dax: guarantee page aligned results from bdev_direct_access()
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static struct inode *bdev_file_inode(struct file *file)
160 {
161 return file->f_mapping->host;
162 }
163
164 static ssize_t
165 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
166 {
167 struct file *file = iocb->ki_filp;
168 struct inode *inode = bdev_file_inode(file);
169
170 if (IS_DAX(inode))
171 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
172 NULL, DIO_SKIP_DIO_COUNT);
173 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
174 blkdev_get_block, NULL, NULL,
175 DIO_SKIP_DIO_COUNT);
176 }
177
178 int __sync_blockdev(struct block_device *bdev, int wait)
179 {
180 if (!bdev)
181 return 0;
182 if (!wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
185 }
186
187 /*
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
190 */
191 int sync_blockdev(struct block_device *bdev)
192 {
193 return __sync_blockdev(bdev, 1);
194 }
195 EXPORT_SYMBOL(sync_blockdev);
196
197 /*
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
201 */
202 int fsync_bdev(struct block_device *bdev)
203 {
204 struct super_block *sb = get_super(bdev);
205 if (sb) {
206 int res = sync_filesystem(sb);
207 drop_super(sb);
208 return res;
209 }
210 return sync_blockdev(bdev);
211 }
212 EXPORT_SYMBOL(fsync_bdev);
213
214 /**
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
217 *
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
224 * actually.
225 */
226 struct super_block *freeze_bdev(struct block_device *bdev)
227 {
228 struct super_block *sb;
229 int error = 0;
230
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
233 /*
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
237 */
238 sb = get_super(bdev);
239 drop_super(sb);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb;
242 }
243
244 sb = get_active_super(bdev);
245 if (!sb)
246 goto out;
247 if (sb->s_op->freeze_super)
248 error = sb->s_op->freeze_super(sb);
249 else
250 error = freeze_super(sb);
251 if (error) {
252 deactivate_super(sb);
253 bdev->bd_fsfreeze_count--;
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return ERR_PTR(error);
256 }
257 deactivate_super(sb);
258 out:
259 sync_blockdev(bdev);
260 mutex_unlock(&bdev->bd_fsfreeze_mutex);
261 return sb; /* thaw_bdev releases s->s_umount */
262 }
263 EXPORT_SYMBOL(freeze_bdev);
264
265 /**
266 * thaw_bdev -- unlock filesystem
267 * @bdev: blockdevice to unlock
268 * @sb: associated superblock
269 *
270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
271 */
272 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
273 {
274 int error = -EINVAL;
275
276 mutex_lock(&bdev->bd_fsfreeze_mutex);
277 if (!bdev->bd_fsfreeze_count)
278 goto out;
279
280 error = 0;
281 if (--bdev->bd_fsfreeze_count > 0)
282 goto out;
283
284 if (!sb)
285 goto out;
286
287 if (sb->s_op->thaw_super)
288 error = sb->s_op->thaw_super(sb);
289 else
290 error = thaw_super(sb);
291 if (error) {
292 bdev->bd_fsfreeze_count++;
293 mutex_unlock(&bdev->bd_fsfreeze_mutex);
294 return error;
295 }
296 out:
297 mutex_unlock(&bdev->bd_fsfreeze_mutex);
298 return 0;
299 }
300 EXPORT_SYMBOL(thaw_bdev);
301
302 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
303 {
304 return block_write_full_page(page, blkdev_get_block, wbc);
305 }
306
307 static int blkdev_readpage(struct file * file, struct page * page)
308 {
309 return block_read_full_page(page, blkdev_get_block);
310 }
311
312 static int blkdev_readpages(struct file *file, struct address_space *mapping,
313 struct list_head *pages, unsigned nr_pages)
314 {
315 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
316 }
317
318 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
319 loff_t pos, unsigned len, unsigned flags,
320 struct page **pagep, void **fsdata)
321 {
322 return block_write_begin(mapping, pos, len, flags, pagep,
323 blkdev_get_block);
324 }
325
326 static int blkdev_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
329 {
330 int ret;
331 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
332
333 unlock_page(page);
334 page_cache_release(page);
335
336 return ret;
337 }
338
339 /*
340 * private llseek:
341 * for a block special file file_inode(file)->i_size is zero
342 * so we compute the size by hand (just as in block_read/write above)
343 */
344 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
345 {
346 struct inode *bd_inode = bdev_file_inode(file);
347 loff_t retval;
348
349 mutex_lock(&bd_inode->i_mutex);
350 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
351 mutex_unlock(&bd_inode->i_mutex);
352 return retval;
353 }
354
355 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
356 {
357 struct inode *bd_inode = bdev_file_inode(filp);
358 struct block_device *bdev = I_BDEV(bd_inode);
359 int error;
360
361 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
362 if (error)
363 return error;
364
365 /*
366 * There is no need to serialise calls to blkdev_issue_flush with
367 * i_mutex and doing so causes performance issues with concurrent
368 * O_SYNC writers to a block device.
369 */
370 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
371 if (error == -EOPNOTSUPP)
372 error = 0;
373
374 return error;
375 }
376 EXPORT_SYMBOL(blkdev_fsync);
377
378 /**
379 * bdev_read_page() - Start reading a page from a block device
380 * @bdev: The device to read the page from
381 * @sector: The offset on the device to read the page to (need not be aligned)
382 * @page: The page to read
383 *
384 * On entry, the page should be locked. It will be unlocked when the page
385 * has been read. If the block driver implements rw_page synchronously,
386 * that will be true on exit from this function, but it need not be.
387 *
388 * Errors returned by this function are usually "soft", eg out of memory, or
389 * queue full; callers should try a different route to read this page rather
390 * than propagate an error back up the stack.
391 *
392 * Return: negative errno if an error occurs, 0 if submission was successful.
393 */
394 int bdev_read_page(struct block_device *bdev, sector_t sector,
395 struct page *page)
396 {
397 const struct block_device_operations *ops = bdev->bd_disk->fops;
398 int result = -EOPNOTSUPP;
399
400 if (!ops->rw_page || bdev_get_integrity(bdev))
401 return result;
402
403 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
404 if (result)
405 return result;
406 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
407 blk_queue_exit(bdev->bd_queue);
408 return result;
409 }
410 EXPORT_SYMBOL_GPL(bdev_read_page);
411
412 /**
413 * bdev_write_page() - Start writing a page to a block device
414 * @bdev: The device to write the page to
415 * @sector: The offset on the device to write the page to (need not be aligned)
416 * @page: The page to write
417 * @wbc: The writeback_control for the write
418 *
419 * On entry, the page should be locked and not currently under writeback.
