Btrfs: bugfix in btrfs_find_parent_nodes
[deliverable/linux.git] / fs / btrfs / backref.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "backref.h"
22 #include "ulist.h"
23 #include "transaction.h"
24 #include "delayed-ref.h"
25 #include "locking.h"
26
27 /*
28 * this structure records all encountered refs on the way up to the root
29 */
30 struct __prelim_ref {
31 struct list_head list;
32 u64 root_id;
33 struct btrfs_key key;
34 int level;
35 int count;
36 u64 parent;
37 u64 wanted_disk_byte;
38 };
39
40 static int __add_prelim_ref(struct list_head *head, u64 root_id,
41 struct btrfs_key *key, int level, u64 parent,
42 u64 wanted_disk_byte, int count)
43 {
44 struct __prelim_ref *ref;
45
46 /* in case we're adding delayed refs, we're holding the refs spinlock */
47 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
48 if (!ref)
49 return -ENOMEM;
50
51 ref->root_id = root_id;
52 if (key)
53 ref->key = *key;
54 else
55 memset(&ref->key, 0, sizeof(ref->key));
56
57 ref->level = level;
58 ref->count = count;
59 ref->parent = parent;
60 ref->wanted_disk_byte = wanted_disk_byte;
61 list_add_tail(&ref->list, head);
62
63 return 0;
64 }
65
66 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
67 struct ulist *parents,
68 struct extent_buffer *eb, int level,
69 u64 wanted_objectid, u64 wanted_disk_byte)
70 {
71 int ret;
72 int slot;
73 struct btrfs_file_extent_item *fi;
74 struct btrfs_key key;
75 u64 disk_byte;
76
77 add_parent:
78 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
79 if (ret < 0)
80 return ret;
81
82 if (level != 0)
83 return 0;
84
85 /*
86 * if the current leaf is full with EXTENT_DATA items, we must
87 * check the next one if that holds a reference as well.
88 * ref->count cannot be used to skip this check.
89 * repeat this until we don't find any additional EXTENT_DATA items.
90 */
91 while (1) {
92 ret = btrfs_next_leaf(root, path);
93 if (ret < 0)
94 return ret;
95 if (ret)
96 return 0;
97
98 eb = path->nodes[0];
99 for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
100 btrfs_item_key_to_cpu(eb, &key, slot);
101 if (key.objectid != wanted_objectid ||
102 key.type != BTRFS_EXTENT_DATA_KEY)
103 return 0;
104 fi = btrfs_item_ptr(eb, slot,
105 struct btrfs_file_extent_item);
106 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107 if (disk_byte == wanted_disk_byte)
108 goto add_parent;
109 }
110 }
111
112 return 0;
113 }
114
115 /*
116 * resolve an indirect backref in the form (root_id, key, level)
117 * to a logical address
118 */
119 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
120 int search_commit_root,
121 struct __prelim_ref *ref,
122 struct ulist *parents)
123 {
124 struct btrfs_path *path;
125 struct btrfs_root *root;
126 struct btrfs_key root_key;
127 struct btrfs_key key = {0};
128 struct extent_buffer *eb;
129 int ret = 0;
130 int root_level;
131 int level = ref->level;
132
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
136 path->search_commit_root = !!search_commit_root;
137
138 root_key.objectid = ref->root_id;
139 root_key.type = BTRFS_ROOT_ITEM_KEY;
140 root_key.offset = (u64)-1;
141 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
142 if (IS_ERR(root)) {
143 ret = PTR_ERR(root);
144 goto out;
145 }
146
147 rcu_read_lock();
148 root_level = btrfs_header_level(root->node);
149 rcu_read_unlock();
150
151 if (root_level + 1 == level)
152 goto out;
153
154 path->lowest_level = level;
155 ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
156 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
157 "%d for key (%llu %u %llu)\n",
158 (unsigned long long)ref->root_id, level, ref->count, ret,
159 (unsigned long long)ref->key.objectid, ref->key.type,
160 (unsigned long long)ref->key.offset);
161 if (ret < 0)
162 goto out;
163
164 eb = path->nodes[level];
165 if (!eb) {
166 WARN_ON(1);
167 ret = 1;
168 goto out;
169 }
170
171 if (level == 0) {
172 if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
173 ret = btrfs_next_leaf(root, path);
174 if (ret)
175 goto out;
176 eb = path->nodes[0];
177 }
178
179 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
180 }
181
182 /* the last two parameters will only be used for level == 0 */
183 ret = add_all_parents(root, path, parents, eb, level, key.objectid,
184 ref->wanted_disk_byte);
185 out:
186 btrfs_free_path(path);
187 return ret;
188 }
189
190 /*
191 * resolve all indirect backrefs from the list
192 */
193 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
194 int search_commit_root,
195 struct list_head *head)
196 {
197 int err;
198 int ret = 0;
199 struct __prelim_ref *ref;
200 struct __prelim_ref *ref_safe;
201 struct __prelim_ref *new_ref;
202 struct ulist *parents;
203 struct ulist_node *node;
204 struct ulist_iterator uiter;
205
206 parents = ulist_alloc(GFP_NOFS);
207 if (!parents)
208 return -ENOMEM;
209
210 /*
211 * _safe allows us to insert directly after the current item without
212 * iterating over the newly inserted items.
