Merge branch 'pm-sleep'
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <asm/uaccess.h>
34 #include "internal.h"
35
36 struct bdev_inode {
37 struct block_device bdev;
38 struct inode vfs_inode;
39 };
40
41 static const struct address_space_operations def_blk_aops;
42
43 static inline struct bdev_inode *BDEV_I(struct inode *inode)
44 {
45 return container_of(inode, struct bdev_inode, vfs_inode);
46 }
47
48 struct block_device *I_BDEV(struct inode *inode)
49 {
50 return &BDEV_I(inode)->bdev;
51 }
52 EXPORT_SYMBOL(I_BDEV);
53
54 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
55 {
56 struct va_format vaf;
57 va_list args;
58
59 va_start(args, fmt);
60 vaf.fmt = fmt;
61 vaf.va = &args;
62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
63 va_end(args);
64 }
65
66 static void bdev_write_inode(struct block_device *bdev)
67 {
68 struct inode *inode = bdev->bd_inode;
69 int ret;
70
71 spin_lock(&inode->i_lock);
72 while (inode->i_state & I_DIRTY) {
73 spin_unlock(&inode->i_lock);
74 ret = write_inode_now(inode, true);
75 if (ret) {
76 char name[BDEVNAME_SIZE];
77 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
78 "for block device %s (err=%d).\n",
79 bdevname(bdev, name), ret);
80 }
81 spin_lock(&inode->i_lock);
82 }
83 spin_unlock(&inode->i_lock);
84 }
85
86 /* Kill _all_ buffers and pagecache , dirty or not.. */
87 void kill_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
92 return;
93
94 invalidate_bh_lrus();
95 truncate_inode_pages(mapping, 0);
96 }
97 EXPORT_SYMBOL(kill_bdev);
98
99 /* Invalidate clean unused buffers and pagecache. */
100 void invalidate_bdev(struct block_device *bdev)
101 {
102 struct address_space *mapping = bdev->bd_inode->i_mapping;
103
104 if (mapping->nrpages == 0)
105 return;
106
107 invalidate_bh_lrus();
108 lru_add_drain_all(); /* make sure all lru add caches are flushed */
109 invalidate_mapping_pages(mapping, 0, -1);
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
112 */
113 cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116
117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
122
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
126
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
133 }
134 return 0;
135 }
136
137 EXPORT_SYMBOL(set_blocksize);
138
139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
148 }
149
150 EXPORT_SYMBOL(sb_set_blocksize);
151
152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
158 }
159
160 EXPORT_SYMBOL(sb_min_blocksize);
161
162 static int
163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
165 {
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
170 }
171
172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 return file->f_mapping->host;
175 }
176
177 static ssize_t
178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
182
183 if (IS_DAX(inode))
184 return dax_do_io(iocb, inode, iter, blkdev_get_block,
185 NULL, DIO_SKIP_DIO_COUNT);
186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
187 blkdev_get_block, NULL, NULL,
188 DIO_SKIP_DIO_COUNT);
189 }
190
191 int __sync_blockdev(struct block_device *bdev, int wait)
192 {
193 if (!bdev)
194 return 0;
195 if (!wait)
196 return filemap_flush(bdev->bd_inode->i_mapping);
197 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
198 }
199
200 /*
201 * Write out and wait upon all the dirty data associated with a block
202 * device via its mapping. Does not take the superblock lock.
203 */
204 int sync_blockdev(struct block_device *bdev)
205 {
206 return __sync_blockdev(bdev, 1);
207 }
208 EXPORT_SYMBOL(sync_blockdev);
209
210 /*
211 * Write out and wait upon all dirty data associated with this
212 * device. Filesystem data as well as the underlying block
213 * device. Takes the superblock lock.
214 */
215 int fsync_bdev(struct block_device *bdev)
216 {
217 struct super_block *sb = get_super(bdev);
218 if (sb) {
219 int res = sync_filesystem(sb);
220 drop_super(sb);
221 return res;
222 }
223 return sync_blockdev(bdev);
224 }
225 EXPORT_SYMBOL(fsync_bdev);
226
227 /**
228 * freeze_bdev -- lock a filesystem and force it into a consistent state
229 * @bdev: blockdevice to lock
230 *
231 * If a superblock is found on this device, we take the s_umount semaphore
232 * on it to make sure nobody unmounts until the snapshot creation is done.
233 * The reference counter (bd_fsfreeze_count) guarantees that only the last
234 * unfreeze process can unfreeze the frozen filesystem actually when multiple
235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
237 * actually.
238 */
239 struct super_block *freeze_bdev(struct block_device *bdev)
240 {
241 struct super_block *sb;
242 int error = 0;
243
244 mutex_lock(&bdev->bd_fsfreeze_mutex);
245 if (++bdev->bd_fsfreeze_count > 1) {
246 /*
247 * We don't even need to grab a reference - the first call
248 * to freeze_bdev grab an active reference and only the last
249 * thaw_bdev drops it.
250 */
251 sb = get_super(bdev);
252 drop_super(sb);
253 mutex_unlock(&bdev->bd_fsfreeze_mutex);
254 return sb;
255 }
256
257 sb = get_active_super(bdev);
258 if (!sb)
259 goto out;
260 if (sb->s_op->freeze_super)
261 error = sb->s_op->freeze_super(sb);
262 else
263 error = freeze_super(sb);
264 if (error) {
265 deactivate_super(sb);
266 bdev->bd_fsfreeze_count--;
267 mutex_unlock(&bdev->bd_fsfreeze_mutex);
268 return ERR_PTR(error);
269 }
270 deactivate_super(sb);
271 out:
272 sync_blockdev(bdev);
273 mutex_unlock(&bdev->bd_fsfreeze_mutex);
274 return sb; /* thaw_bdev releases s->s_umount */
275 }
276 EXPORT_SYMBOL(freeze_bdev);
277
278 /**
279 * thaw_bdev -- unlock filesystem
280 * @bdev: blockdevice to unlock
281 * @sb: associated superblock
282 *
283 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
284 */
285 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
286 {
287 int error = -EINVAL;
288
289 mutex_lock(&bdev->bd_fsfreeze_mutex);
290 if (!bdev->bd_fsfreeze_count)
291 goto out;
292
293 error = 0;
294 if (--bdev->bd_fsfreeze_count > 0)
295 goto out;
296
297 if (!sb)
298 goto out;
299
300 if (sb->s_op->thaw_super)
301 error = sb->s_op->thaw_super(sb);
302 else
303 error = thaw_super(sb);
304 if (error) {
305 bdev->bd_fsfreeze_count++;
306 mutex_unlock(&bdev->bd_fsfreeze_mutex);
307 return error;
308 }
309 out:
310 mutex_unlock(&bdev->bd_fsfreeze_mutex);
311 return 0;
312 }
313 EXPORT_SYMBOL(thaw_bdev);
314
315 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
316 {
317 return block_write_full_page(page, blkdev_get_block, wbc);
318 }
319
320 static int blkdev_readpage(struct file * file, struct page * page)
321 {
322 return block_read_full_page(page, blkdev_get_block);
323 }
324
325 static int blkdev_readpages(struct file *file, struct address_space *mapping,
326 struct list_head *pages, unsigned nr_pages)
327 {
328 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
329 }
330
331 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
332 loff_t pos, unsigned len, unsigned flags,
333 struct page **pagep, void **fsdata)
334 {
335 return block_write_begin(mapping, pos, len, flags, pagep,
336 blkdev_get_block);
337 }
338
339 static int blkdev_write_end(struct file *file, struct address_space *mapping,
340 loff_t pos, unsigned len, unsigned copied,
341 struct page *page, void *fsdata)
342 {
343 int ret;
344 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
345
346 unlock_page(page);
347 put_page(page);
348
349 return ret;
350 }
351
352 /*
353 * private llseek:
354 * for a block special file file_inode(file)->i_size is zero
355 * so we compute the size by hand (just as in block_read/write above)
356 */
357 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
358 {
359 struct inode *bd_inode = bdev_file_inode(file);
360 loff_t retval;
361
362 inode_lock(bd_inode);
363 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
364 inode_unlock(bd_inode);
365 return retval;
366 }
367
368 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
369 {
370 struct inode *bd_inode = bdev_file_inode(filp);
371 struct block_device *bdev = I_BDEV(bd_inode);
372 int error;
373
374 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
375 if (error)
376 return error;
377
378 /*
379 * There is no need to serialise calls to blkdev_issue_flush with
380 * i_mutex and doing so causes performance issues with concurrent
381 * O_SYNC writers to a block device.
