block: Kill bio_iovec_idx(), __bio_iovec()
[deliverable/linux.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, pool);
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175 }
176
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
179 {
180 struct bio_vec *bvl;
181
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 bvl = mempool_alloc(pool, gfp_mask);
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219 /*
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
223 */
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226 /*
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
229 */
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
237 return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242 bio_disassociate_task(bio);
243
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
256 if (bio_flagged(bio, BIO_OWNS_VEC))
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290 void bio_reset(struct bio *bio)
291 {
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294 __bio_free(bio);
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316 }
317
318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348
349 /**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
353 * @bs: the bio_set to allocate from.
354 *
355 * Description:
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386 gfp_t saved_gfp = gfp_mask;
387 unsigned front_pad;
388 unsigned inline_vecs;
389 unsigned long idx = BIO_POOL_NONE;
390 struct bio_vec *bvl = NULL;
391 struct bio *bio;
392 void *p;
393
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
428 p = mempool_alloc(bs->bio_pool, gfp_mask);
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
439 if (unlikely(!p))
440 return NULL;
441
442 bio = p + front_pad;
443 bio_init(bio);
444
445 if (nr_iovecs > inline_vecs) {
446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451 }
452
453 if (unlikely(!bvl))
454 goto err_free;
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
459 }
460
461 bio->bi_pool = bs;
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
464 bio->bi_io_vec = bvl;
465 return bio;
466
467 err_free:
468 mempool_free(p, bs->bio_pool);
469 return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472
473 void zero_fill_bio(struct bio *bio)
474 {
475 unsigned long flags;
476 struct bio_vec bv;
477 struct bvec_iter iter;
478
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
483 bvec_kunmap_irq(data, &flags);
484 }
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487
488 /**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495 **/
496 void bio_put(struct bio *bio)
497 {
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507
508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516
517 /**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528 if (bio_is_rw(bio_src)) {
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 bio_for_each_segment(bv, bio_src, iter)
533 bio->bi_io_vec[bio->bi_vcnt++] = bv;
534 } else if (bio_has_data(bio_src)) {
535 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
536 bio_src->bi_max_vecs * sizeof(struct bio_vec));
537 bio->bi_vcnt = bio_src->bi_vcnt;
538 }
539
540 /*
541 * most users will be overriding ->bi_bdev with a new target,
542 * so we don't set nor calculate new physical/hw segment counts here
543 */
544 bio->bi_bdev = bio_src->bi_bdev;
545 bio->bi_flags |= 1 << BIO_CLONED;
546 bio->bi_rw = bio_src->bi_rw;
547 bio->bi_iter = bio_src->bi_iter;
548 }
549 EXPORT_SYMBOL(__bio_clone);
550
551 /**
552 * bio_clone_bioset - clone a bio
553 * @bio: bio to clone
554 * @gfp_mask: allocation priority
555 * @bs: bio_set to allocate from
556 *
557 * Like __bio_clone, only also allocates the returned bio
558 */
559 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
560 struct bio_set *bs)
561 {
562 struct bio *b;
563
564 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
565 if (!b)
566 return NULL;
567
568 __bio_clone(b, bio);
569
570 if (bio_integrity(bio)) {
571 int ret;
572
573 ret = bio_integrity_clone(b, bio, gfp_mask);
574
575 if (ret < 0) {
576 bio_put(b);
577 return NULL;
578 }
579 }
580
581 return b;
582 }
583 EXPORT_SYMBOL(bio_clone_bioset);
584
585 /**
586 * bio_get_nr_vecs - return approx number of vecs
587 * @bdev: I/O target
588 *
589 * Return the approximate number of pages we can send to this target.
590 * There's no guarantee that you will be able to fit this number of pages
591 * into a bio, it does not account for dynamic restrictions that vary
592 * on offset.
593 */
594 int bio_get_nr_vecs(struct block_device *bdev)
595 {
596 struct request_queue *q = bdev_get_queue(bdev);
597 int nr_pages;
598
599 nr_pages = min_t(unsigned,
600 queue_max_segments(q),
601 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
602
603 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
604
605 }
606 EXPORT_SYMBOL(bio_get_nr_vecs);
607
608 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
609 *page, unsigned int len, unsigned int offset,
610 unsigned int max_sectors)
611 {
612 int retried_segments = 0;
613 struct bio_vec *bvec;
614
615 /*
616 * cloned bio must not modify vec list
617 */
618 if (unlikely(bio_flagged(bio, BIO_CLONED)))
619 return 0;
620
621 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
622 return 0;
623
624 /*
625 * For filesystems with a blocksize smaller than the pagesize
626 * we will often be called with the same page as last time and
627 * a consecutive offset. Optimize this special case.
628 */
629 if (bio->bi_vcnt > 0) {
630 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
631
632 if (page == prev->bv_page &&
633 offset == prev->bv_offset + prev->bv_len) {
634 unsigned int prev_bv_len = prev->bv_len;
635 prev->bv_len += len;
636
637 if (q->merge_bvec_fn) {
638 struct bvec_merge_data bvm = {
639 /* prev_bvec is already charged in
640 bi_size, discharge it in order to
641 simulate merging updated prev_bvec
642 as new bvec. */
643 .bi_bdev = bio->bi_bdev,
644 .bi_sector = bio->bi_iter.bi_sector,
645 .bi_size = bio->bi_iter.bi_size -
646 prev_bv_len,
647 .bi_rw = bio->bi_rw,
648 };
649
650 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
651 prev->bv_len -= len;
652 return 0;
653 }
654 }
655
656 goto done;
657 }
658 }
659
660 if (bio->bi_vcnt >= bio->bi_max_vecs)
661 return 0;
662
663 /*
664 * we might lose a segment or two here, but rather that than
665 * make this too complex.