420 * On exit, if the write started successfully, the page will be unlocked and
421 * under writeback. If the write failed already (eg the driver failed to
422 * queue the page to the device), the page will still be locked. If the
423 * caller is a ->writepage implementation, it will need to unlock the page.
424 *
425 * Errors returned by this function are usually "soft", eg out of memory, or
426 * queue full; callers should try a different route to write this page rather
427 * than propagate an error back up the stack.
428 *
429 * Return: negative errno if an error occurs, 0 if submission was successful.
430 */
431 int bdev_write_page(struct block_device *bdev, sector_t sector,
432 struct page *page, struct writeback_control *wbc)
433 {
434 int result;
435 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
436 const struct block_device_operations *ops = bdev->bd_disk->fops;
437
438 if (!ops->rw_page || bdev_get_integrity(bdev))
439 return -EOPNOTSUPP;
440 result = blk_queue_enter(bdev->bd_queue, GFP_NOIO);
441 if (result)
442 return result;
443
444 set_page_writeback(page);
445 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
446 if (result)
447 end_page_writeback(page);
448 else
449 unlock_page(page);
450 blk_queue_exit(bdev->bd_queue);
451 return result;
452 }
453 EXPORT_SYMBOL_GPL(bdev_write_page);
454
455 /**
456 * bdev_direct_access() - Get the address for directly-accessibly memory
457 * @bdev: The device containing the memory
458 * @sector: The offset within the device
459 * @addr: Where to put the address of the memory
460 * @pfn: The Page Frame Number for the memory
461 * @size: The number of bytes requested
462 *
463 * If a block device is made up of directly addressable memory, this function
464 * will tell the caller the PFN and the address of the memory. The address
465 * may be directly dereferenced within the kernel without the need to call
466 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
467 * page tables.
468 *
469 * Return: negative errno if an error occurs, otherwise the number of bytes
470 * accessible at this address.
471 */
472 long bdev_direct_access(struct block_device *bdev, sector_t sector,
473 void __pmem **addr, unsigned long *pfn, long size)
474 {
475 long avail;
476 const struct block_device_operations *ops = bdev->bd_disk->fops;
477
478 /*
479 * The device driver is allowed to sleep, in order to make the
480 * memory directly accessible.
481 */
482 might_sleep();
483
484 if (size < 0)
485 return size;
486 if (!ops->direct_access)
487 return -EOPNOTSUPP;
488 if ((sector + DIV_ROUND_UP(size, 512)) >
489 part_nr_sects_read(bdev->bd_part))
490 return -ERANGE;
491 sector += get_start_sect(bdev);
492 if (sector % (PAGE_SIZE / 512))
493 return -EINVAL;
494 avail = ops->direct_access(bdev, sector, addr, pfn);
495 if (!avail)
496 return -ERANGE;
497 if (avail > 0 && avail & ~PAGE_MASK)
498 return -ENXIO;
499 return min(avail, size);
500 }
501 EXPORT_SYMBOL_GPL(bdev_direct_access);
502
503 /*
504 * pseudo-fs
505 */
506
507 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
508 static struct kmem_cache * bdev_cachep __read_mostly;
509
510 static struct inode *bdev_alloc_inode(struct super_block *sb)
511 {
512 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
513 if (!ei)
514 return NULL;
515 return &ei->vfs_inode;
516 }
517
518 static void bdev_i_callback(struct rcu_head *head)
519 {
520 struct inode *inode = container_of(head, struct inode, i_rcu);
521 struct bdev_inode *bdi = BDEV_I(inode);
522
523 kmem_cache_free(bdev_cachep, bdi);
524 }
525
526 static void bdev_destroy_inode(struct inode *inode)
527 {
528 call_rcu(&inode->i_rcu, bdev_i_callback);
529 }
530
531 static void init_once(void *foo)
532 {
533 struct bdev_inode *ei = (struct bdev_inode *) foo;
534 struct block_device *bdev = &ei->bdev;
535
536 memset(bdev, 0, sizeof(*bdev));
537 mutex_init(&bdev->bd_mutex);
538 INIT_LIST_HEAD(&bdev->bd_inodes);
539 INIT_LIST_HEAD(&bdev->bd_list);
540 #ifdef CONFIG_SYSFS
541 INIT_LIST_HEAD(&bdev->bd_holder_disks);
542 #endif
543 inode_init_once(&ei->vfs_inode);
544 /* Initialize mutex for freeze. */
545 mutex_init(&bdev->bd_fsfreeze_mutex);
546 }
547
548 static inline void __bd_forget(struct inode *inode)
549 {
550 list_del_init(&inode->i_devices);
551 inode->i_bdev = NULL;
552 inode->i_mapping = &inode->i_data;
553 }
554
555 static void bdev_evict_inode(struct inode *inode)
556 {
557 struct block_device *bdev = &BDEV_I(inode)->bdev;
558 struct list_head *p;
559 truncate_inode_pages_final(&inode->i_data);
560 invalidate_inode_buffers(inode); /* is it needed here? */
561 clear_inode(inode);
562 spin_lock(&bdev_lock);
563 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
564 __bd_forget(list_entry(p, struct inode, i_devices));
565 }
566 list_del_init(&bdev->bd_list);
567 spin_unlock(&bdev_lock);
568 }
569
570 static const struct super_operations bdev_sops = {
571 .statfs = simple_statfs,
572 .alloc_inode = bdev_alloc_inode,
573 .destroy_inode = bdev_destroy_inode,
574 .drop_inode = generic_delete_inode,
575 .evict_inode = bdev_evict_inode,
576 };
577
578 static struct dentry *bd_mount(struct file_system_type *fs_type,
579 int flags, const char *dev_name, void *data)
580 {
581 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
582 }
583
584 static struct file_system_type bd_type = {
585 .name = "bdev",
586 .mount = bd_mount,
587 .kill_sb = kill_anon_super,
588 };
589
590 struct super_block *blockdev_superblock __read_mostly;
591 EXPORT_SYMBOL_GPL(blockdev_superblock);
592
593 void __init bdev_cache_init(void)
594 {
595 int err;
596 static struct vfsmount *bd_mnt;
597
598 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
599 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
600 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
601 init_once);
602 err = register_filesystem(&bd_type);
603 if (err)
604 panic("Cannot register bdev pseudo-fs");
605 bd_mnt = kern_mount(&bd_type);
606 if (IS_ERR(bd_mnt))
607 panic("Cannot create bdev pseudo-fs");
608 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
609 }
610
611 /*
612 * Most likely _very_ bad one - but then it's hardly critical for small
613 * /dev and can be fixed when somebody will need really large one.
614 * Keep in mind that it will be fed through icache hash function too.