213 * we're also allowed to re-assign ref during iteration.
214 */
215 list_for_each_entry_safe(ref, ref_safe, head, list) {
216 if (ref->parent) /* already direct */
217 continue;
218 if (ref->count == 0)
219 continue;
220 err = __resolve_indirect_ref(fs_info, search_commit_root,
221 ref, parents);
222 if (err) {
223 if (ret == 0)
224 ret = err;
225 continue;
226 }
227
228 /* we put the first parent into the ref at hand */
229 ULIST_ITER_INIT(&uiter);
230 node = ulist_next(parents, &uiter);
231 ref->parent = node ? node->val : 0;
232
233 /* additional parents require new refs being added here */
234 while ((node = ulist_next(parents, &uiter))) {
235 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
236 if (!new_ref) {
237 ret = -ENOMEM;
238 break;
239 }
240 memcpy(new_ref, ref, sizeof(*ref));
241 new_ref->parent = node->val;
242 list_add(&new_ref->list, &ref->list);
243 }
244 ulist_reinit(parents);
245 }
246
247 ulist_free(parents);
248 return ret;
249 }
250
251 /*
252 * merge two lists of backrefs and adjust counts accordingly
253 *
254 * mode = 1: merge identical keys, if key is set
255 * mode = 2: merge identical parents
256 */
257 static int __merge_refs(struct list_head *head, int mode)
258 {
259 struct list_head *pos1;
260
261 list_for_each(pos1, head) {
262 struct list_head *n2;
263 struct list_head *pos2;
264 struct __prelim_ref *ref1;
265
266 ref1 = list_entry(pos1, struct __prelim_ref, list);
267
268 if (mode == 1 && ref1->key.type == 0)
269 continue;
270 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
271 pos2 = n2, n2 = pos2->next) {
272 struct __prelim_ref *ref2;
273
274 ref2 = list_entry(pos2, struct __prelim_ref, list);
275
276 if (mode == 1) {
277 if (memcmp(&ref1->key, &ref2->key,
278 sizeof(ref1->key)) ||
279 ref1->level != ref2->level ||
280 ref1->root_id != ref2->root_id)
281 continue;
282 ref1->count += ref2->count;
283 } else {
284 if (ref1->parent != ref2->parent)
285 continue;
286 ref1->count += ref2->count;
287 }
288 list_del(&ref2->list);
289 kfree(ref2);
290 }
291
292 }
293 return 0;
294 }
295
296 /*
297 * add all currently queued delayed refs from this head whose seq nr is
298 * smaller or equal that seq to the list
299 */
300 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
301 struct btrfs_key *info_key,
302 struct list_head *prefs)
303 {
304 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
305 struct rb_node *n = &head->node.rb_node;
306 int sgn;
307 int ret = 0;
308
309 if (extent_op && extent_op->update_key)
310 btrfs_disk_key_to_cpu(info_key, &extent_op->key);
311
312 while ((n = rb_prev(n))) {
313 struct btrfs_delayed_ref_node *node;
314 node = rb_entry(n, struct btrfs_delayed_ref_node,
315 rb_node);
316 if (node->bytenr != head->node.bytenr)
317 break;
318 WARN_ON(node->is_head);
319
320 if (node->seq > seq)
321 continue;
322
323 switch (node->action) {
324 case BTRFS_ADD_DELAYED_EXTENT:
325 case BTRFS_UPDATE_DELAYED_HEAD:
326 WARN_ON(1);
327 continue;
328 case BTRFS_ADD_DELAYED_REF:
329 sgn = 1;
330 break;
331 case BTRFS_DROP_DELAYED_REF:
332 sgn = -1;
333 break;
334 default:
335 BUG_ON(1);
336 }
337 switch (node->type) {
338 case BTRFS_TREE_BLOCK_REF_KEY: {
339 struct btrfs_delayed_tree_ref *ref;
340