382 */
383 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
384 if (error == -EOPNOTSUPP)
385 error = 0;
386
387 return error;
388 }
389 EXPORT_SYMBOL(blkdev_fsync);
390
391 /**
392 * bdev_read_page() - Start reading a page from a block device
393 * @bdev: The device to read the page from
394 * @sector: The offset on the device to read the page to (need not be aligned)
395 * @page: The page to read
396 *
397 * On entry, the page should be locked. It will be unlocked when the page
398 * has been read. If the block driver implements rw_page synchronously,
399 * that will be true on exit from this function, but it need not be.
400 *
401 * Errors returned by this function are usually "soft", eg out of memory, or
402 * queue full; callers should try a different route to read this page rather
403 * than propagate an error back up the stack.
404 *
405 * Return: negative errno if an error occurs, 0 if submission was successful.
406 */
407 int bdev_read_page(struct block_device *bdev, sector_t sector,
408 struct page *page)
409 {
410 const struct block_device_operations *ops = bdev->bd_disk->fops;
411 int result = -EOPNOTSUPP;
412
413 if (!ops->rw_page || bdev_get_integrity(bdev))
414 return result;
415
416 result = blk_queue_enter(bdev->bd_queue, false);
417 if (result)
418 return result;
419 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
420 blk_queue_exit(bdev->bd_queue);
421 return result;
422 }
423 EXPORT_SYMBOL_GPL(bdev_read_page);
424
425 /**
426 * bdev_write_page() - Start writing a page to a block device
427 * @bdev: The device to write the page to
428 * @sector: The offset on the device to write the page to (need not be aligned)
429 * @page: The page to write
430 * @wbc: The writeback_control for the write
431 *
432 * On entry, the page should be locked and not currently under writeback.
433 * On exit, if the write started successfully, the page will be unlocked and
434 * under writeback. If the write failed already (eg the driver failed to
435 * queue the page to the device), the page will still be locked. If the
436 * caller is a ->writepage implementation, it will need to unlock the page.
437 *
438 * Errors returned by this function are usually "soft", eg out of memory, or
439 * queue full; callers should try a different route to write this page rather
440 * than propagate an error back up the stack.
441 *
442 * Return: negative errno if an error occurs, 0 if submission was successful.
443 */
444 int bdev_write_page(struct block_device *bdev, sector_t sector,
445 struct page *page, struct writeback_control *wbc)
446 {
447 int result;
448 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
449 const struct block_device_operations *ops = bdev->bd_disk->fops;
450
451 if (!ops->rw_page || bdev_get_integrity(bdev))
452 return -EOPNOTSUPP;
453 result = blk_queue_enter(bdev->bd_queue, false);
454 if (result)
455 return result;
456
457 set_page_writeback(page);
458 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
459 if (result)
460 end_page_writeback(page);
461 else
462 unlock_page(page);
463 blk_queue_exit(bdev->bd_queue);
464 return result;
465 }
466 EXPORT_SYMBOL_GPL(bdev_write_page);
467
468 /**
469 * bdev_direct_access() - Get the address for directly-accessibly memory
470 * @bdev: The device containing the memory
471 * @dax: control and output parameters for ->direct_access
472 *
473 * If a block device is made up of directly addressable memory, this function
474 * will tell the caller the PFN and the address of the memory. The address
475 * may be directly dereferenced within the kernel without the need to call
476 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
477 * page tables.
478 *
479 * Return: negative errno if an error occurs, otherwise the number of bytes
480 * accessible at this address.
481 */
482 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
483 {
484 sector_t sector = dax->sector;
485 long avail, size = dax->size;
486 const struct block_device_operations *ops = bdev->bd_disk->fops;
487
488 /*
489 * The device driver is allowed to sleep, in order to make the
490 * memory directly accessible.
491 */
492 might_sleep();
493
494 if (size < 0)
495 return size;
496 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
497 return -EOPNOTSUPP;
498 if ((sector + DIV_ROUND_UP(size, 512)) >
499 part_nr_sects_read(bdev->bd_part))
500 return -ERANGE;
501 sector += get_start_sect(bdev);
502 if (sector % (PAGE_SIZE / 512))
503 return -EINVAL;
504 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
505 if (!avail)
506 return -ERANGE;
507 if (avail > 0 && avail & ~PAGE_MASK)
508 return -ENXIO;
509 return min(avail, size);
510 }
511 EXPORT_SYMBOL_GPL(bdev_direct_access);
512
513 /**
514 * bdev_dax_supported() - Check if the device supports dax for filesystem
515 * @sb: The superblock of the device
516 * @blocksize: The block size of the device
517 *
518 * This is a library function for filesystems to check if the block device
519 * can be mounted with dax option.
520 *
521 * Return: negative errno if unsupported, 0 if supported.
