block: Kill bio_segments()/bi_vcnt usage
[deliverable/linux.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, pool);
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175 }
176
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
179 {
180 struct bio_vec *bvl;
181
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 bvl = mempool_alloc(pool, gfp_mask);
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219 /*
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
223 */
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226 /*
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
229 */
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
237 return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242 bio_disassociate_task(bio);
243
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
256 if (bio_flagged(bio, BIO_OWNS_VEC))
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290 void bio_reset(struct bio *bio)
291 {
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294 __bio_free(bio);
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316 }
317
318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348
349 /**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
353 * @bs: the bio_set to allocate from.
354 *
355 * Description:
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386 gfp_t saved_gfp = gfp_mask;
387 unsigned front_pad;
388 unsigned inline_vecs;
389 unsigned long idx = BIO_POOL_NONE;
390 struct bio_vec *bvl = NULL;
391 struct bio *bio;
392 void *p;
393
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
428 p = mempool_alloc(bs->bio_pool, gfp_mask);
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
439 if (unlikely(!p))
440 return NULL;
441
442 bio = p + front_pad;
443 bio_init(bio);
444
445 if (nr_iovecs > inline_vecs) {
446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451 }
452
453 if (unlikely(!bvl))
454 goto err_free;
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
459 }
460
461 bio->bi_pool = bs;
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
464 bio->bi_io_vec = bvl;
465 return bio;
466
467 err_free:
468 mempool_free(p, bs->bio_pool);
469 return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472
473 void zero_fill_bio(struct bio *bio)
474 {
475 unsigned long flags;
476 struct bio_vec bv;
477 struct bvec_iter iter;
478
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
483 bvec_kunmap_irq(data, &flags);
484 }
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487
488 /**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495 **/
496 void bio_put(struct bio *bio)
497 {
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507
508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516
517 /**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529 bio_src->bi_max_vecs * sizeof(struct bio_vec));
530
531 /*
532 * most users will be overriding ->bi_bdev with a new target,
533 * so we don't set nor calculate new physical/hw segment counts here
534 */
535 bio->bi_bdev = bio_src->bi_bdev;
536 bio->bi_flags |= 1 << BIO_CLONED;
537 bio->bi_rw = bio_src->bi_rw;
538 bio->bi_vcnt = bio_src->bi_vcnt;
539 bio->bi_iter = bio_src->bi_iter;
540 }
541 EXPORT_SYMBOL(__bio_clone);
542
543 /**
544 * bio_clone_bioset - clone a bio
545 * @bio: bio to clone
546 * @gfp_mask: allocation priority
547 * @bs: bio_set to allocate from
548 *
549 * Like __bio_clone, only also allocates the returned bio
550 */
551 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
552 struct bio_set *bs)
553 {
554 struct bio *b;
555
556 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
557 if (!b)
558 return NULL;
559
560 __bio_clone(b, bio);
561
562 if (bio_integrity(bio)) {
563 int ret;
564
565 ret = bio_integrity_clone(b, bio, gfp_mask);
566
567 if (ret < 0) {
568 bio_put(b);
569 return NULL;
570 }
571 }
572
573 return b;
574 }
575 EXPORT_SYMBOL(bio_clone_bioset);
576
577 /**
578 * bio_get_nr_vecs - return approx number of vecs
579 * @bdev: I/O target
580 *
581 * Return the approximate number of pages we can send to this target.
582 * There's no guarantee that you will be able to fit this number of pages
583 * into a bio, it does not account for dynamic restrictions that vary
584 * on offset.
585 */
586 int bio_get_nr_vecs(struct block_device *bdev)
587 {
588 struct request_queue *q = bdev_get_queue(bdev);
589 int nr_pages;
590
591 nr_pages = min_t(unsigned,
592 queue_max_segments(q),
593 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
594
595 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
596
597 }
598 EXPORT_SYMBOL(bio_get_nr_vecs);
599
600 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
601 *page, unsigned int len, unsigned int offset,
602 unsigned int max_sectors)
603 {
604 int retried_segments = 0;
605 struct bio_vec *bvec;
606
607 /*
608 * cloned bio must not modify vec list
609 */
610 if (unlikely(bio_flagged(bio, BIO_CLONED)))
611 return 0;
612
613 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
614 return 0;
615
616 /*
617 * For filesystems with a blocksize smaller than the pagesize
618 * we will often be called with the same page as last time and
619 * a consecutive offset. Optimize this special case.
620 */
621 if (bio->bi_vcnt > 0) {
622 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
623
624 if (page == prev->bv_page &&
625 offset == prev->bv_offset + prev->bv_len) {
626 unsigned int prev_bv_len = prev->bv_len;
627 prev->bv_len += len;
628
629 if (q->merge_bvec_fn) {
630 struct bvec_merge_data bvm = {
631 /* prev_bvec is already charged in
632 bi_size, discharge it in order to
633 simulate merging updated prev_bvec
634 as new bvec. */
635 .bi_bdev = bio->bi_bdev,
636 .bi_sector = bio->bi_iter.bi_sector,
637 .bi_size = bio->bi_iter.bi_size -
638 prev_bv_len,
639 .bi_rw = bio->bi_rw,
640 };
641
642 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
643 prev->bv_len -= len;
644 return 0;
645 }
646 }
647
648 goto done;
649 }
650 }
651
652 if (bio->bi_vcnt >= bio->bi_max_vecs)
653 return 0;
654
655 /*
656 * we might lose a segment or two here, but rather that than
657 * make this too complex.
