block: add gfp_mask argument to blk_rq_map_user and blk_rq_map_user_iov
[deliverable/linux.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
30
31 static struct kmem_cache *bio_slab __read_mostly;
32
33 mempool_t *bio_split_pool __read_mostly;
34
35 /*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44 };
45 #undef BV
46
47 /*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51 struct bio_set *fs_bio_set;
52
53 unsigned int bvec_nr_vecs(unsigned short idx)
54 {
55 return bvec_slabs[idx].nr_vecs;
56 }
57
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
59 {
60 struct bio_vec *bvl;
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
82
83 return bvl;
84 }
85
86 void bio_free(struct bio *bio, struct bio_set *bio_set)
87 {
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
90
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
95
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
99 mempool_free(bio, bio_set->bio_pool);
100 }
101
102 /*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105 static void bio_fs_destructor(struct bio *bio)
106 {
107 bio_free(bio, fs_bio_set);
108 }
109
110 void bio_init(struct bio *bio)
111 {
112 memset(bio, 0, sizeof(*bio));
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_comp_cpu = -1;
115 atomic_set(&bio->bi_cnt, 1);
116 }
117
118 /**
119 * bio_alloc_bioset - allocate a bio for I/O
120 * @gfp_mask: the GFP_ mask given to the slab allocator
121 * @nr_iovecs: number of iovecs to pre-allocate
122 * @bs: the bio_set to allocate from
123 *
124 * Description:
125 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
126 * If %__GFP_WAIT is set then we will block on the internal pool waiting
127 * for a &struct bio to become free.
128 *
129 * allocate bio and iovecs from the memory pools specified by the
130 * bio_set structure.
131 **/
132 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
133 {
134 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
135
136 if (likely(bio)) {
137 struct bio_vec *bvl = NULL;
138
139 bio_init(bio);
140 if (likely(nr_iovecs)) {
141 unsigned long uninitialized_var(idx);
142
143 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
144 if (unlikely(!bvl)) {
145 mempool_free(bio, bs->bio_pool);
146 bio = NULL;
147 goto out;
148 }
149 bio->bi_flags |= idx << BIO_POOL_OFFSET;
150 bio->bi_max_vecs = bvec_nr_vecs(idx);
151 }
152 bio->bi_io_vec = bvl;
153 }
154 out:
155 return bio;
156 }
157
158 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
159 {
160 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
161
162 if (bio)
163 bio->bi_destructor = bio_fs_destructor;
164
165 return bio;
166 }
167
168 void zero_fill_bio(struct bio *bio)
169 {
170 unsigned long flags;
171 struct bio_vec *bv;
172 int i;
173
174 bio_for_each_segment(bv, bio, i) {
175 char *data = bvec_kmap_irq(bv, &flags);
176 memset(data, 0, bv->bv_len);
177 flush_dcache_page(bv->bv_page);
178 bvec_kunmap_irq(data, &flags);
179 }
180 }
181 EXPORT_SYMBOL(zero_fill_bio);
182
183 /**
184 * bio_put - release a reference to a bio
185 * @bio: bio to release reference to
186 *
187 * Description:
188 * Put a reference to a &struct bio, either one you have gotten with
189 * bio_alloc or bio_get. The last put of a bio will free it.
190 **/
191 void bio_put(struct bio *bio)
192 {
193 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
194
195 /*
196 * last put frees it
197 */
198 if (atomic_dec_and_test(&bio->bi_cnt)) {
199 bio->bi_next = NULL;
200 bio->bi_destructor(bio);
201 }
202 }
203
204 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
205 {
206 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
207 blk_recount_segments(q, bio);
208
209 return bio->bi_phys_segments;
210 }
211
212 /**
213 * __bio_clone - clone a bio
214 * @bio: destination bio
215 * @bio_src: bio to clone
216 *
217 * Clone a &bio. Caller will own the returned bio, but not
218 * the actual data it points to. Reference count of returned
219 * bio will be one.
220 */
221 void __bio_clone(struct bio *bio, struct bio *bio_src)
222 {
223 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
224 bio_src->bi_max_vecs * sizeof(struct bio_vec));
225
226 /*
227 * most users will be overriding ->bi_bdev with a new target,
228 * so we don't set nor calculate new physical/hw segment counts here
229 */
230 bio->bi_sector = bio_src->bi_sector;
231 bio->bi_bdev = bio_src->bi_bdev;
232 bio->bi_flags |= 1 << BIO_CLONED;
233 bio->bi_rw = bio_src->bi_rw;
234 bio->bi_vcnt = bio_src->bi_vcnt;
235 bio->bi_size = bio_src->bi_size;
236 bio->bi_idx = bio_src->bi_idx;
237 }
238
239 /**
240 * bio_clone - clone a bio
241 * @bio: bio to clone
242 * @gfp_mask: allocation priority
243 *
244 * Like __bio_clone, only also allocates the returned bio
245 */
246 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
247 {
248 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
249
250 if (!b)
251 return NULL;
252
253 b->bi_destructor = bio_fs_destructor;
254 __bio_clone(b, bio);
255
256 if (bio_integrity(bio)) {
257 int ret;
258
259 ret = bio_integrity_clone(b, bio, fs_bio_set);
260
261 if (ret < 0)
262 return NULL;
263 }
264
265 return b;
266 }
267
268 /**
269 * bio_get_nr_vecs - return approx number of vecs
270 * @bdev: I/O target
271 *
272 * Return the approximate number of pages we can send to this target.