666 */
667
668 while (bio->bi_phys_segments >= queue_max_segments(q)) {
669
670 if (retried_segments)
671 return 0;
672
673 retried_segments = 1;
674 blk_recount_segments(q, bio);
675 }
676
677 /*
678 * setup the new entry, we might clear it again later if we
679 * cannot add the page
680 */
681 bvec = &bio->bi_io_vec[bio->bi_vcnt];
682 bvec->bv_page = page;
683 bvec->bv_len = len;
684 bvec->bv_offset = offset;
685
686 /*
687 * if queue has other restrictions (eg varying max sector size
688 * depending on offset), it can specify a merge_bvec_fn in the
689 * queue to get further control
690 */
691 if (q->merge_bvec_fn) {
692 struct bvec_merge_data bvm = {
693 .bi_bdev = bio->bi_bdev,
694 .bi_sector = bio->bi_iter.bi_sector,
695 .bi_size = bio->bi_iter.bi_size,
696 .bi_rw = bio->bi_rw,
697 };
698
699 /*
700 * merge_bvec_fn() returns number of bytes it can accept
701 * at this offset
702 */
703 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
704 bvec->bv_page = NULL;
705 bvec->bv_len = 0;
706 bvec->bv_offset = 0;
707 return 0;
708 }
709 }
710
711 /* If we may be able to merge these biovecs, force a recount */
712 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
713 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
714
715 bio->bi_vcnt++;
716 bio->bi_phys_segments++;
717 done:
718 bio->bi_iter.bi_size += len;
719 return len;
720 }
721
722 /**
723 * bio_add_pc_page - attempt to add page to bio
724 * @q: the target queue
725 * @bio: destination bio
726 * @page: page to add
727 * @len: vec entry length
728 * @offset: vec entry offset
729 *
730 * Attempt to add a page to the bio_vec maplist. This can fail for a
731 * number of reasons, such as the bio being full or target block device
732 * limitations. The target block device must allow bio's up to PAGE_SIZE,
733 * so it is always possible to add a single page to an empty bio.
734 *
735 * This should only be used by REQ_PC bios.
736 */
737 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
738 unsigned int len, unsigned int offset)
739 {
740 return __bio_add_page(q, bio, page, len, offset,
741 queue_max_hw_sectors(q));
742 }
743 EXPORT_SYMBOL(bio_add_pc_page);
744
745 /**
746 * bio_add_page - attempt to add page to bio
747 * @bio: destination bio
748 * @page: page to add
749 * @len: vec entry length
750 * @offset: vec entry offset
751 *
752 * Attempt to add a page to the bio_vec maplist. This can fail for a
753 * number of reasons, such as the bio being full or target block device
754 * limitations. The target block device must allow bio's up to PAGE_SIZE,
755 * so it is always possible to add a single page to an empty bio.
756 */
757 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
758 unsigned int offset)
759 {
760 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
761 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
762 }
763 EXPORT_SYMBOL(bio_add_page);
764
765 struct submit_bio_ret {
766 struct completion event;
767 int error;
768 };
769
770 static void submit_bio_wait_endio(struct bio *bio, int error)
771 {
772 struct submit_bio_ret *ret = bio->bi_private;
773
774 ret->error = error;
775 complete(&ret->event);
776 }
777
778 /**
779 * submit_bio_wait - submit a bio, and wait until it completes
780 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
781 * @bio: The &struct bio which describes the I/O
782 *
783 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
784 * bio_endio() on failure.
785 */
786 int submit_bio_wait(int rw, struct bio *bio)
787 {
788 struct submit_bio_ret ret;
789
790 rw |= REQ_SYNC;
791 init_completion(&ret.event);
792 bio->bi_private = &ret;
793 bio->bi_end_io = submit_bio_wait_endio;
794 submit_bio(rw, bio);
795 wait_for_completion(&ret.event);
796
797 return ret.error;
798 }
799 EXPORT_SYMBOL(submit_bio_wait);
800
801 /**
802 * bio_advance - increment/complete a bio by some number of bytes
803 * @bio: bio to advance
804 * @bytes: number of bytes to complete
805 *
806 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
807 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
808 * be updated on the last bvec as well.
809 *
810 * @bio will then represent the remaining, uncompleted portion of the io.
811 */
812 void bio_advance(struct bio *bio, unsigned bytes)
813 {
814 if (bio_integrity(bio))
815 bio_integrity_advance(bio, bytes);
816
817 bio_advance_iter(bio, &bio->bi_iter, bytes);
818 }
819 EXPORT_SYMBOL(bio_advance);
820
821 /**
822 * bio_alloc_pages - allocates a single page for each bvec in a bio
823 * @bio: bio to allocate pages for
824 * @gfp_mask: flags for allocation
825 *
826 * Allocates pages up to @bio->bi_vcnt.
827 *
828 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
829 * freed.
830 */
831 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
832 {
833 int i;
834 struct bio_vec *bv;
835
836 bio_for_each_segment_all(bv, bio, i) {
837 bv->bv_page = alloc_page(gfp_mask);
838 if (!bv->bv_page) {
839 while (--bv >= bio->bi_io_vec)
840 __free_page(bv->bv_page);
841 return -ENOMEM;
842 }
843 }
844
845 return 0;
846 }
847 EXPORT_SYMBOL(bio_alloc_pages);
848
849 /**
850 * bio_copy_data - copy contents of data buffers from one chain of bios to
851 * another
852 * @src: source bio list
853 * @dst: destination bio list
854 *
855 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
856 * @src and @dst as linked lists of bios.
