to deadlocks, but we have
398 * deadlock avoidance code that resubmits any blocked bios from a rescuer
399 * thread.
400 *
401 * However, we do not guarantee forward progress for allocations from other
402 * mempools. Doing multiple allocations from the same mempool under
403 * generic_make_request() should be avoided - instead, use bio_set's front_pad
404 * for per bio allocations.
405 *
406 * RETURNS:
407 * Pointer to new bio on success, NULL on failure.
408 */
409 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
410 {
411 gfp_t saved_gfp = gfp_mask;
412 unsigned front_pad;
413 unsigned inline_vecs;
414 unsigned long idx = BIO_POOL_NONE;
415 struct bio_vec *bvl = NULL;
416 struct bio *bio;
417 void *p;
418
419 if (!bs) {
420 if (nr_iovecs > UIO_MAXIOV)
421 return NULL;
422
423 p = kmalloc(sizeof(struct bio) +
424 nr_iovecs * sizeof(struct bio_vec),
425 gfp_mask);
426 front_pad = 0;
427 inline_vecs = nr_iovecs;
428 } else {
429 /*
430 * generic_make_request() converts recursion to iteration; this
431 * means if we're running beneath it, any bios we allocate and
432 * submit will not be submitted (and thus freed) until after we
433 * return.
434 *
435 * This exposes us to a potential deadlock if we allocate
436 * multiple bios from the same bio_set() while running
437 * underneath generic_make_request(). If we were to allocate
438 * multiple bios (say a stacking block driver that was splitting
439 * bios), we would deadlock if we exhausted the mempool's
440 * reserve.
441 *
442 * We solve this, and guarantee forward progress, with a rescuer
443 * workqueue per bio_set. If we go to allocate and there are
444 * bios on current->bio_list, we first try the allocation
445 * without __GFP_WAIT; if that fails, we punt those bios we
446 * would be blocking to the rescuer workqueue before we retry
447 * with the original gfp_flags.
448 */
449
450 if (current->bio_list && !bio_list_empty(current->bio_list))
451 gfp_mask &= ~__GFP_WAIT;
452
453 p = mempool_alloc(bs->bio_pool, gfp_mask);
454 if (!p && gfp_mask != saved_gfp) {
455 punt_bios_to_rescuer(bs);
456 gfp_mask = saved_gfp;
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
458 }
459
460 front_pad = bs->front_pad;
461 inline_vecs = BIO_INLINE_VECS;
462 }
463
464 if (unlikely(!p))
465 return NULL;
466
467 bio = p + front_pad;
468 bio_init(bio);
469
470 if (nr_iovecs > inline_vecs) {
471 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
472 if (!bvl && gfp_mask != saved_gfp) {
473 punt_bios_to_rescuer(bs);
474 gfp_mask = saved_gfp;
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 }
477
478 if (unlikely(!bvl))
479 goto err_free;
480
481 bio->bi_flags |= 1 << BIO_OWNS_VEC;
482 } else if (nr_iovecs) {
483 bvl = bio->bi_inline_vecs;
484 }
485
486 bio->bi_pool = bs;
487 bio->bi_flags |= idx << BIO_POOL_OFFSET;
488 bio->bi_max_vecs = nr_iovecs;
489 bio->bi_io_vec = bvl;
490 return bio;
491
492 err_free:
493 mempool_free(p, bs->bio_pool);
494 return NULL;
495 }
496 EXPORT_SYMBOL(bio_alloc_bioset);
497
498 void zero_fill_bio(struct bio *bio)
499 {
500 unsigned long flags;
501 struct bio_vec bv;
502 struct bvec_iter iter;
503
504 bio_for_each_segment(bv, bio, iter) {
505 char *data = bvec_kmap_irq(&bv, &flags);
506 memset(data, 0, bv.bv_len);
507 flush_dcache_page(bv.bv_page);
508 bvec_kunmap_irq(data, &flags);
509 }
510 }
511 EXPORT_SYMBOL(zero_fill_bio);
512
513 /**
514 * bio_put - release a reference to a bio
515 * @bio: bio to release reference to
516 *
517 * Description:
518 * Put a reference to a &struct bio, either one you have gotten with
519 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
520 **/
521 void bio_put(struct bio *bio)
522 {
523 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
524
525 /*
526 * last put frees it
527 */
528 if (atomic_dec_and_test(&bio->bi_cnt))
529 bio_free(bio);
530 }
531 EXPORT_SYMBOL(bio_put);
532
533 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
534 {
535 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
536 blk_recount_segments(q, bio);
537
538 return bio->bi_phys_segments;
539 }
540 EXPORT_SYMBOL(bio_phys_segments);
541
542 /**
543 * __bio_clone_fast - clone a bio that shares the original bio's biovec
544 * @bio: destination bio
545 * @bio_src: bio to clone
546 *
547 * Clone a &bio. Caller will own the returned bio, but not
548 * the actual data it points to. Reference count of returned
549 * bio will be one.
550 *
551 * Caller must ensure that @bio_src is not freed before @bio.
552 */
553 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
554 {
555 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
556
557 /*
558 * most users will be overriding ->bi_bdev with a new target,
559 * so we don't set nor calculate new physical/hw segment counts here
560 */
561 bio->bi_bdev = bio_src->bi_bdev;
562 bio->bi_flags |= 1 << BIO_CLONED;
563 bio->bi_rw = bio_src->bi_rw;
564 bio->bi_iter = bio_src->bi_iter;
565 bio->bi_io_vec = bio_src->bi_io_vec;
566 }
567 EXPORT_SYMBOL(__bio_clone_fast);
568
569 /**
570 * bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: bio to clone
572 * @gfp_mask: allocation priority
573 * @bs: bio_set to allocate from
574 *
575 * Like __bio_clone_fast, only also allocates the returned bio
576 */
577 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
578 {
579 struct bio *b;
580
581 b = bio_alloc_bioset(gfp_mask, 0, bs);
582 if (!b)
583 return NULL;
584
585 __bio_clone_fast(b, bio);
586
587 if (bio_integrity(bio)) {
588 int ret;
589
590 ret = bio_integrity_clone(b, bio, gfp_mask);
591
592 if (ret < 0) {
593 bio_put(b);
594 return NULL;
595 }
596 }
597
598 return b;
599 }
600 EXPORT_SYMBOL(bio_clone_fast);
601
602 /**
603 * bio_clone_bioset - clone a bio
604 * @bio_src: bio to clone
605 * @gfp_mask: allocation priority
606 * @bs: bio_set to allocate from
607 *
608 * Clone bio. Caller will own the returned bio, but not the actual data it
609 * points to. Reference count of returned bio will be one.