658 */
659
660 while (bio->bi_phys_segments >= queue_max_segments(q)) {
661
662 if (retried_segments)
663 return 0;
664
665 retried_segments = 1;
666 blk_recount_segments(q, bio);
667 }
668
669 /*
670 * setup the new entry, we might clear it again later if we
671 * cannot add the page
672 */
673 bvec = &bio->bi_io_vec[bio->bi_vcnt];
674 bvec->bv_page = page;
675 bvec->bv_len = len;
676 bvec->bv_offset = offset;
677
678 /*
679 * if queue has other restrictions (eg varying max sector size
680 * depending on offset), it can specify a merge_bvec_fn in the
681 * queue to get further control
682 */
683 if (q->merge_bvec_fn) {
684 struct bvec_merge_data bvm = {
685 .bi_bdev = bio->bi_bdev,
686 .bi_sector = bio->bi_iter.bi_sector,
687 .bi_size = bio->bi_iter.bi_size,
688 .bi_rw = bio->bi_rw,
689 };
690
691 /*
692 * merge_bvec_fn() returns number of bytes it can accept
693 * at this offset
694 */
695 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
696 bvec->bv_page = NULL;
697 bvec->bv_len = 0;
698 bvec->bv_offset = 0;
699 return 0;
700 }
701 }
702
703 /* If we may be able to merge these biovecs, force a recount */
704 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
705 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
706
707 bio->bi_vcnt++;
708 bio->bi_phys_segments++;
709 done:
710 bio->bi_iter.bi_size += len;
711 return len;
712 }
713
714 /**
715 * bio_add_pc_page - attempt to add page to bio
716 * @q: the target queue
717 * @bio: destination bio
718 * @page: page to add
719 * @len: vec entry length
720 * @offset: vec entry offset
721 *
722 * Attempt to add a page to the bio_vec maplist. This can fail for a
723 * number of reasons, such as the bio being full or target block device
724 * limitations. The target block device must allow bio's up to PAGE_SIZE,
725 * so it is always possible to add a single page to an empty bio.
726 *
727 * This should only be used by REQ_PC bios.
728 */
729 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
730 unsigned int len, unsigned int offset)
731 {
732 return __bio_add_page(q, bio, page, len, offset,
733 queue_max_hw_sectors(q));
734 }
735 EXPORT_SYMBOL(bio_add_pc_page);
736
737 /**
738 * bio_add_page - attempt to add page to bio
739 * @bio: destination bio
740 * @page: page to add
741 * @len: vec entry length
742 * @offset: vec entry offset
743 *
744 * Attempt to add a page to the bio_vec maplist. This can fail for a
745 * number of reasons, such as the bio being full or target block device
746 * limitations. The target block device must allow bio's up to PAGE_SIZE,
747 * so it is always possible to add a single page to an empty bio.
748 */
749 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
750 unsigned int offset)
751 {
752 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
753 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
754 }
755 EXPORT_SYMBOL(bio_add_page);
756
757 struct submit_bio_ret {
758 struct completion event;
759 int error;
760 };
761
762 static void submit_bio_wait_endio(struct bio *bio, int error)
763 {
764 struct submit_bio_ret *ret = bio->bi_private;
765
766 ret->error = error;
767 complete(&ret->event);
768 }
769
770 /**
771 * submit_bio_wait - submit a bio, and wait until it completes
772 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
773 * @bio: The &struct bio which describes the I/O
774 *
775 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
776 * bio_endio() on failure.
777 */
778 int submit_bio_wait(int rw, struct bio *bio)
779 {
780 struct submit_bio_ret ret;
781
782 rw |= REQ_SYNC;
783 init_completion(&ret.event);
784 bio->bi_private = &ret;
785 bio->bi_end_io = submit_bio_wait_endio;
786 submit_bio(rw, bio);
787 wait_for_completion(&ret.event);
788
789 return ret.error;
790 }
791 EXPORT_SYMBOL(submit_bio_wait);
792
793 /**
794 * bio_advance - increment/complete a bio by some number of bytes
795 * @bio: bio to advance
796 * @bytes: number of bytes to complete
797 *
798 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
799 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
800 * be updated on the last bvec as well.
801 *
802 * @bio will then represent the remaining, uncompleted portion of the io.
803 */
804 void bio_advance(struct bio *bio, unsigned bytes)
805 {
806 if (bio_integrity(bio))
807 bio_integrity_advance(bio, bytes);
808
809 bio_advance_iter(bio, &bio->bi_iter, bytes);
810 }
811 EXPORT_SYMBOL(bio_advance);
812
813 /**
814 * bio_alloc_pages - allocates a single page for each bvec in a bio
815 * @bio: bio to allocate pages for
816 * @gfp_mask: flags for allocation
817 *
818 * Allocates pages up to @bio->bi_vcnt.
819 *
820 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
821 * freed.
822 */
823 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
824 {
825 int i;
826 struct bio_vec *bv;
827
828 bio_for_each_segment_all(bv, bio, i) {
829 bv->bv_page = alloc_page(gfp_mask);
830 if (!bv->bv_page) {
831 while (--bv >= bio->bi_io_vec)
832 __free_page(bv->bv_page);
833 return -ENOMEM;
834 }
835 }
836
837 return 0;
838 }
839 EXPORT_SYMBOL(bio_alloc_pages);
840
841 /**
842 * bio_copy_data - copy contents of data buffers from one chain of bios to
843 * another
844 * @src: source bio list
845 * @dst: destination bio list
846 *
847 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
848 * @src and @dst as linked lists of bios.