273 * There's no guarantee that you will be able to fit this number of pages
274 * into a bio, it does not account for dynamic restrictions that vary
275 * on offset.
276 */
277 int bio_get_nr_vecs(struct block_device *bdev)
278 {
279 struct request_queue *q = bdev_get_queue(bdev);
280 int nr_pages;
281
282 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 if (nr_pages > q->max_phys_segments)
284 nr_pages = q->max_phys_segments;
285 if (nr_pages > q->max_hw_segments)
286 nr_pages = q->max_hw_segments;
287
288 return nr_pages;
289 }
290
291 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
292 *page, unsigned int len, unsigned int offset,
293 unsigned short max_sectors)
294 {
295 int retried_segments = 0;
296 struct bio_vec *bvec;
297
298 /*
299 * cloned bio must not modify vec list
300 */
301 if (unlikely(bio_flagged(bio, BIO_CLONED)))
302 return 0;
303
304 if (((bio->bi_size + len) >> 9) > max_sectors)
305 return 0;
306
307 /*
308 * For filesystems with a blocksize smaller than the pagesize
309 * we will often be called with the same page as last time and
310 * a consecutive offset. Optimize this special case.
311 */
312 if (bio->bi_vcnt > 0) {
313 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
314
315 if (page == prev->bv_page &&
316 offset == prev->bv_offset + prev->bv_len) {
317 prev->bv_len += len;
318
319 if (q->merge_bvec_fn) {
320 struct bvec_merge_data bvm = {
321 .bi_bdev = bio->bi_bdev,
322 .bi_sector = bio->bi_sector,
323 .bi_size = bio->bi_size,
324 .bi_rw = bio->bi_rw,
325 };
326
327 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
328 prev->bv_len -= len;
329 return 0;
330 }
331 }
332
333 goto done;
334 }
335 }
336
337 if (bio->bi_vcnt >= bio->bi_max_vecs)
338 return 0;
339
340 /*
341 * we might lose a segment or two here, but rather that than
342 * make this too complex.
343 */
344
345 while (bio->bi_phys_segments >= q->max_phys_segments
346 || bio->bi_phys_segments >= q->max_hw_segments) {
347
348 if (retried_segments)
349 return 0;
350
351 retried_segments = 1;
352 blk_recount_segments(q, bio);
353 }
354
355 /*
356 * setup the new entry, we might clear it again later if we
357 * cannot add the page
358 */
359 bvec = &bio->bi_io_vec[bio->bi_vcnt];
360 bvec->bv_page = page;
361 bvec->bv_len = len;
362 bvec->bv_offset = offset;
363
364 /*
365 * if queue has other restrictions (eg varying max sector size
366 * depending on offset), it can specify a merge_bvec_fn in the
367 * queue to get further control
368 */
369 if (q->merge_bvec_fn) {
370 struct bvec_merge_data bvm = {
371 .bi_bdev = bio->bi_bdev,
372 .bi_sector = bio->bi_sector,
373 .bi_size = bio->bi_size,
374 .bi_rw = bio->bi_rw,
375 };
376
377 /*
378 * merge_bvec_fn() returns number of bytes it can accept
379 * at this offset
380 */
381 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
382 bvec->bv_page = NULL;
383 bvec->bv_len = 0;
384 bvec->bv_offset = 0;
385 return 0;
386 }
387 }
388
389 /* If we may be able to merge these biovecs, force a recount */
390 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
391 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
392
393 bio->bi_vcnt++;
394 bio->bi_phys_segments++;
395 done:
396 bio->bi_size += len;
397 return len;
398 }
399
400 /**
401 * bio_add_pc_page - attempt to add page to bio
402 * @q: the target queue
403 * @bio: destination bio
404 * @page: page to add
405 * @len: vec entry length
406 * @offset: vec entry offset
407 *
408 * Attempt to add a page to the bio_vec maplist. This can fail for a
409 * number of reasons, such as the bio being full or target block
410 * device limitations. The target block device must allow bio's
411 * smaller than PAGE_SIZE, so it is always possible to add a single
412 * page to an empty bio. This should only be used by REQ_PC bios.
