Allow conversion of characters in Mac remap range. Part 1
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 /*
53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
54 * need to move it onto the dirty list of @dst so that the inode is always on
55 * the right list.
56 */
57 static void bdev_inode_switch_bdi(struct inode *inode,
58 struct backing_dev_info *dst)
59 {
60 struct backing_dev_info *old = inode->i_data.backing_dev_info;
61 bool wakeup_bdi = false;
62
63 if (unlikely(dst == old)) /* deadlock avoidance */
64 return;
65 bdi_lock_two(&old->wb, &dst->wb);
66 spin_lock(&inode->i_lock);
67 inode->i_data.backing_dev_info = dst;
68 if (inode->i_state & I_DIRTY) {
69 if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb))
70 wakeup_bdi = true;
71 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
72 }
73 spin_unlock(&inode->i_lock);
74 spin_unlock(&old->wb.list_lock);
75 spin_unlock(&dst->wb.list_lock);
76
77 if (wakeup_bdi)
78 bdi_wakeup_thread_delayed(dst);
79 }
80
81 /* Kill _all_ buffers and pagecache , dirty or not.. */
82 void kill_bdev(struct block_device *bdev)
83 {
84 struct address_space *mapping = bdev->bd_inode->i_mapping;
85
86 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
87 return;
88
89 invalidate_bh_lrus();
90 truncate_inode_pages(mapping, 0);
91 }
92 EXPORT_SYMBOL(kill_bdev);
93
94 /* Invalidate clean unused buffers and pagecache. */
95 void invalidate_bdev(struct block_device *bdev)
96 {
97 struct address_space *mapping = bdev->bd_inode->i_mapping;
98
99 if (mapping->nrpages == 0)
100 return;
101
102 invalidate_bh_lrus();
103 lru_add_drain_all(); /* make sure all lru add caches are flushed */
104 invalidate_mapping_pages(mapping, 0, -1);
105 /* 99% of the time, we don't need to flush the cleancache on the bdev.
106 * But, for the strange corners, lets be cautious
107 */
108 cleancache_invalidate_inode(mapping);
109 }
110 EXPORT_SYMBOL(invalidate_bdev);
111
112 int set_blocksize(struct block_device *bdev, int size)
113 {
114 /* Size must be a power of two, and between 512 and PAGE_SIZE */
115 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
116 return -EINVAL;
117
118 /* Size cannot be smaller than the size supported by the device */
119 if (size < bdev_logical_block_size(bdev))
120 return -EINVAL;
121
122 /* Don't change the size if it is same as current */
123 if (bdev->bd_block_size != size) {
124 sync_blockdev(bdev);
125 bdev->bd_block_size = size;
126 bdev->bd_inode->i_blkbits = blksize_bits(size);
127 kill_bdev(bdev);
128 }
129 return 0;
130 }
131
132 EXPORT_SYMBOL(set_blocksize);
133
134 int sb_set_blocksize(struct super_block *sb, int size)
135 {
136 if (set_blocksize(sb->s_bdev, size))
137 return 0;
138 /* If we get here, we know size is power of two
139 * and it's value is between 512 and PAGE_SIZE */
140 sb->s_blocksize = size;
141 sb->s_blocksize_bits = blksize_bits(size);
142 return sb->s_blocksize;
143 }
144
145 EXPORT_SYMBOL(sb_set_blocksize);
146
147 int sb_min_blocksize(struct super_block *sb, int size)
148 {
149 int minsize = bdev_logical_block_size(sb->s_bdev);
150 if (size < minsize)
151 size = minsize;
152 return sb_set_blocksize(sb, size);
153 }
154
155 EXPORT_SYMBOL(sb_min_blocksize);
156
157 static int
158 blkdev_get_block(struct inode *inode, sector_t iblock,
159 struct buffer_head *bh, int create)
160 {
161 bh->b_bdev = I_BDEV(inode);
162 bh->b_blocknr = iblock;
163 set_buffer_mapped(bh);
164 return 0;
165 }
166
167 static ssize_t
168 blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
169 loff_t offset)
170 {
171 struct file *file = iocb->ki_filp;
172 struct inode *inode = file->f_mapping->host;
173
174 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter,
175 offset, blkdev_get_block,
176 NULL, NULL, 0);
177 }
178
179 int __sync_blockdev(struct block_device *bdev, int wait)
180 {
181 if (!bdev)
182 return 0;
183 if (!wait)
184 return filemap_flush(bdev->bd_inode->i_mapping);
185 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
186 }
187
188 /*
189 * Write out and wait upon all the dirty data associated with a block
190 * device via its mapping. Does not take the superblock lock.
191 */
192 int sync_blockdev(struct block_device *bdev)
193 {
194 return __sync_blockdev(bdev, 1);
195 }
196 EXPORT_SYMBOL(sync_blockdev);
197
198 /*
199 * Write out and wait upon all dirty data associated with this
200 * device. Filesystem data as well as the underlying block
201 * device. Takes the superblock lock.
202 */
203 int fsync_bdev(struct block_device *bdev)
204 {
205 struct super_block *sb = get_super(bdev);
206 if (sb) {
207 int res = sync_filesystem(sb);
208 drop_super(sb);
209 return res;
210 }
211 return sync_blockdev(bdev);
212 }
213 EXPORT_SYMBOL(fsync_bdev);
214
215 /**
216 * freeze_bdev -- lock a filesystem and force it into a consistent state
217 * @bdev: blockdevice to lock
218 *
219 * If a superblock is found on this device, we take the s_umount semaphore
220 * on it to make sure nobody unmounts until the snapshot creation is done.
221 * The reference counter (bd_fsfreeze_count) guarantees that only the last
222 * unfreeze process can unfreeze the frozen filesystem actually when multiple
223 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
224 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
225 * actually.
226 */
227 struct super_block *freeze_bdev(struct block_device *bdev)
228 {
229 struct super_block *sb;
230 int error = 0;
231
232 mutex_lock(&bdev->bd_fsfreeze_mutex);
233 if (++bdev->bd_fsfreeze_count > 1) {
234 /*
235 * We don't even need to grab a reference - the first call
236 * to freeze_bdev grab an active reference and only the last
237 * thaw_bdev drops it.