615 */
616 static inline unsigned long hash(dev_t dev)
617 {
618 return MAJOR(dev)+MINOR(dev);
619 }
620
621 static int bdev_test(struct inode *inode, void *data)
622 {
623 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
624 }
625
626 static int bdev_set(struct inode *inode, void *data)
627 {
628 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
629 return 0;
630 }
631
632 static LIST_HEAD(all_bdevs);
633
634 struct block_device *bdget(dev_t dev)
635 {
636 struct block_device *bdev;
637 struct inode *inode;
638
639 inode = iget5_locked(blockdev_superblock, hash(dev),
640 bdev_test, bdev_set, &dev);
641
642 if (!inode)
643 return NULL;
644
645 bdev = &BDEV_I(inode)->bdev;
646
647 if (inode->i_state & I_NEW) {
648 bdev->bd_contains = NULL;
649 bdev->bd_super = NULL;
650 bdev->bd_inode = inode;
651 bdev->bd_block_size = (1 << inode->i_blkbits);
652 bdev->bd_part_count = 0;
653 bdev->bd_invalidated = 0;
654 inode->i_mode = S_IFBLK;
655 inode->i_rdev = dev;
656 inode->i_bdev = bdev;
657 inode->i_data.a_ops = &def_blk_aops;
658 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
659 spin_lock(&bdev_lock);
660 list_add(&bdev->bd_list, &all_bdevs);
661 spin_unlock(&bdev_lock);
662 unlock_new_inode(inode);
663 }
664 return bdev;
665 }
666
667 EXPORT_SYMBOL(bdget);
668
669 /**
670 * bdgrab -- Grab a reference to an already referenced block device
671 * @bdev: Block device to grab a reference to.
672 */
673 struct block_device *bdgrab(struct block_device *bdev)
674 {
675 ihold(bdev->bd_inode);
676 return bdev;
677 }
678 EXPORT_SYMBOL(bdgrab);
679
680 long nr_blockdev_pages(void)
681 {
682 struct block_device *bdev;
683 long ret = 0;
684 spin_lock(&bdev_lock);
685 list_for_each_entry(bdev, &all_bdevs, bd_list) {
686 ret += bdev->bd_inode->i_mapping->nrpages;
687 }
688 spin_unlock(&bdev_lock);
689 return ret;
690 }
691
692 void bdput(struct block_device *bdev)
693 {
694 iput(bdev->bd_inode);
695 }
696
697 EXPORT_SYMBOL(bdput);
698
699 static struct block_device *bd_acquire(struct inode *inode)
700 {
701 struct block_device *bdev;
702
703 spin_lock(&bdev_lock);
704 bdev = inode->i_bdev;
705 if (bdev) {
706 ihold(bdev->bd_inode);
707 spin_unlock(&bdev_lock);
708 return bdev;
709 }
710 spin_unlock(&bdev_lock);
711
712 bdev = bdget(inode->i_rdev);
713 if (bdev) {
714 spin_lock(&bdev_lock);
715 if (!inode->i_bdev) {
716 /*
717 * We take an additional reference to bd_inode,
718 * and it's released in clear_inode() of inode.
719 * So, we can access it via ->i_mapping always
720 * without igrab().
721 */
722 ihold(bdev->bd_inode);
723 inode->i_bdev = bdev;
724 inode->i_mapping = bdev->bd_inode->i_mapping;
725 list_add(&inode->i_devices, &bdev->bd_inodes);
726 }
727 spin_unlock(&bdev_lock);
728 }
729 return bdev;
730 }
731
732 /* Call when you free inode */
733
734 void bd_forget(struct inode *inode)
735 {
736 struct block_device *bdev = NULL;
737
738 spin_lock(&bdev_lock);
739 if (!sb_is_blkdev_sb(inode->i_sb))
740 bdev = inode->i_bdev;
741 __bd_forget(inode);
742 spin_unlock(&bdev_lock);
743
744 if (bdev)
745 iput(bdev->bd_inode);
746 }
747
748 /**
749 * bd_may_claim - test whether a block device can be claimed
750 * @bdev: block device of interest
751 * @whole: whole block device containing @bdev, may equal @bdev
752 * @holder: holder trying to claim @bdev
753 *
754 * Test whether @bdev can be claimed by @holder.
755 *
756 * CONTEXT:
757 * spin_lock(&bdev_lock).
758 *
759 * RETURNS:
760 * %true if @bdev can be claimed, %false otherwise.
761 */
762 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
763 void *holder)
764 {
765 if (bdev->bd_holder == holder)
766 return true; /* already a holder */
767 else if (bdev->bd_holder != NULL)
768 return false; /* held by someone else */
769 else if (bdev->bd_contains == bdev)
770 return true; /* is a whole device which isn't held */
771
772 else if (whole->bd_holder == bd_may_claim)
773 return true; /* is a partition of a device that is being partitioned */
774 else if (whole->bd_holder != NULL)
775 return false; /* is a partition of a held device */
776 else
777 return true; /* is a partition of an un-held device */
778 }
779
780 /**
781 * bd_prepare_to_claim - prepare to claim a block device
782 * @bdev: block device of interest
783 * @whole: the whole device containing @bdev, may equal @bdev
784 * @holder: holder trying to claim @bdev
785 *
786 * Prepare to claim @bdev. This function fails if @bdev is already
787 * claimed by another holder and waits if another claiming is in
788 * progress. This function doesn't actually claim. On successful
789 * return, the caller has ownership of bd_claiming and bd_holder[s].
790 *
791 * CONTEXT:
792 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
793 * it multiple times.
794 *
795 * RETURNS:
796 * 0 if @bdev can be claimed, -EBUSY otherwise.
797 */
798 static int bd_prepare_to_claim(struct block_device *bdev,
799 struct block_device *whole, void *holder)
800 {
801 retry:
802 /* if someone else claimed, fail */
803 if (!bd_may_claim(bdev, whole, holder))
804 return -EBUSY;
805
806 /* if claiming is already in progress, wait for it to finish */
807 if (whole->bd_claiming) {
808 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
809 DEFINE_WAIT(wait);
810
811 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
812 spin_unlock(&bdev_lock);
813 schedule();
814 finish_wait(wq, &wait);
815 spin_lock(&bdev_lock);
816 goto retry;
817 }
818
819 /* yay, all mine */
820 return 0;
821 }
822
823 /**
824 * bd_start_claiming - start claiming a block device
825 * @bdev: block device of interest
826 * @holder: holder trying to claim @bdev
827 *
828 * @bdev is about to be opened exclusively. Check @bdev can be opened
829 * exclusively and mark that an exclusive open is in progress. Each
830 * successful call to this function must be matched with a call to
831 * either bd_finish_claiming() or bd_abort_claiming() (which do not
832 * fail).
