drop vmerge accounting
[deliverable/linux.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
30
31 static struct kmem_cache *bio_slab __read_mostly;
32
33 mempool_t *bio_split_pool __read_mostly;
34
35 /*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44 };
45 #undef BV
46
47 /*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51 struct bio_set *fs_bio_set;
52
53 unsigned int bvec_nr_vecs(unsigned short idx)
54 {
55 return bvec_slabs[idx].nr_vecs;
56 }
57
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
59 {
60 struct bio_vec *bvl;
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
82
83 return bvl;
84 }
85
86 void bio_free(struct bio *bio, struct bio_set *bio_set)
87 {
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
90
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
95
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
99 mempool_free(bio, bio_set->bio_pool);
100 }
101
102 /*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105 static void bio_fs_destructor(struct bio *bio)
106 {
107 bio_free(bio, fs_bio_set);
108 }
109
110 void bio_init(struct bio *bio)
111 {
112 memset(bio, 0, sizeof(*bio));
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 atomic_set(&bio->bi_cnt, 1);
115 }
116
117 /**
118 * bio_alloc_bioset - allocate a bio for I/O
119 * @gfp_mask: the GFP_ mask given to the slab allocator
120 * @nr_iovecs: number of iovecs to pre-allocate
121 * @bs: the bio_set to allocate from
122 *
123 * Description:
124 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
125 * If %__GFP_WAIT is set then we will block on the internal pool waiting
126 * for a &struct bio to become free.
127 *
128 * allocate bio and iovecs from the memory pools specified by the
129 * bio_set structure.
130 **/
131 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
132 {
133 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
134
135 if (likely(bio)) {
136 struct bio_vec *bvl = NULL;
137
138 bio_init(bio);
139 if (likely(nr_iovecs)) {
140 unsigned long uninitialized_var(idx);
141
142 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
143 if (unlikely(!bvl)) {
144 mempool_free(bio, bs->bio_pool);
145 bio = NULL;
146 goto out;
147 }
148 bio->bi_flags |= idx << BIO_POOL_OFFSET;
149 bio->bi_max_vecs = bvec_nr_vecs(idx);
150 }
151 bio->bi_io_vec = bvl;
152 }
153 out:
154 return bio;
155 }
156
157 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
158 {
159 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
160
161 if (bio)
162 bio->bi_destructor = bio_fs_destructor;
163
164 return bio;
165 }
166
167 void zero_fill_bio(struct bio *bio)
168 {
169 unsigned long flags;
170 struct bio_vec *bv;
171 int i;
172
173 bio_for_each_segment(bv, bio, i) {
174 char *data = bvec_kmap_irq(bv, &flags);
175 memset(data, 0, bv->bv_len);
176 flush_dcache_page(bv->bv_page);
177 bvec_kunmap_irq(data, &flags);
178 }
179 }
180 EXPORT_SYMBOL(zero_fill_bio);
181
182 /**
183 * bio_put - release a reference to a bio
184 * @bio: bio to release reference to
185 *
186 * Description:
187 * Put a reference to a &struct bio, either one you have gotten with
188 * bio_alloc or bio_get. The last put of a bio will free it.
189 **/
190 void bio_put(struct bio *bio)
191 {
192 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
193
194 /*
195 * last put frees it
196 */
197 if (atomic_dec_and_test(&bio->bi_cnt)) {
198 bio->bi_next = NULL;
199 bio->bi_destructor(bio);
200 }
201 }
202
203 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
204 {
205 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
206 blk_recount_segments(q, bio);
207
208 return bio->bi_phys_segments;
209 }
210
211 /**
212 * __bio_clone - clone a bio
213 * @bio: destination bio
214 * @bio_src: bio to clone
215 *
216 * Clone a &bio. Caller will own the returned bio, but not
217 * the actual data it points to. Reference count of returned
218 * bio will be one.
219 */
220 void __bio_clone(struct bio *bio, struct bio *bio_src)
221 {
222 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
223 bio_src->bi_max_vecs * sizeof(struct bio_vec));
224
225 /*
226 * most users will be overriding ->bi_bdev with a new target,
227 * so we don't set nor calculate new physical/hw segment counts here
228 */
229 bio->bi_sector = bio_src->bi_sector;
230 bio->bi_bdev = bio_src->bi_bdev;
231 bio->bi_flags |= 1 << BIO_CLONED;
232 bio->bi_rw = bio_src->bi_rw;
233 bio->bi_vcnt = bio_src->bi_vcnt;
234 bio->bi_size = bio_src->bi_size;
235 bio->bi_idx = bio_src->bi_idx;
236 }
237
238 /**
239 * bio_clone - clone a bio
240 * @bio: bio to clone
241 * @gfp_mask: allocation priority
242 *
243 * Like __bio_clone, only also allocates the returned bio
244 */
245 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
246 {
247 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
248
249 if (!b)
250 return NULL;
251
252 b->bi_destructor = bio_fs_destructor;
253 __bio_clone(b, bio);
254
255 if (bio_integrity(bio)) {
256 int ret;
257
258 ret = bio_integrity_clone(b, bio, fs_bio_set);
259
260 if (ret < 0)
261 return NULL;
262 }
263
264 return b;
265 }
266
267 /**
268 * bio_get_nr_vecs - return approx number of vecs
269 * @bdev: I/O target
270 *
271 * Return the approximate number of pages we can send to this target.