238 */
239 sb = get_super(bdev);
240 drop_super(sb);
241 mutex_unlock(&bdev->bd_fsfreeze_mutex);
242 return sb;
243 }
244
245 sb = get_active_super(bdev);
246 if (!sb)
247 goto out;
248 error = freeze_super(sb);
249 if (error) {
250 deactivate_super(sb);
251 bdev->bd_fsfreeze_count--;
252 mutex_unlock(&bdev->bd_fsfreeze_mutex);
253 return ERR_PTR(error);
254 }
255 deactivate_super(sb);
256 out:
257 sync_blockdev(bdev);
258 mutex_unlock(&bdev->bd_fsfreeze_mutex);
259 return sb; /* thaw_bdev releases s->s_umount */
260 }
261 EXPORT_SYMBOL(freeze_bdev);
262
263 /**
264 * thaw_bdev -- unlock filesystem
265 * @bdev: blockdevice to unlock
266 * @sb: associated superblock
267 *
268 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
269 */
270 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
271 {
272 int error = -EINVAL;
273
274 mutex_lock(&bdev->bd_fsfreeze_mutex);
275 if (!bdev->bd_fsfreeze_count)
276 goto out;
277
278 error = 0;
279 if (--bdev->bd_fsfreeze_count > 0)
280 goto out;
281
282 if (!sb)
283 goto out;
284
285 error = thaw_super(sb);
286 if (error) {
287 bdev->bd_fsfreeze_count++;
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return error;
290 }
291 out:
292 mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 return 0;
294 }
295 EXPORT_SYMBOL(thaw_bdev);
296
297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298 {
299 return block_write_full_page(page, blkdev_get_block, wbc);
300 }
301
302 static int blkdev_readpage(struct file * file, struct page * page)
303 {
304 return block_read_full_page(page, blkdev_get_block);
305 }
306
307 static int blkdev_readpages(struct file *file, struct address_space *mapping,
308 struct list_head *pages, unsigned nr_pages)
309 {
310 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
311 }
312
313 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314 loff_t pos, unsigned len, unsigned flags,
315 struct page **pagep, void **fsdata)
316 {
317 return block_write_begin(mapping, pos, len, flags, pagep,
318 blkdev_get_block);
319 }
320
321 static int blkdev_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
324 {
325 int ret;
326 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
327
328 unlock_page(page);
329 page_cache_release(page);
330
331 return ret;
332 }
333
334 /*
335 * private llseek:
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
338 */
339 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
340 {
341 struct inode *bd_inode = file->f_mapping->host;
342 loff_t retval;
343
344 mutex_lock(&bd_inode->i_mutex);
345 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346 mutex_unlock(&bd_inode->i_mutex);
347 return retval;
348 }
349
350 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
351 {
352 struct inode *bd_inode = filp->f_mapping->host;
353 struct block_device *bdev = I_BDEV(bd_inode);
354 int error;
355
356 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357 if (error)
358 return error;
359
360 /*
361 * There is no need to serialise calls to blkdev_issue_flush with
362 * i_mutex and doing so causes performance issues with concurrent
363 * O_SYNC writers to a block device.
364 */
365 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366 if (error == -EOPNOTSUPP)
367 error = 0;
368
369 return error;
370 }
371 EXPORT_SYMBOL(blkdev_fsync);
372
373 /**
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
378 *
379 * On entry, the page should be locked. It will be unlocked when the page
380 * has been read. If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
382 *
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
386 *
387 * Return: negative errno if an error occurs, 0 if submission was successful.
388 */
389 int bdev_read_page(struct block_device *bdev, sector_t sector,
390 struct page *page)
391 {
392 const struct block_device_operations *ops = bdev->bd_disk->fops;
393 if (!ops->rw_page)
394 return -EOPNOTSUPP;
395 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
396 }
397 EXPORT_SYMBOL_GPL(bdev_read_page);
398
399 /**
400 * bdev_write_page() - Start writing a page to a block device
401 * @bdev: The device to write the page to
402 * @sector: The offset on the device to write the page to (need not be aligned)
403 * @page: The page to write
404 * @wbc: The writeback_control for the write
405 *
406 * On entry, the page should be locked and not currently under writeback.
407 * On exit, if the write started successfully, the page will be unlocked and
408 * under writeback. If the write failed already (eg the driver failed to
409 * queue the page to the device), the page will still be locked. If the
410 * caller is a ->writepage implementation, it will need to unlock the page.
411 *
412 * Errors returned by this function are usually "soft", eg out of memory, or
413 * queue full; callers should try a different route to write this page rather
414 * than propagate an error back up the stack.
415 *
416 * Return: negative errno if an error occurs, 0 if submission was successful.
417 */
418 int bdev_write_page(struct block_device *bdev, sector_t sector,
419 struct page *page, struct writeback_control *wbc)
420 {
421 int result;
422 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
423 const struct block_device_operations *ops = bdev->bd_disk->fops;
424 if (!ops->rw_page)
425 return -EOPNOTSUPP;
426 set_page_writeback(page);
427 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
428 if (result)
429 end_page_writeback(page);
430 else
431 unlock_page(page);
432 return result;
433 }
434 EXPORT_SYMBOL_GPL(bdev_write_page);
435
436 /*
437 * pseudo-fs
438 */
439
440 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
441 static struct kmem_cache * bdev_cachep __read_mostly;
442
443 static struct inode *bdev_alloc_inode(struct super_block *sb)
444 {
445 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
446 if (!ei)
447 return NULL;
448 return &ei->vfs_inode;
449 }
450
451 static void bdev_i_callback(struct rcu_head *head)
452 {
453 struct inode *inode = container_of(head, struct inode, i_rcu);
454 struct bdev_inode *bdi = BDEV_I(inode);
455
456 kmem_cache_free(bdev_cachep, bdi);
457 }
458
459 static void bdev_destroy_inode(struct inode *inode)
460 {
461 call_rcu(&inode->i_rcu, bdev_i_callback);
462 }
463
464 static void init_once(void *foo)
465 {
466 struct bdev_inode *ei = (struct bdev_inode *) foo;
467 struct block_device *bdev = &ei->bdev;
468
469 memset(bdev, 0, sizeof(*bdev));
470 mutex_init(&bdev->bd_mutex);
471 INIT_LIST_HEAD(&bdev->bd_inodes);
472 INIT_LIST_HEAD(&bdev->bd_list);
473 #ifdef CONFIG_SYSFS
474 INIT_LIST_HEAD(&bdev->bd_holder_disks);
475 #endif
476 inode_init_once(&ei->vfs_inode);
477 /* Initialize mutex for freeze. */
478 mutex_init(&bdev->bd_fsfreeze_mutex);
479 }
480
481 static inline void __bd_forget(struct inode *inode)
482 {
483 list_del_init(&inode->i_devices);
484 inode->i_bdev = NULL;
485 inode->i_mapping = &inode->i_data;
486 }
487
488 static void bdev_evict_inode(struct inode *inode)
489 {
490 struct block_device *bdev = &BDEV_I(inode)->bdev;
491 struct list_head *p;
492 truncate_inode_pages_final(&inode->i_data);
493 invalidate_inode_buffers(inode); /* is it needed here? */
494 clear_inode(inode);
495 spin_lock(&bdev_lock);
496 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
497 __bd_forget(list_entry(p, struct inode, i_devices));
498 }
499 list_del_init(&bdev->bd_list);
500 spin_unlock(&bdev_lock);
501 }
502
503 static const struct super_operations bdev_sops = {
504 .statfs = simple_statfs,
505 .alloc_inode = bdev_alloc_inode,
506 .destroy_inode = bdev_destroy_inode,
507 .drop_inode = generic_delete_inode,
508 .evict_inode = bdev_evict_inode,
509 };
510
511 static struct dentry *bd_mount(struct file_system_type *fs_type,
512 int flags, const char *dev_name, void *data)
513 {
514 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
515 }
516
517 static struct file_system_type bd_type = {
518 .name = "bdev",
519 .mount = bd_mount,
520 .kill_sb = kill_anon_super,
521 };
522
523 static struct super_block *blockdev_superblock __read_mostly;
524
525 void __init bdev_cache_init(void)
526 {
527 int err;
528 static struct vfsmount *bd_mnt;
529
530 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
531 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
532 SLAB_MEM_SPREAD|SLAB_PANIC),
533 init_once);
534 err = register_filesystem(&bd_type);
535 if (err)
536 panic("Cannot register bdev pseudo-fs");
537 bd_mnt = kern_mount(&bd_type);
538 if (IS_ERR(bd_mnt))
539 panic("Cannot create bdev pseudo-fs");
540 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
541 }
542
543 /*
544 * Most likely _very_ bad one - but then it's hardly critical for small
545 * /dev and can be fixed when somebody will need really large one.