857 *
858 * Stops when it reaches the end of either @src or @dst - that is, copies
859 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
860 */
861 void bio_copy_data(struct bio *dst, struct bio *src)
862 {
863 struct bvec_iter src_iter, dst_iter;
864 struct bio_vec src_bv, dst_bv;
865 void *src_p, *dst_p;
866 unsigned bytes;
867
868 src_iter = src->bi_iter;
869 dst_iter = dst->bi_iter;
870
871 while (1) {
872 if (!src_iter.bi_size) {
873 src = src->bi_next;
874 if (!src)
875 break;
876
877 src_iter = src->bi_iter;
878 }
879
880 if (!dst_iter.bi_size) {
881 dst = dst->bi_next;
882 if (!dst)
883 break;
884
885 dst_iter = dst->bi_iter;
886 }
887
888 src_bv = bio_iter_iovec(src, src_iter);
889 dst_bv = bio_iter_iovec(dst, dst_iter);
890
891 bytes = min(src_bv.bv_len, dst_bv.bv_len);
892
893 src_p = kmap_atomic(src_bv.bv_page);
894 dst_p = kmap_atomic(dst_bv.bv_page);
895
896 memcpy(dst_p + dst_bv.bv_offset,
897 src_p + src_bv.bv_offset,
898 bytes);
899
900 kunmap_atomic(dst_p);
901 kunmap_atomic(src_p);
902
903 bio_advance_iter(src, &src_iter, bytes);
904 bio_advance_iter(dst, &dst_iter, bytes);
905 }
906 }
907 EXPORT_SYMBOL(bio_copy_data);
908
909 struct bio_map_data {
910 struct bio_vec *iovecs;
911 struct sg_iovec *sgvecs;
912 int nr_sgvecs;
913 int is_our_pages;
914 };
915
916 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
917 struct sg_iovec *iov, int iov_count,
918 int is_our_pages)
919 {
920 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
921 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
922 bmd->nr_sgvecs = iov_count;
923 bmd->is_our_pages = is_our_pages;
924 bio->bi_private = bmd;
925 }
926
927 static void bio_free_map_data(struct bio_map_data *bmd)
928 {
929 kfree(bmd->iovecs);
930 kfree(bmd->sgvecs);
931 kfree(bmd);
932 }
933
934 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
935 unsigned int iov_count,
936 gfp_t gfp_mask)
937 {
938 struct bio_map_data *bmd;
939
940 if (iov_count > UIO_MAXIOV)
941 return NULL;
942
943 bmd = kmalloc(sizeof(*bmd), gfp_mask);
944 if (!bmd)
945 return NULL;
946
947 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
948 if (!bmd->iovecs) {
949 kfree(bmd);
950 return NULL;
951 }
952
953 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
954 if (bmd->sgvecs)
955 return bmd;
956
957 kfree(bmd->iovecs);
958 kfree(bmd);
959 return NULL;
960 }
961
962 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
963 struct sg_iovec *iov, int iov_count,
964 int to_user, int from_user, int do_free_page)
965 {
966 int ret = 0, i;
967 struct bio_vec *bvec;
968 int iov_idx = 0;
969 unsigned int iov_off = 0;
970
971 bio_for_each_segment_all(bvec, bio, i) {
972 char *bv_addr = page_address(bvec->bv_page);
973 unsigned int bv_len = iovecs[i].bv_len;
974
975 while (bv_len && iov_idx < iov_count) {
976 unsigned int bytes;
977 char __user *iov_addr;
978
979 bytes = min_t(unsigned int,
980 iov[iov_idx].iov_len - iov_off, bv_len);
981 iov_addr = iov[iov_idx].iov_base + iov_off;
982
983 if (!ret) {
984 if (to_user)
985 ret = copy_to_user(iov_addr, bv_addr,
986 bytes);
987
988 if (from_user)
989 ret = copy_from_user(bv_addr, iov_addr,
990 bytes);
991
992 if (ret)
993 ret = -EFAULT;
994 }
995
996 bv_len -= bytes;
997 bv_addr += bytes;
998 iov_addr += bytes;
999 iov_off += bytes;
1000
1001 if (iov[iov_idx].iov_len == iov_off) {
1002 iov_idx++;
1003 iov_off = 0;
1004 }
1005 }
1006
1007 if (do_free_page)
1008 __free_page(bvec->bv_page);
1009 }
1010
1011 return ret;
1012 }
1013
1014 /**
1015 * bio_uncopy_user - finish previously mapped bio
1016 * @bio: bio being terminated
1017 *
1018 * Free pages allocated from bio_copy_user() and write back data
1019 * to user space in case of a read.
1020 */
1021 int bio_uncopy_user(struct bio *bio)
1022 {
1023 struct bio_map_data *bmd = bio->bi_private;
1024 struct bio_vec *bvec;
1025 int ret = 0, i;
1026
1027 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1028 /*
1029 * if we're in a workqueue, the request is orphaned, so
1030 * don't copy into a random user address space, just free.
1031 */
1032 if (current->mm)
1033 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1034 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1035 0, bmd->is_our_pages);
1036 else if (bmd->is_our_pages)
1037 bio_for_each_segment_all(bvec, bio, i)
1038 __free_page(bvec->bv_page);
1039 }
1040 bio_free_map_data(bmd);
1041 bio_put(bio);
1042 return ret;
1043 }
1044 EXPORT_SYMBOL(bio_uncopy_user);
1045
1046 /**
1047 * bio_copy_user_iov - copy user data to bio
1048 * @q: destination block queue
1049 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1050 * @iov: the iovec.
1051 * @iov_count: number of elements in the iovec
1052 * @write_to_vm: bool indicating writing to pages or not
1053 * @gfp_mask: memory allocation flags
1054 *
1055 * Prepares and returns a bio for indirect user io, bouncing data
1056 * to/from kernel pages as necessary. Must be paired with
1057 * call bio_uncopy_user() on io completion.
