8477d4501b1e05876de0bde822f2e8abf2a51170
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <asm/uaccess.h>
34 #include "internal.h"
35
36 struct bdev_inode {
37 struct block_device bdev;
38 struct inode vfs_inode;
39 };
40
41 static const struct address_space_operations def_blk_aops;
42
43 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 {
45 return container_of(inode, struct bdev_inode, vfs_inode);
46 }
47
48 struct block_device *I_BDEV(struct inode *inode)
49 {
50 return &BDEV_I(inode)->bdev;
51 }
52 EXPORT_SYMBOL(I_BDEV);
53
54 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
55 {
56 struct va_format vaf;
57 va_list args;
58
59 va_start(args, fmt);
60 vaf.fmt = fmt;
61 vaf.va = &args;
62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
63 va_end(args);
64 }
65
66 static void bdev_write_inode(struct block_device *bdev)
67 {
68 struct inode *inode = bdev->bd_inode;
69 int ret;
70
71 spin_lock(&inode->i_lock);
72 while (inode->i_state & I_DIRTY) {
73 spin_unlock(&inode->i_lock);
74 ret = write_inode_now(inode, true);
75 if (ret) {
76 char name[BDEVNAME_SIZE];
77 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
78 "for block device %s (err=%d).\n",
79 bdevname(bdev, name), ret);
80 }
81 spin_lock(&inode->i_lock);
82 }
83 spin_unlock(&inode->i_lock);
84 }
85
86 /* Kill _all_ buffers and pagecache , dirty or not.. */
87 void kill_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
92 return;
93
94 invalidate_bh_lrus();
95 truncate_inode_pages(mapping, 0);
96 }
97 EXPORT_SYMBOL(kill_bdev);
98
99 /* Invalidate clean unused buffers and pagecache. */
100 void invalidate_bdev(struct block_device *bdev)
101 {
102 struct address_space *mapping = bdev->bd_inode->i_mapping;
103
104 if (mapping->nrpages == 0)
105 return;
106
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
112 */
113 cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116
117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
122
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
126
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
133 }
134 return 0;
135 }
136
137 EXPORT_SYMBOL(set_blocksize);
138
139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
148 }
149
150 EXPORT_SYMBOL(sb_set_blocksize);
151
152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
158 }
159
160 EXPORT_SYMBOL(sb_min_blocksize);
161
162 static int
163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
165 {
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
170 }
171
172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 return file->f_mapping->host;
175 }
176
177 static ssize_t
178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
179 {
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
182
183 if (IS_DAX(inode))
184 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
185 NULL, DIO_SKIP_DIO_COUNT);
186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
187 blkdev_get_block, NULL, NULL,
188 DIO_SKIP_DIO_COUNT);
189 }
190
191 int __sync_blockdev(struct block_device *bdev, int wait)
192 {
193 if (!bdev)
194 return 0;
195 if (!wait)
196 return filemap_flush(bdev->bd_inode->i_mapping);
197 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
198 }
199
200 /*
201 * Write out and wait upon all the dirty data associated with a block
202 * device via its mapping. Does not take the superblock lock.
203 */
204 int sync_blockdev(struct block_device *bdev)
205 {
206 return __sync_blockdev(bdev, 1);
207 }
208 EXPORT_SYMBOL(sync_blockdev);
209
210 /*
211 * Write out and wait upon all dirty data associated with this
212 * device. Filesystem data as well as the underlying block
213 * device. Takes the superblock lock.
214 */
215 int fsync_bdev(struct block_device *bdev)
216 {
217 struct super_block *sb = get_super(bdev);
218 if (sb) {
219 int res = sync_filesystem(sb);
220 drop_super(sb);
221 return res;
222 }
223 return sync_blockdev(bdev);
224 }
225 EXPORT_SYMBOL(fsync_bdev);
226
227 /**
228 * freeze_bdev -- lock a filesystem and force it into a consistent state
229 * @bdev: blockdevice to lock
230 *
231 * If a superblock is found on this device, we take the s_umount semaphore
232 * on it to make sure nobody unmounts until the snapshot creation is done.
233 * The reference counter (bd_fsfreeze_count) guarantees that only the last
234 * unfreeze process can unfreeze the frozen filesystem actually when multiple
235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
237 * actually.
238 */
239 struct super_block *freeze_bdev(struct block_device *bdev)
240 {
241 struct super_block *sb;
242 int error = 0;
243
244 mutex_lock(&bdev->bd_fsfreeze_mutex);
245 if (++bdev->bd_fsfreeze_count > 1) {
246 /*
247 * We don't even need to grab a reference - the first call
248 * to freeze_bdev grab an active reference and only the last
249 * thaw_bdev drops it.
250 */
251 sb = get_super(bdev);
252 drop_super(sb);
253 mutex_unlock(&bdev->bd_fsfreeze_mutex);
254 return sb;
255 }
256
257 sb = get_active_super(bdev);
258 if (!sb)
259 goto out;
260 if (sb->s_op->freeze_super)
261 error = sb->s_op->freeze_super(sb);
262 else
263 error = freeze_super(sb);
264 if (error) {
265 deactivate_super(sb);
266 bdev->bd_fsfreeze_count--;
267 mutex_unlock(&bdev->bd_fsfreeze_mutex);
268 return ERR_PTR(error);
269 }
270 deactivate_super(sb);
271 out:
272 sync_blockdev(bdev);
273 mutex_unlock(&bdev->bd_fsfreeze_mutex);
274 return sb; /* thaw_bdev releases s->s_umount */
275 }
276 EXPORT_SYMBOL(freeze_bdev);
277
278 /**
279 * thaw_bdev -- unlock filesystem
280 * @bdev: blockdevice to unlock
281 * @sb: associated superblock
282 *
283 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
284 */
285 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
286 {
287 int error = -EINVAL;
288
289 mutex_lock(&bdev->bd_fsfreeze_mutex);
290 if (!bdev->bd_fsfreeze_count)
291 goto out;
292
293 error = 0;
294 if (--bdev->bd_fsfreeze_count > 0)
295 goto out;
296
297 if (!sb)
298 goto out;
299
300 if (sb->s_op->thaw_super)
301 error = sb->s_op->thaw_super(sb);
302 else
303 error = thaw_super(sb);
304 if (error) {
305 bdev->bd_fsfreeze_count++;
306 mutex_unlock(&bdev->bd_fsfreeze_mutex);
307 return error;
308 }
309 out:
310 mutex_unlock(&bdev->bd_fsfreeze_mutex);
311 return 0;
312 }
313 EXPORT_SYMBOL(thaw_bdev);
314
315 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
316 {
317 return block_write_full_page(page, blkdev_get_block, wbc);
318 }
319
320 static int blkdev_readpage(struct file * file, struct page * page)
321 {
322 return block_read_full_page(page, blkdev_get_block);
323 }
324
325 static int blkdev_readpages(struct file *file, struct address_space *mapping,
326 struct list_head *pages, unsigned nr_pages)
327 {
328 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
329 }
330
331 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
332 loff_t pos, unsigned len, unsigned flags,
333 struct page **pagep, void **fsdata)
334 {
335 return block_write_begin(mapping, pos, len, flags, pagep,
336 blkdev_get_block);
337 }
338
339 static int blkdev_write_end(struct file *file, struct address_space *mapping,
340 loff_t pos, unsigned len, unsigned copied,
341 struct page *page, void *fsdata)
342 {
343 int ret;
344 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
345
346 unlock_page(page);
347 put_page(page);
348
349 return ret;
350 }
351
352 /*
353 * private llseek:
354 * for a block special file file_inode(file)->i_size is zero
355 * so we compute the size by hand (just as in block_read/write above)
356 */
357 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
358 {
359 struct inode *bd_inode = bdev_file_inode(file);
360 loff_t retval;
361
362 inode_lock(bd_inode);
363 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
364 inode_unlock(bd_inode);
365 return retval;
366 }
367
368 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
369 {
370 struct inode *bd_inode = bdev_file_inode(filp);
371 struct block_device *bdev = I_BDEV(bd_inode);
372 int error;
373
374 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
375 if (error)
376 return error;
377
378 /*
379 * There is no need to serialise calls to blkdev_issue_flush with
380 * i_mutex and doing so causes performance issues with concurrent
381 * O_SYNC writers to a block device.