546 * Keep in mind that it will be fed through icache hash function too.
547 */
548 static inline unsigned long hash(dev_t dev)
549 {
550 return MAJOR(dev)+MINOR(dev);
551 }
552
553 static int bdev_test(struct inode *inode, void *data)
554 {
555 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
556 }
557
558 static int bdev_set(struct inode *inode, void *data)
559 {
560 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
561 return 0;
562 }
563
564 static LIST_HEAD(all_bdevs);
565
566 struct block_device *bdget(dev_t dev)
567 {
568 struct block_device *bdev;
569 struct inode *inode;
570
571 inode = iget5_locked(blockdev_superblock, hash(dev),
572 bdev_test, bdev_set, &dev);
573
574 if (!inode)
575 return NULL;
576
577 bdev = &BDEV_I(inode)->bdev;
578
579 if (inode->i_state & I_NEW) {
580 bdev->bd_contains = NULL;
581 bdev->bd_super = NULL;
582 bdev->bd_inode = inode;
583 bdev->bd_block_size = (1 << inode->i_blkbits);
584 bdev->bd_part_count = 0;
585 bdev->bd_invalidated = 0;
586 inode->i_mode = S_IFBLK;
587 inode->i_rdev = dev;
588 inode->i_bdev = bdev;
589 inode->i_data.a_ops = &def_blk_aops;
590 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
591 inode->i_data.backing_dev_info = &default_backing_dev_info;
592 spin_lock(&bdev_lock);
593 list_add(&bdev->bd_list, &all_bdevs);
594 spin_unlock(&bdev_lock);
595 unlock_new_inode(inode);
596 }
597 return bdev;
598 }
599
600 EXPORT_SYMBOL(bdget);
601
602 /**
603 * bdgrab -- Grab a reference to an already referenced block device
604 * @bdev: Block device to grab a reference to.
605 */
606 struct block_device *bdgrab(struct block_device *bdev)
607 {
608 ihold(bdev->bd_inode);
609 return bdev;
610 }
611 EXPORT_SYMBOL(bdgrab);
612
613 long nr_blockdev_pages(void)
614 {
615 struct block_device *bdev;
616 long ret = 0;
617 spin_lock(&bdev_lock);
618 list_for_each_entry(bdev, &all_bdevs, bd_list) {
619 ret += bdev->bd_inode->i_mapping->nrpages;
620 }
621 spin_unlock(&bdev_lock);
622 return ret;
623 }
624
625 void bdput(struct block_device *bdev)
626 {
627 iput(bdev->bd_inode);
628 }
629
630 EXPORT_SYMBOL(bdput);
631
632 static struct block_device *bd_acquire(struct inode *inode)
633 {
634 struct block_device *bdev;
635
636 spin_lock(&bdev_lock);
637 bdev = inode->i_bdev;
638 if (bdev) {
639 ihold(bdev->bd_inode);
640 spin_unlock(&bdev_lock);
641 return bdev;
642 }
643 spin_unlock(&bdev_lock);
644
645 bdev = bdget(inode->i_rdev);
646 if (bdev) {
647 spin_lock(&bdev_lock);
648 if (!inode->i_bdev) {
649 /*
650 * We take an additional reference to bd_inode,
651 * and it's released in clear_inode() of inode.
652 * So, we can access it via ->i_mapping always
653 * without igrab().
654 */
655 ihold(bdev->bd_inode);
656 inode->i_bdev = bdev;
657 inode->i_mapping = bdev->bd_inode->i_mapping;
658 list_add(&inode->i_devices, &bdev->bd_inodes);
659 }
660 spin_unlock(&bdev_lock);
661 }
662 return bdev;
663 }
664
665 int sb_is_blkdev_sb(struct super_block *sb)
666 {
667 return sb == blockdev_superblock;
668 }
669
670 /* Call when you free inode */
671
672 void bd_forget(struct inode *inode)
673 {
674 struct block_device *bdev = NULL;
675
676 spin_lock(&bdev_lock);
677 if (!sb_is_blkdev_sb(inode->i_sb))
678 bdev = inode->i_bdev;
679 __bd_forget(inode);
680 spin_unlock(&bdev_lock);
681
682 if (bdev)
683 iput(bdev->bd_inode);
684 }
685
686 /**
687 * bd_may_claim - test whether a block device can be claimed
688 * @bdev: block device of interest
689 * @whole: whole block device containing @bdev, may equal @bdev
690 * @holder: holder trying to claim @bdev
691 *
692 * Test whether @bdev can be claimed by @holder.
693 *
694 * CONTEXT:
695 * spin_lock(&bdev_lock).
696 *
697 * RETURNS:
698 * %true if @bdev can be claimed, %false otherwise.