1058 */
1059 struct bio *bio_copy_user_iov(struct request_queue *q,
1060 struct rq_map_data *map_data,
1061 struct sg_iovec *iov, int iov_count,
1062 int write_to_vm, gfp_t gfp_mask)
1063 {
1064 struct bio_map_data *bmd;
1065 struct bio_vec *bvec;
1066 struct page *page;
1067 struct bio *bio;
1068 int i, ret;
1069 int nr_pages = 0;
1070 unsigned int len = 0;
1071 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1072
1073 for (i = 0; i < iov_count; i++) {
1074 unsigned long uaddr;
1075 unsigned long end;
1076 unsigned long start;
1077
1078 uaddr = (unsigned long)iov[i].iov_base;
1079 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1080 start = uaddr >> PAGE_SHIFT;
1081
1082 /*
1083 * Overflow, abort
1084 */
1085 if (end < start)
1086 return ERR_PTR(-EINVAL);
1087
1088 nr_pages += end - start;
1089 len += iov[i].iov_len;
1090 }
1091
1092 if (offset)
1093 nr_pages++;
1094
1095 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1096 if (!bmd)
1097 return ERR_PTR(-ENOMEM);
1098
1099 ret = -ENOMEM;
1100 bio = bio_kmalloc(gfp_mask, nr_pages);
1101 if (!bio)
1102 goto out_bmd;
1103
1104 if (!write_to_vm)
1105 bio->bi_rw |= REQ_WRITE;
1106
1107 ret = 0;
1108
1109 if (map_data) {
1110 nr_pages = 1 << map_data->page_order;
1111 i = map_data->offset / PAGE_SIZE;
1112 }
1113 while (len) {
1114 unsigned int bytes = PAGE_SIZE;
1115
1116 bytes -= offset;
1117
1118 if (bytes > len)
1119 bytes = len;
1120
1121 if (map_data) {
1122 if (i == map_data->nr_entries * nr_pages) {
1123 ret = -ENOMEM;
1124 break;
1125 }
1126
1127 page = map_data->pages[i / nr_pages];
1128 page += (i % nr_pages);
1129
1130 i++;
1131 } else {
1132 page = alloc_page(q->bounce_gfp | gfp_mask);
1133 if (!page) {
1134 ret = -ENOMEM;
1135 break;
1136 }
1137 }
1138
1139 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1140 break;
1141
1142 len -= bytes;
1143 offset = 0;
1144 }
1145
1146 if (ret)
1147 goto cleanup;
1148
1149 /*
1150 * success
1151 */
1152 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1153 (map_data && map_data->from_user)) {
1154 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1155 if (ret)
1156 goto cleanup;
1157 }
1158
1159 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1160 return bio;
1161 cleanup:
1162 if (!map_data)
1163 bio_for_each_segment_all(bvec, bio, i)
1164 __free_page(bvec->bv_page);
1165
1166 bio_put(bio);
1167 out_bmd:
1168 bio_free_map_data(bmd);
1169 return ERR_PTR(ret);
1170 }
1171
1172 /**
1173 * bio_copy_user - copy user data to bio
1174 * @q: destination block queue
1175 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1176 * @uaddr: start of user address
1177 * @len: length in bytes
1178 * @write_to_vm: bool indicating writing to pages or not
1179 * @gfp_mask: memory allocation flags
1180 *
1181 * Prepares and returns a bio for indirect user io, bouncing data
1182 * to/from kernel pages as necessary. Must be paired with
1183 * call bio_uncopy_user() on io completion.
1184 */
1185 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1186 unsigned long uaddr, unsigned int len,
1187 int write_to_vm, gfp_t gfp_mask)
1188 {
1189 struct sg_iovec iov;
1190
1191 iov.iov_base = (void __user *)uaddr;
1192 iov.iov_len = len;
1193
1194 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1195 }
1196 EXPORT_SYMBOL(bio_copy_user);
1197
1198 static struct bio *__bio_map_user_iov(struct request_queue *q,
1199 struct block_device *bdev,
1200 struct sg_iovec *iov, int iov_count,
1201 int write_to_vm, gfp_t gfp_mask)
1202 {
1203 int i, j;
1204 int nr_pages = 0;
1205 struct page **pages;
1206 struct bio *bio;
1207 int cur_page = 0;
1208 int ret, offset;
1209
1210 for (i = 0; i < iov_count; i++) {
1211 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1212 unsigned long len = iov[i].iov_len;
1213 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1214 unsigned long start = uaddr >> PAGE_SHIFT;
1215
1216 /*
1217 * Overflow, abort
1218 */
1219 if (end < start)
1220 return ERR_PTR(-EINVAL);
1221
1222 nr_pages += end - start;
1223 /*
1224 * buffer must be aligned to at least hardsector size for now
1225 */
1226 if (uaddr & queue_dma_alignment(q))
1227 return ERR_PTR(-EINVAL);
1228 }
1229
1230 if (!nr_pages)
1231 return ERR_PTR(-EINVAL);
1232
1233 bio = bio_kmalloc(gfp_mask, nr_pages);
1234 if (!bio)
1235 return ERR_PTR(-ENOMEM);
1236
1237 ret = -ENOMEM;
1238 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1239 if (!pages)
1240 goto out;
1241
1242 for (i = 0; i < iov_count; i++) {
1243 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1244 unsigned long len = iov[i].iov_len;
1245 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1246 unsigned long start = uaddr >> PAGE_SHIFT;
1247 const int local_nr_pages = end - start;
1248 const int page_limit = cur_page + local_nr_pages;
1249
1250 ret = get_user_pages_fast(uaddr, local_nr_pages,
1251 write_to_vm, &pages[cur_page]);
1252 if (ret < local_nr_pages) {
1253 ret = -EFAULT;
1254 goto out_unmap;
1255 }
1256
1257 offset = uaddr & ~PAGE_MASK;
1258 for (j = cur_page; j < page_limit; j++) {
1259 unsigned int bytes = PAGE_SIZE - offset;
1260
1261 if (len <= 0)
1262 break;
1263
1264 if (bytes > len)
1265 bytes = len;
1266
1267 /*
1268 * sorry...