272 * There's no guarantee that you will be able to fit this number of pages
273 * into a bio, it does not account for dynamic restrictions that vary
274 * on offset.
275 */
276 int bio_get_nr_vecs(struct block_device *bdev)
277 {
278 struct request_queue *q = bdev_get_queue(bdev);
279 int nr_pages;
280
281 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
282 if (nr_pages > q->max_phys_segments)
283 nr_pages = q->max_phys_segments;
284 if (nr_pages > q->max_hw_segments)
285 nr_pages = q->max_hw_segments;
286
287 return nr_pages;
288 }
289
290 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
291 *page, unsigned int len, unsigned int offset,
292 unsigned short max_sectors)
293 {
294 int retried_segments = 0;
295 struct bio_vec *bvec;
296
297 /*
298 * cloned bio must not modify vec list
299 */
300 if (unlikely(bio_flagged(bio, BIO_CLONED)))
301 return 0;
302
303 if (((bio->bi_size + len) >> 9) > max_sectors)
304 return 0;
305
306 /*
307 * For filesystems with a blocksize smaller than the pagesize
308 * we will often be called with the same page as last time and
309 * a consecutive offset. Optimize this special case.
310 */
311 if (bio->bi_vcnt > 0) {
312 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
313
314 if (page == prev->bv_page &&
315 offset == prev->bv_offset + prev->bv_len) {
316 prev->bv_len += len;
317
318 if (q->merge_bvec_fn) {
319 struct bvec_merge_data bvm = {
320 .bi_bdev = bio->bi_bdev,
321 .bi_sector = bio->bi_sector,
322 .bi_size = bio->bi_size,
323 .bi_rw = bio->bi_rw,
324 };
325
326 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
327 prev->bv_len -= len;
328 return 0;
329 }
330 }
331
332 goto done;
333 }
334 }
335
336 if (bio->bi_vcnt >= bio->bi_max_vecs)
337 return 0;
338
339 /*
340 * we might lose a segment or two here, but rather that than
341 * make this too complex.
342 */
343
344 while (bio->bi_phys_segments >= q->max_phys_segments
345 || bio->bi_phys_segments >= q->max_hw_segments) {
346
347 if (retried_segments)
348 return 0;
349
350 retried_segments = 1;
351 blk_recount_segments(q, bio);
352 }
353
354 /*
355 * setup the new entry, we might clear it again later if we
356 * cannot add the page
357 */
358 bvec = &bio->bi_io_vec[bio->bi_vcnt];
359 bvec->bv_page = page;
360 bvec->bv_len = len;
361 bvec->bv_offset = offset;
362
363 /*
364 * if queue has other restrictions (eg varying max sector size
365 * depending on offset), it can specify a merge_bvec_fn in the
366 * queue to get further control
367 */
368 if (q->merge_bvec_fn) {
369 struct bvec_merge_data bvm = {
370 .bi_bdev = bio->bi_bdev,
371 .bi_sector = bio->bi_sector,
372 .bi_size = bio->bi_size,
373 .bi_rw = bio->bi_rw,
374 };
375
376 /*
377 * merge_bvec_fn() returns number of bytes it can accept
378 * at this offset
379 */
380 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
381 bvec->bv_page = NULL;
382 bvec->bv_len = 0;
383 bvec->bv_offset = 0;
384 return 0;
385 }
386 }
387
388 /* If we may be able to merge these biovecs, force a recount */
389 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
390 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
391
392 bio->bi_vcnt++;
393 bio->bi_phys_segments++;
394 done:
395 bio->bi_size += len;
396 return len;
397 }
398
399 /**
400 * bio_add_pc_page - attempt to add page to bio
401 * @q: the target queue
402 * @bio: destination bio
403 * @page: page to add
404 * @len: vec entry length
405 * @offset: vec entry offset
406 *
407 * Attempt to add a page to the bio_vec maplist. This can fail for a
408 * number of reasons, such as the bio being full or target block
409 * device limitations. The target block device must allow bio's
410 * smaller than PAGE_SIZE, so it is always possible to add a single
411 * page to an empty bio. This should only be used by REQ_PC bios.