522 */
523 int bdev_dax_supported(struct super_block *sb, int blocksize)
524 {
525 struct blk_dax_ctl dax = {
526 .sector = 0,
527 .size = PAGE_SIZE,
528 };
529 int err;
530
531 if (blocksize != PAGE_SIZE) {
532 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
533 return -EINVAL;
534 }
535
536 err = bdev_direct_access(sb->s_bdev, &dax);
537 if (err < 0) {
538 switch (err) {
539 case -EOPNOTSUPP:
540 vfs_msg(sb, KERN_ERR,
541 "error: device does not support dax");
542 break;
543 case -EINVAL:
544 vfs_msg(sb, KERN_ERR,
545 "error: unaligned partition for dax");
546 break;
547 default:
548 vfs_msg(sb, KERN_ERR,
549 "error: dax access failed (%d)", err);
550 }
551 return err;
552 }
553
554 return 0;
555 }
556 EXPORT_SYMBOL_GPL(bdev_dax_supported);
557
558 /**
559 * bdev_dax_capable() - Return if the raw device is capable for dax
560 * @bdev: The device for raw block device access
561 */
562 bool bdev_dax_capable(struct block_device *bdev)
563 {
564 struct blk_dax_ctl dax = {
565 .size = PAGE_SIZE,
566 };
567
568 if (!IS_ENABLED(CONFIG_FS_DAX))
569 return false;
570
571 dax.sector = 0;
572 if (bdev_direct_access(bdev, &dax) < 0)
573 return false;
574
575 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
576 if (bdev_direct_access(bdev, &dax) < 0)
577 return false;
578
579 return true;
580 }
581
582 /*
583 * pseudo-fs
584 */
585
586 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
587 static struct kmem_cache * bdev_cachep __read_mostly;
588
589 static struct inode *bdev_alloc_inode(struct super_block *sb)
590 {
591 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
592 if (!ei)
593 return NULL;
594 return &ei->vfs_inode;
595 }
596
597 static void bdev_i_callback(struct rcu_head *head)
598 {
599 struct inode *inode = container_of(head, struct inode, i_rcu);
600 struct bdev_inode *bdi = BDEV_I(inode);
601
602 kmem_cache_free(bdev_cachep, bdi);
603 }
604
605 static void bdev_destroy_inode(struct inode *inode)
606 {
607 call_rcu(&inode->i_rcu, bdev_i_callback);
608 }
609
610 static void init_once(void *foo)
611 {
612 struct bdev_inode *ei = (struct bdev_inode *) foo;
613 struct block_device *bdev = &ei->bdev;
614
615 memset(bdev, 0, sizeof(*bdev));
616 mutex_init(&bdev->bd_mutex);
617 INIT_LIST_HEAD(&bdev->bd_inodes);
618 INIT_LIST_HEAD(&bdev->bd_list);
619 #ifdef CONFIG_SYSFS
620 INIT_LIST_HEAD(&bdev->bd_holder_disks);
621 #endif
622 inode_init_once(&ei->vfs_inode);
623 /* Initialize mutex for freeze. */
624 mutex_init(&bdev->bd_fsfreeze_mutex);
625 }
626
627 static inline void __bd_forget(struct inode *inode)
628 {
629 list_del_init(&inode->i_devices);
630 inode->i_bdev = NULL;
631 inode->i_mapping = &inode->i_data;
632 }
633
634 static void bdev_evict_inode(struct inode *inode)
635 {
636 struct block_device *bdev = &BDEV_I(inode)->bdev;
637 struct list_head *p;
638 truncate_inode_pages_final(&inode->i_data);
639 invalidate_inode_buffers(inode); /* is it needed here? */
640 clear_inode(inode);
641 spin_lock(&bdev_lock);
642 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
643 __bd_forget(list_entry(p, struct inode, i_devices));
644 }
645 list_del_init(&bdev->bd_list);
646 spin_unlock(&bdev_lock);
647 }
648
649 static const struct super_operations bdev_sops = {
650 .statfs = simple_statfs,
651 .alloc_inode = bdev_alloc_inode,
652 .destroy_inode = bdev_destroy_inode,
653 .drop_inode = generic_delete_inode,
654 .evict_inode = bdev_evict_inode,
655 };
656
657 static struct dentry *bd_mount(struct file_system_type *fs_type,
658 int flags, const char *dev_name, void *data)
659 {
660 struct dentry *dent;
661 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
662 if (dent)
663 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
664 return dent;
665 }
666
667 static struct file_system_type bd_type = {
668 .name = "bdev",
669 .mount = bd_mount,
670 .kill_sb = kill_anon_super,
671 };
672
673 struct super_block *blockdev_superblock __read_mostly;
674 EXPORT_SYMBOL_GPL(blockdev_superblock);
675
676 void __init bdev_cache_init(void)
677 {
678 int err;
679 static struct vfsmount *bd_mnt;
680
681 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
682 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
683 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
684 init_once);
685 err = register_filesystem(&bd_type);
686 if (err)
687 panic("Cannot register bdev pseudo-fs");
688 bd_mnt = kern_mount(&bd_type);
689 if (IS_ERR(bd_mnt))
690 panic("Cannot create bdev pseudo-fs");
691 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
692 }
693
694 /*
695 * Most likely _very_ bad one - but then it's hardly critical for small
696 * /dev and can be fixed when somebody will need really large one.
697 * Keep in mind that it will be fed through icache hash function too.
698 */
699 static inline unsigned long hash(dev_t dev)
700 {
701 return MAJOR(dev)+MINOR(dev);
702 }
703
704 static int bdev_test(struct inode *inode, void *data)
705 {
706 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
707 }
708
709 static int bdev_set(struct inode *inode, void *data)
710 {
711 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
712 return 0;
713 }
714
715 static LIST_HEAD(all_bdevs);
716
717 struct block_device *bdget(dev_t dev)
718 {
719 struct block_device *bdev;
720 struct inode *inode;
721
722 inode = iget5_locked(blockdev_superblock, hash(dev),
723 bdev_test, bdev_set, &dev);
724
725 if (!inode)
726 return NULL;
727
728 bdev = &BDEV_I(inode)->bdev;
729
730 if (inode->i_state & I_NEW) {
731 bdev->bd_contains = NULL;
732 bdev->bd_super = NULL;
733 bdev->bd_inode = inode;
734 bdev->bd_block_size = (1 << inode->i_blkbits);
735 bdev->bd_part_count = 0;
736 bdev->bd_invalidated = 0;
737 inode->i_mode = S_IFBLK;
738 inode->i_rdev = dev;
739 inode->i_bdev = bdev;
740 inode->i_data.a_ops = &def_blk_aops;
741 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
742 spin_lock(&bdev_lock);
743 list_add(&bdev->bd_list, &all_bdevs);
744 spin_unlock(&bdev_lock);
745 unlock_new_inode(inode);
746 }
747 return bdev;
748 }
749
750 EXPORT_SYMBOL(bdget);
751
752 /**
753 * bdgrab -- Grab a reference to an already referenced block device
754 * @bdev: Block device to grab a reference to.
755 */
756 struct block_device *bdgrab(struct block_device *bdev)
757 {
758 ihold(bdev->bd_inode);
759 return bdev;
760 }
761 EXPORT_SYMBOL(bdgrab);
762
763 long nr_blockdev_pages(void)
764 {
765 struct block_device *bdev;
766 long ret = 0;
767 spin_lock(&bdev_lock);
768 list_for_each_entry(bdev, &all_bdevs, bd_list) {
769 ret += bdev->bd_inode->i_mapping->nrpages;
770 }
771 spin_unlock(&bdev_lock);
772 return ret;
773 }
774
775 void bdput(struct block_device *bdev)
776 {
777 iput(bdev->bd_inode);
778 }
779
780 EXPORT_SYMBOL(bdput);
781
782 static struct block_device *bd_acquire(struct inode *inode)
783 {
784 struct block_device *bdev;
785
786 spin_lock(&bdev_lock);
787 bdev = inode->i_bdev;
788 if (bdev) {
789 bdgrab(bdev);
790 spin_unlock(&bdev_lock);
791 return bdev;
792 }
793 spin_unlock(&bdev_lock);
794
795 bdev = bdget(inode->i_rdev);
796 if (bdev) {
797 spin_lock(&bdev_lock);
798 if (!inode->i_bdev) {
799 /*
800 * We take an additional reference to bd_inode,
801 * and it's released in clear_inode() of inode.