341 ref = btrfs_delayed_node_to_tree_ref(node);
342 ret = __add_prelim_ref(prefs, ref->root, info_key,
343 ref->level + 1, 0, node->bytenr,
344 node->ref_mod * sgn);
345 break;
346 }
347 case BTRFS_SHARED_BLOCK_REF_KEY: {
348 struct btrfs_delayed_tree_ref *ref;
349
350 ref = btrfs_delayed_node_to_tree_ref(node);
351 ret = __add_prelim_ref(prefs, ref->root, info_key,
352 ref->level + 1, ref->parent,
353 node->bytenr,
354 node->ref_mod * sgn);
355 break;
356 }
357 case BTRFS_EXTENT_DATA_REF_KEY: {
358 struct btrfs_delayed_data_ref *ref;
359 struct btrfs_key key;
360
361 ref = btrfs_delayed_node_to_data_ref(node);
362
363 key.objectid = ref->objectid;
364 key.type = BTRFS_EXTENT_DATA_KEY;
365 key.offset = ref->offset;
366 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
367 node->bytenr,
368 node->ref_mod * sgn);
369 break;
370 }
371 case BTRFS_SHARED_DATA_REF_KEY: {
372 struct btrfs_delayed_data_ref *ref;
373 struct btrfs_key key;
374
375 ref = btrfs_delayed_node_to_data_ref(node);
376
377 key.objectid = ref->objectid;
378 key.type = BTRFS_EXTENT_DATA_KEY;
379 key.offset = ref->offset;
380 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
381 ref->parent, node->bytenr,
382 node->ref_mod * sgn);
383 break;
384 }
385 default:
386 WARN_ON(1);
387 }
388 BUG_ON(ret);
389 }
390
391 return 0;
392 }
393
394 /*
395 * add all inline backrefs for bytenr to the list
396 */
397 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
398 struct btrfs_path *path, u64 bytenr,
399 struct btrfs_key *info_key, int *info_level,
400 struct list_head *prefs)
401 {
402 int ret = 0;
403 int slot;
404 struct extent_buffer *leaf;
405 struct btrfs_key key;
406 unsigned long ptr;
407 unsigned long end;
408 struct btrfs_extent_item *ei;
409 u64 flags;
410 u64 item_size;
411
412 /*
413 * enumerate all inline refs
414 */
415 leaf = path->nodes[0];
416 slot = path->slots[0];
417
418 item_size = btrfs_item_size_nr(leaf, slot);
419 BUG_ON(item_size < sizeof(*ei));
420
421 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
422 flags = btrfs_extent_flags(leaf, ei);
423
424 ptr = (unsigned long)(ei + 1);
425 end = (unsigned long)ei + item_size;
426
427 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
428 struct btrfs_tree_block_info *info;
429 struct btrfs_disk_key disk_key;
430
431 info = (struct btrfs_tree_block_info *)ptr;
432 *info_level = btrfs_tree_block_level(leaf, info);
433 btrfs_tree_block_key(leaf, info, &disk_key);
434 btrfs_disk_key_to_cpu(info_key, &disk_key);
435 ptr += sizeof(struct btrfs_tree_block_info);
436 BUG_ON(ptr > end);
437 } else {
438 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
439 }
440
441 while (ptr < end) {
442 struct btrfs_extent_inline_ref *iref;
443 u64 offset;
444 int type;
445
446 iref = (struct btrfs_extent_inline_ref *)ptr;
447 type = btrfs_extent_inline_ref_type(leaf, iref);
448 offset = btrfs_extent_inline_ref_offset(leaf, iref);
449
450 switch (type) {
451 case BTRFS_SHARED_BLOCK_REF_KEY:
452 ret = __add_prelim_ref(prefs, 0, info_key,
453 *info_level + 1, offset,
454 bytenr, 1);
455 break;
456 case BTRFS_SHARED_DATA_REF_KEY: {
457 struct btrfs_shared_data_ref *sdref;
458 int count;
459
460 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