412 */
413 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
414 unsigned int len, unsigned int offset)
415 {
416 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
417 }
418
419 /**
420 * bio_add_page - attempt to add page to bio
421 * @bio: destination bio
422 * @page: page to add
423 * @len: vec entry length
424 * @offset: vec entry offset
425 *
426 * Attempt to add a page to the bio_vec maplist. This can fail for a
427 * number of reasons, such as the bio being full or target block
428 * device limitations. The target block device must allow bio's
429 * smaller than PAGE_SIZE, so it is always possible to add a single
430 * page to an empty bio.
431 */
432 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
433 unsigned int offset)
434 {
435 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
436 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
437 }
438
439 struct bio_map_data {
440 struct bio_vec *iovecs;
441 int nr_sgvecs;
442 struct sg_iovec *sgvecs;
443 };
444
445 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
446 struct sg_iovec *iov, int iov_count)
447 {
448 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
449 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
450 bmd->nr_sgvecs = iov_count;
451 bio->bi_private = bmd;
452 }
453
454 static void bio_free_map_data(struct bio_map_data *bmd)
455 {
456 kfree(bmd->iovecs);
457 kfree(bmd->sgvecs);
458 kfree(bmd);
459 }
460
461 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
462 gfp_t gfp_mask)
463 {
464 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
465
466 if (!bmd)
467 return NULL;
468
469 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
470 if (!bmd->iovecs) {
471 kfree(bmd);
472 return NULL;
473 }
474
475 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
476 if (bmd->sgvecs)
477 return bmd;
478
479 kfree(bmd->iovecs);
480 kfree(bmd);
481 return NULL;
482 }
483
484 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
485 struct sg_iovec *iov, int iov_count, int uncopy)
486 {
487 int ret = 0, i;
488 struct bio_vec *bvec;
489 int iov_idx = 0;
490 unsigned int iov_off = 0;
491 int read = bio_data_dir(bio) == READ;
492
493 __bio_for_each_segment(bvec, bio, i, 0) {
494 char *bv_addr = page_address(bvec->bv_page);
495 unsigned int bv_len = iovecs[i].bv_len;
496
497 while (bv_len && iov_idx < iov_count) {
498 unsigned int bytes;
499 char *iov_addr;
500
501 bytes = min_t(unsigned int,
502 iov[iov_idx].iov_len - iov_off, bv_len);
503 iov_addr = iov[iov_idx].iov_base + iov_off;
504
505 if (!ret) {
506 if (!read && !uncopy)
507 ret = copy_from_user(bv_addr, iov_addr,
508 bytes);
509 if (read && uncopy)
510 ret = copy_to_user(iov_addr, bv_addr,
511 bytes);
512
513 if (ret)
514 ret = -EFAULT;
515 }
516
517 bv_len -= bytes;
518 bv_addr += bytes;
519 iov_addr += bytes;
520 iov_off += bytes;
521
522 if (iov[iov_idx].iov_len == iov_off) {
523 iov_idx++;
524 iov_off = 0;
525 }
526 }
527
528 if (uncopy)
529 __free_page(bvec->bv_page);
530 }
531
532 return ret;
533 }
534
535 /**
536 * bio_uncopy_user - finish previously mapped bio
537 * @bio: bio being terminated
538 *
539 * Free pages allocated from bio_copy_user() and write back data
540 * to user space in case of a read.
541 */
542 int bio_uncopy_user(struct bio *bio)
543 {
544 struct bio_map_data *bmd = bio->bi_private;
545 int ret;
546
547 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1);
548
549 bio_free_map_data(bmd);
550 bio_put(bio);
551 return ret;
552 }
553
554 /**
555 * bio_copy_user_iov - copy user data to bio
556 * @q: destination block queue
557 * @iov: the iovec.
558 * @iov_count: number of elements in the iovec
559 * @write_to_vm: bool indicating writing to pages or not
560 *
561 * Prepares and returns a bio for indirect user io, bouncing data
562 * to/from kernel pages as necessary. Must be paired with
563 * call bio_uncopy_user() on io completion.