699 */
700 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
701 void *holder)
702 {
703 if (bdev->bd_holder == holder)
704 return true; /* already a holder */
705 else if (bdev->bd_holder != NULL)
706 return false; /* held by someone else */
707 else if (bdev->bd_contains == bdev)
708 return true; /* is a whole device which isn't held */
709
710 else if (whole->bd_holder == bd_may_claim)
711 return true; /* is a partition of a device that is being partitioned */
712 else if (whole->bd_holder != NULL)
713 return false; /* is a partition of a held device */
714 else
715 return true; /* is a partition of an un-held device */
716 }
717
718 /**
719 * bd_prepare_to_claim - prepare to claim a block device
720 * @bdev: block device of interest
721 * @whole: the whole device containing @bdev, may equal @bdev
722 * @holder: holder trying to claim @bdev
723 *
724 * Prepare to claim @bdev. This function fails if @bdev is already
725 * claimed by another holder and waits if another claiming is in
726 * progress. This function doesn't actually claim. On successful
727 * return, the caller has ownership of bd_claiming and bd_holder[s].
728 *
729 * CONTEXT:
730 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
731 * it multiple times.
732 *
733 * RETURNS:
734 * 0 if @bdev can be claimed, -EBUSY otherwise.
735 */
736 static int bd_prepare_to_claim(struct block_device *bdev,
737 struct block_device *whole, void *holder)
738 {
739 retry:
740 /* if someone else claimed, fail */
741 if (!bd_may_claim(bdev, whole, holder))
742 return -EBUSY;
743
744 /* if claiming is already in progress, wait for it to finish */
745 if (whole->bd_claiming) {
746 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
747 DEFINE_WAIT(wait);
748
749 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
750 spin_unlock(&bdev_lock);
751 schedule();
752 finish_wait(wq, &wait);
753 spin_lock(&bdev_lock);
754 goto retry;
755 }
756
757 /* yay, all mine */
758 return 0;
759 }
760
761 /**
762 * bd_start_claiming - start claiming a block device
763 * @bdev: block device of interest
764 * @holder: holder trying to claim @bdev
765 *
766 * @bdev is about to be opened exclusively. Check @bdev can be opened
767 * exclusively and mark that an exclusive open is in progress. Each
768 * successful call to this function must be matched with a call to
769 * either bd_finish_claiming() or bd_abort_claiming() (which do not
770 * fail).
771 *
772 * This function is used to gain exclusive access to the block device
773 * without actually causing other exclusive open attempts to fail. It
774 * should be used when the open sequence itself requires exclusive
775 * access but may subsequently fail.
776 *
777 * CONTEXT:
778 * Might sleep.
779 *
780 * RETURNS:
781 * Pointer to the block device containing @bdev on success, ERR_PTR()
782 * value on failure.
783 */
784 static struct block_device *bd_start_claiming(struct block_device *bdev,
785 void *holder)
786 {
787 struct gendisk *disk;
788 struct block_device *whole;
789 int partno, err;
790
791 might_sleep();
792
793 /*
794 * @bdev might not have been initialized properly yet, look up
795 * and grab the outer block device the hard way.
796 */
797 disk = get_gendisk(bdev->bd_dev, &partno);
798 if (!disk)
799 return ERR_PTR(-ENXIO);
800
801 /*
802 * Normally, @bdev should equal what's returned from bdget_disk()
803 * if partno is 0; however, some drivers (floppy) use multiple
804 * bdev's for the same physical device and @bdev may be one of the
805 * aliases. Keep @bdev if partno is 0. This means claimer
806 * tracking is broken for those devices but it has always been that
807 * way.
808 */
809 if (partno)
810 whole = bdget_disk(disk, 0);
811 else
812 whole = bdgrab(bdev);
813
814 module_put(disk->fops->owner);
815 put_disk(disk);
816 if (!whole)
817 return ERR_PTR(-ENOMEM);
818
819 /* prepare to claim, if successful, mark claiming in progress */
820 spin_lock(&bdev_lock);
821
822 err = bd_prepare_to_claim(bdev, whole, holder);
823 if (err == 0) {
824 whole->bd_claiming = holder;
825 spin_unlock(&bdev_lock);
826 return whole;
827 } else {
828 spin_unlock(&bdev_lock);
829 bdput(whole);
830 return ERR_PTR(err);
831 }
832 }
833
834 #ifdef CONFIG_SYSFS
835 struct bd_holder_disk {
836 struct list_head list;
837 struct gendisk *disk;
838 int refcnt;
839 };
840
841 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
842 struct gendisk *disk)
843 {
844 struct bd_holder_disk *holder;
845
846 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
847 if (holder->disk == disk)
848 return holder;
849 return NULL;
850 }
851
852 static int add_symlink(struct kobject *from, struct kobject *to)
853 {
854 return sysfs_create_link(from, to, kobject_name(to));
855 }
856
857 static void del_symlink(struct kobject *from, struct kobject *to)
858 {
859 sysfs_remove_link(from, kobject_name(to));
860 }
861
862 /**
863 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
864 * @bdev: the claimed slave bdev
865 * @disk: the holding disk
866 *
867 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
868 *
869 * This functions creates the following sysfs symlinks.
870 *
871 * - from "slaves" directory of the holder @disk to the claimed @bdev
872 * - from "holders" directory of the @bdev to the holder @disk
873 *
874 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
875 * passed to bd_link_disk_holder(), then:
876 *
877 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
878 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
879 *
880 * The caller must have claimed @bdev before calling this function and
881 * ensure that both @bdev and @disk are valid during the creation and
882 * lifetime of these symlinks.
883 *
884 * CONTEXT:
885 * Might sleep.
886 *
887 * RETURNS:
888 * 0 on success, -errno on failure.
889 */
890 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
891 {
892 struct bd_holder_disk *holder;
893 int ret = 0;
894
895 mutex_lock(&bdev->bd_mutex);
896
897 WARN_ON_ONCE(!bdev->bd_holder);
898
899 /* FIXME: remove the following once add_disk() handles errors */
900 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
901 goto out_unlock;
902
903 holder = bd_find_holder_disk(bdev, disk);
904 if (holder) {
905 holder->refcnt++;
906 goto out_unlock;
907 }
908
909 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
910 if (!holder) {
911 ret = -ENOMEM;
912 goto out_unlock;
913 }
914
915 INIT_LIST_HEAD(&holder->list);
916 holder->disk = disk;
917 holder->refcnt = 1;
918
919 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
920 if (ret)
921 goto out_free;
922
923 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
924 if (ret)
925 goto out_del;
926 /*
927 * bdev could be deleted beneath us which would implicitly destroy
928 * the holder directory. Hold on to it.
929 */
930 kobject_get(bdev->bd_part->holder_dir);
931
932 list_add(&holder->list, &bdev->bd_holder_disks);
933 goto out_unlock;
934
935 out_del:
936 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
937 out_free:
938 kfree(holder);
939 out_unlock:
940 mutex_unlock(&bdev->bd_mutex);
941 return ret;
942 }
943 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
944
945 /**
946 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
947 * @bdev: the calimed slave bdev
948 * @disk: the holding disk
949 *
950 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
951 *
952 * CONTEXT:
953 * Might sleep.