461 count = btrfs_shared_data_ref_count(leaf, sdref);
462 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
463 bytenr, count);
464 break;
465 }
466 case BTRFS_TREE_BLOCK_REF_KEY:
467 ret = __add_prelim_ref(prefs, offset, info_key,
468 *info_level + 1, 0, bytenr, 1);
469 break;
470 case BTRFS_EXTENT_DATA_REF_KEY: {
471 struct btrfs_extent_data_ref *dref;
472 int count;
473 u64 root;
474
475 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
476 count = btrfs_extent_data_ref_count(leaf, dref);
477 key.objectid = btrfs_extent_data_ref_objectid(leaf,
478 dref);
479 key.type = BTRFS_EXTENT_DATA_KEY;
480 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
481 root = btrfs_extent_data_ref_root(leaf, dref);
482 ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
483 count);
484 break;
485 }
486 default:
487 WARN_ON(1);
488 }
489 BUG_ON(ret);
490 ptr += btrfs_extent_inline_ref_size(type);
491 }
492
493 return 0;
494 }
495
496 /*
497 * add all non-inline backrefs for bytenr to the list
498 */
499 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
500 struct btrfs_path *path, u64 bytenr,
501 struct btrfs_key *info_key, int info_level,
502 struct list_head *prefs)
503 {
504 struct btrfs_root *extent_root = fs_info->extent_root;
505 int ret;
506 int slot;
507 struct extent_buffer *leaf;
508 struct btrfs_key key;
509
510 while (1) {
511 ret = btrfs_next_item(extent_root, path);
512 if (ret < 0)
513 break;
514 if (ret) {
515 ret = 0;
516 break;
517 }
518
519 slot = path->slots[0];
520 leaf = path->nodes[0];
521 btrfs_item_key_to_cpu(leaf, &key, slot);
522
523 if (key.objectid != bytenr)
524 break;
525 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
526 continue;
527 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
528 break;
529
530 switch (key.type) {
531 case BTRFS_SHARED_BLOCK_REF_KEY:
532 ret = __add_prelim_ref(prefs, 0, info_key,
533 info_level + 1, key.offset,
534 bytenr, 1);
535 break;
536 case BTRFS_SHARED_DATA_REF_KEY: {
537 struct btrfs_shared_data_ref *sdref;
538 int count;
539
540 sdref = btrfs_item_ptr(leaf, slot,
541 struct btrfs_shared_data_ref);
542 count = btrfs_shared_data_ref_count(leaf, sdref);
543 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
544 bytenr, count);
545 break;
546 }
547 case BTRFS_TREE_BLOCK_REF_KEY:
548 ret = __add_prelim_ref(prefs, key.offset, info_key,
549 info_level + 1, 0, bytenr, 1);
550 break;
551 case BTRFS_EXTENT_DATA_REF_KEY: {
552 struct btrfs_extent_data_ref *dref;
553 int count;
554 u64 root;
555
556 dref = btrfs_item_ptr(leaf, slot,
557 struct btrfs_extent_data_ref);
558 count = btrfs_extent_data_ref_count(leaf, dref);
559 key.objectid = btrfs_extent_data_ref_objectid(leaf,
560 dref);
561 key.type = BTRFS_EXTENT_DATA_KEY;
562 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
563 root = btrfs_extent_data_ref_root(leaf, dref);
564 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
565 bytenr, count);
566 break;
567 }
568 default:
569 WARN_ON(1);
570 }
571 BUG_ON(ret);
572 }
573
574 return ret;
575 }
576
577 /*
578 * this adds all existing backrefs (inline backrefs, backrefs and delayed
579 * refs) for the given bytenr to the refs list, merges duplicates and resolves
580 * indirect refs to their parent bytenr.