564 */
565 struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
566 int iov_count, int write_to_vm)
567 {
568 struct bio_map_data *bmd;
569 struct bio_vec *bvec;
570 struct page *page;
571 struct bio *bio;
572 int i, ret;
573 int nr_pages = 0;
574 unsigned int len = 0;
575
576 for (i = 0; i < iov_count; i++) {
577 unsigned long uaddr;
578 unsigned long end;
579 unsigned long start;
580
581 uaddr = (unsigned long)iov[i].iov_base;
582 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
583 start = uaddr >> PAGE_SHIFT;
584
585 nr_pages += end - start;
586 len += iov[i].iov_len;
587 }
588
589 bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL);
590 if (!bmd)
591 return ERR_PTR(-ENOMEM);
592
593 ret = -ENOMEM;
594 bio = bio_alloc(GFP_KERNEL, nr_pages);
595 if (!bio)
596 goto out_bmd;
597
598 bio->bi_rw |= (!write_to_vm << BIO_RW);
599
600 ret = 0;
601 while (len) {
602 unsigned int bytes = PAGE_SIZE;
603
604 if (bytes > len)
605 bytes = len;
606
607 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
608 if (!page) {
609 ret = -ENOMEM;
610 break;
611 }
612
613 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
614 break;
615
616 len -= bytes;
617 }
618
619 if (ret)
620 goto cleanup;
621
622 /*
623 * success
624 */
625 if (!write_to_vm) {
626 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0);
627 if (ret)
628 goto cleanup;
629 }
630
631 bio_set_map_data(bmd, bio, iov, iov_count);
632 return bio;
633 cleanup:
634 bio_for_each_segment(bvec, bio, i)
635 __free_page(bvec->bv_page);
636
637 bio_put(bio);
638 out_bmd:
639 bio_free_map_data(bmd);
640 return ERR_PTR(ret);
641 }
642
643 /**
644 * bio_copy_user - copy user data to bio
645 * @q: destination block queue
646 * @uaddr: start of user address
647 * @len: length in bytes
648 * @write_to_vm: bool indicating writing to pages or not
649 *
650 * Prepares and returns a bio for indirect user io, bouncing data
651 * to/from kernel pages as necessary. Must be paired with
652 * call bio_uncopy_user() on io completion.
653 */
654 struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
655 unsigned int len, int write_to_vm)
656 {
657 struct sg_iovec iov;
658
659 iov.iov_base = (void __user *)uaddr;
660 iov.iov_len = len;
661
662 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
663 }
664
665 static struct bio *__bio_map_user_iov(struct request_queue *q,
666 struct block_device *bdev,
667 struct sg_iovec *iov, int iov_count,
668 int write_to_vm)
669 {
670 int i, j;
671 int nr_pages = 0;
672 struct page **pages;
673 struct bio *bio;
674 int cur_page = 0;
675 int ret, offset;
676
677 for (i = 0; i < iov_count; i++) {
678 unsigned long uaddr = (unsigned long)iov[i].iov_base;
679 unsigned long len = iov[i].iov_len;
680 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
681 unsigned long start = uaddr >> PAGE_SHIFT;
682
683 nr_pages += end - start;
684 /*
685 * buffer must be aligned to at least hardsector size for now
686 */
687 if (uaddr & queue_dma_alignment(q))
688 return ERR_PTR(-EINVAL);
689 }
690
691 if (!nr_pages)
692 return ERR_PTR(-EINVAL);
693
694 bio = bio_alloc(GFP_KERNEL, nr_pages);
695 if (!bio)
696 return ERR_PTR(-ENOMEM);
697
698 ret = -ENOMEM;
699 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
700 if (!pages)
701 goto out;
702
703 for (i = 0; i < iov_count; i++) {
704 unsigned long uaddr = (unsigned long)iov[i].iov_base;
705 unsigned long len = iov[i].iov_len;
706 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
707 unsigned long start = uaddr >> PAGE_SHIFT;
708 const int local_nr_pages = end - start;
709 const int page_limit = cur_page + local_nr_pages;
710
711 ret = get_user_pages_fast(uaddr, local_nr_pages,
712 write_to_vm, &pages[cur_page]);
713 if (ret < local_nr_pages) {
714 ret = -EFAULT;
715 goto out_unmap;
716 }
717
718 offset = uaddr & ~PAGE_MASK;
719 for (j = cur_page; j < page_limit; j++) {
720 unsigned int bytes = PAGE_SIZE - offset;
721
722 if (len <= 0)
723 break;
724
725 if (bytes > len)
726 bytes = len;
727
728 /*
729 * sorry...
730 */
731 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
732 bytes)
733 break;
734
735 len -= bytes;
736 offset = 0;
737 }
738
739 cur_page = j;
740 /*
741 * release the pages we didn't map into the bio, if any
742 */
743 while (j < page_limit)
744 page_cache_release(pages[j++]);
745 }
746
747 kfree(pages);
748
749 /*
750 * set data direction, and check if mapped pages need bouncing
751 */
752 if (!write_to_vm)
753 bio->bi_rw |= (1 << BIO_RW);
754
755 bio->bi_bdev = bdev;
756 bio->bi_flags |= (1 << BIO_USER_MAPPED);
757 return bio;
758
759 out_unmap:
760 for (i = 0; i < nr_pages; i++) {
761 if(!pages[i])
762 break;
763 page_cache_release(pages[i]);
764 }
765 out:
766 kfree(pages);
767 bio_put(bio);
768 return ERR_PTR(ret);
769 }
770
771 /**
772 * bio_map_user - map user address into bio
773 * @q: the struct request_queue for the bio
774 * @bdev: destination block device
775 * @uaddr: start of user address
776 * @len: length in bytes
777 * @write_to_vm: bool indicating writing to pages or not
778 *
779 * Map the user space address into a bio suitable for io to a block
780 * device. Returns an error pointer in case of error.