382 */
383 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
384 if (error == -EOPNOTSUPP)
385 error = 0;
386
387 return error;
388 }
389 EXPORT_SYMBOL(blkdev_fsync);
390
391 /**
392 * bdev_read_page() - Start reading a page from a block device
393 * @bdev: The device to read the page from
394 * @sector: The offset on the device to read the page to (need not be aligned)
395 * @page: The page to read
396 *
397 * On entry, the page should be locked. It will be unlocked when the page
398 * has been read. If the block driver implements rw_page synchronously,
399 * that will be true on exit from this function, but it need not be.
400 *
401 * Errors returned by this function are usually "soft", eg out of memory, or
402 * queue full; callers should try a different route to read this page rather
403 * than propagate an error back up the stack.
404 *
405 * Return: negative errno if an error occurs, 0 if submission was successful.
406 */
407 int bdev_read_page(struct block_device *bdev, sector_t sector,
408 struct page *page)
409 {
410 const struct block_device_operations *ops = bdev->bd_disk->fops;
411 int result = -EOPNOTSUPP;
412
413 if (!ops->rw_page || bdev_get_integrity(bdev))
414 return result;
415
416 result = blk_queue_enter(bdev->bd_queue, false);
417 if (result)
418 return result;
419 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
420 blk_queue_exit(bdev->bd_queue);
421 return result;
422 }
423 EXPORT_SYMBOL_GPL(bdev_read_page);
424
425 /**
426 * bdev_write_page() - Start writing a page to a block device
427 * @bdev: The device to write the page to
428 * @sector: The offset on the device to write the page to (need not be aligned)
429 * @page: The page to write
430 * @wbc: The writeback_control for the write
431 *
432 * On entry, the page should be locked and not currently under writeback.
433 * On exit, if the write started successfully, the page will be unlocked and
434 * under writeback. If the write failed already (eg the driver failed to
435 * queue the page to the device), the page will still be locked. If the
436 * caller is a ->writepage implementation, it will need to unlock the page.
437 *
438 * Errors returned by this function are usually "soft", eg out of memory, or
439 * queue full; callers should try a different route to write this page rather
440 * than propagate an error back up the stack.
441 *
442 * Return: negative errno if an error occurs, 0 if submission was successful.
443 */
444 int bdev_write_page(struct block_device *bdev, sector_t sector,
445 struct page *page, struct writeback_control *wbc)
446 {
447 int result;
448 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
449 const struct block_device_operations *ops = bdev->bd_disk->fops;
450
451 if (!ops->rw_page || bdev_get_integrity(bdev))
452 return -EOPNOTSUPP;
453 result = blk_queue_enter(bdev->bd_queue, false);
454 if (result)
455 return result;
456
457 set_page_writeback(page);
458 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
459 if (result)
460 end_page_writeback(page);
461 else
462 unlock_page(page);
463 blk_queue_exit(bdev->bd_queue);
464 return result;
465 }
466 EXPORT_SYMBOL_GPL(bdev_write_page);
467
468 /**
469 * bdev_direct_access() - Get the address for directly-accessibly memory
470 * @bdev: The device containing the memory
471 * @dax: control and output parameters for ->direct_access
472 *
473 * If a block device is made up of directly addressable memory, this function
474 * will tell the caller the PFN and the address of the memory. The address
475 * may be directly dereferenced within the kernel without the need to call
476 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
477 * page tables.
478 *
479 * Return: negative errno if an error occurs, otherwise the number of bytes
480 * accessible at this address.
481 */
482 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
483 {
484 sector_t sector = dax->sector;
485 long avail, size = dax->size;
486 const struct block_device_operations *ops = bdev->bd_disk->fops;
487
488 /*
489 * The device driver is allowed to sleep, in order to make the
490 * memory directly accessible.
491 */
492 might_sleep();
493
494 if (size < 0)
495 return size;
496 if (!ops->direct_access)
497 return -EOPNOTSUPP;
498 if ((sector + DIV_ROUND_UP(size, 512)) >
499 part_nr_sects_read(bdev->bd_part))
500 return -ERANGE;
501 sector += get_start_sect(bdev);
502 if (sector % (PAGE_SIZE / 512))
503 return -EINVAL;
504 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
505 if (!avail)
506 return -ERANGE;
507 if (avail > 0 && avail & ~PAGE_MASK)
508 return -ENXIO;
509 return min(avail, size);
510 }
511 EXPORT_SYMBOL_GPL(bdev_direct_access);
512
513 /**
514 * bdev_dax_supported() - Check if the device supports dax for filesystem
515 * @sb: The superblock of the device
516 * @blocksize: The block size of the device
517 *
518 * This is a library function for filesystems to check if the block device
519 * can be mounted with dax option.
520 *
521 * Return: negative errno if unsupported, 0 if supported.
522 */
523 int bdev_dax_supported(struct super_block *sb, int blocksize)
524 {
525 struct blk_dax_ctl dax = {
526 .sector = 0,
527 .size = PAGE_SIZE,
528 };
529 int err;
530
531 if (blocksize != PAGE_SIZE) {
532 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
533 return -EINVAL;
534 }
535
536 err = bdev_direct_access(sb->s_bdev, &dax);
537 if (err < 0) {
538 switch (err) {
539 case -EOPNOTSUPP:
540 vfs_msg(sb, KERN_ERR,
541 "error: device does not support dax");
542 break;
543 case -EINVAL:
544 vfs_msg(sb, KERN_ERR,
545 "error: unaligned partition for dax");
546 break;
547 default:
548 vfs_msg(sb, KERN_ERR,
549 "error: dax access failed (%d)", err);
550 }
551 return err;
552 }
553
554 return 0;
555 }
556 EXPORT_SYMBOL_GPL(bdev_dax_supported);
557
558 /**
559 * bdev_dax_capable() - Return if the raw device is capable for dax
560 * @bdev: The device for raw block device access
561 */
562 bool bdev_dax_capable(struct block_device *bdev)
563 {
564 struct gendisk *disk = bdev->bd_disk;
565 struct blk_dax_ctl dax = {
566 .size = PAGE_SIZE,
567 };
568
569 if (!IS_ENABLED(CONFIG_FS_DAX))
570 return false;
571
572 dax.sector = 0;
573 if (bdev_direct_access(bdev, &dax) < 0)
574 return false;
575
576 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
577 if (bdev_direct_access(bdev, &dax) < 0)
578 return false;
579
580 /*
581 * If the device has known bad blocks, force all I/O through the
582 * driver / page cache.