581 * When roots are found, they're added to the roots list
582 *
583 * FIXME some caching might speed things up
584 */
585 static int find_parent_nodes(struct btrfs_trans_handle *trans,
586 struct btrfs_fs_info *fs_info, u64 bytenr,
587 u64 seq, struct ulist *refs, struct ulist *roots)
588 {
589 struct btrfs_key key;
590 struct btrfs_path *path;
591 struct btrfs_key info_key = { 0 };
592 struct btrfs_delayed_ref_root *delayed_refs = NULL;
593 struct btrfs_delayed_ref_head *head;
594 int info_level = 0;
595 int ret;
596 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
597 struct list_head prefs_delayed;
598 struct list_head prefs;
599 struct __prelim_ref *ref;
600
601 INIT_LIST_HEAD(&prefs);
602 INIT_LIST_HEAD(&prefs_delayed);
603
604 key.objectid = bytenr;
605 key.type = BTRFS_EXTENT_ITEM_KEY;
606 key.offset = (u64)-1;
607
608 path = btrfs_alloc_path();
609 if (!path)
610 return -ENOMEM;
611 path->search_commit_root = !!search_commit_root;
612
613 /*
614 * grab both a lock on the path and a lock on the delayed ref head.
615 * We need both to get a consistent picture of how the refs look
616 * at a specified point in time
617 */
618 again:
619 head = NULL;
620
621 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
622 if (ret < 0)
623 goto out;
624 BUG_ON(ret == 0);
625
626 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
627 /*
628 * look if there are updates for this ref queued and lock the
629 * head
630 */
631 delayed_refs = &trans->transaction->delayed_refs;
632 spin_lock(&delayed_refs->lock);
633 head = btrfs_find_delayed_ref_head(trans, bytenr);
634 if (head) {
635 if (!mutex_trylock(&head->mutex)) {
636 atomic_inc(&head->node.refs);
637 spin_unlock(&delayed_refs->lock);
638
639 btrfs_release_path(path);
640
641 /*
642 * Mutex was contended, block until it's
643 * released and try again
644 */
645 mutex_lock(&head->mutex);
646 mutex_unlock(&head->mutex);
647 btrfs_put_delayed_ref(&head->node);
648 goto again;
649 }
650 ret = __add_delayed_refs(head, seq, &info_key,
651 &prefs_delayed);
652 if (ret) {
653 spin_unlock(&delayed_refs->lock);
654 goto out;
655 }
656 }
657 spin_unlock(&delayed_refs->lock);
658 }
659
660 if (path->slots[0]) {
661 struct extent_buffer *leaf;
662 int slot;
663
664 path->slots[0]--;
665 leaf = path->nodes[0];
666 slot = path->slots[0];
667 btrfs_item_key_to_cpu(leaf, &key, slot);
668 if (key.objectid == bytenr &&
669 key.type == BTRFS_EXTENT_ITEM_KEY) {
670 ret = __add_inline_refs(fs_info, path, bytenr,
671 &info_key, &info_level, &prefs);
672 if (ret)
673 goto out;
674 ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
675 info_level, &prefs);
676 if (ret)
677 goto out;
678 }
679 }
680 btrfs_release_path(path);
681
682 /*
683 * when adding the delayed refs above, the info_key might not have
684 * been known yet. Go over the list and replace the missing keys
685 */
686 list_for_each_entry(ref, &prefs_delayed, list) {
687 if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
688 memcpy(&ref->key, &info_key, sizeof(ref->key));
689 }
690 list_splice_init(&prefs_delayed, &prefs);
691
692 ret = __merge_refs(&prefs, 1);
693 if (ret)
694 goto out;
695
696 ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
697 if (ret)
698 goto out;
699
700 ret = __merge_refs(&prefs, 2);
701 if (ret)
702 goto out;
703
704 while (!list_empty(&prefs)) {
705 ref = list_first_entry(&prefs, struct __prelim_ref, list);
706 list_del(&ref->list);
707 if (ref->count < 0)
708 WARN_ON(1);
709 if (ref->count && ref->root_id && ref->parent == 0) {
710 /* no parent == root of tree */
711 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
712 BUG_ON(ret < 0);
713 }
714 if (ref->count && ref->parent) {
715 ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
716 BUG_ON(ret < 0);
717 }
718 kfree(ref);
719 }
720
721 out:
722 if (head)
723 mutex_unlock(&head->mutex);
724 btrfs_free_path(path);
725 while (!list_empty(&prefs)) {
726 ref = list_first_entry(&prefs, struct __prelim_ref, list);
727 list_del(&ref->list);
728 kfree(ref);
729 }
730 while (!list_empty(&prefs_delayed)) {
731 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
732 list);
733 list_del(&ref->list);
734 kfree(ref);
735 }
736
737 return ret;
738 }
739
740 /*
741 * Finds all leafs with a reference to the specified combination of bytenr and
742 * offset. key_list_head will point to a list of corresponding keys (caller must
743 * free each list element). The leafs will be stored in the leafs ulist, which
744 * must be freed with ulist_free.