781 */
782 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
783 unsigned long uaddr, unsigned int len, int write_to_vm)
784 {
785 struct sg_iovec iov;
786
787 iov.iov_base = (void __user *)uaddr;
788 iov.iov_len = len;
789
790 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
791 }
792
793 /**
794 * bio_map_user_iov - map user sg_iovec table into bio
795 * @q: the struct request_queue for the bio
796 * @bdev: destination block device
797 * @iov: the iovec.
798 * @iov_count: number of elements in the iovec
799 * @write_to_vm: bool indicating writing to pages or not
800 *
801 * Map the user space address into a bio suitable for io to a block
802 * device. Returns an error pointer in case of error.
803 */
804 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
805 struct sg_iovec *iov, int iov_count,
806 int write_to_vm)
807 {
808 struct bio *bio;
809
810 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
811
812 if (IS_ERR(bio))
813 return bio;
814
815 /*
816 * subtle -- if __bio_map_user() ended up bouncing a bio,
817 * it would normally disappear when its bi_end_io is run.
818 * however, we need it for the unmap, so grab an extra
819 * reference to it
820 */
821 bio_get(bio);
822
823 return bio;
824 }
825
826 static void __bio_unmap_user(struct bio *bio)
827 {
828 struct bio_vec *bvec;
829 int i;
830
831 /*
832 * make sure we dirty pages we wrote to
833 */
834 __bio_for_each_segment(bvec, bio, i, 0) {
835 if (bio_data_dir(bio) == READ)
836 set_page_dirty_lock(bvec->bv_page);
837
838 page_cache_release(bvec->bv_page);
839 }
840
841 bio_put(bio);
842 }
843
844 /**
845 * bio_unmap_user - unmap a bio
846 * @bio: the bio being unmapped
847 *
848 * Unmap a bio previously mapped by bio_map_user(). Must be called with
849 * a process context.
850 *
851 * bio_unmap_user() may sleep.
852 */
853 void bio_unmap_user(struct bio *bio)
854 {
855 __bio_unmap_user(bio);
856 bio_put(bio);
857 }
858
859 static void bio_map_kern_endio(struct bio *bio, int err)
860 {
861 bio_put(bio);
862 }
863
864
865 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
866 unsigned int len, gfp_t gfp_mask)
867 {
868 unsigned long kaddr = (unsigned long)data;
869 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
870 unsigned long start = kaddr >> PAGE_SHIFT;
871 const int nr_pages = end - start;
872 int offset, i;
873 struct bio *bio;
874
875 bio = bio_alloc(gfp_mask, nr_pages);
876 if (!bio)
877 return ERR_PTR(-ENOMEM);
878
879 offset = offset_in_page(kaddr);
880 for (i = 0; i < nr_pages; i++) {
881 unsigned int bytes = PAGE_SIZE - offset;
882
883 if (len <= 0)
884 break;
885
886 if (bytes > len)
887 bytes = len;
888
889 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
890 offset) < bytes)
891 break;
892
893 data += bytes;
894 len -= bytes;
895 offset = 0;
896 }
897
898 bio->bi_end_io = bio_map_kern_endio;
899 return bio;
900 }
901
902 /**
903 * bio_map_kern - map kernel address into bio
904 * @q: the struct request_queue for the bio
905 * @data: pointer to buffer to map
906 * @len: length in bytes
907 * @gfp_mask: allocation flags for bio allocation
908 *
909 * Map the kernel address into a bio suitable for io to a block
910 * device. Returns an error pointer in case of error.
911 */
912 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
913 gfp_t gfp_mask)
914 {
915 struct bio *bio;
916
917 bio = __bio_map_kern(q, data, len, gfp_mask);
918 if (IS_ERR(bio))
919 return bio;
920
921 if (bio->bi_size == len)
922 return bio;
923
924 /*
925 * Don't support partial mappings.