1269 */
1270 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1271 bytes)
1272 break;
1273
1274 len -= bytes;
1275 offset = 0;
1276 }
1277
1278 cur_page = j;
1279 /*
1280 * release the pages we didn't map into the bio, if any
1281 */
1282 while (j < page_limit)
1283 page_cache_release(pages[j++]);
1284 }
1285
1286 kfree(pages);
1287
1288 /*
1289 * set data direction, and check if mapped pages need bouncing
1290 */
1291 if (!write_to_vm)
1292 bio->bi_rw |= REQ_WRITE;
1293
1294 bio->bi_bdev = bdev;
1295 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1296 return bio;
1297
1298 out_unmap:
1299 for (i = 0; i < nr_pages; i++) {
1300 if(!pages[i])
1301 break;
1302 page_cache_release(pages[i]);
1303 }
1304 out:
1305 kfree(pages);
1306 bio_put(bio);
1307 return ERR_PTR(ret);
1308 }
1309
1310 /**
1311 * bio_map_user - map user address into bio
1312 * @q: the struct request_queue for the bio
1313 * @bdev: destination block device
1314 * @uaddr: start of user address
1315 * @len: length in bytes
1316 * @write_to_vm: bool indicating writing to pages or not
1317 * @gfp_mask: memory allocation flags
1318 *
1319 * Map the user space address into a bio suitable for io to a block
1320 * device. Returns an error pointer in case of error.
1321 */
1322 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1323 unsigned long uaddr, unsigned int len, int write_to_vm,
1324 gfp_t gfp_mask)
1325 {
1326 struct sg_iovec iov;
1327
1328 iov.iov_base = (void __user *)uaddr;
1329 iov.iov_len = len;
1330
1331 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1332 }
1333 EXPORT_SYMBOL(bio_map_user);
1334
1335 /**
1336 * bio_map_user_iov - map user sg_iovec table into bio
1337 * @q: the struct request_queue for the bio
1338 * @bdev: destination block device
1339 * @iov: the iovec.
1340 * @iov_count: number of elements in the iovec
1341 * @write_to_vm: bool indicating writing to pages or not
1342 * @gfp_mask: memory allocation flags
1343 *
1344 * Map the user space address into a bio suitable for io to a block
1345 * device. Returns an error pointer in case of error.
1346 */
1347 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1348 struct sg_iovec *iov, int iov_count,
1349 int write_to_vm, gfp_t gfp_mask)
1350 {
1351 struct bio *bio;
1352
1353 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1354 gfp_mask);
1355 if (IS_ERR(bio))
1356 return bio;
1357
1358 /*
1359 * subtle -- if __bio_map_user() ended up bouncing a bio,
1360 * it would normally disappear when its bi_end_io is run.
1361 * however, we need it for the unmap, so grab an extra
1362 * reference to it
1363 */
1364 bio_get(bio);
1365
1366 return bio;
1367 }
1368
1369 static void __bio_unmap_user(struct bio *bio)
1370 {
1371 struct bio_vec *bvec;
1372 int i;
1373
1374 /*
1375 * make sure we dirty pages we wrote to
1376 */
1377 bio_for_each_segment_all(bvec, bio, i) {
1378 if (bio_data_dir(bio) == READ)
1379 set_page_dirty_lock(bvec->bv_page);
1380
1381 page_cache_release(bvec->bv_page);
1382 }
1383
1384 bio_put(bio);
1385 }
1386
1387 /**
1388 * bio_unmap_user - unmap a bio
1389 * @bio: the bio being unmapped
1390 *
1391 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1392 * a process context.
1393 *
1394 * bio_unmap_user() may sleep.
1395 */
1396 void bio_unmap_user(struct bio *bio)
1397 {
1398 __bio_unmap_user(bio);
1399 bio_put(bio);
1400 }
1401 EXPORT_SYMBOL(bio_unmap_user);
1402
1403 static void bio_map_kern_endio(struct bio *bio, int err)
1404 {
1405 bio_put(bio);
1406 }
1407
1408 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1409 unsigned int len, gfp_t gfp_mask)
1410 {
1411 unsigned long kaddr = (unsigned long)data;
1412 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1413 unsigned long start = kaddr >> PAGE_SHIFT;
1414 const int nr_pages = end - start;
1415 int offset, i;
1416 struct bio *bio;
1417
1418 bio = bio_kmalloc(gfp_mask, nr_pages);
1419 if (!bio)
1420 return ERR_PTR(-ENOMEM);
1421
1422 offset = offset_in_page(kaddr);
1423 for (i = 0; i < nr_pages; i++) {
1424 unsigned int bytes = PAGE_SIZE - offset;
1425
1426 if (len <= 0)
1427 break;
1428
1429 if (bytes > len)
1430 bytes = len;
1431
1432 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1433 offset) < bytes)
1434 break;
1435
1436 data += bytes;
1437 len -= bytes;
1438 offset = 0;
1439 }
1440
1441 bio->bi_end_io = bio_map_kern_endio;
1442 return bio;
1443 }
1444
1445 /**
1446 * bio_map_kern - map kernel address into bio
1447 * @q: the struct request_queue for the bio
1448 * @data: pointer to buffer to map
1449 * @len: length in bytes
1450 * @gfp_mask: allocation flags for bio allocation
1451 *
1452 * Map the kernel address into a bio suitable for io to a block
1453 * device. Returns an error pointer in case of error.
1454 */
1455 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1456 gfp_t gfp_mask)
1457 {
1458 struct bio *bio;
1459
1460 bio = __bio_map_kern(q, data, len, gfp_mask);
1461 if (IS_ERR(bio))
1462 return bio;
1463
1464 if (bio->bi_iter.bi_size == len)
1465 return bio;
1466
1467 /*
1468 * Don't support partial mappings.