745 *
746 * returns 0 on success, <0 on error
747 */
748 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
749 struct btrfs_fs_info *fs_info, u64 bytenr,
750 u64 num_bytes, u64 seq, struct ulist **leafs)
751 {
752 struct ulist *tmp;
753 int ret;
754
755 tmp = ulist_alloc(GFP_NOFS);
756 if (!tmp)
757 return -ENOMEM;
758 *leafs = ulist_alloc(GFP_NOFS);
759 if (!*leafs) {
760 ulist_free(tmp);
761 return -ENOMEM;
762 }
763
764 ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
765 ulist_free(tmp);
766
767 if (ret < 0 && ret != -ENOENT) {
768 ulist_free(*leafs);
769 return ret;
770 }
771
772 return 0;
773 }
774
775 /*
776 * walk all backrefs for a given extent to find all roots that reference this
777 * extent. Walking a backref means finding all extents that reference this
778 * extent and in turn walk the backrefs of those, too. Naturally this is a
779 * recursive process, but here it is implemented in an iterative fashion: We
780 * find all referencing extents for the extent in question and put them on a
781 * list. In turn, we find all referencing extents for those, further appending
782 * to the list. The way we iterate the list allows adding more elements after
783 * the current while iterating. The process stops when we reach the end of the
784 * list. Found roots are added to the roots list.
785 *
786 * returns 0 on success, < 0 on error.
787 */
788 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
789 struct btrfs_fs_info *fs_info, u64 bytenr,
790 u64 num_bytes, u64 seq, struct ulist **roots)
791 {
792 struct ulist *tmp;
793 struct ulist_node *node = NULL;
794 struct ulist_iterator uiter;
795 int ret;
796
797 tmp = ulist_alloc(GFP_NOFS);
798 if (!tmp)
799 return -ENOMEM;
800 *roots = ulist_alloc(GFP_NOFS);
801 if (!*roots) {
802 ulist_free(tmp);
803 return -ENOMEM;
804 }
805
806 ULIST_ITER_INIT(&uiter);
807 while (1) {
808 ret = find_parent_nodes(trans, fs_info, bytenr, seq,
809 tmp, *roots);
810 if (ret < 0 && ret != -ENOENT) {
811 ulist_free(tmp);
812 ulist_free(*roots);
813 return ret;
814 }
815 node = ulist_next(tmp, &uiter);
816 if (!node)
817 break;
818 bytenr = node->val;
819 }
820
821 ulist_free(tmp);
822 return 0;
823 }
824
825
826 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
827 struct btrfs_root *fs_root, struct btrfs_path *path,
828 struct btrfs_key *found_key)
829 {
830 int ret;
831 struct btrfs_key key;
832 struct extent_buffer *eb;
833
834 key.type = key_type;
835 key.objectid = inum;
836 key.offset = ioff;
837
838 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
839 if (ret < 0)
840 return ret;
841
842 eb = path->nodes[0];
843 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
844 ret = btrfs_next_leaf(fs_root, path);
845 if (ret)
846 return ret;
847 eb = path->nodes[0];
848 }
849
850 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
851 if (found_key->type != key.type || found_key->objectid != key.objectid)
852 return 1;
853
854 return 0;
855 }
856
857 /*
858 * this makes the path point to (inum INODE_ITEM ioff)
859 */
860 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
861 struct btrfs_path *path)
862 {
863 struct btrfs_key key;
864 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
865 &key);
866 }
867
868 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
869 struct btrfs_path *path,
870 struct btrfs_key *found_key)
871 {
872 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
873 found_key);
874 }
875
876 /*
877 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
878 * of the path are separated by '/' and the path is guaranteed to be
879 * 0-terminated. the path is only given within the current file system.