610 */
611 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
612 struct bio_set *bs)
613 {
614 unsigned nr_iovecs = 0;
615 struct bvec_iter iter;
616 struct bio_vec bv;
617 struct bio *bio;
618
619 /*
620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
621 * bio_src->bi_io_vec to bio->bi_io_vec.
622 *
623 * We can't do that anymore, because:
624 *
625 * - The point of cloning the biovec is to produce a bio with a biovec
626 * the caller can modify: bi_idx and bi_bvec_done should be 0.
627 *
628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
629 * we tried to clone the whole thing bio_alloc_bioset() would fail.
630 * But the clone should succeed as long as the number of biovecs we
631 * actually need to allocate is fewer than BIO_MAX_PAGES.
632 *
633 * - Lastly, bi_vcnt should not be looked at or relied upon by code
634 * that does not own the bio - reason being drivers don't use it for
635 * iterating over the biovec anymore, so expecting it to be kept up
636 * to date (i.e. for clones that share the parent biovec) is just
637 * asking for trouble and would force extra work on
638 * __bio_clone_fast() anyways.
639 */
640
641 bio_for_each_segment(bv, bio_src, iter)
642 nr_iovecs++;
643
644 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
645 if (!bio)
646 return NULL;
647
648 bio->bi_bdev = bio_src->bi_bdev;
649 bio->bi_rw = bio_src->bi_rw;
650 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
651 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
652
653 bio_for_each_segment(bv, bio_src, iter)
654 bio->bi_io_vec[bio->bi_vcnt++] = bv;
655
656 if (bio_integrity(bio_src)) {
657 int ret;
658
659 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
660 if (ret < 0) {
661 bio_put(bio);
662 return NULL;
663 }
664 }
665
666 return bio;
667 }
668 EXPORT_SYMBOL(bio_clone_bioset);
669
670 /**
671 * bio_get_nr_vecs - return approx number of vecs
672 * @bdev: I/O target
673 *
674 * Return the approximate number of pages we can send to this target.
675 * There's no guarantee that you will be able to fit this number of pages
676 * into a bio, it does not account for dynamic restrictions that vary
677 * on offset.
678 */
679 int bio_get_nr_vecs(struct block_device *bdev)
680 {
681 struct request_queue *q = bdev_get_queue(bdev);
682 int nr_pages;
683
684 nr_pages = min_t(unsigned,
685 queue_max_segments(q),
686 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
687
688 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
689
690 }
691 EXPORT_SYMBOL(bio_get_nr_vecs);
692
693 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
694 *page, unsigned int len, unsigned int offset,
695 unsigned int max_sectors)
696 {
697 int retried_segments = 0;
698 struct bio_vec *bvec;
699
700 /*
701 * cloned bio must not modify vec list
702 */
703 if (unlikely(bio_flagged(bio, BIO_CLONED)))
704 return 0;
705
706 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
707 return 0;
708
709 /*
710 * For filesystems with a blocksize smaller than the pagesize
711 * we will often be called with the same page as last time and
712 * a consecutive offset. Optimize this special case.
713 */
714 if (bio->bi_vcnt > 0) {
715 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
716
717 if (page == prev->bv_page &&
718 offset == prev->bv_offset + prev->bv_len) {
719 unsigned int prev_bv_len = prev->bv_len;
720 prev->bv_len += len;
721
722 if (q->merge_bvec_fn) {
723 struct bvec_merge_data bvm = {
724 /* prev_bvec is already charged in
725 bi_size, discharge it in order to
726 simulate merging updated prev_bvec
727 as new bvec. */
728 .bi_bdev = bio->bi_bdev,
729 .bi_sector = bio->bi_iter.bi_sector,
730 .bi_size = bio->bi_iter.bi_size -
731 prev_bv_len,
732 .bi_rw = bio->bi_rw,
733 };
734
735 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
736 prev->bv_len -= len;
737 return 0;
738 }
739 }
740
741 goto done;
742 }
743 }
744
745 if (bio->bi_vcnt >= bio->bi_max_vecs)
746 return 0;
747
748 /*
749 * we might lose a segment or two here, but rather that than
750 * make this too complex.
751 */
752
753 while (bio->bi_phys_segments >= queue_max_segments(q)) {
754
755 if (retried_segments)
756 return 0;
757
758 retried_segments = 1;
759 blk_recount_segments(q, bio);
760 }
761
762 /*
763 * setup the new entry, we might clear it again later if we
764 * cannot add the page
765 */
766 bvec = &bio->bi_io_vec[bio->bi_vcnt];
767 bvec->bv_page = page;
768 bvec->bv_len = len;
769 bvec->bv_offset = offset;
770
771 /*
772 * if queue has other restrictions (eg varying max sector size
773 * depending on offset), it can specify a merge_bvec_fn in the
774 * queue to get further control
775 */
776 if (q->merge_bvec_fn) {
777 struct bvec_merge_data bvm = {
778 .bi_bdev = bio->bi_bdev,
779 .bi_sector = bio->bi_iter.bi_sector,
780 .bi_size = bio->bi_iter.bi_size,
781 .bi_rw = bio->bi_rw,
782 };
783
784 /*
785 * merge_bvec_fn() returns number of bytes it can accept
786 * at this offset
787 */
788 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
789 bvec->bv_page = NULL;
790 bvec->bv_len = 0;
791 bvec->bv_offset = 0;
792 return 0;
793 }
794 }
795
796 /* If we may be able to merge these biovecs, force a recount */
797 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
798 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
799
800 bio->bi_vcnt++;
801 bio->bi_phys_segments++;
802 done:
803 bio->bi_iter.bi_size += len;
804 return len;
805 }
806
807 /**
808 * bio_add_pc_page - attempt to add page to bio
809 * @q: the target queue
810 * @bio: destination bio
811 * @page: page to add
812 * @len: vec entry length
813 * @offset: vec entry offset
814 *
815 * Attempt to add a page to the bio_vec maplist. This can fail for a
816 * number of reasons, such as the bio being full or target block device
817 * limitations. The target block device must allow bio's up to PAGE_SIZE,
818 * so it is always possible to add a single page to an empty bio.