849 *
850 * Stops when it reaches the end of either @src or @dst - that is, copies
851 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
852 */
853 void bio_copy_data(struct bio *dst, struct bio *src)
854 {
855 struct bvec_iter src_iter, dst_iter;
856 struct bio_vec src_bv, dst_bv;
857 void *src_p, *dst_p;
858 unsigned bytes;
859
860 src_iter = src->bi_iter;
861 dst_iter = dst->bi_iter;
862
863 while (1) {
864 if (!src_iter.bi_size) {
865 src = src->bi_next;
866 if (!src)
867 break;
868
869 src_iter = src->bi_iter;
870 }
871
872 if (!dst_iter.bi_size) {
873 dst = dst->bi_next;
874 if (!dst)
875 break;
876
877 dst_iter = dst->bi_iter;
878 }
879
880 src_bv = bio_iter_iovec(src, src_iter);
881 dst_bv = bio_iter_iovec(dst, dst_iter);
882
883 bytes = min(src_bv.bv_len, dst_bv.bv_len);
884
885 src_p = kmap_atomic(src_bv.bv_page);
886 dst_p = kmap_atomic(dst_bv.bv_page);
887
888 memcpy(dst_p + dst_bv.bv_offset,
889 src_p + src_bv.bv_offset,
890 bytes);
891
892 kunmap_atomic(dst_p);
893 kunmap_atomic(src_p);
894
895 bio_advance_iter(src, &src_iter, bytes);
896 bio_advance_iter(dst, &dst_iter, bytes);
897 }
898 }
899 EXPORT_SYMBOL(bio_copy_data);
900
901 struct bio_map_data {
902 struct bio_vec *iovecs;
903 struct sg_iovec *sgvecs;
904 int nr_sgvecs;
905 int is_our_pages;
906 };
907
908 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
909 struct sg_iovec *iov, int iov_count,
910 int is_our_pages)
911 {
912 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
913 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
914 bmd->nr_sgvecs = iov_count;
915 bmd->is_our_pages = is_our_pages;
916 bio->bi_private = bmd;
917 }
918
919 static void bio_free_map_data(struct bio_map_data *bmd)
920 {
921 kfree(bmd->iovecs);
922 kfree(bmd->sgvecs);
923 kfree(bmd);
924 }
925
926 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
927 unsigned int iov_count,
928 gfp_t gfp_mask)
929 {
930 struct bio_map_data *bmd;
931
932 if (iov_count > UIO_MAXIOV)
933 return NULL;
934
935 bmd = kmalloc(sizeof(*bmd), gfp_mask);
936 if (!bmd)
937 return NULL;
938
939 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
940 if (!bmd->iovecs) {
941 kfree(bmd);
942 return NULL;
943 }
944
945 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
946 if (bmd->sgvecs)
947 return bmd;
948
949 kfree(bmd->iovecs);
950 kfree(bmd);
951 return NULL;
952 }
953
954 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
955 struct sg_iovec *iov, int iov_count,
956 int to_user, int from_user, int do_free_page)
957 {
958 int ret = 0, i;
959 struct bio_vec *bvec;
960 int iov_idx = 0;
961 unsigned int iov_off = 0;
962
963 bio_for_each_segment_all(bvec, bio, i) {
964 char *bv_addr = page_address(bvec->bv_page);
965 unsigned int bv_len = iovecs[i].bv_len;
966
967 while (bv_len && iov_idx < iov_count) {
968 unsigned int bytes;
969 char __user *iov_addr;
970
971 bytes = min_t(unsigned int,
972 iov[iov_idx].iov_len - iov_off, bv_len);
973 iov_addr = iov[iov_idx].iov_base + iov_off;
974
975 if (!ret) {
976 if (to_user)
977 ret = copy_to_user(iov_addr, bv_addr,
978 bytes);
979
980 if (from_user)
981 ret = copy_from_user(bv_addr, iov_addr,
982 bytes);
983
984 if (ret)
985 ret = -EFAULT;
986 }
987
988 bv_len -= bytes;
989 bv_addr += bytes;
990 iov_addr += bytes;
991 iov_off += bytes;
992
993 if (iov[iov_idx].iov_len == iov_off) {
994 iov_idx++;
995 iov_off = 0;
996 }
997 }
998
999 if (do_free_page)
1000 __free_page(bvec->bv_page);
1001 }
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * bio_uncopy_user - finish previously mapped bio
1008 * @bio: bio being terminated
1009 *
1010 * Free pages allocated from bio_copy_user() and write back data
1011 * to user space in case of a read.
1012 */
1013 int bio_uncopy_user(struct bio *bio)
1014 {
1015 struct bio_map_data *bmd = bio->bi_private;
1016 struct bio_vec *bvec;
1017 int ret = 0, i;
1018
1019 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1020 /*
1021 * if we're in a workqueue, the request is orphaned, so
1022 * don't copy into a random user address space, just free.
1023 */
1024 if (current->mm)
1025 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1026 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1027 0, bmd->is_our_pages);
1028 else if (bmd->is_our_pages)
1029 bio_for_each_segment_all(bvec, bio, i)
1030 __free_page(bvec->bv_page);
1031 }
1032 bio_free_map_data(bmd);
1033 bio_put(bio);
1034 return ret;
1035 }
1036 EXPORT_SYMBOL(bio_uncopy_user);
1037
1038 /**
1039 * bio_copy_user_iov - copy user data to bio
1040 * @q: destination block queue
1041 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1042 * @iov: the iovec.
1043 * @iov_count: number of elements in the iovec
1044 * @write_to_vm: bool indicating writing to pages or not
1045 * @gfp_mask: memory allocation flags
1046 *
1047 * Prepares and returns a bio for indirect user io, bouncing data
1048 * to/from kernel pages as necessary. Must be paired with
1049 * call bio_uncopy_user() on io completion.