413 */
414 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
415 unsigned int len, unsigned int offset)
416 {
417 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
418 }
419
420 /**
421 * bio_add_page - attempt to add page to bio
422 * @bio: destination bio
423 * @page: page to add
424 * @len: vec entry length
425 * @offset: vec entry offset
426 *
427 * Attempt to add a page to the bio_vec maplist. This can fail for a
428 * number of reasons, such as the bio being full or target block
429 * device limitations. The target block device must allow bio's
430 * smaller than PAGE_SIZE, so it is always possible to add a single
431 * page to an empty bio.
432 */
433 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
434 unsigned int offset)
435 {
436 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
437 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
438 }
439
440 struct bio_map_data {
441 struct bio_vec *iovecs;
442 int nr_sgvecs;
443 struct sg_iovec *sgvecs;
444 };
445
446 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
447 struct sg_iovec *iov, int iov_count)
448 {
449 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
450 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
451 bmd->nr_sgvecs = iov_count;
452 bio->bi_private = bmd;
453 }
454
455 static void bio_free_map_data(struct bio_map_data *bmd)
456 {
457 kfree(bmd->iovecs);
458 kfree(bmd->sgvecs);
459 kfree(bmd);
460 }
461
462 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
463 gfp_t gfp_mask)
464 {
465 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
466
467 if (!bmd)
468 return NULL;
469
470 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
471 if (!bmd->iovecs) {
472 kfree(bmd);
473 return NULL;
474 }
475
476 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
477 if (bmd->sgvecs)
478 return bmd;
479
480 kfree(bmd->iovecs);
481 kfree(bmd);
482 return NULL;
483 }
484
485 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
486 struct sg_iovec *iov, int iov_count, int uncopy)
487 {
488 int ret = 0, i;
489 struct bio_vec *bvec;
490 int iov_idx = 0;
491 unsigned int iov_off = 0;
492 int read = bio_data_dir(bio) == READ;
493
494 __bio_for_each_segment(bvec, bio, i, 0) {
495 char *bv_addr = page_address(bvec->bv_page);
496 unsigned int bv_len = iovecs[i].bv_len;
497
498 while (bv_len && iov_idx < iov_count) {
499 unsigned int bytes;
500 char *iov_addr;
501
502 bytes = min_t(unsigned int,
503 iov[iov_idx].iov_len - iov_off, bv_len);
504 iov_addr = iov[iov_idx].iov_base + iov_off;
505
506 if (!ret) {
507 if (!read && !uncopy)
508 ret = copy_from_user(bv_addr, iov_addr,
509 bytes);
510 if (read && uncopy)
511 ret = copy_to_user(iov_addr, bv_addr,
512 bytes);
513
514 if (ret)
515 ret = -EFAULT;
516 }
517
518 bv_len -= bytes;
519 bv_addr += bytes;
520 iov_addr += bytes;
521 iov_off += bytes;
522
523 if (iov[iov_idx].iov_len == iov_off) {
524 iov_idx++;
525 iov_off = 0;
526 }
527 }
528
529 if (uncopy)
530 __free_page(bvec->bv_page);
531 }
532
533 return ret;
534 }
535
536 /**
537 * bio_uncopy_user - finish previously mapped bio
538 * @bio: bio being terminated
539 *
540 * Free pages allocated from bio_copy_user() and write back data
541 * to user space in case of a read.
542 */
543 int bio_uncopy_user(struct bio *bio)
544 {
545 struct bio_map_data *bmd = bio->bi_private;
546 int ret;
547
548 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1);
549
550 bio_free_map_data(bmd);
551 bio_put(bio);
552 return ret;
553 }
554
555 /**
556 * bio_copy_user_iov - copy user data to bio
557 * @q: destination block queue
558 * @iov: the iovec.
559 * @iov_count: number of elements in the iovec
560 * @write_to_vm: bool indicating writing to pages or not
561 * @gfp_mask: memory allocation flags
562 *
563 * Prepares and returns a bio for indirect user io, bouncing data
564 * to/from kernel pages as necessary. Must be paired with
565 * call bio_uncopy_user() on io completion.