833 *
834 * This function is used to gain exclusive access to the block device
835 * without actually causing other exclusive open attempts to fail. It
836 * should be used when the open sequence itself requires exclusive
837 * access but may subsequently fail.
838 *
839 * CONTEXT:
840 * Might sleep.
841 *
842 * RETURNS:
843 * Pointer to the block device containing @bdev on success, ERR_PTR()
844 * value on failure.
845 */
846 static struct block_device *bd_start_claiming(struct block_device *bdev,
847 void *holder)
848 {
849 struct gendisk *disk;
850 struct block_device *whole;
851 int partno, err;
852
853 might_sleep();
854
855 /*
856 * @bdev might not have been initialized properly yet, look up
857 * and grab the outer block device the hard way.
858 */
859 disk = get_gendisk(bdev->bd_dev, &partno);
860 if (!disk)
861 return ERR_PTR(-ENXIO);
862
863 /*
864 * Normally, @bdev should equal what's returned from bdget_disk()
865 * if partno is 0; however, some drivers (floppy) use multiple
866 * bdev's for the same physical device and @bdev may be one of the
867 * aliases. Keep @bdev if partno is 0. This means claimer
868 * tracking is broken for those devices but it has always been that
869 * way.
870 */
871 if (partno)
872 whole = bdget_disk(disk, 0);
873 else
874 whole = bdgrab(bdev);
875
876 module_put(disk->fops->owner);
877 put_disk(disk);
878 if (!whole)
879 return ERR_PTR(-ENOMEM);
880
881 /* prepare to claim, if successful, mark claiming in progress */
882 spin_lock(&bdev_lock);
883
884 err = bd_prepare_to_claim(bdev, whole, holder);
885 if (err == 0) {
886 whole->bd_claiming = holder;
887 spin_unlock(&bdev_lock);
888 return whole;
889 } else {
890 spin_unlock(&bdev_lock);
891 bdput(whole);
892 return ERR_PTR(err);
893 }
894 }
895
896 #ifdef CONFIG_SYSFS
897 struct bd_holder_disk {
898 struct list_head list;
899 struct gendisk *disk;
900 int refcnt;
901 };
902
903 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
904 struct gendisk *disk)
905 {
906 struct bd_holder_disk *holder;
907
908 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
909 if (holder->disk == disk)
910 return holder;
911 return NULL;
912 }
913
914 static int add_symlink(struct kobject *from, struct kobject *to)
915 {
916 return sysfs_create_link(from, to, kobject_name(to));
917 }
918
919 static void del_symlink(struct kobject *from, struct kobject *to)
920 {
921 sysfs_remove_link(from, kobject_name(to));
922 }
923
924 /**
925 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
926 * @bdev: the claimed slave bdev
927 * @disk: the holding disk
928 *
929 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
930 *
931 * This functions creates the following sysfs symlinks.
932 *
933 * - from "slaves" directory of the holder @disk to the claimed @bdev
934 * - from "holders" directory of the @bdev to the holder @disk
935 *
936 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
937 * passed to bd_link_disk_holder(), then:
938 *
939 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
940 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
941 *
942 * The caller must have claimed @bdev before calling this function and
943 * ensure that both @bdev and @disk are valid during the creation and
944 * lifetime of these symlinks.
945 *
946 * CONTEXT:
947 * Might sleep.
948 *
949 * RETURNS:
950 * 0 on success, -errno on failure.
951 */
952 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
953 {
954 struct bd_holder_disk *holder;
955 int ret = 0;
956
957 mutex_lock(&bdev->bd_mutex);
958
959 WARN_ON_ONCE(!bdev->bd_holder);
960
961 /* FIXME: remove the following once add_disk() handles errors */
962 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
963 goto out_unlock;
964
965 holder = bd_find_holder_disk(bdev, disk);
966 if (holder) {
967 holder->refcnt++;
968 goto out_unlock;
969 }
970
971 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
972 if (!holder) {
973 ret = -ENOMEM;
974 goto out_unlock;
975 }
976
977 INIT_LIST_HEAD(&holder->list);
978 holder->disk = disk;
979 holder->refcnt = 1;
980
981 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
982 if (ret)
983 goto out_free;
984
985 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
986 if (ret)
987 goto out_del;
988 /*
989 * bdev could be deleted beneath us which would implicitly destroy
990 * the holder directory. Hold on to it.
991 */
992 kobject_get(bdev->bd_part->holder_dir);
993
994 list_add(&holder->list, &bdev->bd_holder_disks);
995 goto out_unlock;
996
997 out_del:
998 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
999 out_free:
1000 kfree(holder);
1001 out_unlock:
1002 mutex_unlock(&bdev->bd_mutex);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1006
1007 /**
1008 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1009 * @bdev: the calimed slave bdev
1010 * @disk: the holding disk
1011 *
1012 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1013 *
1014 * CONTEXT:
1015 * Might sleep.
1016 */
1017 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1018 {
1019 struct bd_holder_disk *holder;
1020
1021 mutex_lock(&bdev->bd_mutex);
1022
1023 holder = bd_find_holder_disk(bdev, disk);
1024
1025 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1026 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1027 del_symlink(bdev->bd_part->holder_dir,
1028 &disk_to_dev(disk)->kobj);
1029 kobject_put(bdev->bd_part->holder_dir);
1030 list_del_init(&holder->list);
1031 kfree(holder);
1032 }
1033
1034 mutex_unlock(&bdev->bd_mutex);
1035 }
1036 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1037 #endif
1038
1039 /**
1040 * flush_disk - invalidates all buffer-cache entries on a disk
1041 *
1042 * @bdev: struct block device to be flushed
1043 * @kill_dirty: flag to guide handling of dirty inodes
1044 *
1045 * Invalidates all buffer-cache entries on a disk. It should be called
1046 * when a disk has been changed -- either by a media change or online
1047 * resize.
1048 */
1049 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1050 {
1051 if (__invalidate_device(bdev, kill_dirty)) {
1052 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1053 "resized disk %s\n",
1054 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1055 }
1056
1057 if (!bdev->bd_disk)
1058 return;
1059 if (disk_part_scan_enabled(bdev->bd_disk))
1060 bdev->bd_invalidated = 1;
1061 }
1062
1063 /**
1064 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1065 * @disk: struct gendisk to check
1066 * @bdev: struct bdev to adjust.
1067 *
1068 * This routine checks to see if the bdev size does not match the disk size
1069 * and adjusts it if it differs.