802 * So, we can access it via ->i_mapping always
803 * without igrab().
804 */
805 bdgrab(bdev);
806 inode->i_bdev = bdev;
807 inode->i_mapping = bdev->bd_inode->i_mapping;
808 list_add(&inode->i_devices, &bdev->bd_inodes);
809 }
810 spin_unlock(&bdev_lock);
811 }
812 return bdev;
813 }
814
815 /* Call when you free inode */
816
817 void bd_forget(struct inode *inode)
818 {
819 struct block_device *bdev = NULL;
820
821 spin_lock(&bdev_lock);
822 if (!sb_is_blkdev_sb(inode->i_sb))
823 bdev = inode->i_bdev;
824 __bd_forget(inode);
825 spin_unlock(&bdev_lock);
826
827 if (bdev)
828 bdput(bdev);
829 }
830
831 /**
832 * bd_may_claim - test whether a block device can be claimed
833 * @bdev: block device of interest
834 * @whole: whole block device containing @bdev, may equal @bdev
835 * @holder: holder trying to claim @bdev
836 *
837 * Test whether @bdev can be claimed by @holder.
838 *
839 * CONTEXT:
840 * spin_lock(&bdev_lock).
841 *
842 * RETURNS:
843 * %true if @bdev can be claimed, %false otherwise.
844 */
845 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
846 void *holder)
847 {
848 if (bdev->bd_holder == holder)
849 return true; /* already a holder */
850 else if (bdev->bd_holder != NULL)
851 return false; /* held by someone else */
852 else if (bdev->bd_contains == bdev)
853 return true; /* is a whole device which isn't held */
854
855 else if (whole->bd_holder == bd_may_claim)
856 return true; /* is a partition of a device that is being partitioned */
857 else if (whole->bd_holder != NULL)
858 return false; /* is a partition of a held device */
859 else
860 return true; /* is a partition of an un-held device */
861 }
862
863 /**
864 * bd_prepare_to_claim - prepare to claim a block device
865 * @bdev: block device of interest
866 * @whole: the whole device containing @bdev, may equal @bdev
867 * @holder: holder trying to claim @bdev
868 *
869 * Prepare to claim @bdev. This function fails if @bdev is already
870 * claimed by another holder and waits if another claiming is in
871 * progress. This function doesn't actually claim. On successful
872 * return, the caller has ownership of bd_claiming and bd_holder[s].
873 *
874 * CONTEXT:
875 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
876 * it multiple times.
877 *
878 * RETURNS:
879 * 0 if @bdev can be claimed, -EBUSY otherwise.
880 */
881 static int bd_prepare_to_claim(struct block_device *bdev,
882 struct block_device *whole, void *holder)
883 {
884 retry:
885 /* if someone else claimed, fail */
886 if (!bd_may_claim(bdev, whole, holder))
887 return -EBUSY;
888
889 /* if claiming is already in progress, wait for it to finish */
890 if (whole->bd_claiming) {
891 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
892 DEFINE_WAIT(wait);
893
894 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
895 spin_unlock(&bdev_lock);
896 schedule();
897 finish_wait(wq, &wait);
898 spin_lock(&bdev_lock);
899 goto retry;
900 }
901
902 /* yay, all mine */
903 return 0;
904 }
905
906 /**
907 * bd_start_claiming - start claiming a block device
908 * @bdev: block device of interest
909 * @holder: holder trying to claim @bdev
910 *
911 * @bdev is about to be opened exclusively. Check @bdev can be opened
912 * exclusively and mark that an exclusive open is in progress. Each
913 * successful call to this function must be matched with a call to
914 * either bd_finish_claiming() or bd_abort_claiming() (which do not
915 * fail).
916 *
917 * This function is used to gain exclusive access to the block device
918 * without actually causing other exclusive open attempts to fail. It
919 * should be used when the open sequence itself requires exclusive
920 * access but may subsequently fail.
921 *
922 * CONTEXT:
923 * Might sleep.
924 *
925 * RETURNS:
926 * Pointer to the block device containing @bdev on success, ERR_PTR()
927 * value on failure.
928 */
929 static struct block_device *bd_start_claiming(struct block_device *bdev,
930 void *holder)
931 {
932 struct gendisk *disk;
933 struct block_device *whole;
934 int partno, err;
935
936 might_sleep();
937
938 /*
939 * @bdev might not have been initialized properly yet, look up
940 * and grab the outer block device the hard way.
941 */
942 disk = get_gendisk(bdev->bd_dev, &partno);
943 if (!disk)
944 return ERR_PTR(-ENXIO);
945
946 /*
947 * Normally, @bdev should equal what's returned from bdget_disk()
948 * if partno is 0; however, some drivers (floppy) use multiple
949 * bdev's for the same physical device and @bdev may be one of the
950 * aliases. Keep @bdev if partno is 0. This means claimer
951 * tracking is broken for those devices but it has always been that
952 * way.
953 */
954 if (partno)
955 whole = bdget_disk(disk, 0);
956 else
957 whole = bdgrab(bdev);
958
959 module_put(disk->fops->owner);
960 put_disk(disk);
961 if (!whole)
962 return ERR_PTR(-ENOMEM);
963
964 /* prepare to claim, if successful, mark claiming in progress */
965 spin_lock(&bdev_lock);
966
967 err = bd_prepare_to_claim(bdev, whole, holder);
968 if (err == 0) {
969 whole->bd_claiming = holder;
970 spin_unlock(&bdev_lock);
971 return whole;
972 } else {
973 spin_unlock(&bdev_lock);
974 bdput(whole);
975 return ERR_PTR(err);
976 }
977 }
978
979 #ifdef CONFIG_SYSFS
980 struct bd_holder_disk {
981 struct list_head list;
982 struct gendisk *disk;
983 int refcnt;
984 };
985
986 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
987 struct gendisk *disk)
988 {
989 struct bd_holder_disk *holder;
990
991 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
992 if (holder->disk == disk)
993 return holder;
994 return NULL;
995 }
996
997 static int add_symlink(struct kobject *from, struct kobject *to)
998 {
999 return sysfs_create_link(from, to, kobject_name(to));
1000 }
1001
1002 static void del_symlink(struct kobject *from, struct kobject *to)
1003 {
1004 sysfs_remove_link(from, kobject_name(to));
1005 }
1006
1007 /**
1008 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1009 * @bdev: the claimed slave bdev
1010 * @disk: the holding disk
1011 *
1012 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1013 *
1014 * This functions creates the following sysfs symlinks.
1015 *
1016 * - from "slaves" directory of the holder @disk to the claimed @bdev
1017 * - from "holders" directory of the @bdev to the holder @disk
1018 *
1019 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1020 * passed to bd_link_disk_holder(), then:
1021 *
1022 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1023 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1024 *
1025 * The caller must have claimed @bdev before calling this function and
1026 * ensure that both @bdev and @disk are valid during the creation and
1027 * lifetime of these symlinks.
1028 *
1029 * CONTEXT:
1030 * Might sleep.