819 *
820 * This should only be used by REQ_PC bios.
821 */
822 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
823 unsigned int len, unsigned int offset)
824 {
825 return __bio_add_page(q, bio, page, len, offset,
826 queue_max_hw_sectors(q));
827 }
828 EXPORT_SYMBOL(bio_add_pc_page);
829
830 /**
831 * bio_add_page - attempt to add page to bio
832 * @bio: destination bio
833 * @page: page to add
834 * @len: vec entry length
835 * @offset: vec entry offset
836 *
837 * Attempt to add a page to the bio_vec maplist. This can fail for a
838 * number of reasons, such as the bio being full or target block device
839 * limitations. The target block device must allow bio's up to PAGE_SIZE,
840 * so it is always possible to add a single page to an empty bio.
841 */
842 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
843 unsigned int offset)
844 {
845 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
846 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
847 }
848 EXPORT_SYMBOL(bio_add_page);
849
850 struct submit_bio_ret {
851 struct completion event;
852 int error;
853 };
854
855 static void submit_bio_wait_endio(struct bio *bio, int error)
856 {
857 struct submit_bio_ret *ret = bio->bi_private;
858
859 ret->error = error;
860 complete(&ret->event);
861 }
862
863 /**
864 * submit_bio_wait - submit a bio, and wait until it completes
865 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
866 * @bio: The &struct bio which describes the I/O
867 *
868 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
869 * bio_endio() on failure.
870 */
871 int submit_bio_wait(int rw, struct bio *bio)
872 {
873 struct submit_bio_ret ret;
874
875 rw |= REQ_SYNC;
876 init_completion(&ret.event);
877 bio->bi_private = &ret;
878 bio->bi_end_io = submit_bio_wait_endio;
879 submit_bio(rw, bio);
880 wait_for_completion(&ret.event);
881
882 return ret.error;
883 }
884 EXPORT_SYMBOL(submit_bio_wait);
885
886 /**
887 * bio_advance - increment/complete a bio by some number of bytes
888 * @bio: bio to advance
889 * @bytes: number of bytes to complete
890 *
891 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
892 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
893 * be updated on the last bvec as well.
894 *
895 * @bio will then represent the remaining, uncompleted portion of the io.
896 */
897 void bio_advance(struct bio *bio, unsigned bytes)
898 {
899 if (bio_integrity(bio))
900 bio_integrity_advance(bio, bytes);
901
902 bio_advance_iter(bio, &bio->bi_iter, bytes);
903 }
904 EXPORT_SYMBOL(bio_advance);
905
906 /**
907 * bio_alloc_pages - allocates a single page for each bvec in a bio
908 * @bio: bio to allocate pages for
909 * @gfp_mask: flags for allocation
910 *
911 * Allocates pages up to @bio->bi_vcnt.
912 *
913 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
914 * freed.
915 */
916 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
917 {
918 int i;
919 struct bio_vec *bv;
920
921 bio_for_each_segment_all(bv, bio, i) {
922 bv->bv_page = alloc_page(gfp_mask);
923 if (!bv->bv_page) {
924 while (--bv >= bio->bi_io_vec)
925 __free_page(bv->bv_page);
926 return -ENOMEM;
927 }
928 }
929
930 return 0;
931 }
932 EXPORT_SYMBOL(bio_alloc_pages);
933
934 /**
935 * bio_copy_data - copy contents of data buffers from one chain of bios to
936 * another
937 * @src: source bio list
938 * @dst: destination bio list
939 *
940 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
941 * @src and @dst as linked lists of bios.
942 *
943 * Stops when it reaches the end of either @src or @dst - that is, copies
944 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
945 */
946 void bio_copy_data(struct bio *dst, struct bio *src)
947 {
948 struct bvec_iter src_iter, dst_iter;
949 struct bio_vec src_bv, dst_bv;
950 void *src_p, *dst_p;
951 unsigned bytes;
952
953 src_iter = src->bi_iter;
954 dst_iter = dst->bi_iter;
955
956 while (1) {
957 if (!src_iter.bi_size) {
958 src = src->bi_next;
959 if (!src)
960 break;
961
962 src_iter = src->bi_iter;
963 }
964
965 if (!dst_iter.bi_size) {
966 dst = dst->bi_next;
967 if (!dst)
968 break;
969
970 dst_iter = dst->bi_iter;
971 }
972
973 src_bv = bio_iter_iovec(src, src_iter);
974 dst_bv = bio_iter_iovec(dst, dst_iter);
975
976 bytes = min(src_bv.bv_len, dst_bv.bv_len);
977
978 src_p = kmap_atomic(src_bv.bv_page);
979 dst_p = kmap_atomic(dst_bv.bv_page);
980
981 memcpy(dst_p + dst_bv.bv_offset,
982 src_p + src_bv.bv_offset,
983 bytes);
984
985 kunmap_atomic(dst_p);
986 kunmap_atomic(src_p);
987
988 bio_advance_iter(src, &src_iter, bytes);
989 bio_advance_iter(dst, &dst_iter, bytes);
990 }
991 }
992 EXPORT_SYMBOL(bio_copy_data);
993
994 struct bio_map_data {
995 int nr_sgvecs;
996 int is_our_pages;
997 struct sg_iovec sgvecs[];
998 };
999
1000 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1001 struct sg_iovec *iov, int iov_count,
1002 int is_our_pages)
1003 {
1004 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1005 bmd->nr_sgvecs = iov_count;
1006 bmd->is_our_pages = is_our_pages;
1007 bio->bi_private = bmd;
1008 }
1009
1010 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
1011 unsigned int iov_count,
1012 gfp_t gfp_mask)
1013 {
1014 if (iov_count > UIO_MAXIOV)
1015 return NULL;
1016
1017 return kmalloc(sizeof(struct bio_map_data) +
1018 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1019 }
1020
1021 static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