583 *
584 * TODO: support finer grained dax error handling
585 */
586 if (disk->bb && disk->bb->count)
587 return false;
588
589 return true;
590 }
591
592 /*
593 * pseudo-fs
594 */
595
596 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
597 static struct kmem_cache * bdev_cachep __read_mostly;
598
599 static struct inode *bdev_alloc_inode(struct super_block *sb)
600 {
601 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
602 if (!ei)
603 return NULL;
604 return &ei->vfs_inode;
605 }
606
607 static void bdev_i_callback(struct rcu_head *head)
608 {
609 struct inode *inode = container_of(head, struct inode, i_rcu);
610 struct bdev_inode *bdi = BDEV_I(inode);
611
612 kmem_cache_free(bdev_cachep, bdi);
613 }
614
615 static void bdev_destroy_inode(struct inode *inode)
616 {
617 call_rcu(&inode->i_rcu, bdev_i_callback);
618 }
619
620 static void init_once(void *foo)
621 {
622 struct bdev_inode *ei = (struct bdev_inode *) foo;
623 struct block_device *bdev = &ei->bdev;
624
625 memset(bdev, 0, sizeof(*bdev));
626 mutex_init(&bdev->bd_mutex);
627 INIT_LIST_HEAD(&bdev->bd_inodes);
628 INIT_LIST_HEAD(&bdev->bd_list);
629 #ifdef CONFIG_SYSFS
630 INIT_LIST_HEAD(&bdev->bd_holder_disks);
631 #endif
632 inode_init_once(&ei->vfs_inode);
633 /* Initialize mutex for freeze. */
634 mutex_init(&bdev->bd_fsfreeze_mutex);
635 }
636
637 static inline void __bd_forget(struct inode *inode)
638 {
639 list_del_init(&inode->i_devices);
640 inode->i_bdev = NULL;
641 inode->i_mapping = &inode->i_data;
642 }
643
644 static void bdev_evict_inode(struct inode *inode)
645 {
646 struct block_device *bdev = &BDEV_I(inode)->bdev;
647 struct list_head *p;
648 truncate_inode_pages_final(&inode->i_data);
649 invalidate_inode_buffers(inode); /* is it needed here? */
650 clear_inode(inode);
651 spin_lock(&bdev_lock);
652 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
653 __bd_forget(list_entry(p, struct inode, i_devices));
654 }
655 list_del_init(&bdev->bd_list);
656 spin_unlock(&bdev_lock);
657 }
658
659 static const struct super_operations bdev_sops = {
660 .statfs = simple_statfs,
661 .alloc_inode = bdev_alloc_inode,
662 .destroy_inode = bdev_destroy_inode,
663 .drop_inode = generic_delete_inode,
664 .evict_inode = bdev_evict_inode,
665 };
666
667 static struct dentry *bd_mount(struct file_system_type *fs_type,
668 int flags, const char *dev_name, void *data)
669 {
670 struct dentry *dent;
671 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
672 if (dent)
673 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
674 return dent;
675 }
676
677 static struct file_system_type bd_type = {
678 .name = "bdev",
679 .mount = bd_mount,
680 .kill_sb = kill_anon_super,
681 };
682
683 struct super_block *blockdev_superblock __read_mostly;
684 EXPORT_SYMBOL_GPL(blockdev_superblock);
685
686 void __init bdev_cache_init(void)
687 {
688 int err;
689 static struct vfsmount *bd_mnt;
690
691 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
692 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
693 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
694 init_once);
695 err = register_filesystem(&bd_type);
696 if (err)
697 panic("Cannot register bdev pseudo-fs");
698 bd_mnt = kern_mount(&bd_type);
699 if (IS_ERR(bd_mnt))
700 panic("Cannot create bdev pseudo-fs");
701 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
702 }
703
704 /*
705 * Most likely _very_ bad one - but then it's hardly critical for small
706 * /dev and can be fixed when somebody will need really large one.
707 * Keep in mind that it will be fed through icache hash function too.
708 */
709 static inline unsigned long hash(dev_t dev)
710 {
711 return MAJOR(dev)+MINOR(dev);
712 }
713
714 static int bdev_test(struct inode *inode, void *data)
715 {
716 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
717 }
718
719 static int bdev_set(struct inode *inode, void *data)
720 {
721 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
722 return 0;
723 }
724
725 static LIST_HEAD(all_bdevs);
726
727 struct block_device *bdget(dev_t dev)
728 {
729 struct block_device *bdev;
730 struct inode *inode;
731
732 inode = iget5_locked(blockdev_superblock, hash(dev),
733 bdev_test, bdev_set, &dev);
734
735 if (!inode)
736 return NULL;
737
738 bdev = &BDEV_I(inode)->bdev;
739
740 if (inode->i_state & I_NEW) {
741 bdev->bd_contains = NULL;
742 bdev->bd_super = NULL;
743 bdev->bd_inode = inode;
744 bdev->bd_block_size = (1 << inode->i_blkbits);
745 bdev->bd_part_count = 0;
746 bdev->bd_invalidated = 0;
747 inode->i_mode = S_IFBLK;
748 inode->i_rdev = dev;
749 inode->i_bdev = bdev;
750 inode->i_data.a_ops = &def_blk_aops;
751 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
752 spin_lock(&bdev_lock);
753 list_add(&bdev->bd_list, &all_bdevs);
754 spin_unlock(&bdev_lock);
755 unlock_new_inode(inode);
756 }
757 return bdev;
758 }
759
760 EXPORT_SYMBOL(bdget);
761
762 /**
763 * bdgrab -- Grab a reference to an already referenced block device
764 * @bdev: Block device to grab a reference to.
765 */
766 struct block_device *bdgrab(struct block_device *bdev)
767 {
768 ihold(bdev->bd_inode);
769 return bdev;
770 }
771 EXPORT_SYMBOL(bdgrab);
772
773 long nr_blockdev_pages(void)
774 {
775 struct block_device *bdev;
776 long ret = 0;
777 spin_lock(&bdev_lock);
778 list_for_each_entry(bdev, &all_bdevs, bd_list) {
779 ret += bdev->bd_inode->i_mapping->nrpages;
780 }
781 spin_unlock(&bdev_lock);
782 return ret;
783 }
784
785 void bdput(struct block_device *bdev)
786 {
787 iput(bdev->bd_inode);
788 }
789
790 EXPORT_SYMBOL(bdput);
791
792 static struct block_device *bd_acquire(struct inode *inode)
793 {
794 struct block_device *bdev;
795
796 spin_lock(&bdev_lock);
797 bdev = inode->i_bdev;
798 if (bdev) {
799 bdgrab(bdev);
800 spin_unlock(&bdev_lock);
801 return bdev;
802 }
803 spin_unlock(&bdev_lock);
804
805 bdev = bdget(inode->i_rdev);
806 if (bdev) {
807 spin_lock(&bdev_lock);
808 if (!inode->i_bdev) {
809 /*
810 * We take an additional reference to bd_inode,
811 * and it's released in clear_inode() of inode.
812 * So, we can access it via ->i_mapping always
813 * without igrab().