1050 */
1051 struct bio *bio_copy_user_iov(struct request_queue *q,
1052 struct rq_map_data *map_data,
1053 struct sg_iovec *iov, int iov_count,
1054 int write_to_vm, gfp_t gfp_mask)
1055 {
1056 struct bio_map_data *bmd;
1057 struct bio_vec *bvec;
1058 struct page *page;
1059 struct bio *bio;
1060 int i, ret;
1061 int nr_pages = 0;
1062 unsigned int len = 0;
1063 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1064
1065 for (i = 0; i < iov_count; i++) {
1066 unsigned long uaddr;
1067 unsigned long end;
1068 unsigned long start;
1069
1070 uaddr = (unsigned long)iov[i].iov_base;
1071 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1072 start = uaddr >> PAGE_SHIFT;
1073
1074 /*
1075 * Overflow, abort
1076 */
1077 if (end < start)
1078 return ERR_PTR(-EINVAL);
1079
1080 nr_pages += end - start;
1081 len += iov[i].iov_len;
1082 }
1083
1084 if (offset)
1085 nr_pages++;
1086
1087 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1088 if (!bmd)
1089 return ERR_PTR(-ENOMEM);
1090
1091 ret = -ENOMEM;
1092 bio = bio_kmalloc(gfp_mask, nr_pages);
1093 if (!bio)
1094 goto out_bmd;
1095
1096 if (!write_to_vm)
1097 bio->bi_rw |= REQ_WRITE;
1098
1099 ret = 0;
1100
1101 if (map_data) {
1102 nr_pages = 1 << map_data->page_order;
1103 i = map_data->offset / PAGE_SIZE;
1104 }
1105 while (len) {
1106 unsigned int bytes = PAGE_SIZE;
1107
1108 bytes -= offset;
1109
1110 if (bytes > len)
1111 bytes = len;
1112
1113 if (map_data) {
1114 if (i == map_data->nr_entries * nr_pages) {
1115 ret = -ENOMEM;
1116 break;
1117 }
1118
1119 page = map_data->pages[i / nr_pages];
1120 page += (i % nr_pages);
1121
1122 i++;
1123 } else {
1124 page = alloc_page(q->bounce_gfp | gfp_mask);
1125 if (!page) {
1126 ret = -ENOMEM;
1127 break;
1128 }
1129 }
1130
1131 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1132 break;
1133
1134 len -= bytes;
1135 offset = 0;
1136 }
1137
1138 if (ret)
1139 goto cleanup;
1140
1141 /*
1142 * success
1143 */
1144 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1145 (map_data && map_data->from_user)) {
1146 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1147 if (ret)
1148 goto cleanup;
1149 }
1150
1151 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1152 return bio;
1153 cleanup:
1154 if (!map_data)
1155 bio_for_each_segment_all(bvec, bio, i)
1156 __free_page(bvec->bv_page);
1157
1158 bio_put(bio);
1159 out_bmd:
1160 bio_free_map_data(bmd);
1161 return ERR_PTR(ret);
1162 }
1163
1164 /**
1165 * bio_copy_user - copy user data to bio
1166 * @q: destination block queue
1167 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1168 * @uaddr: start of user address
1169 * @len: length in bytes
1170 * @write_to_vm: bool indicating writing to pages or not
1171 * @gfp_mask: memory allocation flags
1172 *
1173 * Prepares and returns a bio for indirect user io, bouncing data
1174 * to/from kernel pages as necessary. Must be paired with
1175 * call bio_uncopy_user() on io completion.
1176 */
1177 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1178 unsigned long uaddr, unsigned int len,
1179 int write_to_vm, gfp_t gfp_mask)
1180 {
1181 struct sg_iovec iov;
1182
1183 iov.iov_base = (void __user *)uaddr;
1184 iov.iov_len = len;
1185
1186 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1187 }
1188 EXPORT_SYMBOL(bio_copy_user);
1189
1190 static struct bio *__bio_map_user_iov(struct request_queue *q,
1191 struct block_device *bdev,
1192 struct sg_iovec *iov, int iov_count,
1193 int write_to_vm, gfp_t gfp_mask)
1194 {
1195 int i, j;
1196 int nr_pages = 0;
1197 struct page **pages;
1198 struct bio *bio;
1199 int cur_page = 0;
1200 int ret, offset;
1201
1202 for (i = 0; i < iov_count; i++) {
1203 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1204 unsigned long len = iov[i].iov_len;
1205 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1206 unsigned long start = uaddr >> PAGE_SHIFT;
1207
1208 /*
1209 * Overflow, abort
1210 */
1211 if (end < start)
1212 return ERR_PTR(-EINVAL);
1213
1214 nr_pages += end - start;
1215 /*
1216 * buffer must be aligned to at least hardsector size for now
1217 */
1218 if (uaddr & queue_dma_alignment(q))
1219 return ERR_PTR(-EINVAL);
1220 }
1221
1222 if (!nr_pages)
1223 return ERR_PTR(-EINVAL);
1224
1225 bio = bio_kmalloc(gfp_mask, nr_pages);
1226 if (!bio)
1227 return ERR_PTR(-ENOMEM);
1228
1229 ret = -ENOMEM;
1230 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1231 if (!pages)
1232 goto out;
1233
1234 for (i = 0; i < iov_count; i++) {
1235 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1236 unsigned long len = iov[i].iov_len;
1237 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1238 unsigned long start = uaddr >> PAGE_SHIFT;
1239 const int local_nr_pages = end - start;
1240 const int page_limit = cur_page + local_nr_pages;
1241
1242 ret = get_user_pages_fast(uaddr, local_nr_pages,
1243 write_to_vm, &pages[cur_page]);
1244 if (ret < local_nr_pages) {
1245 ret = -EFAULT;
1246 goto out_unmap;
1247 }
1248
1249 offset = uaddr & ~PAGE_MASK;
1250 for (j = cur_page; j < page_limit; j++) {
1251 unsigned int bytes = PAGE_SIZE - offset;
1252
1253 if (len <= 0)
1254 break;
1255
1256 if (bytes > len)
1257 bytes = len;
1258
1259 /*
1260 * sorry...