954 */
955 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
956 {
957 struct bd_holder_disk *holder;
958
959 mutex_lock(&bdev->bd_mutex);
960
961 holder = bd_find_holder_disk(bdev, disk);
962
963 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
964 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
965 del_symlink(bdev->bd_part->holder_dir,
966 &disk_to_dev(disk)->kobj);
967 kobject_put(bdev->bd_part->holder_dir);
968 list_del_init(&holder->list);
969 kfree(holder);
970 }
971
972 mutex_unlock(&bdev->bd_mutex);
973 }
974 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
975 #endif
976
977 /**
978 * flush_disk - invalidates all buffer-cache entries on a disk
979 *
980 * @bdev: struct block device to be flushed
981 * @kill_dirty: flag to guide handling of dirty inodes
982 *
983 * Invalidates all buffer-cache entries on a disk. It should be called
984 * when a disk has been changed -- either by a media change or online
985 * resize.
986 */
987 static void flush_disk(struct block_device *bdev, bool kill_dirty)
988 {
989 if (__invalidate_device(bdev, kill_dirty)) {
990 char name[BDEVNAME_SIZE] = "";
991
992 if (bdev->bd_disk)
993 disk_name(bdev->bd_disk, 0, name);
994 printk(KERN_WARNING "VFS: busy inodes on changed media or "
995 "resized disk %s\n", name);
996 }
997
998 if (!bdev->bd_disk)
999 return;
1000 if (disk_part_scan_enabled(bdev->bd_disk))
1001 bdev->bd_invalidated = 1;
1002 }
1003
1004 /**
1005 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1006 * @disk: struct gendisk to check
1007 * @bdev: struct bdev to adjust.
1008 *
1009 * This routine checks to see if the bdev size does not match the disk size
1010 * and adjusts it if it differs.
1011 */
1012 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1013 {
1014 loff_t disk_size, bdev_size;
1015
1016 disk_size = (loff_t)get_capacity(disk) << 9;
1017 bdev_size = i_size_read(bdev->bd_inode);
1018 if (disk_size != bdev_size) {
1019 char name[BDEVNAME_SIZE];
1020
1021 disk_name(disk, 0, name);
1022 printk(KERN_INFO
1023 "%s: detected capacity change from %lld to %lld\n",
1024 name, bdev_size, disk_size);
1025 i_size_write(bdev->bd_inode, disk_size);
1026 flush_disk(bdev, false);
1027 }
1028 }
1029 EXPORT_SYMBOL(check_disk_size_change);
1030
1031 /**
1032 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1033 * @disk: struct gendisk to be revalidated
1034 *
1035 * This routine is a wrapper for lower-level driver's revalidate_disk
1036 * call-backs. It is used to do common pre and post operations needed
1037 * for all revalidate_disk operations.
1038 */
1039 int revalidate_disk(struct gendisk *disk)
1040 {
1041 struct block_device *bdev;
1042 int ret = 0;
1043
1044 if (disk->fops->revalidate_disk)
1045 ret = disk->fops->revalidate_disk(disk);
1046
1047 bdev = bdget_disk(disk, 0);
1048 if (!bdev)
1049 return ret;
1050
1051 mutex_lock(&bdev->bd_mutex);
1052 check_disk_size_change(disk, bdev);
1053 bdev->bd_invalidated = 0;
1054 mutex_unlock(&bdev->bd_mutex);
1055 bdput(bdev);
1056 return ret;
1057 }
1058 EXPORT_SYMBOL(revalidate_disk);
1059
1060 /*
1061 * This routine checks whether a removable media has been changed,
1062 * and invalidates all buffer-cache-entries in that case. This
1063 * is a relatively slow routine, so we have to try to minimize using
1064 * it. Thus it is called only upon a 'mount' or 'open'. This
1065 * is the best way of combining speed and utility, I think.
1066 * People changing diskettes in the middle of an operation deserve
1067 * to lose :-)
1068 */
1069 int check_disk_change(struct block_device *bdev)
1070 {
1071 struct gendisk *disk = bdev->bd_disk;
1072 const struct block_device_operations *bdops = disk->fops;
1073 unsigned int events;
1074
1075 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1076 DISK_EVENT_EJECT_REQUEST);
1077 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1078 return 0;
1079
1080 flush_disk(bdev, true);
1081 if (bdops->revalidate_disk)
1082 bdops->revalidate_disk(bdev->bd_disk);
1083 return 1;
1084 }
1085
1086 EXPORT_SYMBOL(check_disk_change);
1087
1088 void bd_set_size(struct block_device *bdev, loff_t size)
1089 {
1090 unsigned bsize = bdev_logical_block_size(bdev);
1091
1092 mutex_lock(&bdev->bd_inode->i_mutex);
1093 i_size_write(bdev->bd_inode, size);
1094 mutex_unlock(&bdev->bd_inode->i_mutex);
1095 while (bsize < PAGE_CACHE_SIZE) {
1096 if (size & bsize)
1097 break;
1098 bsize <<= 1;
1099 }
1100 bdev->bd_block_size = bsize;
1101 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1102 }
1103 EXPORT_SYMBOL(bd_set_size);
1104
1105 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1106
1107 /*
1108 * bd_mutex locking:
1109 *
1110 * mutex_lock(part->bd_mutex)
1111 * mutex_lock_nested(whole->bd_mutex, 1)
1112 */
1113
1114 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1115 {
1116 struct gendisk *disk;
1117 struct module *owner;
1118 int ret;
1119 int partno;
1120 int perm = 0;
1121
1122 if (mode & FMODE_READ)
1123 perm |= MAY_READ;
1124 if (mode & FMODE_WRITE)
1125 perm |= MAY_WRITE;
1126 /*
1127 * hooks: /n/, see "layering violations".
1128 */
1129 if (!for_part) {
1130 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1131 if (ret != 0) {
1132 bdput(bdev);
1133 return ret;
1134 }
1135 }
1136
1137 restart:
1138
1139 ret = -ENXIO;
1140 disk = get_gendisk(bdev->bd_dev, &partno);
1141 if (!disk)
1142 goto out;
1143 owner = disk->fops->owner;
1144
1145 disk_block_events(disk);
1146 mutex_lock_nested(&bdev->bd_mutex, for_part);
1147 if (!bdev->bd_openers) {
1148 bdev->bd_disk = disk;
1149 bdev->bd_queue = disk->queue;
1150 bdev->bd_contains = bdev;
1151 if (!partno) {
1152 struct backing_dev_info *bdi;
1153
1154 ret = -ENXIO;
1155 bdev->bd_part = disk_get_part(disk, partno);
1156 if (!bdev->bd_part)
1157 goto out_clear;
1158
1159 ret = 0;
1160 if (disk->fops->open) {
1161 ret = disk->fops->open(bdev, mode);
1162 if (ret == -ERESTARTSYS) {
1163 /* Lost a race with 'disk' being
1164 * deleted, try again.