1031 *
1032 * RETURNS:
1033 * 0 on success, -errno on failure.
1034 */
1035 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1036 {
1037 struct bd_holder_disk *holder;
1038 int ret = 0;
1039
1040 mutex_lock(&bdev->bd_mutex);
1041
1042 WARN_ON_ONCE(!bdev->bd_holder);
1043
1044 /* FIXME: remove the following once add_disk() handles errors */
1045 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1046 goto out_unlock;
1047
1048 holder = bd_find_holder_disk(bdev, disk);
1049 if (holder) {
1050 holder->refcnt++;
1051 goto out_unlock;
1052 }
1053
1054 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1055 if (!holder) {
1056 ret = -ENOMEM;
1057 goto out_unlock;
1058 }
1059
1060 INIT_LIST_HEAD(&holder->list);
1061 holder->disk = disk;
1062 holder->refcnt = 1;
1063
1064 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1065 if (ret)
1066 goto out_free;
1067
1068 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1069 if (ret)
1070 goto out_del;
1071 /*
1072 * bdev could be deleted beneath us which would implicitly destroy
1073 * the holder directory. Hold on to it.
1074 */
1075 kobject_get(bdev->bd_part->holder_dir);
1076
1077 list_add(&holder->list, &bdev->bd_holder_disks);
1078 goto out_unlock;
1079
1080 out_del:
1081 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1082 out_free:
1083 kfree(holder);
1084 out_unlock:
1085 mutex_unlock(&bdev->bd_mutex);
1086 return ret;
1087 }
1088 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1089
1090 /**
1091 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1092 * @bdev: the calimed slave bdev
1093 * @disk: the holding disk
1094 *
1095 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1096 *
1097 * CONTEXT:
1098 * Might sleep.
1099 */
1100 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1101 {
1102 struct bd_holder_disk *holder;
1103
1104 mutex_lock(&bdev->bd_mutex);
1105
1106 holder = bd_find_holder_disk(bdev, disk);
1107
1108 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1109 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1110 del_symlink(bdev->bd_part->holder_dir,
1111 &disk_to_dev(disk)->kobj);
1112 kobject_put(bdev->bd_part->holder_dir);
1113 list_del_init(&holder->list);
1114 kfree(holder);
1115 }
1116
1117 mutex_unlock(&bdev->bd_mutex);
1118 }
1119 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1120 #endif
1121
1122 /**
1123 * flush_disk - invalidates all buffer-cache entries on a disk
1124 *
1125 * @bdev: struct block device to be flushed
1126 * @kill_dirty: flag to guide handling of dirty inodes
1127 *
1128 * Invalidates all buffer-cache entries on a disk. It should be called
1129 * when a disk has been changed -- either by a media change or online
1130 * resize.
1131 */
1132 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1133 {
1134 if (__invalidate_device(bdev, kill_dirty)) {
1135 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1136 "resized disk %s\n",
1137 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1138 }
1139
1140 if (!bdev->bd_disk)
1141 return;
1142 if (disk_part_scan_enabled(bdev->bd_disk))
1143 bdev->bd_invalidated = 1;
1144 }
1145
1146 /**
1147 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1148 * @disk: struct gendisk to check
1149 * @bdev: struct bdev to adjust.
1150 *
1151 * This routine checks to see if the bdev size does not match the disk size
1152 * and adjusts it if it differs.
1153 */
1154 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1155 {
1156 loff_t disk_size, bdev_size;
1157
1158 disk_size = (loff_t)get_capacity(disk) << 9;
1159 bdev_size = i_size_read(bdev->bd_inode);
1160 if (disk_size != bdev_size) {
1161 printk(KERN_INFO
1162 "%s: detected capacity change from %lld to %lld\n",
1163 disk->disk_name, bdev_size, disk_size);
1164 i_size_write(bdev->bd_inode, disk_size);
1165 flush_disk(bdev, false);
1166 }
1167 }
1168 EXPORT_SYMBOL(check_disk_size_change);
1169
1170 /**
1171 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1172 * @disk: struct gendisk to be revalidated
1173 *
1174 * This routine is a wrapper for lower-level driver's revalidate_disk
1175 * call-backs. It is used to do common pre and post operations needed
1176 * for all revalidate_disk operations.
1177 */
1178 int revalidate_disk(struct gendisk *disk)
1179 {
1180 struct block_device *bdev;
1181 int ret = 0;
1182
1183 if (disk->fops->revalidate_disk)
1184 ret = disk->fops->revalidate_disk(disk);
1185 blk_integrity_revalidate(disk);
1186 bdev = bdget_disk(disk, 0);
1187 if (!bdev)
1188 return ret;
1189
1190 mutex_lock(&bdev->bd_mutex);
1191 check_disk_size_change(disk, bdev);
1192 bdev->bd_invalidated = 0;
1193 mutex_unlock(&bdev->bd_mutex);
1194 bdput(bdev);
1195 return ret;
1196 }
1197 EXPORT_SYMBOL(revalidate_disk);
1198
1199 /*
1200 * This routine checks whether a removable media has been changed,
1201 * and invalidates all buffer-cache-entries in that case. This
1202 * is a relatively slow routine, so we have to try to minimize using
1203 * it. Thus it is called only upon a 'mount' or 'open'. This
1204 * is the best way of combining speed and utility, I think.
1205 * People changing diskettes in the middle of an operation deserve
1206 * to lose :-)
1207 */
1208 int check_disk_change(struct block_device *bdev)
1209 {
1210 struct gendisk *disk = bdev->bd_disk;
1211 const struct block_device_operations *bdops = disk->fops;
1212 unsigned int events;
1213
1214 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1215 DISK_EVENT_EJECT_REQUEST);
1216 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1217 return 0;
1218
1219 flush_disk(bdev, true);
1220 if (bdops->revalidate_disk)
1221 bdops->revalidate_disk(bdev->bd_disk);
1222 return 1;
1223 }
1224
1225 EXPORT_SYMBOL(check_disk_change);
1226
1227 void bd_set_size(struct block_device *bdev, loff_t size)
1228 {
1229 unsigned bsize = bdev_logical_block_size(bdev);
1230
1231 inode_lock(bdev->bd_inode);
1232 i_size_write(bdev->bd_inode, size);
1233 inode_unlock(bdev->bd_inode);
1234 while (bsize < PAGE_SIZE) {
1235 if (size & bsize)
1236 break;
1237 bsize <<= 1;
1238 }
1239 bdev->bd_block_size = bsize;
1240 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1241 }
1242 EXPORT_SYMBOL(bd_set_size);
1243
1244 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1245
1246 /*
1247 * bd_mutex locking:
1248 *
1249 * mutex_lock(part->bd_mutex)
1250 * mutex_lock_nested(whole->bd_mutex, 1)
1251 */
1252
1253 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1254 {
1255 struct gendisk *disk;
1256 struct module *owner;
1257 int ret;
1258 int partno;
1259 int perm = 0;
1260
1261 if (mode & FMODE_READ)
1262 perm |= MAY_READ;
1263 if (mode & FMODE_WRITE)
1264 perm |= MAY_WRITE;
1265 /*
1266 * hooks: /n/, see "layering violations".