1261 */
1262 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1263 bytes)
1264 break;
1265
1266 len -= bytes;
1267 offset = 0;
1268 }
1269
1270 cur_page = j;
1271 /*
1272 * release the pages we didn't map into the bio, if any
1273 */
1274 while (j < page_limit)
1275 page_cache_release(pages[j++]);
1276 }
1277
1278 kfree(pages);
1279
1280 /*
1281 * set data direction, and check if mapped pages need bouncing
1282 */
1283 if (!write_to_vm)
1284 bio->bi_rw |= REQ_WRITE;
1285
1286 bio->bi_bdev = bdev;
1287 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1288 return bio;
1289
1290 out_unmap:
1291 for (i = 0; i < nr_pages; i++) {
1292 if(!pages[i])
1293 break;
1294 page_cache_release(pages[i]);
1295 }
1296 out:
1297 kfree(pages);
1298 bio_put(bio);
1299 return ERR_PTR(ret);
1300 }
1301
1302 /**
1303 * bio_map_user - map user address into bio
1304 * @q: the struct request_queue for the bio
1305 * @bdev: destination block device
1306 * @uaddr: start of user address
1307 * @len: length in bytes
1308 * @write_to_vm: bool indicating writing to pages or not
1309 * @gfp_mask: memory allocation flags
1310 *
1311 * Map the user space address into a bio suitable for io to a block
1312 * device. Returns an error pointer in case of error.
1313 */
1314 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1315 unsigned long uaddr, unsigned int len, int write_to_vm,
1316 gfp_t gfp_mask)
1317 {
1318 struct sg_iovec iov;
1319
1320 iov.iov_base = (void __user *)uaddr;
1321 iov.iov_len = len;
1322
1323 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1324 }
1325 EXPORT_SYMBOL(bio_map_user);
1326
1327 /**
1328 * bio_map_user_iov - map user sg_iovec table into bio
1329 * @q: the struct request_queue for the bio
1330 * @bdev: destination block device
1331 * @iov: the iovec.
1332 * @iov_count: number of elements in the iovec
1333 * @write_to_vm: bool indicating writing to pages or not
1334 * @gfp_mask: memory allocation flags
1335 *
1336 * Map the user space address into a bio suitable for io to a block
1337 * device. Returns an error pointer in case of error.
1338 */
1339 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1340 struct sg_iovec *iov, int iov_count,
1341 int write_to_vm, gfp_t gfp_mask)
1342 {
1343 struct bio *bio;
1344
1345 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1346 gfp_mask);
1347 if (IS_ERR(bio))
1348 return bio;
1349
1350 /*
1351 * subtle -- if __bio_map_user() ended up bouncing a bio,
1352 * it would normally disappear when its bi_end_io is run.
1353 * however, we need it for the unmap, so grab an extra
1354 * reference to it
1355 */
1356 bio_get(bio);
1357
1358 return bio;
1359 }
1360
1361 static void __bio_unmap_user(struct bio *bio)
1362 {
1363 struct bio_vec *bvec;
1364 int i;
1365
1366 /*
1367 * make sure we dirty pages we wrote to
1368 */
1369 bio_for_each_segment_all(bvec, bio, i) {
1370 if (bio_data_dir(bio) == READ)
1371 set_page_dirty_lock(bvec->bv_page);
1372
1373 page_cache_release(bvec->bv_page);
1374 }
1375
1376 bio_put(bio);
1377 }
1378
1379 /**
1380 * bio_unmap_user - unmap a bio
1381 * @bio: the bio being unmapped
1382 *
1383 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1384 * a process context.
1385 *
1386 * bio_unmap_user() may sleep.
1387 */
1388 void bio_unmap_user(struct bio *bio)
1389 {
1390 __bio_unmap_user(bio);
1391 bio_put(bio);
1392 }
1393 EXPORT_SYMBOL(bio_unmap_user);
1394
1395 static void bio_map_kern_endio(struct bio *bio, int err)
1396 {
1397 bio_put(bio);
1398 }
1399
1400 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1401 unsigned int len, gfp_t gfp_mask)
1402 {
1403 unsigned long kaddr = (unsigned long)data;
1404 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1405 unsigned long start = kaddr >> PAGE_SHIFT;
1406 const int nr_pages = end - start;
1407 int offset, i;
1408 struct bio *bio;
1409
1410 bio = bio_kmalloc(gfp_mask, nr_pages);
1411 if (!bio)
1412 return ERR_PTR(-ENOMEM);
1413
1414 offset = offset_in_page(kaddr);
1415 for (i = 0; i < nr_pages; i++) {
1416 unsigned int bytes = PAGE_SIZE - offset;
1417
1418 if (len <= 0)
1419 break;
1420
1421 if (bytes > len)
1422 bytes = len;
1423
1424 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1425 offset) < bytes)
1426 break;
1427
1428 data += bytes;
1429 len -= bytes;
1430 offset = 0;
1431 }
1432
1433 bio->bi_end_io = bio_map_kern_endio;
1434 return bio;
1435 }
1436
1437 /**
1438 * bio_map_kern - map kernel address into bio
1439 * @q: the struct request_queue for the bio
1440 * @data: pointer to buffer to map
1441 * @len: length in bytes
1442 * @gfp_mask: allocation flags for bio allocation
1443 *
1444 * Map the kernel address into a bio suitable for io to a block
1445 * device. Returns an error pointer in case of error.
1446 */
1447 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1448 gfp_t gfp_mask)
1449 {
1450 struct bio *bio;
1451
1452 bio = __bio_map_kern(q, data, len, gfp_mask);
1453 if (IS_ERR(bio))
1454 return bio;
1455
1456 if (bio->bi_iter.bi_size == len)
1457 return bio;
1458
1459 /*
1460 * Don't support partial mappings.