1022 int to_user, int from_user, int do_free_page)
1023 {
1024 int ret = 0, i;
1025 struct bio_vec *bvec;
1026 int iov_idx = 0;
1027 unsigned int iov_off = 0;
1028
1029 bio_for_each_segment_all(bvec, bio, i) {
1030 char *bv_addr = page_address(bvec->bv_page);
1031 unsigned int bv_len = bvec->bv_len;
1032
1033 while (bv_len && iov_idx < iov_count) {
1034 unsigned int bytes;
1035 char __user *iov_addr;
1036
1037 bytes = min_t(unsigned int,
1038 iov[iov_idx].iov_len - iov_off, bv_len);
1039 iov_addr = iov[iov_idx].iov_base + iov_off;
1040
1041 if (!ret) {
1042 if (to_user)
1043 ret = copy_to_user(iov_addr, bv_addr,
1044 bytes);
1045
1046 if (from_user)
1047 ret = copy_from_user(bv_addr, iov_addr,
1048 bytes);
1049
1050 if (ret)
1051 ret = -EFAULT;
1052 }
1053
1054 bv_len -= bytes;
1055 bv_addr += bytes;
1056 iov_addr += bytes;
1057 iov_off += bytes;
1058
1059 if (iov[iov_idx].iov_len == iov_off) {
1060 iov_idx++;
1061 iov_off = 0;
1062 }
1063 }
1064
1065 if (do_free_page)
1066 __free_page(bvec->bv_page);
1067 }
1068
1069 return ret;
1070 }
1071
1072 /**
1073 * bio_uncopy_user - finish previously mapped bio
1074 * @bio: bio being terminated
1075 *
1076 * Free pages allocated from bio_copy_user() and write back data
1077 * to user space in case of a read.
1078 */
1079 int bio_uncopy_user(struct bio *bio)
1080 {
1081 struct bio_map_data *bmd = bio->bi_private;
1082 struct bio_vec *bvec;
1083 int ret = 0, i;
1084
1085 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1086 /*
1087 * if we're in a workqueue, the request is orphaned, so
1088 * don't copy into a random user address space, just free.
1089 */
1090 if (current->mm)
1091 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1092 bio_data_dir(bio) == READ,
1093 0, bmd->is_our_pages);
1094 else if (bmd->is_our_pages)
1095 bio_for_each_segment_all(bvec, bio, i)
1096 __free_page(bvec->bv_page);
1097 }
1098 kfree(bmd);
1099 bio_put(bio);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(bio_uncopy_user);
1103
1104 /**
1105 * bio_copy_user_iov - copy user data to bio
1106 * @q: destination block queue
1107 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1108 * @iov: the iovec.
1109 * @iov_count: number of elements in the iovec
1110 * @write_to_vm: bool indicating writing to pages or not
1111 * @gfp_mask: memory allocation flags
1112 *
1113 * Prepares and returns a bio for indirect user io, bouncing data
1114 * to/from kernel pages as necessary. Must be paired with
1115 * call bio_uncopy_user() on io completion.
1116 */
1117 struct bio *bio_copy_user_iov(struct request_queue *q,
1118 struct rq_map_data *map_data,
1119 struct sg_iovec *iov, int iov_count,
1120 int write_to_vm, gfp_t gfp_mask)
1121 {
1122 struct bio_map_data *bmd;
1123 struct bio_vec *bvec;
1124 struct page *page;
1125 struct bio *bio;
1126 int i, ret;
1127 int nr_pages = 0;
1128 unsigned int len = 0;
1129 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1130
1131 for (i = 0; i < iov_count; i++) {
1132 unsigned long uaddr;
1133 unsigned long end;
1134 unsigned long start;
1135
1136 uaddr = (unsigned long)iov[i].iov_base;
1137 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138 start = uaddr >> PAGE_SHIFT;
1139
1140 /*
1141 * Overflow, abort
1142 */
1143 if (end < start)
1144 return ERR_PTR(-EINVAL);
1145
1146 nr_pages += end - start;
1147 len += iov[i].iov_len;
1148 }
1149
1150 if (offset)
1151 nr_pages++;
1152
1153 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1154 if (!bmd)
1155 return ERR_PTR(-ENOMEM);
1156
1157 ret = -ENOMEM;
1158 bio = bio_kmalloc(gfp_mask, nr_pages);
1159 if (!bio)
1160 goto out_bmd;
1161
1162 if (!write_to_vm)
1163 bio->bi_rw |= REQ_WRITE;
1164
1165 ret = 0;
1166
1167 if (map_data) {
1168 nr_pages = 1 << map_data->page_order;
1169 i = map_data->offset / PAGE_SIZE;
1170 }
1171 while (len) {
1172 unsigned int bytes = PAGE_SIZE;
1173
1174 bytes -= offset;
1175
1176 if (bytes > len)
1177 bytes = len;
1178
1179 if (map_data) {
1180 if (i == map_data->nr_entries * nr_pages) {
1181 ret = -ENOMEM;
1182 break;
1183 }
1184
1185 page = map_data->pages[i / nr_pages];
1186 page += (i % nr_pages);
1187
1188 i++;
1189 } else {
1190 page = alloc_page(q->bounce_gfp | gfp_mask);
1191 if (!page) {
1192 ret = -ENOMEM;
1193 break;
1194 }
1195 }
1196
1197 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1198 break;
1199
1200 len -= bytes;
1201 offset = 0;
1202 }
1203
1204 if (ret)
1205 goto cleanup;
1206
1207 /*
1208 * success
1209 */
1210 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1211 (map_data && map_data->from_user)) {
1212 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1213 if (ret)
1214 goto cleanup;
1215 }
1216
1217 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1218 return bio;
1219 cleanup:
1220 if (!map_data)
1221 bio_for_each_segment_all(bvec, bio, i)
1222 __free_page(bvec->bv_page);
1223
1224 bio_put(bio);
1225 out_bmd:
1226 kfree(bmd);
1227 return ERR_PTR(ret);
1228 }
1229
1230 /**
1231 * bio_copy_user - copy user data to bio
1232 * @q: destination block queue
1233 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1234 * @uaddr: start of user address
1235 * @len: length in bytes
1236 * @write_to_vm: bool indicating writing to pages or not
1237 * @gfp_mask: memory allocation flags
1238 *
1239 * Prepares and returns a bio for indirect user io, bouncing data
1240 * to/from kernel pages as necessary. Must be paired with
1241 * call bio_uncopy_user() on io completion.
