Merge branch 'tools-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb...
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/buffer_head.h>
20 #include <linux/pagevec.h>
21 #include <linux/writeback.h>
22 #include <linux/mpage.h>
23 #include <linux/mount.h>
24 #include <linux/uio.h>
25 #include <linux/namei.h>
26 #include <linux/log2.h>
27 #include <linux/kmemleak.h>
28 #include <asm/uaccess.h>
29 #include "internal.h"
30
31 struct bdev_inode {
32 struct block_device bdev;
33 struct inode vfs_inode;
34 };
35
36 static const struct address_space_operations def_blk_aops;
37
38 static inline struct bdev_inode *BDEV_I(struct inode *inode)
39 {
40 return container_of(inode, struct bdev_inode, vfs_inode);
41 }
42
43 inline struct block_device *I_BDEV(struct inode *inode)
44 {
45 return &BDEV_I(inode)->bdev;
46 }
47 EXPORT_SYMBOL(I_BDEV);
48
49 /*
50 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
51 * need to move it onto the dirty list of @dst so that the inode is always on
52 * the right list.
53 */
54 static void bdev_inode_switch_bdi(struct inode *inode,
55 struct backing_dev_info *dst)
56 {
57 struct backing_dev_info *old = inode->i_data.backing_dev_info;
58
59 if (unlikely(dst == old)) /* deadlock avoidance */
60 return;
61 bdi_lock_two(&old->wb, &dst->wb);
62 spin_lock(&inode->i_lock);
63 inode->i_data.backing_dev_info = dst;
64 if (inode->i_state & I_DIRTY)
65 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
66 spin_unlock(&inode->i_lock);
67 spin_unlock(&old->wb.list_lock);
68 spin_unlock(&dst->wb.list_lock);
69 }
70
71 static sector_t max_block(struct block_device *bdev)
72 {
73 sector_t retval = ~((sector_t)0);
74 loff_t sz = i_size_read(bdev->bd_inode);
75
76 if (sz) {
77 unsigned int size = block_size(bdev);
78 unsigned int sizebits = blksize_bits(size);
79 retval = (sz >> sizebits);
80 }
81 return retval;
82 }
83
84 /* Kill _all_ buffers and pagecache , dirty or not.. */
85 static void kill_bdev(struct block_device *bdev)
86 {
87 if (bdev->bd_inode->i_mapping->nrpages == 0)
88 return;
89 invalidate_bh_lrus();
90 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
91 }
92
93 int set_blocksize(struct block_device *bdev, int size)
94 {
95 /* Size must be a power of two, and between 512 and PAGE_SIZE */
96 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
97 return -EINVAL;
98
99 /* Size cannot be smaller than the size supported by the device */
100 if (size < bdev_logical_block_size(bdev))
101 return -EINVAL;
102
103 /* Don't change the size if it is same as current */
104 if (bdev->bd_block_size != size) {
105 sync_blockdev(bdev);
106 bdev->bd_block_size = size;
107 bdev->bd_inode->i_blkbits = blksize_bits(size);
108 kill_bdev(bdev);
109 }
110 return 0;
111 }
112
113 EXPORT_SYMBOL(set_blocksize);
114
115 int sb_set_blocksize(struct super_block *sb, int size)
116 {
117 if (set_blocksize(sb->s_bdev, size))
118 return 0;
119 /* If we get here, we know size is power of two
120 * and it's value is between 512 and PAGE_SIZE */
121 sb->s_blocksize = size;
122 sb->s_blocksize_bits = blksize_bits(size);
123 return sb->s_blocksize;
124 }
125
126 EXPORT_SYMBOL(sb_set_blocksize);
127
128 int sb_min_blocksize(struct super_block *sb, int size)
129 {
130 int minsize = bdev_logical_block_size(sb->s_bdev);
131 if (size < minsize)
132 size = minsize;
133 return sb_set_blocksize(sb, size);
134 }
135
136 EXPORT_SYMBOL(sb_min_blocksize);
137
138 static int
139 blkdev_get_block(struct inode *inode, sector_t iblock,
140 struct buffer_head *bh, int create)
141 {
142 if (iblock >= max_block(I_BDEV(inode))) {
143 if (create)
144 return -EIO;
145
146 /*
147 * for reads, we're just trying to fill a partial page.
148 * return a hole, they will have to call get_block again
149 * before they can fill it, and they will get -EIO at that
150 * time
151 */
152 return 0;
153 }
154 bh->b_bdev = I_BDEV(inode);
155 bh->b_blocknr = iblock;
156 set_buffer_mapped(bh);
157 return 0;
158 }
159
160 static int
161 blkdev_get_blocks(struct inode *inode, sector_t iblock,
162 struct buffer_head *bh, int create)
163 {
164 sector_t end_block = max_block(I_BDEV(inode));
165 unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
166
167 if ((iblock + max_blocks) > end_block) {
168 max_blocks = end_block - iblock;
169 if ((long)max_blocks <= 0) {
170 if (create)
171 return -EIO; /* write fully beyond EOF */
172 /*
173 * It is a read which is fully beyond EOF. We return
174 * a !buffer_mapped buffer
175 */
176 max_blocks = 0;
177 }
178 }
179
180 bh->b_bdev = I_BDEV(inode);
181 bh->b_blocknr = iblock;
182 bh->b_size = max_blocks << inode->i_blkbits;
183 if (max_blocks)
184 set_buffer_mapped(bh);
185 return 0;
186 }
187
188 static ssize_t
189 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
190 loff_t offset, unsigned long nr_segs)
191 {
192 struct file *file = iocb->ki_filp;
193 struct inode *inode = file->f_mapping->host;
194
195 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
196 nr_segs, blkdev_get_blocks, NULL, NULL, 0);
197 }
198
199 int __sync_blockdev(struct block_device *bdev, int wait)
200 {
201 if (!bdev)
202 return 0;
203 if (!wait)
204 return filemap_flush(bdev->bd_inode->i_mapping);
205 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
206 }
207
208 /*
209 * Write out and wait upon all the dirty data associated with a block
210 * device via its mapping. Does not take the superblock lock.
211 */
212 int sync_blockdev(struct block_device *bdev)
213 {
214 return __sync_blockdev(bdev, 1);
215 }
216 EXPORT_SYMBOL(sync_blockdev);
217
218 /*
219 * Write out and wait upon all dirty data associated with this
220 * device. Filesystem data as well as the underlying block
221 * device. Takes the superblock lock.