1461 */
1462 bio_put(bio);
1463 return ERR_PTR(-EINVAL);
1464 }
1465 EXPORT_SYMBOL(bio_map_kern);
1466
1467 static void bio_copy_kern_endio(struct bio *bio, int err)
1468 {
1469 struct bio_vec *bvec;
1470 const int read = bio_data_dir(bio) == READ;
1471 struct bio_map_data *bmd = bio->bi_private;
1472 int i;
1473 char *p = bmd->sgvecs[0].iov_base;
1474
1475 bio_for_each_segment_all(bvec, bio, i) {
1476 char *addr = page_address(bvec->bv_page);
1477 int len = bmd->iovecs[i].bv_len;
1478
1479 if (read)
1480 memcpy(p, addr, len);
1481
1482 __free_page(bvec->bv_page);
1483 p += len;
1484 }
1485
1486 bio_free_map_data(bmd);
1487 bio_put(bio);
1488 }
1489
1490 /**
1491 * bio_copy_kern - copy kernel address into bio
1492 * @q: the struct request_queue for the bio
1493 * @data: pointer to buffer to copy
1494 * @len: length in bytes
1495 * @gfp_mask: allocation flags for bio and page allocation
1496 * @reading: data direction is READ
1497 *
1498 * copy the kernel address into a bio suitable for io to a block
1499 * device. Returns an error pointer in case of error.
1500 */
1501 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1502 gfp_t gfp_mask, int reading)
1503 {
1504 struct bio *bio;
1505 struct bio_vec *bvec;
1506 int i;
1507
1508 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1509 if (IS_ERR(bio))
1510 return bio;
1511
1512 if (!reading) {
1513 void *p = data;
1514
1515 bio_for_each_segment_all(bvec, bio, i) {
1516 char *addr = page_address(bvec->bv_page);
1517
1518 memcpy(addr, p, bvec->bv_len);
1519 p += bvec->bv_len;
1520 }
1521 }
1522
1523 bio->bi_end_io = bio_copy_kern_endio;
1524
1525 return bio;
1526 }
1527 EXPORT_SYMBOL(bio_copy_kern);
1528
1529 /*
1530 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1531 * for performing direct-IO in BIOs.
1532 *
1533 * The problem is that we cannot run set_page_dirty() from interrupt context
1534 * because the required locks are not interrupt-safe. So what we can do is to
1535 * mark the pages dirty _before_ performing IO. And in interrupt context,
1536 * check that the pages are still dirty. If so, fine. If not, redirty them
1537 * in process context.
1538 *
1539 * We special-case compound pages here: normally this means reads into hugetlb
1540 * pages. The logic in here doesn't really work right for compound pages
1541 * because the VM does not uniformly chase down the head page in all cases.
1542 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1543 * handle them at all. So we skip compound pages here at an early stage.
1544 *
1545 * Note that this code is very hard to test under normal circumstances because
1546 * direct-io pins the pages with get_user_pages(). This makes
1547 * is_page_cache_freeable return false, and the VM will not clean the pages.
1548 * But other code (eg, flusher threads) could clean the pages if they are mapped
1549 * pagecache.
1550 *
1551 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1552 * deferred bio dirtying paths.
1553 */
1554
1555 /*
1556 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1557 */
1558 void bio_set_pages_dirty(struct bio *bio)
1559 {
1560 struct bio_vec *bvec;
1561 int i;
1562
1563 bio_for_each_segment_all(bvec, bio, i) {
1564 struct page *page = bvec->bv_page;
1565
1566 if (page && !PageCompound(page))
1567 set_page_dirty_lock(page);
1568 }
1569 }
1570
1571 static void bio_release_pages(struct bio *bio)
1572 {
1573 struct bio_vec *bvec;
1574 int i;
1575
1576 bio_for_each_segment_all(bvec, bio, i) {
1577 struct page *page = bvec->bv_page;
1578
1579 if (page)
1580 put_page(page);
1581 }
1582 }
1583
1584 /*
1585 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1586 * If they are, then fine. If, however, some pages are clean then they must
1587 * have been written out during the direct-IO read. So we take another ref on
1588 * the BIO and the offending pages and re-dirty the pages in process context.
1589 *
1590 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1591 * here on. It will run one page_cache_release() against each page and will
1592 * run one bio_put() against the BIO.
1593 */
1594
1595 static void bio_dirty_fn(struct work_struct *work);
1596
1597 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1598 static DEFINE_SPINLOCK(bio_dirty_lock);
1599 static struct bio *bio_dirty_list;
1600
1601 /*
1602 * This runs in process context
1603 */
1604 static void bio_dirty_fn(struct work_struct *work)
1605 {
1606 unsigned long flags;
1607 struct bio *bio;
1608
1609 spin_lock_irqsave(&bio_dirty_lock, flags);
1610 bio = bio_dirty_list;
1611 bio_dirty_list = NULL;
1612 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1613
1614 while (bio) {
1615 struct bio *next = bio->bi_private;
1616
1617 bio_set_pages_dirty(bio);
1618 bio_release_pages(bio);
1619 bio_put(bio);
1620 bio = next;
1621 }
1622 }
1623
1624 void bio_check_pages_dirty(struct bio *bio)
1625 {
1626 struct bio_vec *bvec;
1627 int nr_clean_pages = 0;
1628 int i;
1629
1630 bio_for_each_segment_all(bvec, bio, i) {
1631 struct page *page = bvec->bv_page;
1632
1633 if (PageDirty(page) || PageCompound(page)) {
1634 page_cache_release(page);
1635 bvec->bv_page = NULL;
1636 } else {
1637 nr_clean_pages++;
1638 }
1639 }
1640
1641 if (nr_clean_pages) {
1642 unsigned long flags;
1643
1644 spin_lock_irqsave(&bio_dirty_lock, flags);
1645 bio->bi_private = bio_dirty_list;
1646 bio_dirty_list = bio;
1647 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1648 schedule_work(&bio_dirty_work);
1649 } else {
1650 bio_put(bio);
1651 }
1652 }
1653
1654 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1655 void bio_flush_dcache_pages(struct bio *bi)
1656 {
1657 struct bio_vec bvec;
1658 struct bvec_iter iter;
1659
1660 bio_for_each_segment(bvec, bi, iter)
1661 flush_dcache_page(bvec.bv_page);
1662 }
1663 EXPORT_SYMBOL(bio_flush_dcache_pages);
1664 #endif
1665
1666 /**
1667 * bio_endio - end I/O on a bio
1668 * @bio: bio
1669 * @error: error, if any
1670 *
1671 * Description:
1672 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1673 * preferred way to end I/O on a bio, it takes care of clearing
1674 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1675 * established -Exxxx (-EIO, for instance) error values in case
1676 * something went wrong. No one should call bi_end_io() directly on a
1677 * bio unless they own it and thus know that it has an end_io
1678 * function.