566 */
567 struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
568 int iov_count, int write_to_vm, gfp_t gfp_mask)
569 {
570 struct bio_map_data *bmd;
571 struct bio_vec *bvec;
572 struct page *page;
573 struct bio *bio;
574 int i, ret;
575 int nr_pages = 0;
576 unsigned int len = 0;
577
578 for (i = 0; i < iov_count; i++) {
579 unsigned long uaddr;
580 unsigned long end;
581 unsigned long start;
582
583 uaddr = (unsigned long)iov[i].iov_base;
584 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
585 start = uaddr >> PAGE_SHIFT;
586
587 nr_pages += end - start;
588 len += iov[i].iov_len;
589 }
590
591 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
592 if (!bmd)
593 return ERR_PTR(-ENOMEM);
594
595 ret = -ENOMEM;
596 bio = bio_alloc(gfp_mask, nr_pages);
597 if (!bio)
598 goto out_bmd;
599
600 bio->bi_rw |= (!write_to_vm << BIO_RW);
601
602 ret = 0;
603 while (len) {
604 unsigned int bytes = PAGE_SIZE;
605
606 if (bytes > len)
607 bytes = len;
608
609 page = alloc_page(q->bounce_gfp | gfp_mask);
610 if (!page) {
611 ret = -ENOMEM;
612 break;
613 }
614
615 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
616 break;
617
618 len -= bytes;
619 }
620
621 if (ret)
622 goto cleanup;
623
624 /*
625 * success
626 */
627 if (!write_to_vm) {
628 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0);
629 if (ret)
630 goto cleanup;
631 }
632
633 bio_set_map_data(bmd, bio, iov, iov_count);
634 return bio;
635 cleanup:
636 bio_for_each_segment(bvec, bio, i)
637 __free_page(bvec->bv_page);
638
639 bio_put(bio);
640 out_bmd:
641 bio_free_map_data(bmd);
642 return ERR_PTR(ret);
643 }
644
645 /**
646 * bio_copy_user - copy user data to bio
647 * @q: destination block queue
648 * @uaddr: start of user address
649 * @len: length in bytes
650 * @write_to_vm: bool indicating writing to pages or not
651 * @gfp_mask: memory allocation flags
652 *
653 * Prepares and returns a bio for indirect user io, bouncing data
654 * to/from kernel pages as necessary. Must be paired with
655 * call bio_uncopy_user() on io completion.
656 */
657 struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
658 unsigned int len, int write_to_vm, gfp_t gfp_mask)
659 {
660 struct sg_iovec iov;
661
662 iov.iov_base = (void __user *)uaddr;
663 iov.iov_len = len;
664
665 return bio_copy_user_iov(q, &iov, 1, write_to_vm, gfp_mask);
666 }
667
668 static struct bio *__bio_map_user_iov(struct request_queue *q,
669 struct block_device *bdev,
670 struct sg_iovec *iov, int iov_count,
671 int write_to_vm, gfp_t gfp_mask)
672 {
673 int i, j;
674 int nr_pages = 0;
675 struct page **pages;
676 struct bio *bio;
677 int cur_page = 0;
678 int ret, offset;
679
680 for (i = 0; i < iov_count; i++) {
681 unsigned long uaddr = (unsigned long)iov[i].iov_base;
682 unsigned long len = iov[i].iov_len;
683 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
684 unsigned long start = uaddr >> PAGE_SHIFT;
685
686 nr_pages += end - start;
687 /*
688 * buffer must be aligned to at least hardsector size for now
689 */
690 if (uaddr & queue_dma_alignment(q))
691 return ERR_PTR(-EINVAL);
692 }
693
694 if (!nr_pages)
695 return ERR_PTR(-EINVAL);
696
697 bio = bio_alloc(gfp_mask, nr_pages);
698 if (!bio)
699 return ERR_PTR(-ENOMEM);
700
701 ret = -ENOMEM;
702 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
703 if (!pages)
704 goto out;
705
706 for (i = 0; i < iov_count; i++) {
707 unsigned long uaddr = (unsigned long)iov[i].iov_base;
708 unsigned long len = iov[i].iov_len;
709 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
710 unsigned long start = uaddr >> PAGE_SHIFT;
711 const int local_nr_pages = end - start;
712 const int page_limit = cur_page + local_nr_pages;
713
714 ret = get_user_pages_fast(uaddr, local_nr_pages,
715 write_to_vm, &pages[cur_page]);
716 if (ret < local_nr_pages) {
717 ret = -EFAULT;
718 goto out_unmap;
719 }
720
721 offset = uaddr & ~PAGE_MASK;
722 for (j = cur_page; j < page_limit; j++) {
723 unsigned int bytes = PAGE_SIZE - offset;
724
725 if (len <= 0)
726 break;
727
728 if (bytes > len)
729 bytes = len;
730
731 /*
732 * sorry...