1469 */
1470 bio_put(bio);
1471 return ERR_PTR(-EINVAL);
1472 }
1473 EXPORT_SYMBOL(bio_map_kern);
1474
1475 static void bio_copy_kern_endio(struct bio *bio, int err)
1476 {
1477 struct bio_vec *bvec;
1478 const int read = bio_data_dir(bio) == READ;
1479 struct bio_map_data *bmd = bio->bi_private;
1480 int i;
1481 char *p = bmd->sgvecs[0].iov_base;
1482
1483 bio_for_each_segment_all(bvec, bio, i) {
1484 char *addr = page_address(bvec->bv_page);
1485 int len = bmd->iovecs[i].bv_len;
1486
1487 if (read)
1488 memcpy(p, addr, len);
1489
1490 __free_page(bvec->bv_page);
1491 p += len;
1492 }
1493
1494 bio_free_map_data(bmd);
1495 bio_put(bio);
1496 }
1497
1498 /**
1499 * bio_copy_kern - copy kernel address into bio
1500 * @q: the struct request_queue for the bio
1501 * @data: pointer to buffer to copy
1502 * @len: length in bytes
1503 * @gfp_mask: allocation flags for bio and page allocation
1504 * @reading: data direction is READ
1505 *
1506 * copy the kernel address into a bio suitable for io to a block
1507 * device. Returns an error pointer in case of error.
1508 */
1509 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1510 gfp_t gfp_mask, int reading)
1511 {
1512 struct bio *bio;
1513 struct bio_vec *bvec;
1514 int i;
1515
1516 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1517 if (IS_ERR(bio))
1518 return bio;
1519
1520 if (!reading) {
1521 void *p = data;
1522
1523 bio_for_each_segment_all(bvec, bio, i) {
1524 char *addr = page_address(bvec->bv_page);
1525
1526 memcpy(addr, p, bvec->bv_len);
1527 p += bvec->bv_len;
1528 }
1529 }
1530
1531 bio->bi_end_io = bio_copy_kern_endio;
1532
1533 return bio;
1534 }
1535 EXPORT_SYMBOL(bio_copy_kern);
1536
1537 /*
1538 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1539 * for performing direct-IO in BIOs.
1540 *
1541 * The problem is that we cannot run set_page_dirty() from interrupt context
1542 * because the required locks are not interrupt-safe. So what we can do is to
1543 * mark the pages dirty _before_ performing IO. And in interrupt context,
1544 * check that the pages are still dirty. If so, fine. If not, redirty them
1545 * in process context.
1546 *
1547 * We special-case compound pages here: normally this means reads into hugetlb
1548 * pages. The logic in here doesn't really work right for compound pages
1549 * because the VM does not uniformly chase down the head page in all cases.
1550 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1551 * handle them at all. So we skip compound pages here at an early stage.
1552 *
1553 * Note that this code is very hard to test under normal circumstances because
1554 * direct-io pins the pages with get_user_pages(). This makes
1555 * is_page_cache_freeable return false, and the VM will not clean the pages.
1556 * But other code (eg, flusher threads) could clean the pages if they are mapped
1557 * pagecache.
1558 *
1559 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1560 * deferred bio dirtying paths.
1561 */
1562
1563 /*
1564 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1565 */
1566 void bio_set_pages_dirty(struct bio *bio)
1567 {
1568 struct bio_vec *bvec;
1569 int i;
1570
1571 bio_for_each_segment_all(bvec, bio, i) {
1572 struct page *page = bvec->bv_page;
1573
1574 if (page && !PageCompound(page))
1575 set_page_dirty_lock(page);
1576 }
1577 }
1578
1579 static void bio_release_pages(struct bio *bio)
1580 {
1581 struct bio_vec *bvec;
1582 int i;
1583
1584 bio_for_each_segment_all(bvec, bio, i) {
1585 struct page *page = bvec->bv_page;
1586
1587 if (page)
1588 put_page(page);
1589 }
1590 }
1591
1592 /*
1593 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1594 * If they are, then fine. If, however, some pages are clean then they must
1595 * have been written out during the direct-IO read. So we take another ref on
1596 * the BIO and the offending pages and re-dirty the pages in process context.
1597 *
1598 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1599 * here on. It will run one page_cache_release() against each page and will
1600 * run one bio_put() against the BIO.
1601 */
1602
1603 static void bio_dirty_fn(struct work_struct *work);
1604
1605 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1606 static DEFINE_SPINLOCK(bio_dirty_lock);
1607 static struct bio *bio_dirty_list;
1608
1609 /*
1610 * This runs in process context
1611 */
1612 static void bio_dirty_fn(struct work_struct *work)
1613 {
1614 unsigned long flags;
1615 struct bio *bio;
1616
1617 spin_lock_irqsave(&bio_dirty_lock, flags);
1618 bio = bio_dirty_list;
1619 bio_dirty_list = NULL;
1620 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1621
1622 while (bio) {
1623 struct bio *next = bio->bi_private;
1624
1625 bio_set_pages_dirty(bio);
1626 bio_release_pages(bio);
1627 bio_put(bio);
1628 bio = next;
1629 }
1630 }
1631
1632 void bio_check_pages_dirty(struct bio *bio)
1633 {
1634 struct bio_vec *bvec;
1635 int nr_clean_pages = 0;
1636 int i;
1637
1638 bio_for_each_segment_all(bvec, bio, i) {
1639 struct page *page = bvec->bv_page;
1640
1641 if (PageDirty(page) || PageCompound(page)) {
1642 page_cache_release(page);
1643 bvec->bv_page = NULL;
1644 } else {
1645 nr_clean_pages++;
1646 }
1647 }
1648
1649 if (nr_clean_pages) {
1650 unsigned long flags;
1651
1652 spin_lock_irqsave(&bio_dirty_lock, flags);
1653 bio->bi_private = bio_dirty_list;
1654 bio_dirty_list = bio;
1655 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1656 schedule_work(&bio_dirty_work);
1657 } else {
1658 bio_put(bio);
1659 }
1660 }
1661
1662 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1663 void bio_flush_dcache_pages(struct bio *bi)
1664 {
1665 struct bio_vec bvec;
1666 struct bvec_iter iter;
1667
1668 bio_for_each_segment(bvec, bi, iter)
1669 flush_dcache_page(bvec.bv_page);
1670 }
1671 EXPORT_SYMBOL(bio_flush_dcache_pages);
1672 #endif
1673
1674 /**
1675 * bio_endio - end I/O on a bio
1676 * @bio: bio
1677 * @error: error, if any
1678 *
1679 * Description:
1680 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1681 * preferred way to end I/O on a bio, it takes care of clearing
1682 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1683 * established -Exxxx (-EIO, for instance) error values in case
1684 * something went wrong. No one should call bi_end_io() directly on a
1685 * bio unless they own it and thus know that it has an end_io
1686 * function.