1242 */
1243 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1244 unsigned long uaddr, unsigned int len,
1245 int write_to_vm, gfp_t gfp_mask)
1246 {
1247 struct sg_iovec iov;
1248
1249 iov.iov_base = (void __user *)uaddr;
1250 iov.iov_len = len;
1251
1252 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1253 }
1254 EXPORT_SYMBOL(bio_copy_user);
1255
1256 static struct bio *__bio_map_user_iov(struct request_queue *q,
1257 struct block_device *bdev,
1258 struct sg_iovec *iov, int iov_count,
1259 int write_to_vm, gfp_t gfp_mask)
1260 {
1261 int i, j;
1262 int nr_pages = 0;
1263 struct page **pages;
1264 struct bio *bio;
1265 int cur_page = 0;
1266 int ret, offset;
1267
1268 for (i = 0; i < iov_count; i++) {
1269 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1270 unsigned long len = iov[i].iov_len;
1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274 /*
1275 * Overflow, abort
1276 */
1277 if (end < start)
1278 return ERR_PTR(-EINVAL);
1279
1280 nr_pages += end - start;
1281 /*
1282 * buffer must be aligned to at least hardsector size for now
1283 */
1284 if (uaddr & queue_dma_alignment(q))
1285 return ERR_PTR(-EINVAL);
1286 }
1287
1288 if (!nr_pages)
1289 return ERR_PTR(-EINVAL);
1290
1291 bio = bio_kmalloc(gfp_mask, nr_pages);
1292 if (!bio)
1293 return ERR_PTR(-ENOMEM);
1294
1295 ret = -ENOMEM;
1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297 if (!pages)
1298 goto out;
1299
1300 for (i = 0; i < iov_count; i++) {
1301 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1302 unsigned long len = iov[i].iov_len;
1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 unsigned long start = uaddr >> PAGE_SHIFT;
1305 const int local_nr_pages = end - start;
1306 const int page_limit = cur_page + local_nr_pages;
1307
1308 ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 write_to_vm, &pages[cur_page]);
1310 if (ret < local_nr_pages) {
1311 ret = -EFAULT;
1312 goto out_unmap;
1313 }
1314
1315 offset = uaddr & ~PAGE_MASK;
1316 for (j = cur_page; j < page_limit; j++) {
1317 unsigned int bytes = PAGE_SIZE - offset;
1318
1319 if (len <= 0)
1320 break;
1321
1322 if (bytes > len)
1323 bytes = len;
1324
1325 /*
1326 * sorry...
1327 */
1328 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1329 bytes)
1330 break;
1331
1332 len -= bytes;
1333 offset = 0;
1334 }
1335
1336 cur_page = j;
1337 /*
1338 * release the pages we didn't map into the bio, if any
1339 */
1340 while (j < page_limit)
1341 page_cache_release(pages[j++]);
1342 }
1343
1344 kfree(pages);
1345
1346 /*
1347 * set data direction, and check if mapped pages need bouncing
1348 */
1349 if (!write_to_vm)
1350 bio->bi_rw |= REQ_WRITE;
1351
1352 bio->bi_bdev = bdev;
1353 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1354 return bio;
1355
1356 out_unmap:
1357 for (i = 0; i < nr_pages; i++) {
1358 if(!pages[i])
1359 break;
1360 page_cache_release(pages[i]);
1361 }
1362 out:
1363 kfree(pages);
1364 bio_put(bio);
1365 return ERR_PTR(ret);
1366 }
1367
1368 /**
1369 * bio_map_user - map user address into bio
1370 * @q: the struct request_queue for the bio
1371 * @bdev: destination block device
1372 * @uaddr: start of user address
1373 * @len: length in bytes
1374 * @write_to_vm: bool indicating writing to pages or not
1375 * @gfp_mask: memory allocation flags
1376 *
1377 * Map the user space address into a bio suitable for io to a block
1378 * device. Returns an error pointer in case of error.
1379 */
1380 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1381 unsigned long uaddr, unsigned int len, int write_to_vm,
1382 gfp_t gfp_mask)
1383 {
1384 struct sg_iovec iov;
1385
1386 iov.iov_base = (void __user *)uaddr;
1387 iov.iov_len = len;
1388
1389 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1390 }
1391 EXPORT_SYMBOL(bio_map_user);
1392
1393 /**
1394 * bio_map_user_iov - map user sg_iovec table into bio
1395 * @q: the struct request_queue for the bio
1396 * @bdev: destination block device
1397 * @iov: the iovec.
1398 * @iov_count: number of elements in the iovec
1399 * @write_to_vm: bool indicating writing to pages or not
1400 * @gfp_mask: memory allocation flags
1401 *
1402 * Map the user space address into a bio suitable for io to a block
1403 * device. Returns an error pointer in case of error.
1404 */
1405 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1406 struct sg_iovec *iov, int iov_count,
1407 int write_to_vm, gfp_t gfp_mask)
1408 {
1409 struct bio *bio;
1410
1411 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1412 gfp_mask);
1413 if (IS_ERR(bio))
1414 return bio;
1415
1416 /*
1417 * subtle -- if __bio_map_user() ended up bouncing a bio,
1418 * it would normally disappear when its bi_end_io is run.