222 */
223 int fsync_bdev(struct block_device *bdev)
224 {
225 struct super_block *sb = get_super(bdev);
226 if (sb) {
227 int res = sync_filesystem(sb);
228 drop_super(sb);
229 return res;
230 }
231 return sync_blockdev(bdev);
232 }
233 EXPORT_SYMBOL(fsync_bdev);
234
235 /**
236 * freeze_bdev -- lock a filesystem and force it into a consistent state
237 * @bdev: blockdevice to lock
238 *
239 * If a superblock is found on this device, we take the s_umount semaphore
240 * on it to make sure nobody unmounts until the snapshot creation is done.
241 * The reference counter (bd_fsfreeze_count) guarantees that only the last
242 * unfreeze process can unfreeze the frozen filesystem actually when multiple
243 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
244 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
245 * actually.
246 */
247 struct super_block *freeze_bdev(struct block_device *bdev)
248 {
249 struct super_block *sb;
250 int error = 0;
251
252 mutex_lock(&bdev->bd_fsfreeze_mutex);
253 if (++bdev->bd_fsfreeze_count > 1) {
254 /*
255 * We don't even need to grab a reference - the first call
256 * to freeze_bdev grab an active reference and only the last
257 * thaw_bdev drops it.
258 */
259 sb = get_super(bdev);
260 drop_super(sb);
261 mutex_unlock(&bdev->bd_fsfreeze_mutex);
262 return sb;
263 }
264
265 sb = get_active_super(bdev);
266 if (!sb)
267 goto out;
268 error = freeze_super(sb);
269 if (error) {
270 deactivate_super(sb);
271 bdev->bd_fsfreeze_count--;
272 mutex_unlock(&bdev->bd_fsfreeze_mutex);
273 return ERR_PTR(error);
274 }
275 deactivate_super(sb);
276 out:
277 sync_blockdev(bdev);
278 mutex_unlock(&bdev->bd_fsfreeze_mutex);
279 return sb; /* thaw_bdev releases s->s_umount */
280 }
281 EXPORT_SYMBOL(freeze_bdev);
282
283 /**
284 * thaw_bdev -- unlock filesystem
285 * @bdev: blockdevice to unlock
286 * @sb: associated superblock
287 *
288 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
289 */
290 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
291 {
292 int error = -EINVAL;
293
294 mutex_lock(&bdev->bd_fsfreeze_mutex);
295 if (!bdev->bd_fsfreeze_count)
296 goto out;
297
298 error = 0;
299 if (--bdev->bd_fsfreeze_count > 0)
300 goto out;
301
302 if (!sb)
303 goto out;
304
305 error = thaw_super(sb);
306 if (error) {
307 bdev->bd_fsfreeze_count++;
308 mutex_unlock(&bdev->bd_fsfreeze_mutex);
309 return error;
310 }
311 out:
312 mutex_unlock(&bdev->bd_fsfreeze_mutex);
313 return 0;
314 }
315 EXPORT_SYMBOL(thaw_bdev);
316
317 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
318 {
319 return block_write_full_page(page, blkdev_get_block, wbc);
320 }
321
322 static int blkdev_readpage(struct file * file, struct page * page)
323 {
324 return block_read_full_page(page, blkdev_get_block);
325 }
326
327 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
328 loff_t pos, unsigned len, unsigned flags,
329 struct page **pagep, void **fsdata)
330 {
331 return block_write_begin(mapping, pos, len, flags, pagep,
332 blkdev_get_block);
333 }
334
335 static int blkdev_write_end(struct file *file, struct address_space *mapping,
336 loff_t pos, unsigned len, unsigned copied,
337 struct page *page, void *fsdata)
338 {
339 int ret;
340 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
341
342 unlock_page(page);
343 page_cache_release(page);
344
345 return ret;
346 }
347
348 /*
349 * private llseek:
350 * for a block special file file->f_path.dentry->d_inode->i_size is zero
351 * so we compute the size by hand (just as in block_read/write above)
352 */
353 static loff_t block_llseek(struct file *file, loff_t offset, int origin)
354 {
355 struct inode *bd_inode = file->f_mapping->host;
356 loff_t size;
357 loff_t retval;
358
359 mutex_lock(&bd_inode->i_mutex);
360 size = i_size_read(bd_inode);
361
362 retval = -EINVAL;
363 switch (origin) {
364 case SEEK_END:
365 offset += size;
366 break;
367 case SEEK_CUR:
368 offset += file->f_pos;
369 case SEEK_SET:
370 break;
371 default:
372 goto out;
373 }
374 if (offset >= 0 && offset <= size) {
375 if (offset != file->f_pos) {
376 file->f_pos = offset;
377 }
378 retval = offset;
379 }
380 out:
381 mutex_unlock(&bd_inode->i_mutex);
382 return retval;
383 }
384
385 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
386 {
387 struct inode *bd_inode = filp->f_mapping->host;
388 struct block_device *bdev = I_BDEV(bd_inode);
389 int error;
390
391 /*
392 * There is no need to serialise calls to blkdev_issue_flush with
393 * i_mutex and doing so causes performance issues with concurrent
394 * O_SYNC writers to a block device.