1165 * See md.c
1166 */
1167 disk_put_part(bdev->bd_part);
1168 bdev->bd_part = NULL;
1169 bdev->bd_disk = NULL;
1170 bdev->bd_queue = NULL;
1171 mutex_unlock(&bdev->bd_mutex);
1172 disk_unblock_events(disk);
1173 put_disk(disk);
1174 module_put(owner);
1175 goto restart;
1176 }
1177 }
1178
1179 if (!ret) {
1180 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1181 bdi = blk_get_backing_dev_info(bdev);
1182 if (bdi == NULL)
1183 bdi = &default_backing_dev_info;
1184 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1185 }
1186
1187 /*
1188 * If the device is invalidated, rescan partition
1189 * if open succeeded or failed with -ENOMEDIUM.
1190 * The latter is necessary to prevent ghost
1191 * partitions on a removed medium.
1192 */
1193 if (bdev->bd_invalidated) {
1194 if (!ret)
1195 rescan_partitions(disk, bdev);
1196 else if (ret == -ENOMEDIUM)
1197 invalidate_partitions(disk, bdev);
1198 }
1199 if (ret)
1200 goto out_clear;
1201 } else {
1202 struct block_device *whole;
1203 whole = bdget_disk(disk, 0);
1204 ret = -ENOMEM;
1205 if (!whole)
1206 goto out_clear;
1207 BUG_ON(for_part);
1208 ret = __blkdev_get(whole, mode, 1);
1209 if (ret)
1210 goto out_clear;
1211 bdev->bd_contains = whole;
1212 bdev_inode_switch_bdi(bdev->bd_inode,
1213 whole->bd_inode->i_data.backing_dev_info);
1214 bdev->bd_part = disk_get_part(disk, partno);
1215 if (!(disk->flags & GENHD_FL_UP) ||
1216 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1217 ret = -ENXIO;
1218 goto out_clear;
1219 }
1220 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1221 }
1222 } else {
1223 if (bdev->bd_contains == bdev) {
1224 ret = 0;
1225 if (bdev->bd_disk->fops->open)
1226 ret = bdev->bd_disk->fops->open(bdev, mode);
1227 /* the same as first opener case, read comment there */
1228 if (bdev->bd_invalidated) {
1229 if (!ret)
1230 rescan_partitions(bdev->bd_disk, bdev);
1231 else if (ret == -ENOMEDIUM)
1232 invalidate_partitions(bdev->bd_disk, bdev);
1233 }
1234 if (ret)
1235 goto out_unlock_bdev;
1236 }
1237 /* only one opener holds refs to the module and disk */
1238 put_disk(disk);
1239 module_put(owner);
1240 }
1241 bdev->bd_openers++;
1242 if (for_part)
1243 bdev->bd_part_count++;
1244 mutex_unlock(&bdev->bd_mutex);
1245 disk_unblock_events(disk);
1246 return 0;
1247
1248 out_clear:
1249 disk_put_part(bdev->bd_part);
1250 bdev->bd_disk = NULL;
1251 bdev->bd_part = NULL;
1252 bdev->bd_queue = NULL;
1253 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1254 if (bdev != bdev->bd_contains)
1255 __blkdev_put(bdev->bd_contains, mode, 1);
1256 bdev->bd_contains = NULL;
1257 out_unlock_bdev:
1258 mutex_unlock(&bdev->bd_mutex);
1259 disk_unblock_events(disk);
1260 put_disk(disk);
1261 module_put(owner);
1262 out:
1263 bdput(bdev);
1264
1265 return ret;
1266 }
1267
1268 /**
1269 * blkdev_get - open a block device
1270 * @bdev: block_device to open
1271 * @mode: FMODE_* mask
1272 * @holder: exclusive holder identifier
1273 *
1274 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1275 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1276 * @holder is invalid. Exclusive opens may nest for the same @holder.
1277 *
1278 * On success, the reference count of @bdev is unchanged. On failure,
1279 * @bdev is put.
1280 *
1281 * CONTEXT:
1282 * Might sleep.
1283 *
1284 * RETURNS:
1285 * 0 on success, -errno on failure.
1286 */
1287 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1288 {
1289 struct block_device *whole = NULL;
1290 int res;
1291
1292 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1293
1294 if ((mode & FMODE_EXCL) && holder) {
1295 whole = bd_start_claiming(bdev, holder);
1296 if (IS_ERR(whole)) {
1297 bdput(bdev);
1298 return PTR_ERR(whole);
1299 }
1300 }
1301
1302 res = __blkdev_get(bdev, mode, 0);
1303
1304 if (whole) {
1305 struct gendisk *disk = whole->bd_disk;
1306
1307 /* finish claiming */
1308 mutex_lock(&bdev->bd_mutex);
1309 spin_lock(&bdev_lock);
1310
1311 if (!res) {
1312 BUG_ON(!bd_may_claim(bdev, whole, holder));
1313 /*
1314 * Note that for a whole device bd_holders
1315 * will be incremented twice, and bd_holder
1316 * will be set to bd_may_claim before being
1317 * set to holder
1318 */
1319 whole->bd_holders++;
1320 whole->bd_holder = bd_may_claim;
1321 bdev->bd_holders++;
1322 bdev->bd_holder = holder;
1323 }
1324
1325 /* tell others that we're done */
1326 BUG_ON(whole->bd_claiming != holder);
1327 whole->bd_claiming = NULL;
1328 wake_up_bit(&whole->bd_claiming, 0);
1329
1330 spin_unlock(&bdev_lock);
1331
1332 /*
1333 * Block event polling for write claims if requested. Any
1334 * write holder makes the write_holder state stick until
1335 * all are released. This is good enough and tracking
1336 * individual writeable reference is too fragile given the
1337 * way @mode is used in blkdev_get/put().
1338 */
1339 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1340 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1341 bdev->bd_write_holder = true;
1342 disk_block_events(disk);
1343 }
1344
1345 mutex_unlock(&bdev->bd_mutex);
1346 bdput(whole);
1347 }
1348
1349 return res;
1350 }
1351 EXPORT_SYMBOL(blkdev_get);
1352
1353 /**
1354 * blkdev_get_by_path - open a block device by name
1355 * @path: path to the block device to open
1356 * @mode: FMODE_* mask
1357 * @holder: exclusive holder identifier
1358 *
1359 * Open the blockdevice described by the device file at @path. @mode
1360 * and @holder are identical to blkdev_get().