814 */
815 bdgrab(bdev);
816 inode->i_bdev = bdev;
817 inode->i_mapping = bdev->bd_inode->i_mapping;
818 list_add(&inode->i_devices, &bdev->bd_inodes);
819 }
820 spin_unlock(&bdev_lock);
821 }
822 return bdev;
823 }
824
825 /* Call when you free inode */
826
827 void bd_forget(struct inode *inode)
828 {
829 struct block_device *bdev = NULL;
830
831 spin_lock(&bdev_lock);
832 if (!sb_is_blkdev_sb(inode->i_sb))
833 bdev = inode->i_bdev;
834 __bd_forget(inode);
835 spin_unlock(&bdev_lock);
836
837 if (bdev)
838 bdput(bdev);
839 }
840
841 /**
842 * bd_may_claim - test whether a block device can be claimed
843 * @bdev: block device of interest
844 * @whole: whole block device containing @bdev, may equal @bdev
845 * @holder: holder trying to claim @bdev
846 *
847 * Test whether @bdev can be claimed by @holder.
848 *
849 * CONTEXT:
850 * spin_lock(&bdev_lock).
851 *
852 * RETURNS:
853 * %true if @bdev can be claimed, %false otherwise.
854 */
855 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
856 void *holder)
857 {
858 if (bdev->bd_holder == holder)
859 return true; /* already a holder */
860 else if (bdev->bd_holder != NULL)
861 return false; /* held by someone else */
862 else if (bdev->bd_contains == bdev)
863 return true; /* is a whole device which isn't held */
864
865 else if (whole->bd_holder == bd_may_claim)
866 return true; /* is a partition of a device that is being partitioned */
867 else if (whole->bd_holder != NULL)
868 return false; /* is a partition of a held device */
869 else
870 return true; /* is a partition of an un-held device */
871 }
872
873 /**
874 * bd_prepare_to_claim - prepare to claim a block device
875 * @bdev: block device of interest
876 * @whole: the whole device containing @bdev, may equal @bdev
877 * @holder: holder trying to claim @bdev
878 *
879 * Prepare to claim @bdev. This function fails if @bdev is already
880 * claimed by another holder and waits if another claiming is in
881 * progress. This function doesn't actually claim. On successful
882 * return, the caller has ownership of bd_claiming and bd_holder[s].
883 *
884 * CONTEXT:
885 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
886 * it multiple times.
887 *
888 * RETURNS:
889 * 0 if @bdev can be claimed, -EBUSY otherwise.
890 */
891 static int bd_prepare_to_claim(struct block_device *bdev,
892 struct block_device *whole, void *holder)
893 {
894 retry:
895 /* if someone else claimed, fail */
896 if (!bd_may_claim(bdev, whole, holder))
897 return -EBUSY;
898
899 /* if claiming is already in progress, wait for it to finish */
900 if (whole->bd_claiming) {
901 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
902 DEFINE_WAIT(wait);
903
904 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
905 spin_unlock(&bdev_lock);
906 schedule();
907 finish_wait(wq, &wait);
908 spin_lock(&bdev_lock);
909 goto retry;
910 }
911
912 /* yay, all mine */
913 return 0;
914 }
915
916 /**
917 * bd_start_claiming - start claiming a block device
918 * @bdev: block device of interest
919 * @holder: holder trying to claim @bdev
920 *
921 * @bdev is about to be opened exclusively. Check @bdev can be opened
922 * exclusively and mark that an exclusive open is in progress. Each
923 * successful call to this function must be matched with a call to
924 * either bd_finish_claiming() or bd_abort_claiming() (which do not
925 * fail).
926 *
927 * This function is used to gain exclusive access to the block device
928 * without actually causing other exclusive open attempts to fail. It
929 * should be used when the open sequence itself requires exclusive
930 * access but may subsequently fail.
931 *
932 * CONTEXT:
933 * Might sleep.
934 *
935 * RETURNS:
936 * Pointer to the block device containing @bdev on success, ERR_PTR()
937 * value on failure.
938 */
939 static struct block_device *bd_start_claiming(struct block_device *bdev,
940 void *holder)
941 {
942 struct gendisk *disk;
943 struct block_device *whole;
944 int partno, err;
945
946 might_sleep();
947
948 /*
949 * @bdev might not have been initialized properly yet, look up
950 * and grab the outer block device the hard way.
951 */
952 disk = get_gendisk(bdev->bd_dev, &partno);
953 if (!disk)
954 return ERR_PTR(-ENXIO);
955
956 /*
957 * Normally, @bdev should equal what's returned from bdget_disk()
958 * if partno is 0; however, some drivers (floppy) use multiple
959 * bdev's for the same physical device and @bdev may be one of the
960 * aliases. Keep @bdev if partno is 0. This means claimer
961 * tracking is broken for those devices but it has always been that
962 * way.
963 */
964 if (partno)
965 whole = bdget_disk(disk, 0);
966 else
967 whole = bdgrab(bdev);
968
969 module_put(disk->fops->owner);
970 put_disk(disk);
971 if (!whole)
972 return ERR_PTR(-ENOMEM);
973
974 /* prepare to claim, if successful, mark claiming in progress */
975 spin_lock(&bdev_lock);
976
977 err = bd_prepare_to_claim(bdev, whole, holder);
978 if (err == 0) {
979 whole->bd_claiming = holder;
980 spin_unlock(&bdev_lock);
981 return whole;
982 } else {
983 spin_unlock(&bdev_lock);
984 bdput(whole);
985 return ERR_PTR(err);
986 }
987 }
988
989 #ifdef CONFIG_SYSFS
990 struct bd_holder_disk {
991 struct list_head list;
992 struct gendisk *disk;
993 int refcnt;
994 };
995
996 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
997 struct gendisk *disk)
998 {
999 struct bd_holder_disk *holder;
1000
1001 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1002 if (holder->disk == disk)
1003 return holder;
1004 return NULL;
1005 }
1006
1007 static int add_symlink(struct kobject *from, struct kobject *to)
1008 {
1009 return sysfs_create_link(from, to, kobject_name(to));
1010 }
1011
1012 static void del_symlink(struct kobject *from, struct kobject *to)
1013 {
1014 sysfs_remove_link(from, kobject_name(to));
1015 }
1016
1017 /**
1018 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1019 * @bdev: the claimed slave bdev
1020 * @disk: the holding disk
1021 *
1022 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1023 *
1024 * This functions creates the following sysfs symlinks.
1025 *
1026 * - from "slaves" directory of the holder @disk to the claimed @bdev
1027 * - from "holders" directory of the @bdev to the holder @disk
1028 *
1029 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1030 * passed to bd_link_disk_holder(), then:
1031 *
1032 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1033 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1034 *
1035 * The caller must have claimed @bdev before calling this function and
1036 * ensure that both @bdev and @disk are valid during the creation and
1037 * lifetime of these symlinks.
1038 *
1039 * CONTEXT:
1040 * Might sleep.
1041 *
1042 * RETURNS:
1043 * 0 on success, -errno on failure.
1044 */
1045 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1046 {
1047 struct bd_holder_disk *holder;
1048 int ret = 0;
1049
1050 mutex_lock(&bdev->bd_mutex);
1051
1052 WARN_ON_ONCE(!bdev->bd_holder);
1053
1054 /* FIXME: remove the following once add_disk() handles errors */
1055 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1056 goto out_unlock;
1057
1058 holder = bd_find_holder_disk(bdev, disk);
1059 if (holder) {
1060 holder->refcnt++;
1061 goto out_unlock;
1062 }
1063
1064 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1065 if (!holder) {
1066 ret = -ENOMEM;
1067 goto out_unlock;
1068 }
1069
1070 INIT_LIST_HEAD(&holder->list);
1071 holder->disk = disk;
1072 holder->refcnt = 1;
1073
1074 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1075 if (ret)
1076 goto out_free;
1077
1078 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1079 if (ret)
1080 goto out_del;
1081 /*
1082 * bdev could be deleted beneath us which would implicitly destroy
1083 * the holder directory. Hold on to it.