1679 **/
1680 void bio_endio(struct bio *bio, int error)
1681 {
1682 if (error)
1683 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1684 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1685 error = -EIO;
1686
1687 if (bio->bi_end_io)
1688 bio->bi_end_io(bio, error);
1689 }
1690 EXPORT_SYMBOL(bio_endio);
1691
1692 void bio_pair_release(struct bio_pair *bp)
1693 {
1694 if (atomic_dec_and_test(&bp->cnt)) {
1695 struct bio *master = bp->bio1.bi_private;
1696
1697 bio_endio(master, bp->error);
1698 mempool_free(bp, bp->bio2.bi_private);
1699 }
1700 }
1701 EXPORT_SYMBOL(bio_pair_release);
1702
1703 static void bio_pair_end_1(struct bio *bi, int err)
1704 {
1705 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1706
1707 if (err)
1708 bp->error = err;
1709
1710 bio_pair_release(bp);
1711 }
1712
1713 static void bio_pair_end_2(struct bio *bi, int err)
1714 {
1715 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1716
1717 if (err)
1718 bp->error = err;
1719
1720 bio_pair_release(bp);
1721 }
1722
1723 /*
1724 * split a bio - only worry about a bio with a single page in its iovec
1725 */
1726 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1727 {
1728 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1729
1730 if (!bp)
1731 return bp;
1732
1733 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1734 bi->bi_iter.bi_sector + first_sectors);
1735
1736 BUG_ON(bio_multiple_segments(bi));
1737 atomic_set(&bp->cnt, 3);
1738 bp->error = 0;
1739 bp->bio1 = *bi;
1740 bp->bio2 = *bi;
1741 bp->bio2.bi_iter.bi_sector += first_sectors;
1742 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1743 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1744
1745 if (bi->bi_vcnt != 0) {
1746 bp->bv1 = bio_iovec(bi);
1747 bp->bv2 = bio_iovec(bi);
1748
1749 if (bio_is_rw(bi)) {
1750 bp->bv2.bv_offset += first_sectors << 9;
1751 bp->bv2.bv_len -= first_sectors << 9;
1752 bp->bv1.bv_len = first_sectors << 9;
1753 }
1754
1755 bp->bio1.bi_io_vec = &bp->bv1;
1756 bp->bio2.bi_io_vec = &bp->bv2;
1757
1758 bp->bio1.bi_max_vecs = 1;
1759 bp->bio2.bi_max_vecs = 1;
1760 }
1761
1762 bp->bio1.bi_end_io = bio_pair_end_1;
1763 bp->bio2.bi_end_io = bio_pair_end_2;
1764
1765 bp->bio1.bi_private = bi;
1766 bp->bio2.bi_private = bio_split_pool;
1767
1768 if (bio_integrity(bi))
1769 bio_integrity_split(bi, bp, first_sectors);
1770
1771 return bp;
1772 }
1773 EXPORT_SYMBOL(bio_split);
1774
1775 /**
1776 * bio_trim - trim a bio
1777 * @bio: bio to trim
1778 * @offset: number of sectors to trim from the front of @bio
1779 * @size: size we want to trim @bio to, in sectors
1780 */
1781 void bio_trim(struct bio *bio, int offset, int size)
1782 {
1783 /* 'bio' is a cloned bio which we need to trim to match
1784 * the given offset and size.
1785 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1786 */
1787 int i;
1788 struct bio_vec *bvec;
1789 int sofar = 0;
1790
1791 size <<= 9;
1792 if (offset == 0 && size == bio->bi_iter.bi_size)
1793 return;
1794
1795 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1796
1797 bio_advance(bio, offset << 9);
1798
1799 bio->bi_iter.bi_size = size;
1800
1801 /* avoid any complications with bi_idx being non-zero*/
1802 if (bio->bi_iter.bi_idx) {
1803 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1804 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1805 sizeof(struct bio_vec));
1806 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1807 bio->bi_iter.bi_idx = 0;
1808 }
1809 /* Make sure vcnt and last bv are not too big */
1810 bio_for_each_segment_all(bvec, bio, i) {
1811 if (sofar + bvec->bv_len > size)
1812 bvec->bv_len = size - sofar;
1813 if (bvec->bv_len == 0) {
1814 bio->bi_vcnt = i;
1815 break;
1816 }
1817 sofar += bvec->bv_len;
1818 }
1819 }
1820 EXPORT_SYMBOL_GPL(bio_trim);
1821
1822 /**
1823 * bio_sector_offset - Find hardware sector offset in bio
1824 * @bio: bio to inspect
1825 * @index: bio_vec index
1826 * @offset: offset in bv_page
1827 *
1828 * Return the number of hardware sectors between beginning of bio
1829 * and an end point indicated by a bio_vec index and an offset
1830 * within that vector's page.