395 */
396 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
397 if (error == -EOPNOTSUPP)
398 error = 0;
399
400 return error;
401 }
402 EXPORT_SYMBOL(blkdev_fsync);
403
404 /*
405 * pseudo-fs
406 */
407
408 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
409 static struct kmem_cache * bdev_cachep __read_mostly;
410
411 static struct inode *bdev_alloc_inode(struct super_block *sb)
412 {
413 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
414 if (!ei)
415 return NULL;
416 return &ei->vfs_inode;
417 }
418
419 static void bdev_i_callback(struct rcu_head *head)
420 {
421 struct inode *inode = container_of(head, struct inode, i_rcu);
422 struct bdev_inode *bdi = BDEV_I(inode);
423
424 INIT_LIST_HEAD(&inode->i_dentry);
425 kmem_cache_free(bdev_cachep, bdi);
426 }
427
428 static void bdev_destroy_inode(struct inode *inode)
429 {
430 call_rcu(&inode->i_rcu, bdev_i_callback);
431 }
432
433 static void init_once(void *foo)
434 {
435 struct bdev_inode *ei = (struct bdev_inode *) foo;
436 struct block_device *bdev = &ei->bdev;
437
438 memset(bdev, 0, sizeof(*bdev));
439 mutex_init(&bdev->bd_mutex);
440 INIT_LIST_HEAD(&bdev->bd_inodes);
441 INIT_LIST_HEAD(&bdev->bd_list);
442 #ifdef CONFIG_SYSFS
443 INIT_LIST_HEAD(&bdev->bd_holder_disks);
444 #endif
445 inode_init_once(&ei->vfs_inode);
446 /* Initialize mutex for freeze. */
447 mutex_init(&bdev->bd_fsfreeze_mutex);
448 }
449
450 static inline void __bd_forget(struct inode *inode)
451 {
452 list_del_init(&inode->i_devices);
453 inode->i_bdev = NULL;
454 inode->i_mapping = &inode->i_data;
455 }
456
457 static void bdev_evict_inode(struct inode *inode)
458 {
459 struct block_device *bdev = &BDEV_I(inode)->bdev;
460 struct list_head *p;
461 truncate_inode_pages(&inode->i_data, 0);
462 invalidate_inode_buffers(inode); /* is it needed here? */
463 end_writeback(inode);
464 spin_lock(&bdev_lock);
465 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
466 __bd_forget(list_entry(p, struct inode, i_devices));
467 }
468 list_del_init(&bdev->bd_list);
469 spin_unlock(&bdev_lock);
470 }
471
472 static const struct super_operations bdev_sops = {
473 .statfs = simple_statfs,
474 .alloc_inode = bdev_alloc_inode,
475 .destroy_inode = bdev_destroy_inode,
476 .drop_inode = generic_delete_inode,
477 .evict_inode = bdev_evict_inode,
478 };
479
480 static struct dentry *bd_mount(struct file_system_type *fs_type,
481 int flags, const char *dev_name, void *data)
482 {
483 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576);
484 }
485
486 static struct file_system_type bd_type = {
487 .name = "bdev",
488 .mount = bd_mount,
489 .kill_sb = kill_anon_super,
490 };
491
492 struct super_block *blockdev_superblock __read_mostly;
493
494 void __init bdev_cache_init(void)
495 {
496 int err;
497 struct vfsmount *bd_mnt;
498
499 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
500 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
501 SLAB_MEM_SPREAD|SLAB_PANIC),
502 init_once);
503 err = register_filesystem(&bd_type);
504 if (err)
505 panic("Cannot register bdev pseudo-fs");
506 bd_mnt = kern_mount(&bd_type);
507 if (IS_ERR(bd_mnt))
508 panic("Cannot create bdev pseudo-fs");
509 /*
510 * This vfsmount structure is only used to obtain the
511 * blockdev_superblock, so tell kmemleak not to report it.
512 */
513 kmemleak_not_leak(bd_mnt);
514 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
515 }
516
517 /*
518 * Most likely _very_ bad one - but then it's hardly critical for small
519 * /dev and can be fixed when somebody will need really large one.
520 * Keep in mind that it will be fed through icache hash function too.
521 */
522 static inline unsigned long hash(dev_t dev)
523 {
524 return MAJOR(dev)+MINOR(dev);
525 }
526
527 static int bdev_test(struct inode *inode, void *data)
528 {
529 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
530 }
531
532 static int bdev_set(struct inode *inode, void *data)
533 {
534 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
535 return 0;
536 }
537
538 static LIST_HEAD(all_bdevs);
539
540 struct block_device *bdget(dev_t dev)
541 {
542 struct block_device *bdev;
543 struct inode *inode;
544
545 inode = iget5_locked(blockdev_superblock, hash(dev),
546 bdev_test, bdev_set, &dev);
547
548 if (!inode)
549 return NULL;
550
551 bdev = &BDEV_I(inode)->bdev;
552
553 if (inode->i_state & I_NEW) {
554 bdev->bd_contains = NULL;
555 bdev->bd_super = NULL;
556 bdev->bd_inode = inode;
557 bdev->bd_block_size = (1 << inode->i_blkbits);
558 bdev->bd_part_count = 0;
559 bdev->bd_invalidated = 0;
560 inode->i_mode = S_IFBLK;
561 inode->i_rdev = dev;
562 inode->i_bdev = bdev;
563 inode->i_data.a_ops = &def_blk_aops;
564 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
565 inode->i_data.backing_dev_info = &default_backing_dev_info;
566 spin_lock(&bdev_lock);
567 list_add(&bdev->bd_list, &all_bdevs);
568 spin_unlock(&bdev_lock);
569 unlock_new_inode(inode);
570 }
571 return bdev;
572 }
573
574 EXPORT_SYMBOL(bdget);
575
576 /**
577 * bdgrab -- Grab a reference to an already referenced block device
578 * @bdev: Block device to grab a reference to.
579 */
580 struct block_device *bdgrab(struct block_device *bdev)
581 {
582 ihold(bdev->bd_inode);
583 return bdev;
584 }
585
586 long nr_blockdev_pages(void)
587 {
588 struct block_device *bdev;
589 long ret = 0;
590 spin_lock(&bdev_lock);
591 list_for_each_entry(bdev, &all_bdevs, bd_list) {
592 ret += bdev->bd_inode->i_mapping->nrpages;
593 }
594 spin_unlock(&bdev_lock);
595 return ret;
596 }
597
598 void bdput(struct block_device *bdev)
599 {
600 iput(bdev->bd_inode);
601 }
602
603 EXPORT_SYMBOL(bdput);
604
605 static struct block_device *bd_acquire(struct inode *inode)
606 {
607 struct block_device *bdev;
608
609 spin_lock(&bdev_lock);
610 bdev = inode->i_bdev;
611 if (bdev) {
612 ihold(bdev->bd_inode);
613 spin_unlock(&bdev_lock);
614 return bdev;
615 }
616 spin_unlock(&bdev_lock);
617
618 bdev = bdget(inode->i_rdev);
619 if (bdev) {
620 spin_lock(&bdev_lock);
621 if (!inode->i_bdev) {
622 /*
623 * We take an additional reference to bd_inode,
624 * and it's released in clear_inode() of inode.
625 * So, we can access it via ->i_mapping always
626 * without igrab().