1084 */
1085 kobject_get(bdev->bd_part->holder_dir);
1086
1087 list_add(&holder->list, &bdev->bd_holder_disks);
1088 goto out_unlock;
1089
1090 out_del:
1091 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1092 out_free:
1093 kfree(holder);
1094 out_unlock:
1095 mutex_unlock(&bdev->bd_mutex);
1096 return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1099
1100 /**
1101 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1102 * @bdev: the calimed slave bdev
1103 * @disk: the holding disk
1104 *
1105 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1106 *
1107 * CONTEXT:
1108 * Might sleep.
1109 */
1110 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1111 {
1112 struct bd_holder_disk *holder;
1113
1114 mutex_lock(&bdev->bd_mutex);
1115
1116 holder = bd_find_holder_disk(bdev, disk);
1117
1118 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1119 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1120 del_symlink(bdev->bd_part->holder_dir,
1121 &disk_to_dev(disk)->kobj);
1122 kobject_put(bdev->bd_part->holder_dir);
1123 list_del_init(&holder->list);
1124 kfree(holder);
1125 }
1126
1127 mutex_unlock(&bdev->bd_mutex);
1128 }
1129 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1130 #endif
1131
1132 /**
1133 * flush_disk - invalidates all buffer-cache entries on a disk
1134 *
1135 * @bdev: struct block device to be flushed
1136 * @kill_dirty: flag to guide handling of dirty inodes
1137 *
1138 * Invalidates all buffer-cache entries on a disk. It should be called
1139 * when a disk has been changed -- either by a media change or online
1140 * resize.
1141 */
1142 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1143 {
1144 if (__invalidate_device(bdev, kill_dirty)) {
1145 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1146 "resized disk %s\n",
1147 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1148 }
1149
1150 if (!bdev->bd_disk)
1151 return;
1152 if (disk_part_scan_enabled(bdev->bd_disk))
1153 bdev->bd_invalidated = 1;
1154 }
1155
1156 /**
1157 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1158 * @disk: struct gendisk to check
1159 * @bdev: struct bdev to adjust.
1160 *
1161 * This routine checks to see if the bdev size does not match the disk size
1162 * and adjusts it if it differs.
1163 */
1164 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1165 {
1166 loff_t disk_size, bdev_size;
1167
1168 disk_size = (loff_t)get_capacity(disk) << 9;
1169 bdev_size = i_size_read(bdev->bd_inode);
1170 if (disk_size != bdev_size) {
1171 printk(KERN_INFO
1172 "%s: detected capacity change from %lld to %lld\n",
1173 disk->disk_name, bdev_size, disk_size);
1174 i_size_write(bdev->bd_inode, disk_size);
1175 flush_disk(bdev, false);
1176 }
1177 }
1178 EXPORT_SYMBOL(check_disk_size_change);
1179
1180 /**
1181 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1182 * @disk: struct gendisk to be revalidated
1183 *
1184 * This routine is a wrapper for lower-level driver's revalidate_disk
1185 * call-backs. It is used to do common pre and post operations needed
1186 * for all revalidate_disk operations.
1187 */
1188 int revalidate_disk(struct gendisk *disk)
1189 {
1190 struct block_device *bdev;
1191 int ret = 0;
1192
1193 if (disk->fops->revalidate_disk)
1194 ret = disk->fops->revalidate_disk(disk);
1195 blk_integrity_revalidate(disk);
1196 bdev = bdget_disk(disk, 0);
1197 if (!bdev)
1198 return ret;
1199
1200 mutex_lock(&bdev->bd_mutex);
1201 check_disk_size_change(disk, bdev);
1202 bdev->bd_invalidated = 0;
1203 mutex_unlock(&bdev->bd_mutex);
1204 bdput(bdev);
1205 return ret;
1206 }
1207 EXPORT_SYMBOL(revalidate_disk);
1208
1209 /*
1210 * This routine checks whether a removable media has been changed,
1211 * and invalidates all buffer-cache-entries in that case. This
1212 * is a relatively slow routine, so we have to try to minimize using
1213 * it. Thus it is called only upon a 'mount' or 'open'. This
1214 * is the best way of combining speed and utility, I think.
1215 * People changing diskettes in the middle of an operation deserve
1216 * to lose :-)
1217 */
1218 int check_disk_change(struct block_device *bdev)
1219 {
1220 struct gendisk *disk = bdev->bd_disk;
1221 const struct block_device_operations *bdops = disk->fops;
1222 unsigned int events;
1223
1224 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1225 DISK_EVENT_EJECT_REQUEST);
1226 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1227 return 0;
1228
1229 flush_disk(bdev, true);
1230 if (bdops->revalidate_disk)
1231 bdops->revalidate_disk(bdev->bd_disk);
1232 return 1;
1233 }
1234
1235 EXPORT_SYMBOL(check_disk_change);
1236
1237 void bd_set_size(struct block_device *bdev, loff_t size)
1238 {
1239 unsigned bsize = bdev_logical_block_size(bdev);
1240
1241 inode_lock(bdev->bd_inode);
1242 i_size_write(bdev->bd_inode, size);
1243 inode_unlock(bdev->bd_inode);
1244 while (bsize < PAGE_SIZE) {
1245 if (size & bsize)
1246 break;
1247 bsize <<= 1;
1248 }
1249 bdev->bd_block_size = bsize;
1250 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1251 }
1252 EXPORT_SYMBOL(bd_set_size);
1253
1254 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1255
1256 /*
1257 * bd_mutex locking:
1258 *
1259 * mutex_lock(part->bd_mutex)
1260 * mutex_lock_nested(whole->bd_mutex, 1)
1261 */
1262
1263 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1264 {
1265 struct gendisk *disk;
1266 struct module *owner;
1267 int ret;
1268 int partno;
1269 int perm = 0;
1270
1271 if (mode & FMODE_READ)
1272 perm |= MAY_READ;
1273 if (mode & FMODE_WRITE)
1274 perm |= MAY_WRITE;
1275 /*
1276 * hooks: /n/, see "layering violations".
1277 */
1278 if (!for_part) {
1279 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1280 if (ret != 0) {
1281 bdput(bdev);
1282 return ret;
1283 }
1284 }
1285
1286 restart:
1287
1288 ret = -ENXIO;
1289 disk = get_gendisk(bdev->bd_dev, &partno);
1290 if (!disk)
1291 goto out;
1292 owner = disk->fops->owner;
1293
1294 disk_block_events(disk);
1295 mutex_lock_nested(&bdev->bd_mutex, for_part);
1296 if (!bdev->bd_openers) {
1297 bdev->bd_disk = disk;
1298 bdev->bd_queue = disk->queue;
1299 bdev->bd_contains = bdev;
1300 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1301 bdev->bd_inode->i_flags = S_DAX;
1302 else
1303 bdev->bd_inode->i_flags = 0;
1304
1305 if (!partno) {
1306 ret = -ENXIO;
1307 bdev->bd_part = disk_get_part(disk, partno);
1308 if (!bdev->bd_part)
1309 goto out_clear;
1310
1311 ret = 0;
1312 if (disk->fops->open) {
1313 ret = disk->fops->open(bdev, mode);
1314 if (ret == -ERESTARTSYS) {
1315 /* Lost a race with 'disk' being
1316 * deleted, try again.