733 */
734 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
735 bytes)
736 break;
737
738 len -= bytes;
739 offset = 0;
740 }
741
742 cur_page = j;
743 /*
744 * release the pages we didn't map into the bio, if any
745 */
746 while (j < page_limit)
747 page_cache_release(pages[j++]);
748 }
749
750 kfree(pages);
751
752 /*
753 * set data direction, and check if mapped pages need bouncing
754 */
755 if (!write_to_vm)
756 bio->bi_rw |= (1 << BIO_RW);
757
758 bio->bi_bdev = bdev;
759 bio->bi_flags |= (1 << BIO_USER_MAPPED);
760 return bio;
761
762 out_unmap:
763 for (i = 0; i < nr_pages; i++) {
764 if(!pages[i])
765 break;
766 page_cache_release(pages[i]);
767 }
768 out:
769 kfree(pages);
770 bio_put(bio);
771 return ERR_PTR(ret);
772 }
773
774 /**
775 * bio_map_user - map user address into bio
776 * @q: the struct request_queue for the bio
777 * @bdev: destination block device
778 * @uaddr: start of user address
779 * @len: length in bytes
780 * @write_to_vm: bool indicating writing to pages or not
781 * @gfp_mask: memory allocation flags
782 *
783 * Map the user space address into a bio suitable for io to a block
784 * device. Returns an error pointer in case of error.
785 */
786 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
787 unsigned long uaddr, unsigned int len, int write_to_vm,
788 gfp_t gfp_mask)
789 {
790 struct sg_iovec iov;
791
792 iov.iov_base = (void __user *)uaddr;
793 iov.iov_len = len;
794
795 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
796 }
797
798 /**
799 * bio_map_user_iov - map user sg_iovec table into bio
800 * @q: the struct request_queue for the bio
801 * @bdev: destination block device
802 * @iov: the iovec.
803 * @iov_count: number of elements in the iovec
804 * @write_to_vm: bool indicating writing to pages or not
805 * @gfp_mask: memory allocation flags
806 *
807 * Map the user space address into a bio suitable for io to a block
808 * device. Returns an error pointer in case of error.
809 */
810 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
811 struct sg_iovec *iov, int iov_count,
812 int write_to_vm, gfp_t gfp_mask)
813 {
814 struct bio *bio;
815
816 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
817 gfp_mask);
818 if (IS_ERR(bio))
819 return bio;
820
821 /*
822 * subtle -- if __bio_map_user() ended up bouncing a bio,
823 * it would normally disappear when its bi_end_io is run.
824 * however, we need it for the unmap, so grab an extra
825 * reference to it
826 */
827 bio_get(bio);
828
829 return bio;
830 }
831
832 static void __bio_unmap_user(struct bio *bio)
833 {
834 struct bio_vec *bvec;
835 int i;
836
837 /*
838 * make sure we dirty pages we wrote to
839 */
840 __bio_for_each_segment(bvec, bio, i, 0) {
841 if (bio_data_dir(bio) == READ)
842 set_page_dirty_lock(bvec->bv_page);
843
844 page_cache_release(bvec->bv_page);
845 }
846
847 bio_put(bio);
848 }
849
850 /**
851 * bio_unmap_user - unmap a bio
852 * @bio: the bio being unmapped
853 *
854 * Unmap a bio previously mapped by bio_map_user(). Must be called with
855 * a process context.
856 *
857 * bio_unmap_user() may sleep.
858 */
859 void bio_unmap_user(struct bio *bio)
860 {
861 __bio_unmap_user(bio);
862 bio_put(bio);
863 }
864
865 static void bio_map_kern_endio(struct bio *bio, int err)
866 {
867 bio_put(bio);
868 }
869
870
871 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
872 unsigned int len, gfp_t gfp_mask)
873 {
874 unsigned long kaddr = (unsigned long)data;
875 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
876 unsigned long start = kaddr >> PAGE_SHIFT;
877 const int nr_pages = end - start;
878 int offset, i;
879 struct bio *bio;
880
881 bio = bio_alloc(gfp_mask, nr_pages);
882 if (!bio)
883 return ERR_PTR(-ENOMEM);
884
885 offset = offset_in_page(kaddr);
886 for (i = 0; i < nr_pages; i++) {
887 unsigned int bytes = PAGE_SIZE - offset;
888
889 if (len <= 0)
890 break;
891
892 if (bytes > len)
893 bytes = len;
894
895 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
896 offset) < bytes)
897 break;
898
899 data += bytes;
900 len -= bytes;
901 offset = 0;
902 }
903
904 bio->bi_end_io = bio_map_kern_endio;
905 return bio;
906 }
907
908 /**
909 * bio_map_kern - map kernel address into bio
910 * @q: the struct request_queue for the bio
911 * @data: pointer to buffer to map
912 * @len: length in bytes
913 * @gfp_mask: allocation flags for bio allocation
914 *
915 * Map the kernel address into a bio suitable for io to a block
916 * device. Returns an error pointer in case of error.
917 */
918 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
919 gfp_t gfp_mask)
920 {
921 struct bio *bio;
922
923 bio = __bio_map_kern(q, data, len, gfp_mask);
924 if (IS_ERR(bio))
925 return bio;
926
927 if (bio->bi_size == len)
928 return bio;
929
930 /*
931 * Don't support partial mappings.