627 */
628 ihold(bdev->bd_inode);
629 inode->i_bdev = bdev;
630 inode->i_mapping = bdev->bd_inode->i_mapping;
631 list_add(&inode->i_devices, &bdev->bd_inodes);
632 }
633 spin_unlock(&bdev_lock);
634 }
635 return bdev;
636 }
637
638 /* Call when you free inode */
639
640 void bd_forget(struct inode *inode)
641 {
642 struct block_device *bdev = NULL;
643
644 spin_lock(&bdev_lock);
645 if (inode->i_bdev) {
646 if (!sb_is_blkdev_sb(inode->i_sb))
647 bdev = inode->i_bdev;
648 __bd_forget(inode);
649 }
650 spin_unlock(&bdev_lock);
651
652 if (bdev)
653 iput(bdev->bd_inode);
654 }
655
656 /**
657 * bd_may_claim - test whether a block device can be claimed
658 * @bdev: block device of interest
659 * @whole: whole block device containing @bdev, may equal @bdev
660 * @holder: holder trying to claim @bdev
661 *
662 * Test whether @bdev can be claimed by @holder.
663 *
664 * CONTEXT:
665 * spin_lock(&bdev_lock).
666 *
667 * RETURNS:
668 * %true if @bdev can be claimed, %false otherwise.
669 */
670 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
671 void *holder)
672 {
673 if (bdev->bd_holder == holder)
674 return true; /* already a holder */
675 else if (bdev->bd_holder != NULL)
676 return false; /* held by someone else */
677 else if (bdev->bd_contains == bdev)
678 return true; /* is a whole device which isn't held */
679
680 else if (whole->bd_holder == bd_may_claim)
681 return true; /* is a partition of a device that is being partitioned */
682 else if (whole->bd_holder != NULL)
683 return false; /* is a partition of a held device */
684 else
685 return true; /* is a partition of an un-held device */
686 }
687
688 /**
689 * bd_prepare_to_claim - prepare to claim a block device
690 * @bdev: block device of interest
691 * @whole: the whole device containing @bdev, may equal @bdev
692 * @holder: holder trying to claim @bdev
693 *
694 * Prepare to claim @bdev. This function fails if @bdev is already
695 * claimed by another holder and waits if another claiming is in
696 * progress. This function doesn't actually claim. On successful
697 * return, the caller has ownership of bd_claiming and bd_holder[s].
698 *
699 * CONTEXT:
700 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
701 * it multiple times.
702 *
703 * RETURNS:
704 * 0 if @bdev can be claimed, -EBUSY otherwise.
705 */
706 static int bd_prepare_to_claim(struct block_device *bdev,
707 struct block_device *whole, void *holder)
708 {
709 retry:
710 /* if someone else claimed, fail */
711 if (!bd_may_claim(bdev, whole, holder))
712 return -EBUSY;
713
714 /* if claiming is already in progress, wait for it to finish */
715 if (whole->bd_claiming) {
716 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
717 DEFINE_WAIT(wait);
718
719 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
720 spin_unlock(&bdev_lock);
721 schedule();
722 finish_wait(wq, &wait);
723 spin_lock(&bdev_lock);
724 goto retry;
725 }
726
727 /* yay, all mine */
728 return 0;
729 }
730
731 /**
732 * bd_start_claiming - start claiming a block device
733 * @bdev: block device of interest
734 * @holder: holder trying to claim @bdev
735 *
736 * @bdev is about to be opened exclusively. Check @bdev can be opened
737 * exclusively and mark that an exclusive open is in progress. Each
738 * successful call to this function must be matched with a call to
739 * either bd_finish_claiming() or bd_abort_claiming() (which do not
740 * fail).
741 *
742 * This function is used to gain exclusive access to the block device
743 * without actually causing other exclusive open attempts to fail. It
744 * should be used when the open sequence itself requires exclusive
745 * access but may subsequently fail.
746 *
747 * CONTEXT:
748 * Might sleep.
749 *
750 * RETURNS:
751 * Pointer to the block device containing @bdev on success, ERR_PTR()
752 * value on failure.
753 */
754 static struct block_device *bd_start_claiming(struct block_device *bdev,
755 void *holder)
756 {
757 struct gendisk *disk;
758 struct block_device *whole;
759 int partno, err;
760
761 might_sleep();
762
763 /*
764 * @bdev might not have been initialized properly yet, look up
765 * and grab the outer block device the hard way.
766 */
767 disk = get_gendisk(bdev->bd_dev, &partno);
768 if (!disk)
769 return ERR_PTR(-ENXIO);
770
771 /*
772 * Normally, @bdev should equal what's returned from bdget_disk()
773 * if partno is 0; however, some drivers (floppy) use multiple
774 * bdev's for the same physical device and @bdev may be one of the
775 * aliases. Keep @bdev if partno is 0. This means claimer
776 * tracking is broken for those devices but it has always been that
777 * way.
778 */
779 if (partno)
780 whole = bdget_disk(disk, 0);
781 else
782 whole = bdgrab(bdev);
783
784 module_put(disk->fops->owner);
785 put_disk(disk);
786 if (!whole)
787 return ERR_PTR(-ENOMEM);
788
789 /* prepare to claim, if successful, mark claiming in progress */
790 spin_lock(&bdev_lock);
791
792 err = bd_prepare_to_claim(bdev, whole, holder);
793 if (err == 0) {
794 whole->bd_claiming = holder;
795 spin_unlock(&bdev_lock);
796 return whole;
797 } else {
798 spin_unlock(&bdev_lock);
799 bdput(whole);
800 return ERR_PTR(err);
801 }
802 }
803
804 #ifdef CONFIG_SYSFS
805 struct bd_holder_disk {
806 struct list_head list;
807 struct gendisk *disk;
808 int refcnt;
809 };
810
811 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
812 struct gendisk *disk)
813 {
814 struct bd_holder_disk *holder;
815
816 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
817 if (holder->disk == disk)
818 return holder;
819 return NULL;
820 }
821
822 static int add_symlink(struct kobject *from, struct kobject *to)
823 {
824 return sysfs_create_link(from, to, kobject_name(to));
825 }
826
827 static void del_symlink(struct kobject *from, struct kobject *to)
828 {
829 sysfs_remove_link(from, kobject_name(to));
830 }
831
832 /**
833 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
834 * @bdev: the claimed slave bdev
835 * @disk: the holding disk
836 *
837 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
838 *
839 * This functions creates the following sysfs symlinks.
840 *
841 * - from "slaves" directory of the holder @disk to the claimed @bdev
842 * - from "holders" directory of the @bdev to the holder @disk
843 *
844 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
845 * passed to bd_link_disk_holder(), then:
846 *
847 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
848 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
849 *
850 * The caller must have claimed @bdev before calling this function and
851 * ensure that both @bdev and @disk are valid during the creation and
852 * lifetime of these symlinks.