1317 * See md.c
1318 */
1319 disk_put_part(bdev->bd_part);
1320 bdev->bd_part = NULL;
1321 bdev->bd_disk = NULL;
1322 bdev->bd_queue = NULL;
1323 mutex_unlock(&bdev->bd_mutex);
1324 disk_unblock_events(disk);
1325 put_disk(disk);
1326 module_put(owner);
1327 goto restart;
1328 }
1329 }
1330
1331 if (!ret) {
1332 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1333 if (!bdev_dax_capable(bdev))
1334 bdev->bd_inode->i_flags &= ~S_DAX;
1335 }
1336
1337 /*
1338 * If the device is invalidated, rescan partition
1339 * if open succeeded or failed with -ENOMEDIUM.
1340 * The latter is necessary to prevent ghost
1341 * partitions on a removed medium.
1342 */
1343 if (bdev->bd_invalidated) {
1344 if (!ret)
1345 rescan_partitions(disk, bdev);
1346 else if (ret == -ENOMEDIUM)
1347 invalidate_partitions(disk, bdev);
1348 }
1349
1350 if (ret)
1351 goto out_clear;
1352 } else {
1353 struct block_device *whole;
1354 whole = bdget_disk(disk, 0);
1355 ret = -ENOMEM;
1356 if (!whole)
1357 goto out_clear;
1358 BUG_ON(for_part);
1359 ret = __blkdev_get(whole, mode, 1);
1360 if (ret)
1361 goto out_clear;
1362 bdev->bd_contains = whole;
1363 bdev->bd_part = disk_get_part(disk, partno);
1364 if (!(disk->flags & GENHD_FL_UP) ||
1365 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1366 ret = -ENXIO;
1367 goto out_clear;
1368 }
1369 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1370 if (!bdev_dax_capable(bdev))
1371 bdev->bd_inode->i_flags &= ~S_DAX;
1372 }
1373 } else {
1374 if (bdev->bd_contains == bdev) {
1375 ret = 0;
1376 if (bdev->bd_disk->fops->open)
1377 ret = bdev->bd_disk->fops->open(bdev, mode);
1378 /* the same as first opener case, read comment there */
1379 if (bdev->bd_invalidated) {
1380 if (!ret)
1381 rescan_partitions(bdev->bd_disk, bdev);
1382 else if (ret == -ENOMEDIUM)
1383 invalidate_partitions(bdev->bd_disk, bdev);
1384 }
1385 if (ret)
1386 goto out_unlock_bdev;
1387 }
1388 /* only one opener holds refs to the module and disk */
1389 put_disk(disk);
1390 module_put(owner);
1391 }
1392 bdev->bd_openers++;
1393 if (for_part)
1394 bdev->bd_part_count++;
1395 mutex_unlock(&bdev->bd_mutex);
1396 disk_unblock_events(disk);
1397 return 0;
1398
1399 out_clear:
1400 disk_put_part(bdev->bd_part);
1401 bdev->bd_disk = NULL;
1402 bdev->bd_part = NULL;
1403 bdev->bd_queue = NULL;
1404 if (bdev != bdev->bd_contains)
1405 __blkdev_put(bdev->bd_contains, mode, 1);
1406 bdev->bd_contains = NULL;
1407 out_unlock_bdev:
1408 mutex_unlock(&bdev->bd_mutex);
1409 disk_unblock_events(disk);
1410 put_disk(disk);
1411 module_put(owner);
1412 out:
1413 bdput(bdev);
1414
1415 return ret;
1416 }
1417
1418 /**
1419 * blkdev_get - open a block device
1420 * @bdev: block_device to open
1421 * @mode: FMODE_* mask
1422 * @holder: exclusive holder identifier
1423 *
1424 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1425 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1426 * @holder is invalid. Exclusive opens may nest for the same @holder.
1427 *
1428 * On success, the reference count of @bdev is unchanged. On failure,
1429 * @bdev is put.
1430 *
1431 * CONTEXT:
1432 * Might sleep.
1433 *
1434 * RETURNS:
1435 * 0 on success, -errno on failure.
1436 */
1437 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1438 {
1439 struct block_device *whole = NULL;
1440 int res;
1441
1442 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1443
1444 if ((mode & FMODE_EXCL) && holder) {
1445 whole = bd_start_claiming(bdev, holder);
1446 if (IS_ERR(whole)) {
1447 bdput(bdev);
1448 return PTR_ERR(whole);
1449 }
1450 }
1451
1452 res = __blkdev_get(bdev, mode, 0);
1453
1454 if (whole) {
1455 struct gendisk *disk = whole->bd_disk;
1456
1457 /* finish claiming */
1458 mutex_lock(&bdev->bd_mutex);
1459 spin_lock(&bdev_lock);
1460
1461 if (!res) {
1462 BUG_ON(!bd_may_claim(bdev, whole, holder));
1463 /*
1464 * Note that for a whole device bd_holders
1465 * will be incremented twice, and bd_holder
1466 * will be set to bd_may_claim before being
1467 * set to holder
1468 */
1469 whole->bd_holders++;
1470 whole->bd_holder = bd_may_claim;
1471 bdev->bd_holders++;
1472 bdev->bd_holder = holder;
1473 }
1474
1475 /* tell others that we're done */
1476 BUG_ON(whole->bd_claiming != holder);
1477 whole->bd_claiming = NULL;
1478 wake_up_bit(&whole->bd_claiming, 0);
1479
1480 spin_unlock(&bdev_lock);
1481
1482 /*
1483 * Block event polling for write claims if requested. Any
1484 * write holder makes the write_holder state stick until
1485 * all are released. This is good enough and tracking
1486 * individual writeable reference is too fragile given the
1487 * way @mode is used in blkdev_get/put().
1488 */
1489 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1490 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1491 bdev->bd_write_holder = true;
1492 disk_block_events(disk);
1493 }
1494
1495 mutex_unlock(&bdev->bd_mutex);
1496 bdput(whole);
1497 }
1498
1499 return res;
1500 }
1501 EXPORT_SYMBOL(blkdev_get);
1502
1503 /**
1504 * blkdev_get_by_path - open a block device by name
1505 * @path: path to the block device to open
1506 * @mode: FMODE_* mask
1507 * @holder: exclusive holder identifier
1508 *
1509 * Open the blockdevice described by the device file at @path. @mode
1510 * and @holder are identical to blkdev_get().
1511 *
1512 * On success, the returned block_device has reference count of one.
1513 *
1514 * CONTEXT:
1515 * Might sleep.
1516 *
1517 * RETURNS:
1518 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1519 */
1520 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1521 void *holder)
1522 {
1523 struct block_device *bdev;
1524 int err;
1525
1526 bdev = lookup_bdev(path);
1527 if (IS_ERR(bdev))
1528 return bdev;
1529
1530 err = blkdev_get(bdev, mode, holder);
1531 if (err)
1532 return ERR_PTR(err);
1533
1534 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1535 blkdev_put(bdev, mode);
1536 return ERR_PTR(-EACCES);
1537 }
1538
1539 return bdev;
1540 }
1541 EXPORT_SYMBOL(blkdev_get_by_path);
1542
1543 /**
1544 * blkdev_get_by_dev - open a block device by device number
1545 * @dev: device number of block device to open
1546 * @mode: FMODE_* mask
1547 * @holder: exclusive holder identifier
1548 *
1549 * Open the blockdevice described by device number @dev. @mode and
1550 * @holder are identical to blkdev_get().