1831 */
1832 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1833 unsigned int offset)
1834 {
1835 unsigned int sector_sz;
1836 struct bio_vec *bv;
1837 sector_t sectors;
1838 int i;
1839
1840 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1841 sectors = 0;
1842
1843 if (index >= bio->bi_iter.bi_idx)
1844 index = bio->bi_vcnt - 1;
1845
1846 bio_for_each_segment_all(bv, bio, i) {
1847 if (i == index) {
1848 if (offset > bv->bv_offset)
1849 sectors += (offset - bv->bv_offset) / sector_sz;
1850 break;
1851 }
1852
1853 sectors += bv->bv_len / sector_sz;
1854 }
1855
1856 return sectors;
1857 }
1858 EXPORT_SYMBOL(bio_sector_offset);
1859
1860 /*
1861 * create memory pools for biovec's in a bio_set.
1862 * use the global biovec slabs created for general use.
1863 */
1864 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1865 {
1866 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1867
1868 return mempool_create_slab_pool(pool_entries, bp->slab);
1869 }
1870
1871 void bioset_free(struct bio_set *bs)
1872 {
1873 if (bs->rescue_workqueue)
1874 destroy_workqueue(bs->rescue_workqueue);
1875
1876 if (bs->bio_pool)
1877 mempool_destroy(bs->bio_pool);
1878
1879 if (bs->bvec_pool)
1880 mempool_destroy(bs->bvec_pool);
1881
1882 bioset_integrity_free(bs);
1883 bio_put_slab(bs);
1884
1885 kfree(bs);
1886 }
1887 EXPORT_SYMBOL(bioset_free);
1888
1889 /**
1890 * bioset_create - Create a bio_set
1891 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1892 * @front_pad: Number of bytes to allocate in front of the returned bio
1893 *
1894 * Description:
1895 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1896 * to ask for a number of bytes to be allocated in front of the bio.
1897 * Front pad allocation is useful for embedding the bio inside
1898 * another structure, to avoid allocating extra data to go with the bio.
1899 * Note that the bio must be embedded at the END of that structure always,
1900 * or things will break badly.
1901 */
1902 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1903 {
1904 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1905 struct bio_set *bs;
1906
1907 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1908 if (!bs)
1909 return NULL;
1910
1911 bs->front_pad = front_pad;
1912
1913 spin_lock_init(&bs->rescue_lock);
1914 bio_list_init(&bs->rescue_list);
1915 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1916
1917 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1918 if (!bs->bio_slab) {
1919 kfree(bs);
1920 return NULL;
1921 }
1922
1923 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1924 if (!bs->bio_pool)
1925 goto bad;
1926
1927 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1928 if (!bs->bvec_pool)
1929 goto bad;
1930
1931 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1932 if (!bs->rescue_workqueue)
1933 goto bad;
1934
1935 return bs;
1936 bad:
1937 bioset_free(bs);
1938 return NULL;
1939 }
1940 EXPORT_SYMBOL(bioset_create);
1941
1942 #ifdef CONFIG_BLK_CGROUP
1943 /**
1944 * bio_associate_current - associate a bio with %current
1945 * @bio: target bio
1946 *
1947 * Associate @bio with %current if it hasn't been associated yet. Block
1948 * layer will treat @bio as if it were issued by %current no matter which
1949 * task actually issues it.
1950 *
1951 * This function takes an extra reference of @task's io_context and blkcg
1952 * which will be put when @bio is released. The caller must own @bio,
1953 * ensure %current->io_context exists, and is responsible for synchronizing
1954 * calls to this function.
1955 */
1956 int bio_associate_current(struct bio *bio)
1957 {
1958 struct io_context *ioc;
1959 struct cgroup_subsys_state *css;
1960
1961 if (bio->bi_ioc)
1962 return -EBUSY;
1963
1964 ioc = current->io_context;
1965 if (!ioc)
1966 return -ENOENT;
1967
1968 /* acquire active ref on @ioc and associate */
1969 get_io_context_active(ioc);
1970 bio->bi_ioc = ioc;
1971
1972 /* associate blkcg if exists */
1973 rcu_read_lock();
1974 css = task_css(current, blkio_subsys_id);
1975 if (css && css_tryget(css))
1976 bio->bi_css = css;
1977 rcu_read_unlock();
1978
1979 return 0;
1980 }
1981
1982 /**
1983 * bio_disassociate_task - undo bio_associate_current()
1984 * @bio: target bio
1985 */
1986 void bio_disassociate_task(struct bio *bio)
1987 {
1988 if (bio->bi_ioc) {
1989 put_io_context(bio->bi_ioc);
1990 bio->bi_ioc = NULL;
1991 }
1992 if (bio->bi_css) {
1993 css_put(bio->bi_css);
1994 bio->bi_css = NULL;
1995 }
1996 }
1997
1998 #endif /* CONFIG_BLK_CGROUP */
1999
2000 static void __init biovec_init_slabs(void)
2001 {
2002 int i;
2003
2004 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2005 int size;
2006 struct biovec_slab *bvs = bvec_slabs + i;
2007
2008 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2009 bvs->slab = NULL;
2010 continue;
2011 }
2012
2013 size = bvs->nr_vecs * sizeof(struct bio_vec);
2014 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2015 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2016 }
2017 }
2018
2019 static int __init init_bio(void)
2020 {
2021 bio_slab_max = 2;
2022 bio_slab_nr = 0;
2023 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2024 if (!bio_slabs)
2025 panic("bio: can't allocate bios\n");
2026
2027 bio_integrity_init();
2028 biovec_init_slabs();
2029
2030 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2031 if (!fs_bio_set)
2032 panic("bio: can't allocate bios\n");
2033
2034 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2035 panic("bio: can't create integrity pool\n");
2036
2037 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2038 sizeof(struct bio_pair));
2039 if (!bio_split_pool)
2040 panic("bio: can't create split pool\n");
2041
2042 return 0;
2043 }
2044 subsys_initcall(init_bio);
This page took 0.091027 seconds and 5 git commands to generate.