853 *
854 * CONTEXT:
855 * Might sleep.
856 *
857 * RETURNS:
858 * 0 on success, -errno on failure.
859 */
860 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
861 {
862 struct bd_holder_disk *holder;
863 int ret = 0;
864
865 mutex_lock(&bdev->bd_mutex);
866
867 WARN_ON_ONCE(!bdev->bd_holder);
868
869 /* FIXME: remove the following once add_disk() handles errors */
870 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
871 goto out_unlock;
872
873 holder = bd_find_holder_disk(bdev, disk);
874 if (holder) {
875 holder->refcnt++;
876 goto out_unlock;
877 }
878
879 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
880 if (!holder) {
881 ret = -ENOMEM;
882 goto out_unlock;
883 }
884
885 INIT_LIST_HEAD(&holder->list);
886 holder->disk = disk;
887 holder->refcnt = 1;
888
889 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
890 if (ret)
891 goto out_free;
892
893 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
894 if (ret)
895 goto out_del;
896 /*
897 * bdev could be deleted beneath us which would implicitly destroy
898 * the holder directory. Hold on to it.
899 */
900 kobject_get(bdev->bd_part->holder_dir);
901
902 list_add(&holder->list, &bdev->bd_holder_disks);
903 goto out_unlock;
904
905 out_del:
906 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
907 out_free:
908 kfree(holder);
909 out_unlock:
910 mutex_unlock(&bdev->bd_mutex);
911 return ret;
912 }
913 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
914
915 /**
916 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
917 * @bdev: the calimed slave bdev
918 * @disk: the holding disk
919 *
920 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
921 *
922 * CONTEXT:
923 * Might sleep.
924 */
925 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
926 {
927 struct bd_holder_disk *holder;
928
929 mutex_lock(&bdev->bd_mutex);
930
931 holder = bd_find_holder_disk(bdev, disk);
932
933 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
934 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
935 del_symlink(bdev->bd_part->holder_dir,
936 &disk_to_dev(disk)->kobj);
937 kobject_put(bdev->bd_part->holder_dir);
938 list_del_init(&holder->list);
939 kfree(holder);
940 }
941
942 mutex_unlock(&bdev->bd_mutex);
943 }
944 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
945 #endif
946
947 /**
948 * flush_disk - invalidates all buffer-cache entries on a disk
949 *
950 * @bdev: struct block device to be flushed
951 * @kill_dirty: flag to guide handling of dirty inodes
952 *
953 * Invalidates all buffer-cache entries on a disk. It should be called
954 * when a disk has been changed -- either by a media change or online
955 * resize.
956 */
957 static void flush_disk(struct block_device *bdev, bool kill_dirty)
958 {
959 if (__invalidate_device(bdev, kill_dirty)) {
960 char name[BDEVNAME_SIZE] = "";
961
962 if (bdev->bd_disk)
963 disk_name(bdev->bd_disk, 0, name);
964 printk(KERN_WARNING "VFS: busy inodes on changed media or "
965 "resized disk %s\n", name);
966 }
967
968 if (!bdev->bd_disk)
969 return;
970 if (disk_partitionable(bdev->bd_disk))
971 bdev->bd_invalidated = 1;
972 }
973
974 /**
975 * check_disk_size_change - checks for disk size change and adjusts bdev size.
976 * @disk: struct gendisk to check
977 * @bdev: struct bdev to adjust.
978 *
979 * This routine checks to see if the bdev size does not match the disk size
980 * and adjusts it if it differs.
981 */
982 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
983 {
984 loff_t disk_size, bdev_size;
985
986 disk_size = (loff_t)get_capacity(disk) << 9;
987 bdev_size = i_size_read(bdev->bd_inode);
988 if (disk_size != bdev_size) {
989 char name[BDEVNAME_SIZE];
990
991 disk_name(disk, 0, name);
992 printk(KERN_INFO
993 "%s: detected capacity change from %lld to %lld\n",
994 name, bdev_size, disk_size);
995 i_size_write(bdev->bd_inode, disk_size);
996 flush_disk(bdev, false);
997 }
998 }
999 EXPORT_SYMBOL(check_disk_size_change);
1000
1001 /**
1002 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1003 * @disk: struct gendisk to be revalidated
1004 *
1005 * This routine is a wrapper for lower-level driver's revalidate_disk
1006 * call-backs. It is used to do common pre and post operations needed
1007 * for all revalidate_disk operations.
1008 */
1009 int revalidate_disk(struct gendisk *disk)
1010 {
1011 struct block_device *bdev;
1012 int ret = 0;
1013
1014 if (disk->fops->revalidate_disk)
1015 ret = disk->fops->revalidate_disk(disk);
1016
1017 bdev = bdget_disk(disk, 0);
1018 if (!bdev)
1019 return ret;
1020
1021 mutex_lock(&bdev->bd_mutex);
1022 check_disk_size_change(disk, bdev);
1023 mutex_unlock(&bdev->bd_mutex);
1024 bdput(bdev);
1025 return ret;
1026 }
1027 EXPORT_SYMBOL(revalidate_disk);
1028
1029 /*
1030 * This routine checks whether a removable media has been changed,
1031 * and invalidates all buffer-cache-entries in that case. This
1032 * is a relatively slow routine, so we have to try to minimize using
1033 * it. Thus it is called only upon a 'mount' or 'open'. This
1034 * is the best way of combining speed and utility, I think.
1035 * People changing diskettes in the middle of an operation deserve
1036 * to lose :-)
1037 */
1038 int check_disk_change(struct block_device *bdev)
1039 {
1040 struct gendisk *disk = bdev->bd_disk;
1041 const struct block_device_operations *bdops = disk->fops;
1042 unsigned int events;
1043
1044 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1045 DISK_EVENT_EJECT_REQUEST);
1046 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1047 return 0;
1048
1049 flush_disk(bdev, true);
1050 if (bdops->revalidate_disk)
1051 bdops->revalidate_disk(bdev->bd_disk);
1052 return 1;
1053 }
1054
1055 EXPORT_SYMBOL(check_disk_change);
1056
1057 void bd_set_size(struct block_device *bdev, loff_t size)
1058 {
1059 unsigned bsize = bdev_logical_block_size(bdev);
1060
1061 bdev->bd_inode->i_size = size;
1062 while (bsize < PAGE_CACHE_SIZE) {
1063 if (size & bsize)
1064 break;
1065 bsize <<= 1;
1066 }
1067 bdev->bd_block_size = bsize;
1068 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1069 }
1070 EXPORT_SYMBOL(bd_set_size);
1071
1072 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1073
1074 /*
1075 * bd_mutex locking:
1076 *
1077 * mutex_lock(part->bd_mutex)
1078 * mutex_lock_nested(whole->bd_mutex, 1)
1079 */
1080
1081 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1082 {
1083 struct gendisk *disk;
1084 int ret;
1085 int partno;
1086 int perm = 0;
1087
1088 if (mode & FMODE_READ)
1089 perm |= MAY_READ;
1090 if (mode & FMODE_WRITE)
1091 perm |= MAY_WRITE;
1092 /*
1093 * hooks: /n/, see "layering violations".