1070 */
1071 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1072 {
1073 loff_t disk_size, bdev_size;
1074
1075 disk_size = (loff_t)get_capacity(disk) << 9;
1076 bdev_size = i_size_read(bdev->bd_inode);
1077 if (disk_size != bdev_size) {
1078 printk(KERN_INFO
1079 "%s: detected capacity change from %lld to %lld\n",
1080 disk->disk_name, bdev_size, disk_size);
1081 i_size_write(bdev->bd_inode, disk_size);
1082 flush_disk(bdev, false);
1083 }
1084 }
1085 EXPORT_SYMBOL(check_disk_size_change);
1086
1087 /**
1088 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1089 * @disk: struct gendisk to be revalidated
1090 *
1091 * This routine is a wrapper for lower-level driver's revalidate_disk
1092 * call-backs. It is used to do common pre and post operations needed
1093 * for all revalidate_disk operations.
1094 */
1095 int revalidate_disk(struct gendisk *disk)
1096 {
1097 struct block_device *bdev;
1098 int ret = 0;
1099
1100 if (disk->fops->revalidate_disk)
1101 ret = disk->fops->revalidate_disk(disk);
1102 blk_integrity_revalidate(disk);
1103 bdev = bdget_disk(disk, 0);
1104 if (!bdev)
1105 return ret;
1106
1107 mutex_lock(&bdev->bd_mutex);
1108 check_disk_size_change(disk, bdev);
1109 bdev->bd_invalidated = 0;
1110 mutex_unlock(&bdev->bd_mutex);
1111 bdput(bdev);
1112 return ret;
1113 }
1114 EXPORT_SYMBOL(revalidate_disk);
1115
1116 /*
1117 * This routine checks whether a removable media has been changed,
1118 * and invalidates all buffer-cache-entries in that case. This
1119 * is a relatively slow routine, so we have to try to minimize using
1120 * it. Thus it is called only upon a 'mount' or 'open'. This
1121 * is the best way of combining speed and utility, I think.
1122 * People changing diskettes in the middle of an operation deserve
1123 * to lose :-)
1124 */
1125 int check_disk_change(struct block_device *bdev)
1126 {
1127 struct gendisk *disk = bdev->bd_disk;
1128 const struct block_device_operations *bdops = disk->fops;
1129 unsigned int events;
1130
1131 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1132 DISK_EVENT_EJECT_REQUEST);
1133 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1134 return 0;
1135
1136 flush_disk(bdev, true);
1137 if (bdops->revalidate_disk)
1138 bdops->revalidate_disk(bdev->bd_disk);
1139 return 1;
1140 }
1141
1142 EXPORT_SYMBOL(check_disk_change);
1143
1144 void bd_set_size(struct block_device *bdev, loff_t size)
1145 {
1146 unsigned bsize = bdev_logical_block_size(bdev);
1147
1148 mutex_lock(&bdev->bd_inode->i_mutex);
1149 i_size_write(bdev->bd_inode, size);
1150 mutex_unlock(&bdev->bd_inode->i_mutex);
1151 while (bsize < PAGE_CACHE_SIZE) {
1152 if (size & bsize)
1153 break;
1154 bsize <<= 1;
1155 }
1156 bdev->bd_block_size = bsize;
1157 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1158 }
1159 EXPORT_SYMBOL(bd_set_size);
1160
1161 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1162
1163 /*
1164 * bd_mutex locking:
1165 *
1166 * mutex_lock(part->bd_mutex)
1167 * mutex_lock_nested(whole->bd_mutex, 1)
1168 */
1169
1170 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1171 {
1172 struct gendisk *disk;
1173 struct module *owner;
1174 int ret;
1175 int partno;
1176 int perm = 0;
1177
1178 if (mode & FMODE_READ)
1179 perm |= MAY_READ;
1180 if (mode & FMODE_WRITE)
1181 perm |= MAY_WRITE;
1182 /*
1183 * hooks: /n/, see "layering violations".
1184 */
1185 if (!for_part) {
1186 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1187 if (ret != 0) {
1188 bdput(bdev);
1189 return ret;
1190 }
1191 }
1192
1193 restart:
1194
1195 ret = -ENXIO;
1196 disk = get_gendisk(bdev->bd_dev, &partno);
1197 if (!disk)
1198 goto out;
1199 owner = disk->fops->owner;
1200
1201 disk_block_events(disk);
1202 mutex_lock_nested(&bdev->bd_mutex, for_part);
1203 if (!bdev->bd_openers) {
1204 bdev->bd_disk = disk;
1205 bdev->bd_queue = disk->queue;
1206 bdev->bd_contains = bdev;
1207 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1208 if (!partno) {
1209 ret = -ENXIO;
1210 bdev->bd_part = disk_get_part(disk, partno);
1211 if (!bdev->bd_part)
1212 goto out_clear;
1213
1214 ret = 0;
1215 if (disk->fops->open) {
1216 ret = disk->fops->open(bdev, mode);
1217 if (ret == -ERESTARTSYS) {
1218 /* Lost a race with 'disk' being
1219 * deleted, try again.
1220 * See md.c
1221 */
1222 disk_put_part(bdev->bd_part);
1223 bdev->bd_part = NULL;
1224 bdev->bd_disk = NULL;
1225 bdev->bd_queue = NULL;
1226 mutex_unlock(&bdev->bd_mutex);
1227 disk_unblock_events(disk);
1228 put_disk(disk);
1229 module_put(owner);
1230 goto restart;
1231 }
1232 }
1233
1234 if (!ret) {
1235 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1236 if (!blkdev_dax_capable(bdev))
1237 bdev->bd_inode->i_flags &= ~S_DAX;
1238 }
1239
1240 /*
1241 * If the device is invalidated, rescan partition
1242 * if open succeeded or failed with -ENOMEDIUM.
1243 * The latter is necessary to prevent ghost
1244 * partitions on a removed medium.