1267 */
1268 if (!for_part) {
1269 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1270 if (ret != 0) {
1271 bdput(bdev);
1272 return ret;
1273 }
1274 }
1275
1276 restart:
1277
1278 ret = -ENXIO;
1279 disk = get_gendisk(bdev->bd_dev, &partno);
1280 if (!disk)
1281 goto out;
1282 owner = disk->fops->owner;
1283
1284 disk_block_events(disk);
1285 mutex_lock_nested(&bdev->bd_mutex, for_part);
1286 if (!bdev->bd_openers) {
1287 bdev->bd_disk = disk;
1288 bdev->bd_queue = disk->queue;
1289 bdev->bd_contains = bdev;
1290 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) &&
1291 blk_queue_dax(disk->queue))
1292 bdev->bd_inode->i_flags = S_DAX;
1293 else
1294 bdev->bd_inode->i_flags = 0;
1295
1296 if (!partno) {
1297 ret = -ENXIO;
1298 bdev->bd_part = disk_get_part(disk, partno);
1299 if (!bdev->bd_part)
1300 goto out_clear;
1301
1302 ret = 0;
1303 if (disk->fops->open) {
1304 ret = disk->fops->open(bdev, mode);
1305 if (ret == -ERESTARTSYS) {
1306 /* Lost a race with 'disk' being
1307 * deleted, try again.
1308 * See md.c
1309 */
1310 disk_put_part(bdev->bd_part);
1311 bdev->bd_part = NULL;
1312 bdev->bd_disk = NULL;
1313 bdev->bd_queue = NULL;
1314 mutex_unlock(&bdev->bd_mutex);
1315 disk_unblock_events(disk);
1316 put_disk(disk);
1317 module_put(owner);
1318 goto restart;
1319 }
1320 }
1321
1322 if (!ret) {
1323 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1324 if (!bdev_dax_capable(bdev))
1325 bdev->bd_inode->i_flags &= ~S_DAX;
1326 }
1327
1328 /*
1329 * If the device is invalidated, rescan partition
1330 * if open succeeded or failed with -ENOMEDIUM.
1331 * The latter is necessary to prevent ghost
1332 * partitions on a removed medium.
1333 */
1334 if (bdev->bd_invalidated) {
1335 if (!ret)
1336 rescan_partitions(disk, bdev);
1337 else if (ret == -ENOMEDIUM)
1338 invalidate_partitions(disk, bdev);
1339 }
1340
1341 if (ret)
1342 goto out_clear;
1343 } else {
1344 struct block_device *whole;
1345 whole = bdget_disk(disk, 0);
1346 ret = -ENOMEM;
1347 if (!whole)
1348 goto out_clear;
1349 BUG_ON(for_part);
1350 ret = __blkdev_get(whole, mode, 1);
1351 if (ret)
1352 goto out_clear;
1353 bdev->bd_contains = whole;
1354 bdev->bd_part = disk_get_part(disk, partno);
1355 if (!(disk->flags & GENHD_FL_UP) ||
1356 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1357 ret = -ENXIO;
1358 goto out_clear;
1359 }
1360 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1361 if (!bdev_dax_capable(bdev))
1362 bdev->bd_inode->i_flags &= ~S_DAX;
1363 }
1364 } else {
1365 if (bdev->bd_contains == bdev) {
1366 ret = 0;
1367 if (bdev->bd_disk->fops->open)
1368 ret = bdev->bd_disk->fops->open(bdev, mode);
1369 /* the same as first opener case, read comment there */
1370 if (bdev->bd_invalidated) {
1371 if (!ret)
1372 rescan_partitions(bdev->bd_disk, bdev);
1373 else if (ret == -ENOMEDIUM)
1374 invalidate_partitions(bdev->bd_disk, bdev);
1375 }
1376 if (ret)
1377 goto out_unlock_bdev;
1378 }
1379 /* only one opener holds refs to the module and disk */
1380 put_disk(disk);
1381 module_put(owner);
1382 }
1383 bdev->bd_openers++;
1384 if (for_part)
1385 bdev->bd_part_count++;
1386 mutex_unlock(&bdev->bd_mutex);
1387 disk_unblock_events(disk);
1388 return 0;
1389
1390 out_clear:
1391 disk_put_part(bdev->bd_part);
1392 bdev->bd_disk = NULL;
1393 bdev->bd_part = NULL;
1394 bdev->bd_queue = NULL;
1395 if (bdev != bdev->bd_contains)
1396 __blkdev_put(bdev->bd_contains, mode, 1);
1397 bdev->bd_contains = NULL;
1398 out_unlock_bdev:
1399 mutex_unlock(&bdev->bd_mutex);
1400 disk_unblock_events(disk);
1401 put_disk(disk);
1402 module_put(owner);
1403 out:
1404 bdput(bdev);
1405
1406 return ret;
1407 }
1408
1409 /**
1410 * blkdev_get - open a block device
1411 * @bdev: block_device to open
1412 * @mode: FMODE_* mask
1413 * @holder: exclusive holder identifier
1414 *
1415 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1416 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1417 * @holder is invalid. Exclusive opens may nest for the same @holder.
1418 *
1419 * On success, the reference count of @bdev is unchanged. On failure,
1420 * @bdev is put.
1421 *
1422 * CONTEXT:
1423 * Might sleep.
1424 *
1425 * RETURNS:
1426 * 0 on success, -errno on failure.
1427 */
1428 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1429 {
1430 struct block_device *whole = NULL;
1431 int res;
1432
1433 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1434
1435 if ((mode & FMODE_EXCL) && holder) {
1436 whole = bd_start_claiming(bdev, holder);
1437 if (IS_ERR(whole)) {
1438 bdput(bdev);
1439 return PTR_ERR(whole);
1440 }
1441 }
1442
1443 res = __blkdev_get(bdev, mode, 0);
1444
1445 if (whole) {
1446 struct gendisk *disk = whole->bd_disk;
1447
1448 /* finish claiming */
1449 mutex_lock(&bdev->bd_mutex);
1450 spin_lock(&bdev_lock);
1451
1452 if (!res) {
1453 BUG_ON(!bd_may_claim(bdev, whole, holder));
1454 /*
1455 * Note that for a whole device bd_holders
1456 * will be incremented twice, and bd_holder
1457 * will be set to bd_may_claim before being
1458 * set to holder
1459 */
1460 whole->bd_holders++;
1461 whole->bd_holder = bd_may_claim;
1462 bdev->bd_holders++;
1463 bdev->bd_holder = holder;
1464 }
1465
1466 /* tell others that we're done */
1467 BUG_ON(whole->bd_claiming != holder);
1468 whole->bd_claiming = NULL;
1469 wake_up_bit(&whole->bd_claiming, 0);
1470
1471 spin_unlock(&bdev_lock);
1472
1473 /*
1474 * Block event polling for write claims if requested. Any
1475 * write holder makes the write_holder state stick until
1476 * all are released. This is good enough and tracking
1477 * individual writeable reference is too fragile given the
1478 * way @mode is used in blkdev_get/put().