1094 */
1095 if (!for_part) {
1096 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1097 if (ret != 0) {
1098 bdput(bdev);
1099 return ret;
1100 }
1101 }
1102
1103 restart:
1104
1105 ret = -ENXIO;
1106 disk = get_gendisk(bdev->bd_dev, &partno);
1107 if (!disk)
1108 goto out;
1109
1110 disk_block_events(disk);
1111 mutex_lock_nested(&bdev->bd_mutex, for_part);
1112 if (!bdev->bd_openers) {
1113 bdev->bd_disk = disk;
1114 bdev->bd_contains = bdev;
1115 if (!partno) {
1116 struct backing_dev_info *bdi;
1117
1118 ret = -ENXIO;
1119 bdev->bd_part = disk_get_part(disk, partno);
1120 if (!bdev->bd_part)
1121 goto out_clear;
1122
1123 ret = 0;
1124 if (disk->fops->open) {
1125 ret = disk->fops->open(bdev, mode);
1126 if (ret == -ERESTARTSYS) {
1127 /* Lost a race with 'disk' being
1128 * deleted, try again.
1129 * See md.c
1130 */
1131 disk_put_part(bdev->bd_part);
1132 bdev->bd_part = NULL;
1133 bdev->bd_disk = NULL;
1134 mutex_unlock(&bdev->bd_mutex);
1135 disk_unblock_events(disk);
1136 module_put(disk->fops->owner);
1137 put_disk(disk);
1138 goto restart;
1139 }
1140 }
1141
1142 if (!ret && !bdev->bd_openers) {
1143 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1144 bdi = blk_get_backing_dev_info(bdev);
1145 if (bdi == NULL)
1146 bdi = &default_backing_dev_info;
1147 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1148 }
1149
1150 /*
1151 * If the device is invalidated, rescan partition
1152 * if open succeeded or failed with -ENOMEDIUM.
1153 * The latter is necessary to prevent ghost
1154 * partitions on a removed medium.
1155 */
1156 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM))
1157 rescan_partitions(disk, bdev);
1158 if (ret)
1159 goto out_clear;
1160 } else {
1161 struct block_device *whole;
1162 whole = bdget_disk(disk, 0);
1163 ret = -ENOMEM;
1164 if (!whole)
1165 goto out_clear;
1166 BUG_ON(for_part);
1167 ret = __blkdev_get(whole, mode, 1);
1168 if (ret)
1169 goto out_clear;
1170 bdev->bd_contains = whole;
1171 bdev_inode_switch_bdi(bdev->bd_inode,
1172 whole->bd_inode->i_data.backing_dev_info);
1173 bdev->bd_part = disk_get_part(disk, partno);
1174 if (!(disk->flags & GENHD_FL_UP) ||
1175 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1176 ret = -ENXIO;
1177 goto out_clear;
1178 }
1179 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1180 }
1181 } else {
1182 if (bdev->bd_contains == bdev) {
1183 ret = 0;
1184 if (bdev->bd_disk->fops->open)
1185 ret = bdev->bd_disk->fops->open(bdev, mode);
1186 /* the same as first opener case, read comment there */
1187 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM))
1188 rescan_partitions(bdev->bd_disk, bdev);
1189 if (ret)
1190 goto out_unlock_bdev;
1191 }
1192 /* only one opener holds refs to the module and disk */
1193 module_put(disk->fops->owner);
1194 put_disk(disk);
1195 }
1196 bdev->bd_openers++;
1197 if (for_part)
1198 bdev->bd_part_count++;
1199 mutex_unlock(&bdev->bd_mutex);
1200 disk_unblock_events(disk);
1201 return 0;
1202
1203 out_clear:
1204 disk_put_part(bdev->bd_part);
1205 bdev->bd_disk = NULL;
1206 bdev->bd_part = NULL;
1207 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1208 if (bdev != bdev->bd_contains)
1209 __blkdev_put(bdev->bd_contains, mode, 1);
1210 bdev->bd_contains = NULL;
1211 out_unlock_bdev:
1212 mutex_unlock(&bdev->bd_mutex);
1213 disk_unblock_events(disk);
1214 module_put(disk->fops->owner);
1215 put_disk(disk);
1216 out:
1217 bdput(bdev);
1218
1219 return ret;
1220 }
1221
1222 /**
1223 * blkdev_get - open a block device
1224 * @bdev: block_device to open
1225 * @mode: FMODE_* mask
1226 * @holder: exclusive holder identifier
1227 *
1228 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1229 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1230 * @holder is invalid. Exclusive opens may nest for the same @holder.
1231 *
1232 * On success, the reference count of @bdev is unchanged. On failure,
1233 * @bdev is put.
1234 *
1235 * CONTEXT:
1236 * Might sleep.
1237 *
1238 * RETURNS:
1239 * 0 on success, -errno on failure.