1361 *
1362 * On success, the returned block_device has reference count of one.
1363 *
1364 * CONTEXT:
1365 * Might sleep.
1366 *
1367 * RETURNS:
1368 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1369 */
1370 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1371 void *holder)
1372 {
1373 struct block_device *bdev;
1374 int err;
1375
1376 bdev = lookup_bdev(path);
1377 if (IS_ERR(bdev))
1378 return bdev;
1379
1380 err = blkdev_get(bdev, mode, holder);
1381 if (err)
1382 return ERR_PTR(err);
1383
1384 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1385 blkdev_put(bdev, mode);
1386 return ERR_PTR(-EACCES);
1387 }
1388
1389 return bdev;
1390 }
1391 EXPORT_SYMBOL(blkdev_get_by_path);
1392
1393 /**
1394 * blkdev_get_by_dev - open a block device by device number
1395 * @dev: device number of block device to open
1396 * @mode: FMODE_* mask
1397 * @holder: exclusive holder identifier
1398 *
1399 * Open the blockdevice described by device number @dev. @mode and
1400 * @holder are identical to blkdev_get().
1401 *
1402 * Use it ONLY if you really do not have anything better - i.e. when
1403 * you are behind a truly sucky interface and all you are given is a
1404 * device number. _Never_ to be used for internal purposes. If you
1405 * ever need it - reconsider your API.
1406 *
1407 * On success, the returned block_device has reference count of one.
1408 *
1409 * CONTEXT:
1410 * Might sleep.
1411 *
1412 * RETURNS:
1413 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1414 */
1415 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1416 {
1417 struct block_device *bdev;
1418 int err;
1419
1420 bdev = bdget(dev);
1421 if (!bdev)
1422 return ERR_PTR(-ENOMEM);
1423
1424 err = blkdev_get(bdev, mode, holder);
1425 if (err)
1426 return ERR_PTR(err);
1427
1428 return bdev;
1429 }
1430 EXPORT_SYMBOL(blkdev_get_by_dev);
1431
1432 static int blkdev_open(struct inode * inode, struct file * filp)
1433 {
1434 struct block_device *bdev;
1435
1436 /*
1437 * Preserve backwards compatibility and allow large file access
1438 * even if userspace doesn't ask for it explicitly. Some mkfs
1439 * binary needs it. We might want to drop this workaround
1440 * during an unstable branch.
1441 */
1442 filp->f_flags |= O_LARGEFILE;
1443
1444 if (filp->f_flags & O_NDELAY)
1445 filp->f_mode |= FMODE_NDELAY;
1446 if (filp->f_flags & O_EXCL)
1447 filp->f_mode |= FMODE_EXCL;
1448 if ((filp->f_flags & O_ACCMODE) == 3)
1449 filp->f_mode |= FMODE_WRITE_IOCTL;
1450
1451 bdev = bd_acquire(inode);
1452 if (bdev == NULL)
1453 return -ENOMEM;
1454
1455 filp->f_mapping = bdev->bd_inode->i_mapping;
1456
1457 return blkdev_get(bdev, filp->f_mode, filp);
1458 }
1459
1460 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1461 {
1462 struct gendisk *disk = bdev->bd_disk;
1463 struct block_device *victim = NULL;
1464
1465 mutex_lock_nested(&bdev->bd_mutex, for_part);
1466 if (for_part)
1467 bdev->bd_part_count--;
1468
1469 if (!--bdev->bd_openers) {
1470 WARN_ON_ONCE(bdev->bd_holders);
1471 sync_blockdev(bdev);
1472 kill_bdev(bdev);
1473 /* ->release can cause the old bdi to disappear,
1474 * so must switch it out first
1475 */
1476 bdev_inode_switch_bdi(bdev->bd_inode,
1477 &default_backing_dev_info);
1478 }
1479 if (bdev->bd_contains == bdev) {
1480 if (disk->fops->release)
1481 disk->fops->release(disk, mode);
1482 }
1483 if (!bdev->bd_openers) {
1484 struct module *owner = disk->fops->owner;
1485
1486 disk_put_part(bdev->bd_part);
1487 bdev->bd_part = NULL;
1488 bdev->bd_disk = NULL;
1489 if (bdev != bdev->bd_contains)
1490 victim = bdev->bd_contains;
1491 bdev->bd_contains = NULL;
1492
1493 put_disk(disk);
1494 module_put(owner);
1495 }
1496 mutex_unlock(&bdev->bd_mutex);
1497 bdput(bdev);
1498 if (victim)
1499 __blkdev_put(victim, mode, 1);
1500 }
1501
1502 void blkdev_put(struct block_device *bdev, fmode_t mode)
1503 {
1504 mutex_lock(&bdev->bd_mutex);
1505
1506 if (mode & FMODE_EXCL) {
1507 bool bdev_free;
1508
1509 /*
1510 * Release a claim on the device. The holder fields
1511 * are protected with bdev_lock. bd_mutex is to
1512 * synchronize disk_holder unlinking.
1513 */
1514 spin_lock(&bdev_lock);
1515
1516 WARN_ON_ONCE(--bdev->bd_holders < 0);
1517 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1518
1519 /* bd_contains might point to self, check in a separate step */
1520 if ((bdev_free = !bdev->bd_holders))
1521 bdev->bd_holder = NULL;
1522 if (!bdev->bd_contains->bd_holders)
1523 bdev->bd_contains->bd_holder = NULL;
1524
1525 spin_unlock(&bdev_lock);
1526
1527 /*
1528 * If this was the last claim, remove holder link and
1529 * unblock evpoll if it was a write holder.
1530 */
1531 if (bdev_free && bdev->bd_write_holder) {
1532 disk_unblock_events(bdev->bd_disk);
1533 bdev->bd_write_holder = false;
1534 }
1535 }
1536
1537 /*
1538 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1539 * event. This is to ensure detection of media removal commanded
1540 * from userland - e.g. eject(1).
1541 */
1542 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1543
1544 mutex_unlock(&bdev->bd_mutex);
1545
1546 __blkdev_put(bdev, mode, 0);
1547 }
1548 EXPORT_SYMBOL(blkdev_put);
1549
1550 static int blkdev_close(struct inode * inode, struct file * filp)
1551 {
1552 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1553 blkdev_put(bdev, filp->f_mode);
1554 return 0;
1555 }
1556
1557 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1558 {
1559 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1560 fmode_t mode = file->f_mode;
1561
1562 /*
1563 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1564 * to updated it before every ioctl.