932 */
933 bio_put(bio);
934 return ERR_PTR(-EINVAL);
935 }
936
937 static void bio_copy_kern_endio(struct bio *bio, int err)
938 {
939 struct bio_vec *bvec;
940 const int read = bio_data_dir(bio) == READ;
941 struct bio_map_data *bmd = bio->bi_private;
942 int i;
943 char *p = bmd->sgvecs[0].iov_base;
944
945 __bio_for_each_segment(bvec, bio, i, 0) {
946 char *addr = page_address(bvec->bv_page);
947 int len = bmd->iovecs[i].bv_len;
948
949 if (read && !err)
950 memcpy(p, addr, len);
951
952 __free_page(bvec->bv_page);
953 p += len;
954 }
955
956 bio_free_map_data(bmd);
957 bio_put(bio);
958 }
959
960 /**
961 * bio_copy_kern - copy kernel address into bio
962 * @q: the struct request_queue for the bio
963 * @data: pointer to buffer to copy
964 * @len: length in bytes
965 * @gfp_mask: allocation flags for bio and page allocation
966 * @reading: data direction is READ
967 *
968 * copy the kernel address into a bio suitable for io to a block
969 * device. Returns an error pointer in case of error.
970 */
971 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
972 gfp_t gfp_mask, int reading)
973 {
974 unsigned long kaddr = (unsigned long)data;
975 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
976 unsigned long start = kaddr >> PAGE_SHIFT;
977 const int nr_pages = end - start;
978 struct bio *bio;
979 struct bio_vec *bvec;
980 struct bio_map_data *bmd;
981 int i, ret;
982 struct sg_iovec iov;
983
984 iov.iov_base = data;
985 iov.iov_len = len;
986
987 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
988 if (!bmd)
989 return ERR_PTR(-ENOMEM);
990
991 ret = -ENOMEM;
992 bio = bio_alloc(gfp_mask, nr_pages);
993 if (!bio)
994 goto out_bmd;
995
996 while (len) {
997 struct page *page;
998 unsigned int bytes = PAGE_SIZE;
999
1000 if (bytes > len)
1001 bytes = len;
1002
1003 page = alloc_page(q->bounce_gfp | gfp_mask);
1004 if (!page) {
1005 ret = -ENOMEM;
1006 goto cleanup;
1007 }
1008
1009 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1010 ret = -EINVAL;
1011 goto cleanup;
1012 }
1013
1014 len -= bytes;
1015 }
1016
1017 if (!reading) {
1018 void *p = data;
1019
1020 bio_for_each_segment(bvec, bio, i) {
1021 char *addr = page_address(bvec->bv_page);
1022
1023 memcpy(addr, p, bvec->bv_len);
1024 p += bvec->bv_len;
1025 }
1026 }
1027
1028 bio->bi_private = bmd;
1029 bio->bi_end_io = bio_copy_kern_endio;
1030
1031 bio_set_map_data(bmd, bio, &iov, 1);
1032 return bio;
1033 cleanup:
1034 bio_for_each_segment(bvec, bio, i)
1035 __free_page(bvec->bv_page);
1036
1037 bio_put(bio);
1038 out_bmd:
1039 bio_free_map_data(bmd);
1040
1041 return ERR_PTR(ret);
1042 }
1043
1044 /*
1045 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1046 * for performing direct-IO in BIOs.
1047 *
1048 * The problem is that we cannot run set_page_dirty() from interrupt context
1049 * because the required locks are not interrupt-safe. So what we can do is to
1050 * mark the pages dirty _before_ performing IO. And in interrupt context,
1051 * check that the pages are still dirty. If so, fine. If not, redirty them
1052 * in process context.
1053 *
1054 * We special-case compound pages here: normally this means reads into hugetlb
1055 * pages. The logic in here doesn't really work right for compound pages
1056 * because the VM does not uniformly chase down the head page in all cases.
1057 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1058 * handle them at all. So we skip compound pages here at an early stage.
1059 *
1060 * Note that this code is very hard to test under normal circumstances because
1061 * direct-io pins the pages with get_user_pages(). This makes
1062 * is_page_cache_freeable return false, and the VM will not clean the pages.
1063 * But other code (eg, pdflush) could clean the pages if they are mapped
1064 * pagecache.
1065 *
1066 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1067 * deferred bio dirtying paths.