1245 */
1246 if (bdev->bd_invalidated) {
1247 if (!ret)
1248 rescan_partitions(disk, bdev);
1249 else if (ret == -ENOMEDIUM)
1250 invalidate_partitions(disk, bdev);
1251 }
1252
1253 if (ret)
1254 goto out_clear;
1255 } else {
1256 struct block_device *whole;
1257 whole = bdget_disk(disk, 0);
1258 ret = -ENOMEM;
1259 if (!whole)
1260 goto out_clear;
1261 BUG_ON(for_part);
1262 ret = __blkdev_get(whole, mode, 1);
1263 if (ret)
1264 goto out_clear;
1265 bdev->bd_contains = whole;
1266 bdev->bd_part = disk_get_part(disk, partno);
1267 if (!(disk->flags & GENHD_FL_UP) ||
1268 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1269 ret = -ENXIO;
1270 goto out_clear;
1271 }
1272 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1273 if (!blkdev_dax_capable(bdev))
1274 bdev->bd_inode->i_flags &= ~S_DAX;
1275 }
1276 } else {
1277 if (bdev->bd_contains == bdev) {
1278 ret = 0;
1279 if (bdev->bd_disk->fops->open)
1280 ret = bdev->bd_disk->fops->open(bdev, mode);
1281 /* the same as first opener case, read comment there */
1282 if (bdev->bd_invalidated) {
1283 if (!ret)
1284 rescan_partitions(bdev->bd_disk, bdev);
1285 else if (ret == -ENOMEDIUM)
1286 invalidate_partitions(bdev->bd_disk, bdev);
1287 }
1288 if (ret)
1289 goto out_unlock_bdev;
1290 }
1291 /* only one opener holds refs to the module and disk */
1292 put_disk(disk);
1293 module_put(owner);
1294 }
1295 bdev->bd_openers++;
1296 if (for_part)
1297 bdev->bd_part_count++;
1298 mutex_unlock(&bdev->bd_mutex);
1299 disk_unblock_events(disk);
1300 return 0;
1301
1302 out_clear:
1303 disk_put_part(bdev->bd_part);
1304 bdev->bd_disk = NULL;
1305 bdev->bd_part = NULL;
1306 bdev->bd_queue = NULL;
1307 if (bdev != bdev->bd_contains)
1308 __blkdev_put(bdev->bd_contains, mode, 1);
1309 bdev->bd_contains = NULL;
1310 out_unlock_bdev:
1311 mutex_unlock(&bdev->bd_mutex);
1312 disk_unblock_events(disk);
1313 put_disk(disk);
1314 module_put(owner);
1315 out:
1316 bdput(bdev);
1317
1318 return ret;
1319 }
1320
1321 /**
1322 * blkdev_get - open a block device
1323 * @bdev: block_device to open
1324 * @mode: FMODE_* mask
1325 * @holder: exclusive holder identifier
1326 *
1327 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1328 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1329 * @holder is invalid. Exclusive opens may nest for the same @holder.
1330 *
1331 * On success, the reference count of @bdev is unchanged. On failure,
1332 * @bdev is put.
1333 *
1334 * CONTEXT:
1335 * Might sleep.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1341 {
1342 struct block_device *whole = NULL;
1343 int res;
1344
1345 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1346
1347 if ((mode & FMODE_EXCL) && holder) {
1348 whole = bd_start_claiming(bdev, holder);
1349 if (IS_ERR(whole)) {
1350 bdput(bdev);
1351 return PTR_ERR(whole);
1352 }
1353 }
1354
1355 res = __blkdev_get(bdev, mode, 0);
1356
1357 if (whole) {
1358 struct gendisk *disk = whole->bd_disk;
1359
1360 /* finish claiming */
1361 mutex_lock(&bdev->bd_mutex);
1362 spin_lock(&bdev_lock);
1363
1364 if (!res) {
1365 BUG_ON(!bd_may_claim(bdev, whole, holder));
1366 /*
1367 * Note that for a whole device bd_holders
1368 * will be incremented twice, and bd_holder
1369 * will be set to bd_may_claim before being
1370 * set to holder
1371 */
1372 whole->bd_holders++;
1373 whole->bd_holder = bd_may_claim;
1374 bdev->bd_holders++;
1375 bdev->bd_holder = holder;
1376 }
1377
1378 /* tell others that we're done */
1379 BUG_ON(whole->bd_claiming != holder);
1380 whole->bd_claiming = NULL;
1381 wake_up_bit(&whole->bd_claiming, 0);
1382
1383 spin_unlock(&bdev_lock);
1384
1385 /*
1386 * Block event polling for write claims if requested. Any
1387 * write holder makes the write_holder state stick until
1388 * all are released. This is good enough and tracking
1389 * individual writeable reference is too fragile given the
1390 * way @mode is used in blkdev_get/put().
1391 */
1392 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1393 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1394 bdev->bd_write_holder = true;
1395 disk_block_events(disk);
1396 }
1397
1398 mutex_unlock(&bdev->bd_mutex);
1399 bdput(whole);
1400 }
1401
1402 return res;
1403 }
1404 EXPORT_SYMBOL(blkdev_get);
1405
1406 /**
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1411 *
1412 * Open the blockdevice described by the device file at @path. @mode
1413 * and @holder are identical to blkdev_get().
1414 *
1415 * On success, the returned block_device has reference count of one.
1416 *
1417 * CONTEXT:
1418 * Might sleep.
1419 *
1420 * RETURNS:
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422 */
1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 void *holder)
1425 {
1426 struct block_device *bdev;
1427 int err;
1428
1429 bdev = lookup_bdev(path);
1430 if (IS_ERR(bdev))
1431 return bdev;
1432
1433 err = blkdev_get(bdev, mode, holder);
1434 if (err)
1435 return ERR_PTR(err);
1436
1437 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 blkdev_put(bdev, mode);
1439 return ERR_PTR(-EACCES);
1440 }
1441
1442 return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1445
1446 /**
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1451 *
1452 * Open the blockdevice described by device number @dev. @mode and
1453 * @holder are identical to blkdev_get().
1454 *
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number. _Never_ to be used for internal purposes. If you
1458 * ever need it - reconsider your API.
1459 *
1460 * On success, the returned block_device has reference count of one.
1461 *
1462 * CONTEXT:
1463 * Might sleep.
1464 *
1465 * RETURNS:
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467 */
1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469 {
1470 struct block_device *bdev;
1471 int err;
1472
1473 bdev = bdget(dev);
1474 if (!bdev)
1475 return ERR_PTR(-ENOMEM);
1476
1477 err = blkdev_get(bdev, mode, holder);
1478 if (err)
1479 return ERR_PTR(err);
1480
1481 return bdev;
1482 }
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1484
1485 static int blkdev_open(struct inode * inode, struct file * filp)
1486 {
1487 struct block_device *bdev;
1488
1489 /*
1490 * Preserve backwards compatibility and allow large file access
1491 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 * binary needs it. We might want to drop this workaround
1493 * during an unstable branch.
1494 */
1495 filp->f_flags |= O_LARGEFILE;
1496
1497 if (filp->f_flags & O_NDELAY)
1498 filp->f_mode |= FMODE_NDELAY;
1499 if (filp->f_flags & O_EXCL)
1500 filp->f_mode |= FMODE_EXCL;
1501 if ((filp->f_flags & O_ACCMODE) == 3)
1502 filp->f_mode |= FMODE_WRITE_IOCTL;
1503
1504 bdev = bd_acquire(inode);
1505 if (bdev == NULL)
1506 return -ENOMEM;
1507
1508 filp->f_mapping = bdev->bd_inode->i_mapping;
1509
1510 return blkdev_get(bdev, filp->f_mode, filp);
1511 }
1512
1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514 {
1515 struct gendisk *disk = bdev->bd_disk;
1516 struct block_device *victim = NULL;
1517
1518 mutex_lock_nested(&bdev->bd_mutex, for_part);
1519 if (for_part)
1520 bdev->bd_part_count--;
1521
1522 if (!--bdev->bd_openers) {
1523 WARN_ON_ONCE(bdev->bd_holders);
1524 sync_blockdev(bdev);
1525 kill_bdev(bdev);
1526
1527 bdev_write_inode(bdev);
1528 /*
1529 * Detaching bdev inode from its wb in __destroy_inode()
1530 * is too late: the queue which embeds its bdi (along with
1531 * root wb) can be gone as soon as we put_disk() below.