1240 */
1241 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1242 {
1243 struct block_device *whole = NULL;
1244 int res;
1245
1246 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1247
1248 if ((mode & FMODE_EXCL) && holder) {
1249 whole = bd_start_claiming(bdev, holder);
1250 if (IS_ERR(whole)) {
1251 bdput(bdev);
1252 return PTR_ERR(whole);
1253 }
1254 }
1255
1256 res = __blkdev_get(bdev, mode, 0);
1257
1258 if (whole) {
1259 struct gendisk *disk = whole->bd_disk;
1260
1261 /* finish claiming */
1262 mutex_lock(&bdev->bd_mutex);
1263 spin_lock(&bdev_lock);
1264
1265 if (!res) {
1266 BUG_ON(!bd_may_claim(bdev, whole, holder));
1267 /*
1268 * Note that for a whole device bd_holders
1269 * will be incremented twice, and bd_holder
1270 * will be set to bd_may_claim before being
1271 * set to holder
1272 */
1273 whole->bd_holders++;
1274 whole->bd_holder = bd_may_claim;
1275 bdev->bd_holders++;
1276 bdev->bd_holder = holder;
1277 }
1278
1279 /* tell others that we're done */
1280 BUG_ON(whole->bd_claiming != holder);
1281 whole->bd_claiming = NULL;
1282 wake_up_bit(&whole->bd_claiming, 0);
1283
1284 spin_unlock(&bdev_lock);
1285
1286 /*
1287 * Block event polling for write claims if requested. Any
1288 * write holder makes the write_holder state stick until
1289 * all are released. This is good enough and tracking
1290 * individual writeable reference is too fragile given the
1291 * way @mode is used in blkdev_get/put().
1292 */
1293 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1294 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1295 bdev->bd_write_holder = true;
1296 disk_block_events(disk);
1297 }
1298
1299 mutex_unlock(&bdev->bd_mutex);
1300 bdput(whole);
1301 }
1302
1303 return res;
1304 }
1305 EXPORT_SYMBOL(blkdev_get);
1306
1307 /**
1308 * blkdev_get_by_path - open a block device by name
1309 * @path: path to the block device to open
1310 * @mode: FMODE_* mask
1311 * @holder: exclusive holder identifier
1312 *
1313 * Open the blockdevice described by the device file at @path. @mode
1314 * and @holder are identical to blkdev_get().
1315 *
1316 * On success, the returned block_device has reference count of one.
1317 *
1318 * CONTEXT:
1319 * Might sleep.
1320 *
1321 * RETURNS:
1322 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1323 */
1324 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1325 void *holder)
1326 {
1327 struct block_device *bdev;
1328 int err;
1329
1330 bdev = lookup_bdev(path);
1331 if (IS_ERR(bdev))
1332 return bdev;
1333
1334 err = blkdev_get(bdev, mode, holder);
1335 if (err)
1336 return ERR_PTR(err);
1337
1338 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1339 blkdev_put(bdev, mode);
1340 return ERR_PTR(-EACCES);
1341 }
1342
1343 return bdev;
1344 }
1345 EXPORT_SYMBOL(blkdev_get_by_path);
1346
1347 /**
1348 * blkdev_get_by_dev - open a block device by device number
1349 * @dev: device number of block device to open
1350 * @mode: FMODE_* mask
1351 * @holder: exclusive holder identifier
1352 *
1353 * Open the blockdevice described by device number @dev. @mode and
1354 * @holder are identical to blkdev_get().
1355 *
1356 * Use it ONLY if you really do not have anything better - i.e. when
1357 * you are behind a truly sucky interface and all you are given is a
1358 * device number. _Never_ to be used for internal purposes. If you
1359 * ever need it - reconsider your API.
1360 *
1361 * On success, the returned block_device has reference count of one.
1362 *
1363 * CONTEXT:
1364 * Might sleep.
1365 *
1366 * RETURNS:
1367 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1368 */
1369 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1370 {
1371 struct block_device *bdev;
1372 int err;
1373
1374 bdev = bdget(dev);
1375 if (!bdev)
1376 return ERR_PTR(-ENOMEM);
1377
1378 err = blkdev_get(bdev, mode, holder);
1379 if (err)
1380 return ERR_PTR(err);
1381
1382 return bdev;
1383 }
1384 EXPORT_SYMBOL(blkdev_get_by_dev);
1385
1386 static int blkdev_open(struct inode * inode, struct file * filp)
1387 {
1388 struct block_device *bdev;
1389
1390 /*
1391 * Preserve backwards compatibility and allow large file access
1392 * even if userspace doesn't ask for it explicitly. Some mkfs
1393 * binary needs it. We might want to drop this workaround
1394 * during an unstable branch.
1395 */
1396 filp->f_flags |= O_LARGEFILE;
1397
1398 if (filp->f_flags & O_NDELAY)
1399 filp->f_mode |= FMODE_NDELAY;
1400 if (filp->f_flags & O_EXCL)
1401 filp->f_mode |= FMODE_EXCL;
1402 if ((filp->f_flags & O_ACCMODE) == 3)
1403 filp->f_mode |= FMODE_WRITE_IOCTL;
1404
1405 bdev = bd_acquire(inode);
1406 if (bdev == NULL)
1407 return -ENOMEM;
1408
1409 filp->f_mapping = bdev->bd_inode->i_mapping;
1410
1411 return blkdev_get(bdev, filp->f_mode, filp);
1412 }
1413
1414 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1415 {
1416 int ret = 0;
1417 struct gendisk *disk = bdev->bd_disk;
1418 struct block_device *victim = NULL;
1419
1420 mutex_lock_nested(&bdev->bd_mutex, for_part);
1421 if (for_part)
1422 bdev->bd_part_count--;
1423
1424 if (!--bdev->bd_openers) {
1425 WARN_ON_ONCE(bdev->bd_holders);
1426 sync_blockdev(bdev);
1427 kill_bdev(bdev);
1428 }
1429 if (bdev->bd_contains == bdev) {
1430 if (disk->fops->release)
1431 ret = disk->fops->release(disk, mode);
1432 }
1433 if (!bdev->bd_openers) {
1434 struct module *owner = disk->fops->owner;
1435
1436 put_disk(disk);
1437 module_put(owner);
1438 disk_put_part(bdev->bd_part);
1439 bdev->bd_part = NULL;
1440 bdev->bd_disk = NULL;
1441 bdev_inode_switch_bdi(bdev->bd_inode,
1442 &default_backing_dev_info);
1443 if (bdev != bdev->bd_contains)
1444 victim = bdev->bd_contains;
1445 bdev->bd_contains = NULL;
1446 }
1447 mutex_unlock(&bdev->bd_mutex);
1448 bdput(bdev);
1449 if (victim)
1450 __blkdev_put(victim, mode, 1);
1451 return ret;
1452 }
1453
1454 int blkdev_put(struct block_device *bdev, fmode_t mode)
1455 {
1456 mutex_lock(&bdev->bd_mutex);
1457
1458 if (mode & FMODE_EXCL) {
1459 bool bdev_free;
1460
1461 /*
1462 * Release a claim on the device. The holder fields
1463 * are protected with bdev_lock. bd_mutex is to
1464 * synchronize disk_holder unlinking.