1068 */
1069
1070 /*
1071 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1072 */
1073 void bio_set_pages_dirty(struct bio *bio)
1074 {
1075 struct bio_vec *bvec = bio->bi_io_vec;
1076 int i;
1077
1078 for (i = 0; i < bio->bi_vcnt; i++) {
1079 struct page *page = bvec[i].bv_page;
1080
1081 if (page && !PageCompound(page))
1082 set_page_dirty_lock(page);
1083 }
1084 }
1085
1086 static void bio_release_pages(struct bio *bio)
1087 {
1088 struct bio_vec *bvec = bio->bi_io_vec;
1089 int i;
1090
1091 for (i = 0; i < bio->bi_vcnt; i++) {
1092 struct page *page = bvec[i].bv_page;
1093
1094 if (page)
1095 put_page(page);
1096 }
1097 }
1098
1099 /*
1100 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1101 * If they are, then fine. If, however, some pages are clean then they must
1102 * have been written out during the direct-IO read. So we take another ref on
1103 * the BIO and the offending pages and re-dirty the pages in process context.
1104 *
1105 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1106 * here on. It will run one page_cache_release() against each page and will
1107 * run one bio_put() against the BIO.
1108 */
1109
1110 static void bio_dirty_fn(struct work_struct *work);
1111
1112 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1113 static DEFINE_SPINLOCK(bio_dirty_lock);
1114 static struct bio *bio_dirty_list;
1115
1116 /*
1117 * This runs in process context
1118 */
1119 static void bio_dirty_fn(struct work_struct *work)
1120 {
1121 unsigned long flags;
1122 struct bio *bio;
1123
1124 spin_lock_irqsave(&bio_dirty_lock, flags);
1125 bio = bio_dirty_list;
1126 bio_dirty_list = NULL;
1127 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1128
1129 while (bio) {
1130 struct bio *next = bio->bi_private;
1131
1132 bio_set_pages_dirty(bio);
1133 bio_release_pages(bio);
1134 bio_put(bio);
1135 bio = next;
1136 }
1137 }
1138
1139 void bio_check_pages_dirty(struct bio *bio)
1140 {
1141 struct bio_vec *bvec = bio->bi_io_vec;
1142 int nr_clean_pages = 0;
1143 int i;
1144
1145 for (i = 0; i < bio->bi_vcnt; i++) {
1146 struct page *page = bvec[i].bv_page;
1147
1148 if (PageDirty(page) || PageCompound(page)) {
1149 page_cache_release(page);
1150 bvec[i].bv_page = NULL;
1151 } else {
1152 nr_clean_pages++;
1153 }
1154 }
1155
1156 if (nr_clean_pages) {
1157 unsigned long flags;
1158
1159 spin_lock_irqsave(&bio_dirty_lock, flags);
1160 bio->bi_private = bio_dirty_list;
1161 bio_dirty_list = bio;
1162 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1163 schedule_work(&bio_dirty_work);
1164 } else {
1165 bio_put(bio);
1166 }
1167 }
1168
1169 /**
1170 * bio_endio - end I/O on a bio
1171 * @bio: bio
1172 * @error: error, if any
1173 *
1174 * Description:
1175 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1176 * preferred way to end I/O on a bio, it takes care of clearing
1177 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1178 * established -Exxxx (-EIO, for instance) error values in case
1179 * something went wrong. Noone should call bi_end_io() directly on a
1180 * bio unless they own it and thus know that it has an end_io
1181 * function.
1182 **/
1183 void bio_endio(struct bio *bio, int error)
1184 {
1185 if (error)
1186 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1187 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1188 error = -EIO;
1189
1190 if (bio->bi_end_io)
1191 bio->bi_end_io(bio, error);
1192 }
1193
1194 void bio_pair_release(struct bio_pair *bp)
1195 {
1196 if (atomic_dec_and_test(&bp->cnt)) {
1197 struct bio *master = bp->bio1.bi_private;
1198
1199 bio_endio(master, bp->error);
1200 mempool_free(bp, bp->bio2.bi_private);
1201 }
1202 }
1203
1204 static void bio_pair_end_1(struct bio *bi, int err)
1205 {
1206 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1207
1208 if (err)
1209 bp->error = err;
1210
1211 bio_pair_release(bp);
1212 }
1213
1214 static void bio_pair_end_2(struct bio *bi, int err)
1215 {
1216 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1217
1218 if (err)
1219 bp->error = err;
1220
1221 bio_pair_release(bp);
1222 }
1223
1224 /*
1225 * split a bio - only worry about a bio with a single page
1226 * in it's iovec
1227 */
1228 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1229 {
1230 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1231
1232 if (!bp)
1233 return bp;
1234
1235 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1236 bi->bi_sector + first_sectors);
1237
1238 BUG_ON(bi->bi_vcnt != 1);
1239 BUG_ON(bi->bi_idx != 0);
1240 atomic_set(&bp->cnt, 3);
1241 bp->error = 0;
1242 bp->bio1 = *bi;
1243 bp->bio2 = *bi;
1244 bp->bio2.bi_sector += first_sectors;
1245 bp->bio2.bi_size -= first_sectors << 9;
1246 bp->bio1.bi_size = first_sectors << 9;
1247
1248 bp->bv1 = bi->bi_io_vec[0];
1249 bp->bv2 = bi->bi_io_vec[0];
1250 bp->bv2.bv_offset += first_sectors << 9;
1251 bp->bv2.bv_len -= first_sectors << 9;
1252 bp->bv1.bv_len = first_sectors << 9;
1253
1254 bp->bio1.bi_io_vec = &bp->bv1;
1255 bp->bio2.bi_io_vec = &bp->bv2;
1256
1257 bp->bio1.bi_max_vecs = 1;
1258 bp->bio2.bi_max_vecs = 1;
1259
1260 bp->bio1.bi_end_io = bio_pair_end_1;
1261 bp->bio2.bi_end_io = bio_pair_end_2;
1262
1263 bp->bio1.bi_private = bi;
1264 bp->bio2.bi_private = pool;
1265
1266 if (bio_integrity(bi))
1267 bio_integrity_split(bi, bp, first_sectors);
1268
1269 return bp;
1270 }
1271
1272
1273 /*
1274 * create memory pools for biovec's in a bio_set.