1532 */
1533 inode_detach_wb(bdev->bd_inode);
1534 }
1535 if (bdev->bd_contains == bdev) {
1536 if (disk->fops->release)
1537 disk->fops->release(disk, mode);
1538 }
1539 if (!bdev->bd_openers) {
1540 struct module *owner = disk->fops->owner;
1541
1542 disk_put_part(bdev->bd_part);
1543 bdev->bd_part = NULL;
1544 bdev->bd_disk = NULL;
1545 if (bdev != bdev->bd_contains)
1546 victim = bdev->bd_contains;
1547 bdev->bd_contains = NULL;
1548
1549 put_disk(disk);
1550 module_put(owner);
1551 }
1552 mutex_unlock(&bdev->bd_mutex);
1553 bdput(bdev);
1554 if (victim)
1555 __blkdev_put(victim, mode, 1);
1556 }
1557
1558 void blkdev_put(struct block_device *bdev, fmode_t mode)
1559 {
1560 mutex_lock(&bdev->bd_mutex);
1561
1562 if (mode & FMODE_EXCL) {
1563 bool bdev_free;
1564
1565 /*
1566 * Release a claim on the device. The holder fields
1567 * are protected with bdev_lock. bd_mutex is to
1568 * synchronize disk_holder unlinking.
1569 */
1570 spin_lock(&bdev_lock);
1571
1572 WARN_ON_ONCE(--bdev->bd_holders < 0);
1573 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1574
1575 /* bd_contains might point to self, check in a separate step */
1576 if ((bdev_free = !bdev->bd_holders))
1577 bdev->bd_holder = NULL;
1578 if (!bdev->bd_contains->bd_holders)
1579 bdev->bd_contains->bd_holder = NULL;
1580
1581 spin_unlock(&bdev_lock);
1582
1583 /*
1584 * If this was the last claim, remove holder link and
1585 * unblock evpoll if it was a write holder.
1586 */
1587 if (bdev_free && bdev->bd_write_holder) {
1588 disk_unblock_events(bdev->bd_disk);
1589 bdev->bd_write_holder = false;
1590 }
1591 }
1592
1593 /*
1594 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1595 * event. This is to ensure detection of media removal commanded
1596 * from userland - e.g. eject(1).
1597 */
1598 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1599
1600 mutex_unlock(&bdev->bd_mutex);
1601
1602 __blkdev_put(bdev, mode, 0);
1603 }
1604 EXPORT_SYMBOL(blkdev_put);
1605
1606 static int blkdev_close(struct inode * inode, struct file * filp)
1607 {
1608 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1609 blkdev_put(bdev, filp->f_mode);
1610 return 0;
1611 }
1612
1613 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1614 {
1615 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1616 fmode_t mode = file->f_mode;
1617
1618 /*
1619 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1620 * to updated it before every ioctl.
1621 */
1622 if (file->f_flags & O_NDELAY)
1623 mode |= FMODE_NDELAY;
1624 else
1625 mode &= ~FMODE_NDELAY;
1626
1627 return blkdev_ioctl(bdev, mode, cmd, arg);
1628 }
1629
1630 /*
1631 * Write data to the block device. Only intended for the block device itself
1632 * and the raw driver which basically is a fake block device.
1633 *
1634 * Does not take i_mutex for the write and thus is not for general purpose
1635 * use.
1636 */
1637 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1638 {
1639 struct file *file = iocb->ki_filp;
1640 struct inode *bd_inode = bdev_file_inode(file);
1641 loff_t size = i_size_read(bd_inode);
1642 struct blk_plug plug;
1643 ssize_t ret;
1644
1645 if (bdev_read_only(I_BDEV(bd_inode)))
1646 return -EPERM;
1647
1648 if (!iov_iter_count(from))
1649 return 0;
1650
1651 if (iocb->ki_pos >= size)
1652 return -ENOSPC;
1653
1654 iov_iter_truncate(from, size - iocb->ki_pos);
1655
1656 blk_start_plug(&plug);
1657 ret = __generic_file_write_iter(iocb, from);
1658 if (ret > 0) {
1659 ssize_t err;
1660 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1661 if (err < 0)
1662 ret = err;
1663 }
1664 blk_finish_plug(&plug);
1665 return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1668
1669 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1670 {
1671 struct file *file = iocb->ki_filp;
1672 struct inode *bd_inode = bdev_file_inode(file);
1673 loff_t size = i_size_read(bd_inode);
1674 loff_t pos = iocb->ki_pos;
1675
1676 if (pos >= size)
1677 return 0;
1678
1679 size -= pos;
1680 iov_iter_truncate(to, size);
1681 return generic_file_read_iter(iocb, to);
1682 }
1683 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1684
1685 /*
1686 * Try to release a page associated with block device when the system
1687 * is under memory pressure.
1688 */
1689 static int blkdev_releasepage(struct page *page, gfp_t wait)
1690 {
1691 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1692
1693 if (super && super->s_op->bdev_try_to_free_page)
1694 return super->s_op->bdev_try_to_free_page(super, page, wait);
1695
1696 return try_to_free_buffers(page);
1697 }
1698
1699 static const struct address_space_operations def_blk_aops = {
1700 .readpage = blkdev_readpage,
1701 .readpages = blkdev_readpages,
1702 .writepage = blkdev_writepage,
1703 .write_begin = blkdev_write_begin,
1704 .write_end = blkdev_write_end,
1705 .writepages = generic_writepages,
1706 .releasepage = blkdev_releasepage,
1707 .direct_IO = blkdev_direct_IO,
1708 .is_dirty_writeback = buffer_check_dirty_writeback,
1709 };
1710
1711 #ifdef CONFIG_FS_DAX
1712 /*
1713 * In the raw block case we do not need to contend with truncation nor
1714 * unwritten file extents. Without those concerns there is no need for
1715 * additional locking beyond the mmap_sem context that these routines
1716 * are already executing under.
1717 *
1718 * Note, there is no protection if the block device is dynamically
1719 * resized (partition grow/shrink) during a fault. A stable block device
1720 * size is already not enforced in the blkdev_direct_IO path.