926 */
927 bio_put(bio);
928 return ERR_PTR(-EINVAL);
929 }
930
931 static void bio_copy_kern_endio(struct bio *bio, int err)
932 {
933 struct bio_vec *bvec;
934 const int read = bio_data_dir(bio) == READ;
935 struct bio_map_data *bmd = bio->bi_private;
936 int i;
937 char *p = bmd->sgvecs[0].iov_base;
938
939 __bio_for_each_segment(bvec, bio, i, 0) {
940 char *addr = page_address(bvec->bv_page);
941 int len = bmd->iovecs[i].bv_len;
942
943 if (read && !err)
944 memcpy(p, addr, len);
945
946 __free_page(bvec->bv_page);
947 p += len;
948 }
949
950 bio_free_map_data(bmd);
951 bio_put(bio);
952 }
953
954 /**
955 * bio_copy_kern - copy kernel address into bio
956 * @q: the struct request_queue for the bio
957 * @data: pointer to buffer to copy
958 * @len: length in bytes
959 * @gfp_mask: allocation flags for bio and page allocation
960 * @reading: data direction is READ
961 *
962 * copy the kernel address into a bio suitable for io to a block
963 * device. Returns an error pointer in case of error.
964 */
965 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
966 gfp_t gfp_mask, int reading)
967 {
968 unsigned long kaddr = (unsigned long)data;
969 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
970 unsigned long start = kaddr >> PAGE_SHIFT;
971 const int nr_pages = end - start;
972 struct bio *bio;
973 struct bio_vec *bvec;
974 struct bio_map_data *bmd;
975 int i, ret;
976 struct sg_iovec iov;
977
978 iov.iov_base = data;
979 iov.iov_len = len;
980
981 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
982 if (!bmd)
983 return ERR_PTR(-ENOMEM);
984
985 ret = -ENOMEM;
986 bio = bio_alloc(gfp_mask, nr_pages);
987 if (!bio)
988 goto out_bmd;
989
990 while (len) {
991 struct page *page;
992 unsigned int bytes = PAGE_SIZE;
993
994 if (bytes > len)
995 bytes = len;
996
997 page = alloc_page(q->bounce_gfp | gfp_mask);
998 if (!page) {
999 ret = -ENOMEM;
1000 goto cleanup;
1001 }
1002
1003 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1004 ret = -EINVAL;
1005 goto cleanup;
1006 }
1007
1008 len -= bytes;
1009 }
1010
1011 if (!reading) {
1012 void *p = data;
1013
1014 bio_for_each_segment(bvec, bio, i) {
1015 char *addr = page_address(bvec->bv_page);
1016
1017 memcpy(addr, p, bvec->bv_len);
1018 p += bvec->bv_len;
1019 }
1020 }
1021
1022 bio->bi_private = bmd;
1023 bio->bi_end_io = bio_copy_kern_endio;
1024
1025 bio_set_map_data(bmd, bio, &iov, 1);
1026 return bio;
1027 cleanup:
1028 bio_for_each_segment(bvec, bio, i)
1029 __free_page(bvec->bv_page);
1030
1031 bio_put(bio);
1032 out_bmd:
1033 bio_free_map_data(bmd);
1034
1035 return ERR_PTR(ret);
1036 }
1037
1038 /*
1039 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1040 * for performing direct-IO in BIOs.
1041 *
1042 * The problem is that we cannot run set_page_dirty() from interrupt context
1043 * because the required locks are not interrupt-safe. So what we can do is to
1044 * mark the pages dirty _before_ performing IO. And in interrupt context,
1045 * check that the pages are still dirty. If so, fine. If not, redirty them
1046 * in process context.
1047 *
1048 * We special-case compound pages here: normally this means reads into hugetlb
1049 * pages. The logic in here doesn't really work right for compound pages
1050 * because the VM does not uniformly chase down the head page in all cases.
1051 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1052 * handle them at all. So we skip compound pages here at an early stage.
1053 *
1054 * Note that this code is very hard to test under normal circumstances because
1055 * direct-io pins the pages with get_user_pages(). This makes
1056 * is_page_cache_freeable return false, and the VM will not clean the pages.
1057 * But other code (eg, pdflush) could clean the pages if they are mapped
1058 * pagecache.
1059 *
1060 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1061 * deferred bio dirtying paths.
1062 */
1063
1064 /*
1065 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1066 */
1067 void bio_set_pages_dirty(struct bio *bio)
1068 {
1069 struct bio_vec *bvec = bio->bi_io_vec;
1070 int i;
1071
1072 for (i = 0; i < bio->bi_vcnt; i++) {
1073 struct page *page = bvec[i].bv_page;
1074
1075 if (page && !PageCompound(page))
1076 set_page_dirty_lock(page);
1077 }
1078 }
1079
1080 static void bio_release_pages(struct bio *bio)
1081 {
1082 struct bio_vec *bvec = bio->bi_io_vec;
1083 int i;
1084
1085 for (i = 0; i < bio->bi_vcnt; i++) {
1086 struct page *page = bvec[i].bv_page;
1087
1088 if (page)
1089 put_page(page);
1090 }
1091 }
1092
1093 /*
1094 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1095 * If they are, then fine. If, however, some pages are clean then they must
1096 * have been written out during the direct-IO read. So we take another ref on
1097 * the BIO and the offending pages and re-dirty the pages in process context.