1687 **/
1688 void bio_endio(struct bio *bio, int error)
1689 {
1690 if (error)
1691 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1692 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1693 error = -EIO;
1694
1695 if (bio->bi_end_io)
1696 bio->bi_end_io(bio, error);
1697 }
1698 EXPORT_SYMBOL(bio_endio);
1699
1700 void bio_pair_release(struct bio_pair *bp)
1701 {
1702 if (atomic_dec_and_test(&bp->cnt)) {
1703 struct bio *master = bp->bio1.bi_private;
1704
1705 bio_endio(master, bp->error);
1706 mempool_free(bp, bp->bio2.bi_private);
1707 }
1708 }
1709 EXPORT_SYMBOL(bio_pair_release);
1710
1711 static void bio_pair_end_1(struct bio *bi, int err)
1712 {
1713 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1714
1715 if (err)
1716 bp->error = err;
1717
1718 bio_pair_release(bp);
1719 }
1720
1721 static void bio_pair_end_2(struct bio *bi, int err)
1722 {
1723 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1724
1725 if (err)
1726 bp->error = err;
1727
1728 bio_pair_release(bp);
1729 }
1730
1731 /*
1732 * split a bio - only worry about a bio with a single page in its iovec
1733 */
1734 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1735 {
1736 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1737
1738 if (!bp)
1739 return bp;
1740
1741 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1742 bi->bi_iter.bi_sector + first_sectors);
1743
1744 BUG_ON(bio_multiple_segments(bi));
1745 atomic_set(&bp->cnt, 3);
1746 bp->error = 0;
1747 bp->bio1 = *bi;
1748 bp->bio2 = *bi;
1749 bp->bio2.bi_iter.bi_sector += first_sectors;
1750 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1751 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1752
1753 if (bi->bi_vcnt != 0) {
1754 bp->bv1 = bio_iovec(bi);
1755 bp->bv2 = bio_iovec(bi);
1756
1757 if (bio_is_rw(bi)) {
1758 bp->bv2.bv_offset += first_sectors << 9;
1759 bp->bv2.bv_len -= first_sectors << 9;
1760 bp->bv1.bv_len = first_sectors << 9;
1761 }
1762
1763 bp->bio1.bi_io_vec = &bp->bv1;
1764 bp->bio2.bi_io_vec = &bp->bv2;
1765
1766 bp->bio1.bi_max_vecs = 1;
1767 bp->bio2.bi_max_vecs = 1;
1768 }
1769
1770 bp->bio1.bi_end_io = bio_pair_end_1;
1771 bp->bio2.bi_end_io = bio_pair_end_2;
1772
1773 bp->bio1.bi_private = bi;
1774 bp->bio2.bi_private = bio_split_pool;
1775
1776 if (bio_integrity(bi))
1777 bio_integrity_split(bi, bp, first_sectors);
1778
1779 return bp;
1780 }
1781 EXPORT_SYMBOL(bio_split);
1782
1783 /**
1784 * bio_trim - trim a bio
1785 * @bio: bio to trim
1786 * @offset: number of sectors to trim from the front of @bio
1787 * @size: size we want to trim @bio to, in sectors
1788 */
1789 void bio_trim(struct bio *bio, int offset, int size)
1790 {
1791 /* 'bio' is a cloned bio which we need to trim to match
1792 * the given offset and size.
1793 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1794 */
1795 int i;
1796 struct bio_vec *bvec;
1797 int sofar = 0;
1798
1799 size <<= 9;
1800 if (offset == 0 && size == bio->bi_iter.bi_size)
1801 return;
1802
1803 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1804
1805 bio_advance(bio, offset << 9);
1806
1807 bio->bi_iter.bi_size = size;
1808
1809 /* avoid any complications with bi_idx being non-zero*/
1810 if (bio->bi_iter.bi_idx) {
1811 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1812 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1813 sizeof(struct bio_vec));
1814 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1815 bio->bi_iter.bi_idx = 0;
1816 }
1817 /* Make sure vcnt and last bv are not too big */
1818 bio_for_each_segment_all(bvec, bio, i) {
1819 if (sofar + bvec->bv_len > size)
1820 bvec->bv_len = size - sofar;
1821 if (bvec->bv_len == 0) {
1822 bio->bi_vcnt = i;
1823 break;
1824 }
1825 sofar += bvec->bv_len;
1826 }
1827 }
1828 EXPORT_SYMBOL_GPL(bio_trim);
1829
1830 /**
1831 * bio_sector_offset - Find hardware sector offset in bio
1832 * @bio: bio to inspect
1833 * @index: bio_vec index
1834 * @offset: offset in bv_page
1835 *
1836 * Return the number of hardware sectors between beginning of bio
1837 * and an end point indicated by a bio_vec index and an offset
1838 * within that vector's page.