1479 */
1480 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1481 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1482 bdev->bd_write_holder = true;
1483 disk_block_events(disk);
1484 }
1485
1486 mutex_unlock(&bdev->bd_mutex);
1487 bdput(whole);
1488 }
1489
1490 return res;
1491 }
1492 EXPORT_SYMBOL(blkdev_get);
1493
1494 /**
1495 * blkdev_get_by_path - open a block device by name
1496 * @path: path to the block device to open
1497 * @mode: FMODE_* mask
1498 * @holder: exclusive holder identifier
1499 *
1500 * Open the blockdevice described by the device file at @path. @mode
1501 * and @holder are identical to blkdev_get().
1502 *
1503 * On success, the returned block_device has reference count of one.
1504 *
1505 * CONTEXT:
1506 * Might sleep.
1507 *
1508 * RETURNS:
1509 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1510 */
1511 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1512 void *holder)
1513 {
1514 struct block_device *bdev;
1515 int err;
1516
1517 bdev = lookup_bdev(path);
1518 if (IS_ERR(bdev))
1519 return bdev;
1520
1521 err = blkdev_get(bdev, mode, holder);
1522 if (err)
1523 return ERR_PTR(err);
1524
1525 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1526 blkdev_put(bdev, mode);
1527 return ERR_PTR(-EACCES);
1528 }
1529
1530 return bdev;
1531 }
1532 EXPORT_SYMBOL(blkdev_get_by_path);
1533
1534 /**
1535 * blkdev_get_by_dev - open a block device by device number
1536 * @dev: device number of block device to open
1537 * @mode: FMODE_* mask
1538 * @holder: exclusive holder identifier
1539 *
1540 * Open the blockdevice described by device number @dev. @mode and
1541 * @holder are identical to blkdev_get().
1542 *
1543 * Use it ONLY if you really do not have anything better - i.e. when
1544 * you are behind a truly sucky interface and all you are given is a
1545 * device number. _Never_ to be used for internal purposes. If you
1546 * ever need it - reconsider your API.
1547 *
1548 * On success, the returned block_device has reference count of one.
1549 *
1550 * CONTEXT:
1551 * Might sleep.
1552 *
1553 * RETURNS:
1554 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1555 */
1556 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1557 {
1558 struct block_device *bdev;
1559 int err;
1560
1561 bdev = bdget(dev);
1562 if (!bdev)
1563 return ERR_PTR(-ENOMEM);
1564
1565 err = blkdev_get(bdev, mode, holder);
1566 if (err)
1567 return ERR_PTR(err);
1568
1569 return bdev;
1570 }
1571 EXPORT_SYMBOL(blkdev_get_by_dev);
1572
1573 static int blkdev_open(struct inode * inode, struct file * filp)
1574 {
1575 struct block_device *bdev;
1576
1577 /*
1578 * Preserve backwards compatibility and allow large file access
1579 * even if userspace doesn't ask for it explicitly. Some mkfs
1580 * binary needs it. We might want to drop this workaround
1581 * during an unstable branch.
1582 */
1583 filp->f_flags |= O_LARGEFILE;
1584
1585 if (filp->f_flags & O_NDELAY)
1586 filp->f_mode |= FMODE_NDELAY;
1587 if (filp->f_flags & O_EXCL)
1588 filp->f_mode |= FMODE_EXCL;
1589 if ((filp->f_flags & O_ACCMODE) == 3)
1590 filp->f_mode |= FMODE_WRITE_IOCTL;
1591
1592 bdev = bd_acquire(inode);
1593 if (bdev == NULL)
1594 return -ENOMEM;
1595
1596 filp->f_mapping = bdev->bd_inode->i_mapping;
1597
1598 return blkdev_get(bdev, filp->f_mode, filp);
1599 }
1600
1601 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1602 {
1603 struct gendisk *disk = bdev->bd_disk;
1604 struct block_device *victim = NULL;
1605
1606 mutex_lock_nested(&bdev->bd_mutex, for_part);
1607 if (for_part)
1608 bdev->bd_part_count--;
1609
1610 if (!--bdev->bd_openers) {
1611 WARN_ON_ONCE(bdev->bd_holders);
1612 sync_blockdev(bdev);
1613 kill_bdev(bdev);
1614
1615 bdev_write_inode(bdev);
1616 /*
1617 * Detaching bdev inode from its wb in __destroy_inode()
1618 * is too late: the queue which embeds its bdi (along with
1619 * root wb) can be gone as soon as we put_disk() below.
1620 */
1621 inode_detach_wb(bdev->bd_inode);
1622 }
1623 if (bdev->bd_contains == bdev) {
1624 if (disk->fops->release)
1625 disk->fops->release(disk, mode);
1626 }
1627 if (!bdev->bd_openers) {
1628 struct module *owner = disk->fops->owner;
1629
1630 disk_put_part(bdev->bd_part);
1631 bdev->bd_part = NULL;
1632 bdev->bd_disk = NULL;
1633 if (bdev != bdev->bd_contains)
1634 victim = bdev->bd_contains;
1635 bdev->bd_contains = NULL;
1636
1637 put_disk(disk);
1638 module_put(owner);
1639 }
1640 mutex_unlock(&bdev->bd_mutex);
1641 bdput(bdev);
1642 if (victim)
1643 __blkdev_put(victim, mode, 1);
1644 }
1645
1646 void blkdev_put(struct block_device *bdev, fmode_t mode)
1647 {
1648 mutex_lock(&bdev->bd_mutex);
1649
1650 if (mode & FMODE_EXCL) {
1651 bool bdev_free;
1652
1653 /*
1654 * Release a claim on the device. The holder fields
1655 * are protected with bdev_lock. bd_mutex is to
1656 * synchronize disk_holder unlinking.
1657 */
1658 spin_lock(&bdev_lock);
1659
1660 WARN_ON_ONCE(--bdev->bd_holders < 0);
1661 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1662
1663 /* bd_contains might point to self, check in a separate step */
1664 if ((bdev_free = !bdev->bd_holders))
1665 bdev->bd_holder = NULL;
1666 if (!bdev->bd_contains->bd_holders)
1667 bdev->bd_contains->bd_holder = NULL;
1668
1669 spin_unlock(&bdev_lock);
1670
1671 /*
1672 * If this was the last claim, remove holder link and
1673 * unblock evpoll if it was a write holder.
1674 */
1675 if (bdev_free && bdev->bd_write_holder) {
1676 disk_unblock_events(bdev->bd_disk);
1677 bdev->bd_write_holder = false;
1678 }
1679 }
1680
1681 /*
1682 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1683 * event. This is to ensure detection of media removal commanded
1684 * from userland - e.g. eject(1).
1685 */
1686 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1687
1688 mutex_unlock(&bdev->bd_mutex);
1689
1690 __blkdev_put(bdev, mode, 0);
1691 }
1692 EXPORT_SYMBOL(blkdev_put);
1693
1694 static int blkdev_close(struct inode * inode, struct file * filp)
1695 {
1696 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1697 blkdev_put(bdev, filp->f_mode);
1698 return 0;
1699 }
1700
1701 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1702 {
1703 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1704 fmode_t mode = file->f_mode;
1705
1706 /*
1707 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1708 * to updated it before every ioctl.