1098 *
1099 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1100 * here on. It will run one page_cache_release() against each page and will
1101 * run one bio_put() against the BIO.
1102 */
1103
1104 static void bio_dirty_fn(struct work_struct *work);
1105
1106 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1107 static DEFINE_SPINLOCK(bio_dirty_lock);
1108 static struct bio *bio_dirty_list;
1109
1110 /*
1111 * This runs in process context
1112 */
1113 static void bio_dirty_fn(struct work_struct *work)
1114 {
1115 unsigned long flags;
1116 struct bio *bio;
1117
1118 spin_lock_irqsave(&bio_dirty_lock, flags);
1119 bio = bio_dirty_list;
1120 bio_dirty_list = NULL;
1121 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1122
1123 while (bio) {
1124 struct bio *next = bio->bi_private;
1125
1126 bio_set_pages_dirty(bio);
1127 bio_release_pages(bio);
1128 bio_put(bio);
1129 bio = next;
1130 }
1131 }
1132
1133 void bio_check_pages_dirty(struct bio *bio)
1134 {
1135 struct bio_vec *bvec = bio->bi_io_vec;
1136 int nr_clean_pages = 0;
1137 int i;
1138
1139 for (i = 0; i < bio->bi_vcnt; i++) {
1140 struct page *page = bvec[i].bv_page;
1141
1142 if (PageDirty(page) || PageCompound(page)) {
1143 page_cache_release(page);
1144 bvec[i].bv_page = NULL;
1145 } else {
1146 nr_clean_pages++;
1147 }
1148 }
1149
1150 if (nr_clean_pages) {
1151 unsigned long flags;
1152
1153 spin_lock_irqsave(&bio_dirty_lock, flags);
1154 bio->bi_private = bio_dirty_list;
1155 bio_dirty_list = bio;
1156 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1157 schedule_work(&bio_dirty_work);
1158 } else {
1159 bio_put(bio);
1160 }
1161 }
1162
1163 /**
1164 * bio_endio - end I/O on a bio
1165 * @bio: bio
1166 * @error: error, if any
1167 *
1168 * Description:
1169 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1170 * preferred way to end I/O on a bio, it takes care of clearing
1171 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1172 * established -Exxxx (-EIO, for instance) error values in case
1173 * something went wrong. Noone should call bi_end_io() directly on a
1174 * bio unless they own it and thus know that it has an end_io
1175 * function.
1176 **/
1177 void bio_endio(struct bio *bio, int error)
1178 {
1179 if (error)
1180 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1181 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1182 error = -EIO;
1183
1184 if (bio->bi_end_io)
1185 bio->bi_end_io(bio, error);
1186 }
1187
1188 void bio_pair_release(struct bio_pair *bp)
1189 {
1190 if (atomic_dec_and_test(&bp->cnt)) {
1191 struct bio *master = bp->bio1.bi_private;
1192
1193 bio_endio(master, bp->error);
1194 mempool_free(bp, bp->bio2.bi_private);
1195 }
1196 }
1197
1198 static void bio_pair_end_1(struct bio *bi, int err)
1199 {
1200 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1201
1202 if (err)
1203 bp->error = err;
1204
1205 bio_pair_release(bp);
1206 }
1207
1208 static void bio_pair_end_2(struct bio *bi, int err)
1209 {
1210 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1211
1212 if (err)
1213 bp->error = err;
1214
1215 bio_pair_release(bp);
1216 }
1217
1218 /*
1219 * split a bio - only worry about a bio with a single page
1220 * in it's iovec
1221 */
1222 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1223 {
1224 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1225
1226 if (!bp)
1227 return bp;
1228
1229 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1230 bi->bi_sector + first_sectors);
1231
1232 BUG_ON(bi->bi_vcnt != 1);
1233 BUG_ON(bi->bi_idx != 0);
1234 atomic_set(&bp->cnt, 3);
1235 bp->error = 0;
1236 bp->bio1 = *bi;
1237 bp->bio2 = *bi;
1238 bp->bio2.bi_sector += first_sectors;
1239 bp->bio2.bi_size -= first_sectors << 9;
1240 bp->bio1.bi_size = first_sectors << 9;
1241
1242 bp->bv1 = bi->bi_io_vec[0];
1243 bp->bv2 = bi->bi_io_vec[0];
1244 bp->bv2.bv_offset += first_sectors << 9;
1245 bp->bv2.bv_len -= first_sectors << 9;
1246 bp->bv1.bv_len = first_sectors << 9;
1247
1248 bp->bio1.bi_io_vec = &bp->bv1;
1249 bp->bio2.bi_io_vec = &bp->bv2;
1250
1251 bp->bio1.bi_max_vecs = 1;
1252 bp->bio2.bi_max_vecs = 1;
1253
1254 bp->bio1.bi_end_io = bio_pair_end_1;
1255 bp->bio2.bi_end_io = bio_pair_end_2;
1256
1257 bp->bio1.bi_private = bi;
1258 bp->bio2.bi_private = pool;
1259
1260 if (bio_integrity(bi))
1261 bio_integrity_split(bi, bp, first_sectors);
1262
1263 return bp;
1264 }
1265
1266
1267 /*
1268 * create memory pools for biovec's in a bio_set.