1419 * however, we need it for the unmap, so grab an extra
1420 * reference to it
1421 */
1422 bio_get(bio);
1423
1424 return bio;
1425 }
1426
1427 static void __bio_unmap_user(struct bio *bio)
1428 {
1429 struct bio_vec *bvec;
1430 int i;
1431
1432 /*
1433 * make sure we dirty pages we wrote to
1434 */
1435 bio_for_each_segment_all(bvec, bio, i) {
1436 if (bio_data_dir(bio) == READ)
1437 set_page_dirty_lock(bvec->bv_page);
1438
1439 page_cache_release(bvec->bv_page);
1440 }
1441
1442 bio_put(bio);
1443 }
1444
1445 /**
1446 * bio_unmap_user - unmap a bio
1447 * @bio: the bio being unmapped
1448 *
1449 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1450 * a process context.
1451 *
1452 * bio_unmap_user() may sleep.
1453 */
1454 void bio_unmap_user(struct bio *bio)
1455 {
1456 __bio_unmap_user(bio);
1457 bio_put(bio);
1458 }
1459 EXPORT_SYMBOL(bio_unmap_user);
1460
1461 static void bio_map_kern_endio(struct bio *bio, int err)
1462 {
1463 bio_put(bio);
1464 }
1465
1466 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1467 unsigned int len, gfp_t gfp_mask)
1468 {
1469 unsigned long kaddr = (unsigned long)data;
1470 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 unsigned long start = kaddr >> PAGE_SHIFT;
1472 const int nr_pages = end - start;
1473 int offset, i;
1474 struct bio *bio;
1475
1476 bio = bio_kmalloc(gfp_mask, nr_pages);
1477 if (!bio)
1478 return ERR_PTR(-ENOMEM);
1479
1480 offset = offset_in_page(kaddr);
1481 for (i = 0; i < nr_pages; i++) {
1482 unsigned int bytes = PAGE_SIZE - offset;
1483
1484 if (len <= 0)
1485 break;
1486
1487 if (bytes > len)
1488 bytes = len;
1489
1490 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1491 offset) < bytes)
1492 break;
1493
1494 data += bytes;
1495 len -= bytes;
1496 offset = 0;
1497 }
1498
1499 bio->bi_end_io = bio_map_kern_endio;
1500 return bio;
1501 }
1502
1503 /**
1504 * bio_map_kern - map kernel address into bio
1505 * @q: the struct request_queue for the bio
1506 * @data: pointer to buffer to map
1507 * @len: length in bytes
1508 * @gfp_mask: allocation flags for bio allocation
1509 *
1510 * Map the kernel address into a bio suitable for io to a block
1511 * device. Returns an error pointer in case of error.
1512 */
1513 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1514 gfp_t gfp_mask)
1515 {
1516 struct bio *bio;
1517
1518 bio = __bio_map_kern(q, data, len, gfp_mask);
1519 if (IS_ERR(bio))
1520 return bio;
1521
1522 if (bio->bi_iter.bi_size == len)
1523 return bio;
1524
1525 /*
1526 * Don't support partial mappings.
1527 */
1528 bio_put(bio);
1529 return ERR_PTR(-EINVAL);
1530 }
1531 EXPORT_SYMBOL(bio_map_kern);
1532
1533 static void bio_copy_kern_endio(struct bio *bio, int err)
1534 {
1535 struct bio_vec *bvec;
1536 const int read = bio_data_dir(bio) == READ;
1537 struct bio_map_data *bmd = bio->bi_private;
1538 int i;
1539 char *p = bmd->sgvecs[0].iov_base;
1540
1541 bio_for_each_segment_all(bvec, bio, i) {
1542 char *addr = page_address(bvec->bv_page);
1543
1544 if (read)
1545 memcpy(p, addr, bvec->bv_len);
1546
1547 __free_page(bvec->bv_page);
1548 p += bvec->bv_len;
1549 }
1550
1551 kfree(bmd);
1552 bio_put(bio);
1553 }
1554
1555 /**
1556 * bio_copy_kern - copy kernel address into bio
1557 * @q: the struct request_queue for the bio
1558 * @data: pointer to buffer to copy
1559 * @len: length in bytes
1560 * @gfp_mask: allocation flags for bio and page allocation
1561 * @reading: data direction is READ
1562 *
1563 * copy the kernel address into a bio suitable for io to a block
1564 * device. Returns an error pointer in case of error.
1565 */
1566 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1567 gfp_t gfp_mask, int reading)
1568 {
1569 struct bio *bio;
1570 struct bio_vec *bvec;
1571 int i;
1572
1573 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1574 if (IS_ERR(bio))
1575 return bio;
1576
1577 if (!reading) {
1578 void *p = data;
1579
1580 bio_for_each_segment_all(bvec, bio, i) {
1581 char *addr = page_address(bvec->bv_page);
1582
1583 memcpy(addr, p, bvec->bv_len);
1584 p += bvec->bv_len;
1585 }
1586 }
1587
1588 bio->bi_end_io = bio_copy_kern_endio;
1589
1590 return bio;
1591 }
1592 EXPORT_SYMBOL(bio_copy_kern);
1593
1594 /*
1595 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1596 * for performing direct-IO in BIOs.
1597 *
1598 * The problem is that we cannot run set_page_dirty() from interrupt context
1599 * because the required locks are not interrupt-safe. So what we can do is to
1600 * mark the pages dirty _before_ performing IO. And in interrupt context,
1601 * check that the pages are still dirty. If so, fine. If not, redirty them
1602 * in process context.
1603 *
1604 * We special-case compound pages here: normally this means reads into hugetlb
1605 * pages. The logic in here doesn't really work right for compound pages
1606 * because the VM does not uniformly chase down the head page in all cases.
1607 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1608 * handle them at all. So we skip compound pages here at an early stage.
1609 *
1610 * Note that this code is very hard to test under normal circumstances because
1611 * direct-io pins the pages with get_user_pages(). This makes
1612 * is_page_cache_freeable return false, and the VM will not clean the pages.
1613 * But other code (eg, flusher threads) could clean the pages if they are mapped
1614 * pagecache.
1615 *
1616 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1617 * deferred bio dirtying paths.