1565 */
1566 if (file->f_flags & O_NDELAY)
1567 mode |= FMODE_NDELAY;
1568 else
1569 mode &= ~FMODE_NDELAY;
1570
1571 return blkdev_ioctl(bdev, mode, cmd, arg);
1572 }
1573
1574 /*
1575 * Write data to the block device. Only intended for the block device itself
1576 * and the raw driver which basically is a fake block device.
1577 *
1578 * Does not take i_mutex for the write and thus is not for general purpose
1579 * use.
1580 */
1581 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1582 {
1583 struct file *file = iocb->ki_filp;
1584 struct blk_plug plug;
1585 ssize_t ret;
1586
1587 blk_start_plug(&plug);
1588 ret = __generic_file_write_iter(iocb, from);
1589 if (ret > 0) {
1590 ssize_t err;
1591 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1592 if (err < 0)
1593 ret = err;
1594 }
1595 blk_finish_plug(&plug);
1596 return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1599
1600 static ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1601 {
1602 struct file *file = iocb->ki_filp;
1603 struct inode *bd_inode = file->f_mapping->host;
1604 loff_t size = i_size_read(bd_inode);
1605 loff_t pos = iocb->ki_pos;
1606
1607 if (pos >= size)
1608 return 0;
1609
1610 size -= pos;
1611 iov_iter_truncate(to, size);
1612 return generic_file_read_iter(iocb, to);
1613 }
1614
1615 /*
1616 * Try to release a page associated with block device when the system
1617 * is under memory pressure.
1618 */
1619 static int blkdev_releasepage(struct page *page, gfp_t wait)
1620 {
1621 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1622
1623 if (super && super->s_op->bdev_try_to_free_page)
1624 return super->s_op->bdev_try_to_free_page(super, page, wait);
1625
1626 return try_to_free_buffers(page);
1627 }
1628
1629 static const struct address_space_operations def_blk_aops = {
1630 .readpage = blkdev_readpage,
1631 .readpages = blkdev_readpages,
1632 .writepage = blkdev_writepage,
1633 .write_begin = blkdev_write_begin,
1634 .write_end = blkdev_write_end,
1635 .writepages = generic_writepages,
1636 .releasepage = blkdev_releasepage,
1637 .direct_IO = blkdev_direct_IO,
1638 .is_dirty_writeback = buffer_check_dirty_writeback,
1639 };
1640
1641 const struct file_operations def_blk_fops = {
1642 .open = blkdev_open,
1643 .release = blkdev_close,
1644 .llseek = block_llseek,
1645 .read = new_sync_read,
1646 .write = new_sync_write,
1647 .read_iter = blkdev_read_iter,
1648 .write_iter = blkdev_write_iter,
1649 .mmap = generic_file_mmap,
1650 .fsync = blkdev_fsync,
1651 .unlocked_ioctl = block_ioctl,
1652 #ifdef CONFIG_COMPAT
1653 .compat_ioctl = compat_blkdev_ioctl,
1654 #endif
1655 .splice_read = generic_file_splice_read,
1656 .splice_write = iter_file_splice_write,
1657 };
1658
1659 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1660 {
1661 int res;
1662 mm_segment_t old_fs = get_fs();
1663 set_fs(KERNEL_DS);
1664 res = blkdev_ioctl(bdev, 0, cmd, arg);
1665 set_fs(old_fs);
1666 return res;
1667 }
1668
1669 EXPORT_SYMBOL(ioctl_by_bdev);
1670
1671 /**
1672 * lookup_bdev - lookup a struct block_device by name
1673 * @pathname: special file representing the block device
1674 *
1675 * Get a reference to the blockdevice at @pathname in the current
1676 * namespace if possible and return it. Return ERR_PTR(error)
1677 * otherwise.
1678 */
1679 struct block_device *lookup_bdev(const char *pathname)
1680 {
1681 struct block_device *bdev;
1682 struct inode *inode;
1683 struct path path;
1684 int error;
1685
1686 if (!pathname || !*pathname)
1687 return ERR_PTR(-EINVAL);
1688
1689 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1690 if (error)
1691 return ERR_PTR(error);
1692
1693 inode = path.dentry->d_inode;
1694 error = -ENOTBLK;
1695 if (!S_ISBLK(inode->i_mode))
1696 goto fail;
1697 error = -EACCES;
1698 if (path.mnt->mnt_flags & MNT_NODEV)
1699 goto fail;
1700 error = -ENOMEM;
1701 bdev = bd_acquire(inode);
1702 if (!bdev)
1703 goto fail;
1704 out:
1705 path_put(&path);
1706 return bdev;
1707 fail:
1708 bdev = ERR_PTR(error);
1709 goto out;
1710 }
1711 EXPORT_SYMBOL(lookup_bdev);
1712
1713 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1714 {
1715 struct super_block *sb = get_super(bdev);
1716 int res = 0;
1717
1718 if (sb) {
1719 /*
1720 * no need to lock the super, get_super holds the
1721 * read mutex so the filesystem cannot go away
1722 * under us (->put_super runs with the write lock
1723 * hold).
1724 */
1725 shrink_dcache_sb(sb);
1726 res = invalidate_inodes(sb, kill_dirty);
1727 drop_super(sb);
1728 }
1729 invalidate_bdev(bdev);
1730 return res;
1731 }
1732 EXPORT_SYMBOL(__invalidate_device);
1733
1734 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1735 {
1736 struct inode *inode, *old_inode = NULL;
1737
1738 spin_lock(&inode_sb_list_lock);
1739 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1740 struct address_space *mapping = inode->i_mapping;
1741
1742 spin_lock(&inode->i_lock);
1743 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1744 mapping->nrpages == 0) {
1745 spin_unlock(&inode->i_lock);
1746 continue;
1747 }
1748 __iget(inode);
1749 spin_unlock(&inode->i_lock);
1750 spin_unlock(&inode_sb_list_lock);
1751 /*
1752 * We hold a reference to 'inode' so it couldn't have been
1753 * removed from s_inodes list while we dropped the
1754 * inode_sb_list_lock. We cannot iput the inode now as we can
1755 * be holding the last reference and we cannot iput it under
1756 * inode_sb_list_lock. So we keep the reference and iput it
1757 * later.
1758 */
1759 iput(old_inode);
1760 old_inode = inode;
1761
1762 func(I_BDEV(inode), arg);
1763
1764 spin_lock(&inode_sb_list_lock);
1765 }
1766 spin_unlock(&inode_sb_list_lock);
1767 iput(old_inode);
1768 }
This page took 0.068288 seconds and 5 git commands to generate.