1269 * use the global biovec slabs created for general use.
1270 */
1271 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1272 {
1273 int i;
1274
1275 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1276 struct biovec_slab *bp = bvec_slabs + i;
1277 mempool_t **bvp = bs->bvec_pools + i;
1278
1279 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1280 if (!*bvp)
1281 return -ENOMEM;
1282 }
1283 return 0;
1284 }
1285
1286 static void biovec_free_pools(struct bio_set *bs)
1287 {
1288 int i;
1289
1290 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1291 mempool_t *bvp = bs->bvec_pools[i];
1292
1293 if (bvp)
1294 mempool_destroy(bvp);
1295 }
1296
1297 }
1298
1299 void bioset_free(struct bio_set *bs)
1300 {
1301 if (bs->bio_pool)
1302 mempool_destroy(bs->bio_pool);
1303
1304 bioset_integrity_free(bs);
1305 biovec_free_pools(bs);
1306
1307 kfree(bs);
1308 }
1309
1310 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1311 {
1312 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1313
1314 if (!bs)
1315 return NULL;
1316
1317 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1318 if (!bs->bio_pool)
1319 goto bad;
1320
1321 if (bioset_integrity_create(bs, bio_pool_size))
1322 goto bad;
1323
1324 if (!biovec_create_pools(bs, bvec_pool_size))
1325 return bs;
1326
1327 bad:
1328 bioset_free(bs);
1329 return NULL;
1330 }
1331
1332 static void __init biovec_init_slabs(void)
1333 {
1334 int i;
1335
1336 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1337 int size;
1338 struct biovec_slab *bvs = bvec_slabs + i;
1339
1340 size = bvs->nr_vecs * sizeof(struct bio_vec);
1341 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1342 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1343 }
1344 }
1345
1346 static int __init init_bio(void)
1347 {
1348 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1349
1350 bio_integrity_init_slab();
1351 biovec_init_slabs();
1352
1353 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1354 if (!fs_bio_set)
1355 panic("bio: can't allocate bios\n");
1356
1357 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1358 sizeof(struct bio_pair));
1359 if (!bio_split_pool)
1360 panic("bio: can't create split pool\n");
1361
1362 return 0;
1363 }
1364
1365 subsys_initcall(init_bio);
1366
1367 EXPORT_SYMBOL(bio_alloc);
1368 EXPORT_SYMBOL(bio_put);
1369 EXPORT_SYMBOL(bio_free);
1370 EXPORT_SYMBOL(bio_endio);
1371 EXPORT_SYMBOL(bio_init);
1372 EXPORT_SYMBOL(__bio_clone);
1373 EXPORT_SYMBOL(bio_clone);
1374 EXPORT_SYMBOL(bio_phys_segments);
1375 EXPORT_SYMBOL(bio_add_page);
1376 EXPORT_SYMBOL(bio_add_pc_page);
1377 EXPORT_SYMBOL(bio_get_nr_vecs);
1378 EXPORT_SYMBOL(bio_map_user);
1379 EXPORT_SYMBOL(bio_unmap_user);
1380 EXPORT_SYMBOL(bio_map_kern);
1381 EXPORT_SYMBOL(bio_copy_kern);
1382 EXPORT_SYMBOL(bio_pair_release);
1383 EXPORT_SYMBOL(bio_split);
1384 EXPORT_SYMBOL(bio_split_pool);
1385 EXPORT_SYMBOL(bio_copy_user);
1386 EXPORT_SYMBOL(bio_uncopy_user);
1387 EXPORT_SYMBOL(bioset_create);
1388 EXPORT_SYMBOL(bioset_free);
1389 EXPORT_SYMBOL(bio_alloc_bioset);
This page took 0.080785 seconds and 6 git commands to generate.