1721 *
1722 * For DAX, it is the responsibility of the block device driver to
1723 * ensure the whole-disk device size is stable while requests are in
1724 * flight.
1725 *
1726 * Finally, unlike the filemap_page_mkwrite() case there is no
1727 * filesystem superblock to sync against freezing. We still include a
1728 * pfn_mkwrite callback for dax drivers to receive write fault
1729 * notifications.
1730 */
1731 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1732 {
1733 return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1734 }
1735
1736 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1737 pmd_t *pmd, unsigned int flags)
1738 {
1739 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1740 }
1741
1742 static void blkdev_vm_open(struct vm_area_struct *vma)
1743 {
1744 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1745 struct block_device *bdev = I_BDEV(bd_inode);
1746
1747 mutex_lock(&bd_inode->i_mutex);
1748 bdev->bd_map_count++;
1749 mutex_unlock(&bd_inode->i_mutex);
1750 }
1751
1752 static void blkdev_vm_close(struct vm_area_struct *vma)
1753 {
1754 struct inode *bd_inode = bdev_file_inode(vma->vm_file);
1755 struct block_device *bdev = I_BDEV(bd_inode);
1756
1757 mutex_lock(&bd_inode->i_mutex);
1758 bdev->bd_map_count--;
1759 mutex_unlock(&bd_inode->i_mutex);
1760 }
1761
1762 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1763 .open = blkdev_vm_open,
1764 .close = blkdev_vm_close,
1765 .fault = blkdev_dax_fault,
1766 .pmd_fault = blkdev_dax_pmd_fault,
1767 .pfn_mkwrite = blkdev_dax_fault,
1768 };
1769
1770 static const struct vm_operations_struct blkdev_default_vm_ops = {
1771 .open = blkdev_vm_open,
1772 .close = blkdev_vm_close,
1773 .fault = filemap_fault,
1774 .map_pages = filemap_map_pages,
1775 };
1776
1777 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1778 {
1779 struct inode *bd_inode = bdev_file_inode(file);
1780 struct block_device *bdev = I_BDEV(bd_inode);
1781
1782 file_accessed(file);
1783 mutex_lock(&bd_inode->i_mutex);
1784 bdev->bd_map_count++;
1785 if (IS_DAX(bd_inode)) {
1786 vma->vm_ops = &blkdev_dax_vm_ops;
1787 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1788 } else {
1789 vma->vm_ops = &blkdev_default_vm_ops;
1790 }
1791 mutex_unlock(&bd_inode->i_mutex);
1792
1793 return 0;
1794 }
1795 #else
1796 #define blkdev_mmap generic_file_mmap
1797 #endif
1798
1799 const struct file_operations def_blk_fops = {
1800 .open = blkdev_open,
1801 .release = blkdev_close,
1802 .llseek = block_llseek,
1803 .read_iter = blkdev_read_iter,
1804 .write_iter = blkdev_write_iter,
1805 .mmap = blkdev_mmap,
1806 .fsync = blkdev_fsync,
1807 .unlocked_ioctl = block_ioctl,
1808 #ifdef CONFIG_COMPAT
1809 .compat_ioctl = compat_blkdev_ioctl,
1810 #endif
1811 .splice_read = generic_file_splice_read,
1812 .splice_write = iter_file_splice_write,
1813 };
1814
1815 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1816 {
1817 int res;
1818 mm_segment_t old_fs = get_fs();
1819 set_fs(KERNEL_DS);
1820 res = blkdev_ioctl(bdev, 0, cmd, arg);
1821 set_fs(old_fs);
1822 return res;
1823 }
1824
1825 EXPORT_SYMBOL(ioctl_by_bdev);
1826
1827 /**
1828 * lookup_bdev - lookup a struct block_device by name
1829 * @pathname: special file representing the block device
1830 *
1831 * Get a reference to the blockdevice at @pathname in the current
1832 * namespace if possible and return it. Return ERR_PTR(error)
1833 * otherwise.
1834 */
1835 struct block_device *lookup_bdev(const char *pathname)
1836 {
1837 struct block_device *bdev;
1838 struct inode *inode;
1839 struct path path;
1840 int error;
1841
1842 if (!pathname || !*pathname)
1843 return ERR_PTR(-EINVAL);
1844
1845 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1846 if (error)
1847 return ERR_PTR(error);
1848
1849 inode = d_backing_inode(path.dentry);
1850 error = -ENOTBLK;
1851 if (!S_ISBLK(inode->i_mode))
1852 goto fail;
1853 error = -EACCES;
1854 if (path.mnt->mnt_flags & MNT_NODEV)
1855 goto fail;
1856 error = -ENOMEM;
1857 bdev = bd_acquire(inode);
1858 if (!bdev)
1859 goto fail;
1860 out:
1861 path_put(&path);
1862 return bdev;
1863 fail:
1864 bdev = ERR_PTR(error);
1865 goto out;
1866 }
1867 EXPORT_SYMBOL(lookup_bdev);
1868
1869 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1870 {
1871 struct super_block *sb = get_super(bdev);
1872 int res = 0;
1873
1874 if (sb) {
1875 /*
1876 * no need to lock the super, get_super holds the
1877 * read mutex so the filesystem cannot go away
1878 * under us (->put_super runs with the write lock
1879 * hold).
1880 */
1881 shrink_dcache_sb(sb);
1882 res = invalidate_inodes(sb, kill_dirty);
1883 drop_super(sb);
1884 }
1885 invalidate_bdev(bdev);
1886 return res;
1887 }
1888 EXPORT_SYMBOL(__invalidate_device);
1889
1890 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1891 {
1892 struct inode *inode, *old_inode = NULL;
1893
1894 spin_lock(&blockdev_superblock->s_inode_list_lock);
1895 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1896 struct address_space *mapping = inode->i_mapping;
1897
1898 spin_lock(&inode->i_lock);
1899 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1900 mapping->nrpages == 0) {
1901 spin_unlock(&inode->i_lock);
1902 continue;
1903 }
1904 __iget(inode);
1905 spin_unlock(&inode->i_lock);
1906 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1907 /*
1908 * We hold a reference to 'inode' so it couldn't have been
1909 * removed from s_inodes list while we dropped the
1910 * s_inode_list_lock We cannot iput the inode now as we can
1911 * be holding the last reference and we cannot iput it under
1912 * s_inode_list_lock. So we keep the reference and iput it
1913 * later.
1914 */
1915 iput(old_inode);
1916 old_inode = inode;
1917
1918 func(I_BDEV(inode), arg);
1919
1920 spin_lock(&blockdev_superblock->s_inode_list_lock);
1921 }
1922 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1923 iput(old_inode);
1924 }
This page took 0.129122 seconds and 6 git commands to generate.