1275 * use the global biovec slabs created for general use.
1276 */
1277 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1278 {
1279 int i;
1280
1281 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1282 struct biovec_slab *bp = bvec_slabs + i;
1283 mempool_t **bvp = bs->bvec_pools + i;
1284
1285 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1286 if (!*bvp)
1287 return -ENOMEM;
1288 }
1289 return 0;
1290 }
1291
1292 static void biovec_free_pools(struct bio_set *bs)
1293 {
1294 int i;
1295
1296 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1297 mempool_t *bvp = bs->bvec_pools[i];
1298
1299 if (bvp)
1300 mempool_destroy(bvp);
1301 }
1302
1303 }
1304
1305 void bioset_free(struct bio_set *bs)
1306 {
1307 if (bs->bio_pool)
1308 mempool_destroy(bs->bio_pool);
1309
1310 bioset_integrity_free(bs);
1311 biovec_free_pools(bs);
1312
1313 kfree(bs);
1314 }
1315
1316 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1317 {
1318 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1319
1320 if (!bs)
1321 return NULL;
1322
1323 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1324 if (!bs->bio_pool)
1325 goto bad;
1326
1327 if (bioset_integrity_create(bs, bio_pool_size))
1328 goto bad;
1329
1330 if (!biovec_create_pools(bs, bvec_pool_size))
1331 return bs;
1332
1333 bad:
1334 bioset_free(bs);
1335 return NULL;
1336 }
1337
1338 static void __init biovec_init_slabs(void)
1339 {
1340 int i;
1341
1342 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1343 int size;
1344 struct biovec_slab *bvs = bvec_slabs + i;
1345
1346 size = bvs->nr_vecs * sizeof(struct bio_vec);
1347 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1348 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1349 }
1350 }
1351
1352 static int __init init_bio(void)
1353 {
1354 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1355
1356 bio_integrity_init_slab();
1357 biovec_init_slabs();
1358
1359 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1360 if (!fs_bio_set)
1361 panic("bio: can't allocate bios\n");
1362
1363 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1364 sizeof(struct bio_pair));
1365 if (!bio_split_pool)
1366 panic("bio: can't create split pool\n");
1367
1368 return 0;
1369 }
1370
1371 subsys_initcall(init_bio);
1372
1373 EXPORT_SYMBOL(bio_alloc);
1374 EXPORT_SYMBOL(bio_put);
1375 EXPORT_SYMBOL(bio_free);
1376 EXPORT_SYMBOL(bio_endio);
1377 EXPORT_SYMBOL(bio_init);
1378 EXPORT_SYMBOL(__bio_clone);
1379 EXPORT_SYMBOL(bio_clone);
1380 EXPORT_SYMBOL(bio_phys_segments);
1381 EXPORT_SYMBOL(bio_add_page);
1382 EXPORT_SYMBOL(bio_add_pc_page);
1383 EXPORT_SYMBOL(bio_get_nr_vecs);
1384 EXPORT_SYMBOL(bio_map_user);
1385 EXPORT_SYMBOL(bio_unmap_user);
1386 EXPORT_SYMBOL(bio_map_kern);
1387 EXPORT_SYMBOL(bio_copy_kern);
1388 EXPORT_SYMBOL(bio_pair_release);
1389 EXPORT_SYMBOL(bio_split);
1390 EXPORT_SYMBOL(bio_split_pool);
1391 EXPORT_SYMBOL(bio_copy_user);
1392 EXPORT_SYMBOL(bio_uncopy_user);
1393 EXPORT_SYMBOL(bioset_create);
1394 EXPORT_SYMBOL(bioset_free);
1395 EXPORT_SYMBOL(bio_alloc_bioset);
This page took 0.056348 seconds and 6 git commands to generate.