1709 */
1710 if (file->f_flags & O_NDELAY)
1711 mode |= FMODE_NDELAY;
1712 else
1713 mode &= ~FMODE_NDELAY;
1714
1715 return blkdev_ioctl(bdev, mode, cmd, arg);
1716 }
1717
1718 /*
1719 * Write data to the block device. Only intended for the block device itself
1720 * and the raw driver which basically is a fake block device.
1721 *
1722 * Does not take i_mutex for the write and thus is not for general purpose
1723 * use.
1724 */
1725 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1726 {
1727 struct file *file = iocb->ki_filp;
1728 struct inode *bd_inode = bdev_file_inode(file);
1729 loff_t size = i_size_read(bd_inode);
1730 struct blk_plug plug;
1731 ssize_t ret;
1732
1733 if (bdev_read_only(I_BDEV(bd_inode)))
1734 return -EPERM;
1735
1736 if (!iov_iter_count(from))
1737 return 0;
1738
1739 if (iocb->ki_pos >= size)
1740 return -ENOSPC;
1741
1742 iov_iter_truncate(from, size - iocb->ki_pos);
1743
1744 blk_start_plug(&plug);
1745 ret = __generic_file_write_iter(iocb, from);
1746 if (ret > 0)
1747 ret = generic_write_sync(iocb, ret);
1748 blk_finish_plug(&plug);
1749 return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1752
1753 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1754 {
1755 struct file *file = iocb->ki_filp;
1756 struct inode *bd_inode = bdev_file_inode(file);
1757 loff_t size = i_size_read(bd_inode);
1758 loff_t pos = iocb->ki_pos;
1759
1760 if (pos >= size)
1761 return 0;
1762
1763 size -= pos;
1764 iov_iter_truncate(to, size);
1765 return generic_file_read_iter(iocb, to);
1766 }
1767 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1768
1769 /*
1770 * Try to release a page associated with block device when the system
1771 * is under memory pressure.
1772 */
1773 static int blkdev_releasepage(struct page *page, gfp_t wait)
1774 {
1775 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1776
1777 if (super && super->s_op->bdev_try_to_free_page)
1778 return super->s_op->bdev_try_to_free_page(super, page, wait);
1779
1780 return try_to_free_buffers(page);
1781 }
1782
1783 static int blkdev_writepages(struct address_space *mapping,
1784 struct writeback_control *wbc)
1785 {
1786 if (dax_mapping(mapping)) {
1787 struct block_device *bdev = I_BDEV(mapping->host);
1788
1789 return dax_writeback_mapping_range(mapping, bdev, wbc);
1790 }
1791 return generic_writepages(mapping, wbc);
1792 }
1793
1794 static const struct address_space_operations def_blk_aops = {
1795 .readpage = blkdev_readpage,
1796 .readpages = blkdev_readpages,
1797 .writepage = blkdev_writepage,
1798 .write_begin = blkdev_write_begin,
1799 .write_end = blkdev_write_end,
1800 .writepages = blkdev_writepages,
1801 .releasepage = blkdev_releasepage,
1802 .direct_IO = blkdev_direct_IO,
1803 .is_dirty_writeback = buffer_check_dirty_writeback,
1804 };
1805
1806 const struct file_operations def_blk_fops = {
1807 .open = blkdev_open,
1808 .release = blkdev_close,
1809 .llseek = block_llseek,
1810 .read_iter = blkdev_read_iter,
1811 .write_iter = blkdev_write_iter,
1812 .mmap = generic_file_mmap,
1813 .fsync = blkdev_fsync,
1814 .unlocked_ioctl = block_ioctl,
1815 #ifdef CONFIG_COMPAT
1816 .compat_ioctl = compat_blkdev_ioctl,
1817 #endif
1818 .splice_read = generic_file_splice_read,
1819 .splice_write = iter_file_splice_write,
1820 };
1821
1822 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1823 {
1824 int res;
1825 mm_segment_t old_fs = get_fs();
1826 set_fs(KERNEL_DS);
1827 res = blkdev_ioctl(bdev, 0, cmd, arg);
1828 set_fs(old_fs);
1829 return res;
1830 }
1831
1832 EXPORT_SYMBOL(ioctl_by_bdev);
1833
1834 /**
1835 * lookup_bdev - lookup a struct block_device by name
1836 * @pathname: special file representing the block device
1837 *
1838 * Get a reference to the blockdevice at @pathname in the current
1839 * namespace if possible and return it. Return ERR_PTR(error)
1840 * otherwise.
1841 */
1842 struct block_device *lookup_bdev(const char *pathname)
1843 {
1844 struct block_device *bdev;
1845 struct inode *inode;
1846 struct path path;
1847 int error;
1848
1849 if (!pathname || !*pathname)
1850 return ERR_PTR(-EINVAL);
1851
1852 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1853 if (error)
1854 return ERR_PTR(error);
1855
1856 inode = d_backing_inode(path.dentry);
1857 error = -ENOTBLK;
1858 if (!S_ISBLK(inode->i_mode))
1859 goto fail;
1860 error = -EACCES;
1861 if (path.mnt->mnt_flags & MNT_NODEV)
1862 goto fail;
1863 error = -ENOMEM;
1864 bdev = bd_acquire(inode);
1865 if (!bdev)
1866 goto fail;
1867 out:
1868 path_put(&path);
1869 return bdev;
1870 fail:
1871 bdev = ERR_PTR(error);
1872 goto out;
1873 }
1874 EXPORT_SYMBOL(lookup_bdev);
1875
1876 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1877 {
1878 struct super_block *sb = get_super(bdev);
1879 int res = 0;
1880
1881 if (sb) {
1882 /*
1883 * no need to lock the super, get_super holds the
1884 * read mutex so the filesystem cannot go away
1885 * under us (->put_super runs with the write lock
1886 * hold).
1887 */
1888 shrink_dcache_sb(sb);
1889 res = invalidate_inodes(sb, kill_dirty);
1890 drop_super(sb);
1891 }
1892 invalidate_bdev(bdev);
1893 return res;
1894 }
1895 EXPORT_SYMBOL(__invalidate_device);
1896
1897 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1898 {
1899 struct inode *inode, *old_inode = NULL;
1900
1901 spin_lock(&blockdev_superblock->s_inode_list_lock);
1902 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1903 struct address_space *mapping = inode->i_mapping;
1904
1905 spin_lock(&inode->i_lock);
1906 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1907 mapping->nrpages == 0) {
1908 spin_unlock(&inode->i_lock);
1909 continue;
1910 }
1911 __iget(inode);
1912 spin_unlock(&inode->i_lock);
1913 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1914 /*
1915 * We hold a reference to 'inode' so it couldn't have been
1916 * removed from s_inodes list while we dropped the
1917 * s_inode_list_lock We cannot iput the inode now as we can
1918 * be holding the last reference and we cannot iput it under
1919 * s_inode_list_lock. So we keep the reference and iput it
1920 * later.
1921 */
1922 iput(old_inode);
1923 old_inode = inode;
1924
1925 func(I_BDEV(inode), arg);
1926
1927 spin_lock(&blockdev_superblock->s_inode_list_lock);
1928 }
1929 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1930 iput(old_inode);
1931 }
This page took 0.077703 seconds and 6 git commands to generate.