1551 *
1552 * Use it ONLY if you really do not have anything better - i.e. when
1553 * you are behind a truly sucky interface and all you are given is a
1554 * device number. _Never_ to be used for internal purposes. If you
1555 * ever need it - reconsider your API.
1556 *
1557 * On success, the returned block_device has reference count of one.
1558 *
1559 * CONTEXT:
1560 * Might sleep.
1561 *
1562 * RETURNS:
1563 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1564 */
1565 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1566 {
1567 struct block_device *bdev;
1568 int err;
1569
1570 bdev = bdget(dev);
1571 if (!bdev)
1572 return ERR_PTR(-ENOMEM);
1573
1574 err = blkdev_get(bdev, mode, holder);
1575 if (err)
1576 return ERR_PTR(err);
1577
1578 return bdev;
1579 }
1580 EXPORT_SYMBOL(blkdev_get_by_dev);
1581
1582 static int blkdev_open(struct inode * inode, struct file * filp)
1583 {
1584 struct block_device *bdev;
1585
1586 /*
1587 * Preserve backwards compatibility and allow large file access
1588 * even if userspace doesn't ask for it explicitly. Some mkfs
1589 * binary needs it. We might want to drop this workaround
1590 * during an unstable branch.
1591 */
1592 filp->f_flags |= O_LARGEFILE;
1593
1594 if (filp->f_flags & O_NDELAY)
1595 filp->f_mode |= FMODE_NDELAY;
1596 if (filp->f_flags & O_EXCL)
1597 filp->f_mode |= FMODE_EXCL;
1598 if ((filp->f_flags & O_ACCMODE) == 3)
1599 filp->f_mode |= FMODE_WRITE_IOCTL;
1600
1601 bdev = bd_acquire(inode);
1602 if (bdev == NULL)
1603 return -ENOMEM;
1604
1605 filp->f_mapping = bdev->bd_inode->i_mapping;
1606
1607 return blkdev_get(bdev, filp->f_mode, filp);
1608 }
1609
1610 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1611 {
1612 struct gendisk *disk = bdev->bd_disk;
1613 struct block_device *victim = NULL;
1614
1615 mutex_lock_nested(&bdev->bd_mutex, for_part);
1616 if (for_part)
1617 bdev->bd_part_count--;
1618
1619 if (!--bdev->bd_openers) {
1620 WARN_ON_ONCE(bdev->bd_holders);
1621 sync_blockdev(bdev);
1622 kill_bdev(bdev);
1623
1624 bdev_write_inode(bdev);
1625 /*
1626 * Detaching bdev inode from its wb in __destroy_inode()
1627 * is too late: the queue which embeds its bdi (along with
1628 * root wb) can be gone as soon as we put_disk() below.
1629 */
1630 inode_detach_wb(bdev->bd_inode);
1631 }
1632 if (bdev->bd_contains == bdev) {
1633 if (disk->fops->release)
1634 disk->fops->release(disk, mode);
1635 }
1636 if (!bdev->bd_openers) {
1637 struct module *owner = disk->fops->owner;
1638
1639 disk_put_part(bdev->bd_part);
1640 bdev->bd_part = NULL;
1641 bdev->bd_disk = NULL;
1642 if (bdev != bdev->bd_contains)
1643 victim = bdev->bd_contains;
1644 bdev->bd_contains = NULL;
1645
1646 put_disk(disk);
1647 module_put(owner);
1648 }
1649 mutex_unlock(&bdev->bd_mutex);
1650 bdput(bdev);
1651 if (victim)
1652 __blkdev_put(victim, mode, 1);
1653 }
1654
1655 void blkdev_put(struct block_device *bdev, fmode_t mode)
1656 {
1657 mutex_lock(&bdev->bd_mutex);
1658
1659 if (mode & FMODE_EXCL) {
1660 bool bdev_free;
1661
1662 /*
1663 * Release a claim on the device. The holder fields
1664 * are protected with bdev_lock. bd_mutex is to
1665 * synchronize disk_holder unlinking.
1666 */
1667 spin_lock(&bdev_lock);
1668
1669 WARN_ON_ONCE(--bdev->bd_holders < 0);
1670 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1671
1672 /* bd_contains might point to self, check in a separate step */
1673 if ((bdev_free = !bdev->bd_holders))
1674 bdev->bd_holder = NULL;
1675 if (!bdev->bd_contains->bd_holders)
1676 bdev->bd_contains->bd_holder = NULL;
1677
1678 spin_unlock(&bdev_lock);
1679
1680 /*
1681 * If this was the last claim, remove holder link and
1682 * unblock evpoll if it was a write holder.
1683 */
1684 if (bdev_free && bdev->bd_write_holder) {
1685 disk_unblock_events(bdev->bd_disk);
1686 bdev->bd_write_holder = false;
1687 }
1688 }
1689
1690 /*
1691 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1692 * event. This is to ensure detection of media removal commanded
1693 * from userland - e.g. eject(1).
1694 */
1695 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1696
1697 mutex_unlock(&bdev->bd_mutex);
1698
1699 __blkdev_put(bdev, mode, 0);
1700 }
1701 EXPORT_SYMBOL(blkdev_put);
1702
1703 static int blkdev_close(struct inode * inode, struct file * filp)
1704 {
1705 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1706 blkdev_put(bdev, filp->f_mode);
1707 return 0;
1708 }
1709
1710 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1711 {
1712 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1713 fmode_t mode = file->f_mode;
1714
1715 /*
1716 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1717 * to updated it before every ioctl.
1718 */
1719 if (file->f_flags & O_NDELAY)
1720 mode |= FMODE_NDELAY;
1721 else
1722 mode &= ~FMODE_NDELAY;
1723
1724 return blkdev_ioctl(bdev, mode, cmd, arg);
1725 }
1726
1727 /*
1728 * Write data to the block device. Only intended for the block device itself
1729 * and the raw driver which basically is a fake block device.
1730 *
1731 * Does not take i_mutex for the write and thus is not for general purpose
1732 * use.
1733 */
1734 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1735 {
1736 struct file *file = iocb->ki_filp;
1737 struct inode *bd_inode = bdev_file_inode(file);
1738 loff_t size = i_size_read(bd_inode);
1739 struct blk_plug plug;
1740 ssize_t ret;
1741
1742 if (bdev_read_only(I_BDEV(bd_inode)))
1743 return -EPERM;
1744
1745 if (!iov_iter_count(from))
1746 return 0;
1747
1748 if (iocb->ki_pos >= size)
1749 return -ENOSPC;
1750
1751 iov_iter_truncate(from, size - iocb->ki_pos);
1752
1753 blk_start_plug(&plug);
1754 ret = __generic_file_write_iter(iocb, from);
1755 if (ret > 0) {
1756 ssize_t err;
1757 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1758 if (err < 0)
1759 ret = err;
1760 }
1761 blk_finish_plug(&plug);
1762 return ret;
1763 }
1764 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1765
1766 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1767 {
1768 struct file *file = iocb->ki_filp;
1769 struct inode *bd_inode = bdev_file_inode(file);
1770 loff_t size = i_size_read(bd_inode);
1771 loff_t pos = iocb->ki_pos;
1772
1773 if (pos >= size)
1774 return 0;
1775
1776 size -= pos;
1777 iov_iter_truncate(to, size);
1778 return generic_file_read_iter(iocb, to);
1779 }
1780 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1781
1782 /*
1783 * Try to release a page associated with block device when the system
1784 * is under memory pressure.