1465 */
1466 spin_lock(&bdev_lock);
1467
1468 WARN_ON_ONCE(--bdev->bd_holders < 0);
1469 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1470
1471 /* bd_contains might point to self, check in a separate step */
1472 if ((bdev_free = !bdev->bd_holders))
1473 bdev->bd_holder = NULL;
1474 if (!bdev->bd_contains->bd_holders)
1475 bdev->bd_contains->bd_holder = NULL;
1476
1477 spin_unlock(&bdev_lock);
1478
1479 /*
1480 * If this was the last claim, remove holder link and
1481 * unblock evpoll if it was a write holder.
1482 */
1483 if (bdev_free && bdev->bd_write_holder) {
1484 disk_unblock_events(bdev->bd_disk);
1485 bdev->bd_write_holder = false;
1486 }
1487 }
1488
1489 /*
1490 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1491 * event. This is to ensure detection of media removal commanded
1492 * from userland - e.g. eject(1).
1493 */
1494 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1495
1496 mutex_unlock(&bdev->bd_mutex);
1497
1498 return __blkdev_put(bdev, mode, 0);
1499 }
1500 EXPORT_SYMBOL(blkdev_put);
1501
1502 static int blkdev_close(struct inode * inode, struct file * filp)
1503 {
1504 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1505
1506 return blkdev_put(bdev, filp->f_mode);
1507 }
1508
1509 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1510 {
1511 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1512 fmode_t mode = file->f_mode;
1513
1514 /*
1515 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1516 * to updated it before every ioctl.
1517 */
1518 if (file->f_flags & O_NDELAY)
1519 mode |= FMODE_NDELAY;
1520 else
1521 mode &= ~FMODE_NDELAY;
1522
1523 return blkdev_ioctl(bdev, mode, cmd, arg);
1524 }
1525
1526 /*
1527 * Write data to the block device. Only intended for the block device itself
1528 * and the raw driver which basically is a fake block device.
1529 *
1530 * Does not take i_mutex for the write and thus is not for general purpose
1531 * use.
1532 */
1533 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1534 unsigned long nr_segs, loff_t pos)
1535 {
1536 struct file *file = iocb->ki_filp;
1537 ssize_t ret;
1538
1539 BUG_ON(iocb->ki_pos != pos);
1540
1541 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1542 if (ret > 0 || ret == -EIOCBQUEUED) {
1543 ssize_t err;
1544
1545 err = generic_write_sync(file, pos, ret);
1546 if (err < 0 && ret > 0)
1547 ret = err;
1548 }
1549 return ret;
1550 }
1551 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1552
1553 /*
1554 * Try to release a page associated with block device when the system
1555 * is under memory pressure.
1556 */
1557 static int blkdev_releasepage(struct page *page, gfp_t wait)
1558 {
1559 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1560
1561 if (super && super->s_op->bdev_try_to_free_page)
1562 return super->s_op->bdev_try_to_free_page(super, page, wait);
1563
1564 return try_to_free_buffers(page);
1565 }
1566
1567 static const struct address_space_operations def_blk_aops = {
1568 .readpage = blkdev_readpage,
1569 .writepage = blkdev_writepage,
1570 .write_begin = blkdev_write_begin,
1571 .write_end = blkdev_write_end,
1572 .writepages = generic_writepages,
1573 .releasepage = blkdev_releasepage,
1574 .direct_IO = blkdev_direct_IO,
1575 };
1576
1577 const struct file_operations def_blk_fops = {
1578 .open = blkdev_open,
1579 .release = blkdev_close,
1580 .llseek = block_llseek,
1581 .read = do_sync_read,
1582 .write = do_sync_write,
1583 .aio_read = generic_file_aio_read,
1584 .aio_write = blkdev_aio_write,
1585 .mmap = generic_file_mmap,
1586 .fsync = blkdev_fsync,
1587 .unlocked_ioctl = block_ioctl,
1588 #ifdef CONFIG_COMPAT
1589 .compat_ioctl = compat_blkdev_ioctl,
1590 #endif
1591 .splice_read = generic_file_splice_read,
1592 .splice_write = generic_file_splice_write,
1593 };
1594
1595 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1596 {
1597 int res;
1598 mm_segment_t old_fs = get_fs();
1599 set_fs(KERNEL_DS);
1600 res = blkdev_ioctl(bdev, 0, cmd, arg);
1601 set_fs(old_fs);
1602 return res;
1603 }
1604
1605 EXPORT_SYMBOL(ioctl_by_bdev);
1606
1607 /**
1608 * lookup_bdev - lookup a struct block_device by name
1609 * @pathname: special file representing the block device
1610 *
1611 * Get a reference to the blockdevice at @pathname in the current
1612 * namespace if possible and return it. Return ERR_PTR(error)
1613 * otherwise.
1614 */
1615 struct block_device *lookup_bdev(const char *pathname)
1616 {
1617 struct block_device *bdev;
1618 struct inode *inode;
1619 struct path path;
1620 int error;
1621
1622 if (!pathname || !*pathname)
1623 return ERR_PTR(-EINVAL);
1624
1625 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1626 if (error)
1627 return ERR_PTR(error);
1628
1629 inode = path.dentry->d_inode;
1630 error = -ENOTBLK;
1631 if (!S_ISBLK(inode->i_mode))
1632 goto fail;
1633 error = -EACCES;
1634 if (path.mnt->mnt_flags & MNT_NODEV)
1635 goto fail;
1636 error = -ENOMEM;
1637 bdev = bd_acquire(inode);
1638 if (!bdev)
1639 goto fail;
1640 out:
1641 path_put(&path);
1642 return bdev;
1643 fail:
1644 bdev = ERR_PTR(error);
1645 goto out;
1646 }
1647 EXPORT_SYMBOL(lookup_bdev);
1648
1649 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1650 {
1651 struct super_block *sb = get_super(bdev);
1652 int res = 0;
1653
1654 if (sb) {
1655 /*
1656 * no need to lock the super, get_super holds the
1657 * read mutex so the filesystem cannot go away
1658 * under us (->put_super runs with the write lock
1659 * hold).
1660 */
1661 shrink_dcache_sb(sb);
1662 res = invalidate_inodes(sb, kill_dirty);
1663 drop_super(sb);
1664 }
1665 invalidate_bdev(bdev);
1666 return res;
1667 }
1668 EXPORT_SYMBOL(__invalidate_device);
This page took 0.089772 seconds and 6 git commands to generate.