1618 */
1619
1620 /*
1621 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1622 */
1623 void bio_set_pages_dirty(struct bio *bio)
1624 {
1625 struct bio_vec *bvec;
1626 int i;
1627
1628 bio_for_each_segment_all(bvec, bio, i) {
1629 struct page *page = bvec->bv_page;
1630
1631 if (page && !PageCompound(page))
1632 set_page_dirty_lock(page);
1633 }
1634 }
1635
1636 static void bio_release_pages(struct bio *bio)
1637 {
1638 struct bio_vec *bvec;
1639 int i;
1640
1641 bio_for_each_segment_all(bvec, bio, i) {
1642 struct page *page = bvec->bv_page;
1643
1644 if (page)
1645 put_page(page);
1646 }
1647 }
1648
1649 /*
1650 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1651 * If they are, then fine. If, however, some pages are clean then they must
1652 * have been written out during the direct-IO read. So we take another ref on
1653 * the BIO and the offending pages and re-dirty the pages in process context.
1654 *
1655 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1656 * here on. It will run one page_cache_release() against each page and will
1657 * run one bio_put() against the BIO.
1658 */
1659
1660 static void bio_dirty_fn(struct work_struct *work);
1661
1662 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1663 static DEFINE_SPINLOCK(bio_dirty_lock);
1664 static struct bio *bio_dirty_list;
1665
1666 /*
1667 * This runs in process context
1668 */
1669 static void bio_dirty_fn(struct work_struct *work)
1670 {
1671 unsigned long flags;
1672 struct bio *bio;
1673
1674 spin_lock_irqsave(&bio_dirty_lock, flags);
1675 bio = bio_dirty_list;
1676 bio_dirty_list = NULL;
1677 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1678
1679 while (bio) {
1680 struct bio *next = bio->bi_private;
1681
1682 bio_set_pages_dirty(bio);
1683 bio_release_pages(bio);
1684 bio_put(bio);
1685 bio = next;
1686 }
1687 }
1688
1689 void bio_check_pages_dirty(struct bio *bio)
1690 {
1691 struct bio_vec *bvec;
1692 int nr_clean_pages = 0;
1693 int i;
1694
1695 bio_for_each_segment_all(bvec, bio, i) {
1696 struct page *page = bvec->bv_page;
1697
1698 if (PageDirty(page) || PageCompound(page)) {
1699 page_cache_release(page);
1700 bvec->bv_page = NULL;
1701 } else {
1702 nr_clean_pages++;
1703 }
1704 }
1705
1706 if (nr_clean_pages) {
1707 unsigned long flags;
1708
1709 spin_lock_irqsave(&bio_dirty_lock, flags);
1710 bio->bi_private = bio_dirty_list;
1711 bio_dirty_list = bio;
1712 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1713 schedule_work(&bio_dirty_work);
1714 } else {
1715 bio_put(bio);
1716 }
1717 }
1718
1719 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1720 void bio_flush_dcache_pages(struct bio *bi)
1721 {
1722 struct bio_vec bvec;
1723 struct bvec_iter iter;
1724
1725 bio_for_each_segment(bvec, bi, iter)
1726 flush_dcache_page(bvec.bv_page);
1727 }
1728 EXPORT_SYMBOL(bio_flush_dcache_pages);
1729 #endif
1730
1731 /**
1732 * bio_endio - end I/O on a bio
1733 * @bio: bio
1734 * @error: error, if any
1735 *
1736 * Description:
1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1738 * preferred way to end I/O on a bio, it takes care of clearing
1739 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1740 * established -Exxxx (-EIO, for instance) error values in case
1741 * something went wrong. No one should call bi_end_io() directly on a
1742 * bio unless they own it and thus know that it has an end_io
1743 * function.
1744 **/
1745 void bio_endio(struct bio *bio, int error)
1746 {
1747 while (bio) {
1748 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1749
1750 if (error)
1751 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1752 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1753 error = -EIO;
1754
1755 if (!atomic_dec_and_test(&bio->bi_remaining))
1756 return;
1757
1758 /*
1759 * Need to have a real endio function for chained bios,
1760 * otherwise various corner cases will break (like stacking
1761 * block devices that save/restore bi_end_io) - however, we want
1762 * to avoid unbounded recursion and blowing the stack. Tail call
1763 * optimization would handle this, but compiling with frame
1764 * pointers also disables gcc's sibling call optimization.
1765 */
1766 if (bio->bi_end_io == bio_chain_endio) {
1767 struct bio *parent = bio->bi_private;
1768 bio_put(bio);
1769 bio = parent;
1770 } else {
1771 if (bio->bi_end_io)
1772 bio->bi_end_io(bio, error);
1773 bio = NULL;
1774 }
1775 }
1776 }
1777 EXPORT_SYMBOL(bio_endio);
1778
1779 /**
1780 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1781 * @bio: bio
1782 * @error: error, if any
1783 *
1784 * For code that has saved and restored bi_end_io; thing hard before using this
1785 * function, probably you should've cloned the entire bio.
1786 **/
1787 void bio_endio_nodec(struct bio *bio, int error)
1788 {
1789 atomic_inc(&bio->bi_remaining);
1790 bio_endio(bio, error);
1791 }
1792 EXPORT_SYMBOL(bio_endio_nodec);
1793
1794 /**
1795 * bio_split - split a bio
1796 * @bio: bio to split
1797 * @sectors: number of sectors to split from the front of @bio
1798 * @gfp: gfp mask
1799 * @bs: bio set to allocate from
1800 *
1801 * Allocates and returns a new bio which represents @sectors from the start of
1802 * @bio, and updates @bio to represent the remaining sectors.
1803 *
1804 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1805 * responsibility to ensure that @bio is not freed before the split.