1785 */
1786 static int blkdev_releasepage(struct page *page, gfp_t wait)
1787 {
1788 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1789
1790 if (super && super->s_op->bdev_try_to_free_page)
1791 return super->s_op->bdev_try_to_free_page(super, page, wait);
1792
1793 return try_to_free_buffers(page);
1794 }
1795
1796 static int blkdev_writepages(struct address_space *mapping,
1797 struct writeback_control *wbc)
1798 {
1799 if (dax_mapping(mapping)) {
1800 struct block_device *bdev = I_BDEV(mapping->host);
1801
1802 return dax_writeback_mapping_range(mapping, bdev, wbc);
1803 }
1804 return generic_writepages(mapping, wbc);
1805 }
1806
1807 static const struct address_space_operations def_blk_aops = {
1808 .readpage = blkdev_readpage,
1809 .readpages = blkdev_readpages,
1810 .writepage = blkdev_writepage,
1811 .write_begin = blkdev_write_begin,
1812 .write_end = blkdev_write_end,
1813 .writepages = blkdev_writepages,
1814 .releasepage = blkdev_releasepage,
1815 .direct_IO = blkdev_direct_IO,
1816 .is_dirty_writeback = buffer_check_dirty_writeback,
1817 };
1818
1819 #ifdef CONFIG_FS_DAX
1820 /*
1821 * In the raw block case we do not need to contend with truncation nor
1822 * unwritten file extents. Without those concerns there is no need for
1823 * additional locking beyond the mmap_sem context that these routines
1824 * are already executing under.
1825 *
1826 * Note, there is no protection if the block device is dynamically
1827 * resized (partition grow/shrink) during a fault. A stable block device
1828 * size is already not enforced in the blkdev_direct_IO path.
1829 *
1830 * For DAX, it is the responsibility of the block device driver to
1831 * ensure the whole-disk device size is stable while requests are in
1832 * flight.
1833 *
1834 * Finally, unlike the filemap_page_mkwrite() case there is no
1835 * filesystem superblock to sync against freezing. We still include a
1836 * pfn_mkwrite callback for dax drivers to receive write fault
1837 * notifications.
1838 */
1839 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1840 {
1841 return __dax_fault(vma, vmf, blkdev_get_block);
1842 }
1843
1844 static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma,
1845 struct vm_fault *vmf)
1846 {
1847 return dax_pfn_mkwrite(vma, vmf);
1848 }
1849
1850 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1851 pmd_t *pmd, unsigned int flags)
1852 {
1853 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block);
1854 }
1855
1856 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1857 .fault = blkdev_dax_fault,
1858 .pmd_fault = blkdev_dax_pmd_fault,
1859 .pfn_mkwrite = blkdev_dax_pfn_mkwrite,
1860 };
1861
1862 static const struct vm_operations_struct blkdev_default_vm_ops = {
1863 .fault = filemap_fault,
1864 .map_pages = filemap_map_pages,
1865 };
1866
1867 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1868 {
1869 struct inode *bd_inode = bdev_file_inode(file);
1870
1871 file_accessed(file);
1872 if (IS_DAX(bd_inode)) {
1873 vma->vm_ops = &blkdev_dax_vm_ops;
1874 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1875 } else {
1876 vma->vm_ops = &blkdev_default_vm_ops;
1877 }
1878
1879 return 0;
1880 }
1881 #else
1882 #define blkdev_mmap generic_file_mmap
1883 #endif
1884
1885 const struct file_operations def_blk_fops = {
1886 .open = blkdev_open,
1887 .release = blkdev_close,
1888 .llseek = block_llseek,
1889 .read_iter = blkdev_read_iter,
1890 .write_iter = blkdev_write_iter,
1891 .mmap = blkdev_mmap,
1892 .fsync = blkdev_fsync,
1893 .unlocked_ioctl = block_ioctl,
1894 #ifdef CONFIG_COMPAT
1895 .compat_ioctl = compat_blkdev_ioctl,
1896 #endif
1897 .splice_read = generic_file_splice_read,
1898 .splice_write = iter_file_splice_write,
1899 };
1900
1901 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1902 {
1903 int res;
1904 mm_segment_t old_fs = get_fs();
1905 set_fs(KERNEL_DS);
1906 res = blkdev_ioctl(bdev, 0, cmd, arg);
1907 set_fs(old_fs);
1908 return res;
1909 }
1910
1911 EXPORT_SYMBOL(ioctl_by_bdev);
1912
1913 /**
1914 * lookup_bdev - lookup a struct block_device by name
1915 * @pathname: special file representing the block device
1916 *
1917 * Get a reference to the blockdevice at @pathname in the current
1918 * namespace if possible and return it. Return ERR_PTR(error)
1919 * otherwise.
1920 */
1921 struct block_device *lookup_bdev(const char *pathname)
1922 {
1923 struct block_device *bdev;
1924 struct inode *inode;
1925 struct path path;
1926 int error;
1927
1928 if (!pathname || !*pathname)
1929 return ERR_PTR(-EINVAL);
1930
1931 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1932 if (error)
1933 return ERR_PTR(error);
1934
1935 inode = d_backing_inode(path.dentry);
1936 error = -ENOTBLK;
1937 if (!S_ISBLK(inode->i_mode))
1938 goto fail;
1939 error = -EACCES;
1940 if (path.mnt->mnt_flags & MNT_NODEV)
1941 goto fail;
1942 error = -ENOMEM;
1943 bdev = bd_acquire(inode);
1944 if (!bdev)
1945 goto fail;
1946 out:
1947 path_put(&path);
1948 return bdev;
1949 fail:
1950 bdev = ERR_PTR(error);
1951 goto out;
1952 }
1953 EXPORT_SYMBOL(lookup_bdev);
1954
1955 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1956 {
1957 struct super_block *sb = get_super(bdev);
1958 int res = 0;
1959
1960 if (sb) {
1961 /*
1962 * no need to lock the super, get_super holds the
1963 * read mutex so the filesystem cannot go away
1964 * under us (->put_super runs with the write lock
1965 * hold).
1966 */
1967 shrink_dcache_sb(sb);
1968 res = invalidate_inodes(sb, kill_dirty);
1969 drop_super(sb);
1970 }
1971 invalidate_bdev(bdev);
1972 return res;
1973 }
1974 EXPORT_SYMBOL(__invalidate_device);
1975
1976 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1977 {
1978 struct inode *inode, *old_inode = NULL;
1979
1980 spin_lock(&blockdev_superblock->s_inode_list_lock);
1981 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1982 struct address_space *mapping = inode->i_mapping;
1983
1984 spin_lock(&inode->i_lock);
1985 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1986 mapping->nrpages == 0) {
1987 spin_unlock(&inode->i_lock);
1988 continue;
1989 }
1990 __iget(inode);
1991 spin_unlock(&inode->i_lock);
1992 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1993 /*
1994 * We hold a reference to 'inode' so it couldn't have been
1995 * removed from s_inodes list while we dropped the
1996 * s_inode_list_lock We cannot iput the inode now as we can
1997 * be holding the last reference and we cannot iput it under
1998 * s_inode_list_lock. So we keep the reference and iput it
1999 * later.
2000 */
2001 iput(old_inode);
2002 old_inode = inode;
2003
2004 func(I_BDEV(inode), arg);
2005
2006 spin_lock(&blockdev_superblock->s_inode_list_lock);
2007 }
2008 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2009 iput(old_inode);
2010 }
This page took 0.067255 seconds and 4 git commands to generate.