1839 */
1840 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1841 unsigned int offset)
1842 {
1843 unsigned int sector_sz;
1844 struct bio_vec *bv;
1845 sector_t sectors;
1846 int i;
1847
1848 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1849 sectors = 0;
1850
1851 if (index >= bio->bi_iter.bi_idx)
1852 index = bio->bi_vcnt - 1;
1853
1854 bio_for_each_segment_all(bv, bio, i) {
1855 if (i == index) {
1856 if (offset > bv->bv_offset)
1857 sectors += (offset - bv->bv_offset) / sector_sz;
1858 break;
1859 }
1860
1861 sectors += bv->bv_len / sector_sz;
1862 }
1863
1864 return sectors;
1865 }
1866 EXPORT_SYMBOL(bio_sector_offset);
1867
1868 /*
1869 * create memory pools for biovec's in a bio_set.
1870 * use the global biovec slabs created for general use.
1871 */
1872 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1873 {
1874 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1875
1876 return mempool_create_slab_pool(pool_entries, bp->slab);
1877 }
1878
1879 void bioset_free(struct bio_set *bs)
1880 {
1881 if (bs->rescue_workqueue)
1882 destroy_workqueue(bs->rescue_workqueue);
1883
1884 if (bs->bio_pool)
1885 mempool_destroy(bs->bio_pool);
1886
1887 if (bs->bvec_pool)
1888 mempool_destroy(bs->bvec_pool);
1889
1890 bioset_integrity_free(bs);
1891 bio_put_slab(bs);
1892
1893 kfree(bs);
1894 }
1895 EXPORT_SYMBOL(bioset_free);
1896
1897 /**
1898 * bioset_create - Create a bio_set
1899 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1900 * @front_pad: Number of bytes to allocate in front of the returned bio
1901 *
1902 * Description:
1903 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1904 * to ask for a number of bytes to be allocated in front of the bio.
1905 * Front pad allocation is useful for embedding the bio inside
1906 * another structure, to avoid allocating extra data to go with the bio.
1907 * Note that the bio must be embedded at the END of that structure always,
1908 * or things will break badly.
1909 */
1910 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1911 {
1912 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1913 struct bio_set *bs;
1914
1915 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1916 if (!bs)
1917 return NULL;
1918
1919 bs->front_pad = front_pad;
1920
1921 spin_lock_init(&bs->rescue_lock);
1922 bio_list_init(&bs->rescue_list);
1923 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1924
1925 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1926 if (!bs->bio_slab) {
1927 kfree(bs);
1928 return NULL;
1929 }
1930
1931 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1932 if (!bs->bio_pool)
1933 goto bad;
1934
1935 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1936 if (!bs->bvec_pool)
1937 goto bad;
1938
1939 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1940 if (!bs->rescue_workqueue)
1941 goto bad;
1942
1943 return bs;
1944 bad:
1945 bioset_free(bs);
1946 return NULL;
1947 }
1948 EXPORT_SYMBOL(bioset_create);
1949
1950 #ifdef CONFIG_BLK_CGROUP
1951 /**
1952 * bio_associate_current - associate a bio with %current
1953 * @bio: target bio
1954 *
1955 * Associate @bio with %current if it hasn't been associated yet. Block
1956 * layer will treat @bio as if it were issued by %current no matter which
1957 * task actually issues it.
1958 *
1959 * This function takes an extra reference of @task's io_context and blkcg
1960 * which will be put when @bio is released. The caller must own @bio,
1961 * ensure %current->io_context exists, and is responsible for synchronizing
1962 * calls to this function.
1963 */
1964 int bio_associate_current(struct bio *bio)
1965 {
1966 struct io_context *ioc;
1967 struct cgroup_subsys_state *css;
1968
1969 if (bio->bi_ioc)
1970 return -EBUSY;
1971
1972 ioc = current->io_context;
1973 if (!ioc)
1974 return -ENOENT;
1975
1976 /* acquire active ref on @ioc and associate */
1977 get_io_context_active(ioc);
1978 bio->bi_ioc = ioc;
1979
1980 /* associate blkcg if exists */
1981 rcu_read_lock();
1982 css = task_css(current, blkio_subsys_id);
1983 if (css && css_tryget(css))
1984 bio->bi_css = css;
1985 rcu_read_unlock();
1986
1987 return 0;
1988 }
1989
1990 /**
1991 * bio_disassociate_task - undo bio_associate_current()
1992 * @bio: target bio
1993 */
1994 void bio_disassociate_task(struct bio *bio)
1995 {
1996 if (bio->bi_ioc) {
1997 put_io_context(bio->bi_ioc);
1998 bio->bi_ioc = NULL;
1999 }
2000 if (bio->bi_css) {
2001 css_put(bio->bi_css);
2002 bio->bi_css = NULL;
2003 }
2004 }
2005
2006 #endif /* CONFIG_BLK_CGROUP */
2007
2008 static void __init biovec_init_slabs(void)
2009 {
2010 int i;
2011
2012 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2013 int size;
2014 struct biovec_slab *bvs = bvec_slabs + i;
2015
2016 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2017 bvs->slab = NULL;
2018 continue;
2019 }
2020
2021 size = bvs->nr_vecs * sizeof(struct bio_vec);
2022 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2023 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2024 }
2025 }
2026
2027 static int __init init_bio(void)
2028 {
2029 bio_slab_max = 2;
2030 bio_slab_nr = 0;
2031 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2032 if (!bio_slabs)
2033 panic("bio: can't allocate bios\n");
2034
2035 bio_integrity_init();
2036 biovec_init_slabs();
2037
2038 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2039 if (!fs_bio_set)
2040 panic("bio: can't allocate bios\n");
2041
2042 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2043 panic("bio: can't create integrity pool\n");
2044
2045 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2046 sizeof(struct bio_pair));
2047 if (!bio_split_pool)
2048 panic("bio: can't create split pool\n");
2049
2050 return 0;
2051 }
2052 subsys_initcall(init_bio);
This page took 0.083164 seconds and 6 git commands to generate.