1806 */
1807 struct bio *bio_split(struct bio *bio, int sectors,
1808 gfp_t gfp, struct bio_set *bs)
1809 {
1810 struct bio *split = NULL;
1811
1812 BUG_ON(sectors <= 0);
1813 BUG_ON(sectors >= bio_sectors(bio));
1814
1815 split = bio_clone_fast(bio, gfp, bs);
1816 if (!split)
1817 return NULL;
1818
1819 split->bi_iter.bi_size = sectors << 9;
1820
1821 if (bio_integrity(split))
1822 bio_integrity_trim(split, 0, sectors);
1823
1824 bio_advance(bio, split->bi_iter.bi_size);
1825
1826 return split;
1827 }
1828 EXPORT_SYMBOL(bio_split);
1829
1830 /**
1831 * bio_trim - trim a bio
1832 * @bio: bio to trim
1833 * @offset: number of sectors to trim from the front of @bio
1834 * @size: size we want to trim @bio to, in sectors
1835 */
1836 void bio_trim(struct bio *bio, int offset, int size)
1837 {
1838 /* 'bio' is a cloned bio which we need to trim to match
1839 * the given offset and size.
1840 */
1841
1842 size <<= 9;
1843 if (offset == 0 && size == bio->bi_iter.bi_size)
1844 return;
1845
1846 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1847
1848 bio_advance(bio, offset << 9);
1849
1850 bio->bi_iter.bi_size = size;
1851 }
1852 EXPORT_SYMBOL_GPL(bio_trim);
1853
1854 /*
1855 * create memory pools for biovec's in a bio_set.
1856 * use the global biovec slabs created for general use.
1857 */
1858 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1859 {
1860 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1861
1862 return mempool_create_slab_pool(pool_entries, bp->slab);
1863 }
1864
1865 void bioset_free(struct bio_set *bs)
1866 {
1867 if (bs->rescue_workqueue)
1868 destroy_workqueue(bs->rescue_workqueue);
1869
1870 if (bs->bio_pool)
1871 mempool_destroy(bs->bio_pool);
1872
1873 if (bs->bvec_pool)
1874 mempool_destroy(bs->bvec_pool);
1875
1876 bioset_integrity_free(bs);
1877 bio_put_slab(bs);
1878
1879 kfree(bs);
1880 }
1881 EXPORT_SYMBOL(bioset_free);
1882
1883 /**
1884 * bioset_create - Create a bio_set
1885 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1886 * @front_pad: Number of bytes to allocate in front of the returned bio
1887 *
1888 * Description:
1889 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1890 * to ask for a number of bytes to be allocated in front of the bio.
1891 * Front pad allocation is useful for embedding the bio inside
1892 * another structure, to avoid allocating extra data to go with the bio.
1893 * Note that the bio must be embedded at the END of that structure always,
1894 * or things will break badly.
1895 */
1896 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1897 {
1898 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1899 struct bio_set *bs;
1900
1901 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1902 if (!bs)
1903 return NULL;
1904
1905 bs->front_pad = front_pad;
1906
1907 spin_lock_init(&bs->rescue_lock);
1908 bio_list_init(&bs->rescue_list);
1909 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1910
1911 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1912 if (!bs->bio_slab) {
1913 kfree(bs);
1914 return NULL;
1915 }
1916
1917 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1918 if (!bs->bio_pool)
1919 goto bad;
1920
1921 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1922 if (!bs->bvec_pool)
1923 goto bad;
1924
1925 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1926 if (!bs->rescue_workqueue)
1927 goto bad;
1928
1929 return bs;
1930 bad:
1931 bioset_free(bs);
1932 return NULL;
1933 }
1934 EXPORT_SYMBOL(bioset_create);
1935
1936 #ifdef CONFIG_BLK_CGROUP
1937 /**
1938 * bio_associate_current - associate a bio with %current
1939 * @bio: target bio
1940 *
1941 * Associate @bio with %current if it hasn't been associated yet. Block
1942 * layer will treat @bio as if it were issued by %current no matter which
1943 * task actually issues it.
1944 *
1945 * This function takes an extra reference of @task's io_context and blkcg
1946 * which will be put when @bio is released. The caller must own @bio,
1947 * ensure %current->io_context exists, and is responsible for synchronizing
1948 * calls to this function.
1949 */
1950 int bio_associate_current(struct bio *bio)
1951 {
1952 struct io_context *ioc;
1953 struct cgroup_subsys_state *css;
1954
1955 if (bio->bi_ioc)
1956 return -EBUSY;
1957
1958 ioc = current->io_context;
1959 if (!ioc)
1960 return -ENOENT;
1961
1962 /* acquire active ref on @ioc and associate */
1963 get_io_context_active(ioc);
1964 bio->bi_ioc = ioc;
1965
1966 /* associate blkcg if exists */
1967 rcu_read_lock();
1968 css = task_css(current, blkio_subsys_id);
1969 if (css && css_tryget(css))
1970 bio->bi_css = css;
1971 rcu_read_unlock();
1972
1973 return 0;
1974 }
1975
1976 /**
1977 * bio_disassociate_task - undo bio_associate_current()
1978 * @bio: target bio
1979 */
1980 void bio_disassociate_task(struct bio *bio)
1981 {
1982 if (bio->bi_ioc) {
1983 put_io_context(bio->bi_ioc);
1984 bio->bi_ioc = NULL;
1985 }
1986 if (bio->bi_css) {
1987 css_put(bio->bi_css);
1988 bio->bi_css = NULL;
1989 }
1990 }
1991
1992 #endif /* CONFIG_BLK_CGROUP */
1993
1994 static void __init biovec_init_slabs(void)
1995 {
1996 int i;
1997
1998 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1999 int size;
2000 struct biovec_slab *bvs = bvec_slabs + i;
2001
2002 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2003 bvs->slab = NULL;
2004 continue;
2005 }
2006
2007 size = bvs->nr_vecs * sizeof(struct bio_vec);
2008 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2009 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2010 }
2011 }
2012
2013 static int __init init_bio(void)
2014 {
2015 bio_slab_max = 2;
2016 bio_slab_nr = 0;
2017 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2018 if (!bio_slabs)
2019 panic("bio: can't allocate bios\n");
2020
2021 bio_integrity_init();
2022 biovec_init_slabs();
2023
2024 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2025 if (!fs_bio_set)
2026 panic("bio: can't allocate bios\n");
2027
2028 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2029 panic("bio: can't create integrity pool\n");
2030
2031 return 0;
2032 }
2033 subsys_initcall(init_bio);
This page took 0.101344 seconds and 5 git commands to generate.