880 * Therefore, it never starts with a '/'. the caller is responsible to provide
881 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
882 * the start point of the resulting string is returned. this pointer is within
883 * dest, normally.
884 * in case the path buffer would overflow, the pointer is decremented further
885 * as if output was written to the buffer, though no more output is actually
886 * generated. that way, the caller can determine how much space would be
887 * required for the path to fit into the buffer. in that case, the returned
888 * value will be smaller than dest. callers must check this!
889 */
890 static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
891 struct btrfs_inode_ref *iref,
892 struct extent_buffer *eb_in, u64 parent,
893 char *dest, u32 size)
894 {
895 u32 len;
896 int slot;
897 u64 next_inum;
898 int ret;
899 s64 bytes_left = size - 1;
900 struct extent_buffer *eb = eb_in;
901 struct btrfs_key found_key;
902 int leave_spinning = path->leave_spinning;
903
904 if (bytes_left >= 0)
905 dest[bytes_left] = '\0';
906
907 path->leave_spinning = 1;
908 while (1) {
909 len = btrfs_inode_ref_name_len(eb, iref);
910 bytes_left -= len;
911 if (bytes_left >= 0)
912 read_extent_buffer(eb, dest + bytes_left,
913 (unsigned long)(iref + 1), len);
914 if (eb != eb_in) {
915 btrfs_tree_read_unlock_blocking(eb);
916 free_extent_buffer(eb);
917 }
918 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
919 if (ret > 0)
920 ret = -ENOENT;
921 if (ret)
922 break;
923 next_inum = found_key.offset;
924
925 /* regular exit ahead */
926 if (parent == next_inum)
927 break;
928
929 slot = path->slots[0];
930 eb = path->nodes[0];
931 /* make sure we can use eb after releasing the path */
932 if (eb != eb_in) {
933 atomic_inc(&eb->refs);
934 btrfs_tree_read_lock(eb);
935 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
936 }
937 btrfs_release_path(path);
938
939 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
940 parent = next_inum;
941 --bytes_left;
942 if (bytes_left >= 0)
943 dest[bytes_left] = '/';
944 }
945
946 btrfs_release_path(path);
947 path->leave_spinning = leave_spinning;
948
949 if (ret)
950 return ERR_PTR(ret);
951
952 return dest + bytes_left;
953 }
954
955 /*
956 * this makes the path point to (logical EXTENT_ITEM *)
957 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
958 * tree blocks and <0 on error.
959 */
960 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
961 struct btrfs_path *path, struct btrfs_key *found_key)
962 {
963 int ret;
964 u64 flags;
965 u32 item_size;
966 struct extent_buffer *eb;
967 struct btrfs_extent_item *ei;
968 struct btrfs_key key;
969
970 key.type = BTRFS_EXTENT_ITEM_KEY;
971 key.objectid = logical;
972 key.offset = (u64)-1;
973
974 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
975 if (ret < 0)
976 return ret;
977 ret = btrfs_previous_item(fs_info->extent_root, path,
978 0, BTRFS_EXTENT_ITEM_KEY);
979 if (ret < 0)
980 return ret;
981
982 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
983 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
984 found_key->objectid > logical ||
985 found_key->objectid + found_key->offset <= logical) {
986 pr_debug("logical %llu is not within any extent\n",
987 (unsigned long long)logical);
988 return -ENOENT;
989 }
990
991 eb = path->nodes[0];
992 item_size = btrfs_item_size_nr(eb, path->slots[0]);
993 BUG_ON(item_size < sizeof(*ei));
994
995 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
996 flags = btrfs_extent_flags(eb, ei);
997
998 pr_debug("logical %llu is at position %llu within the extent (%llu "
999 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1000 (unsigned long long)logical,
1001 (unsigned long long)(logical - found_key->objectid),
1002 (unsigned long long)found_key->objectid,
1003 (unsigned long long)found_key->offset,
1004 (unsigned long long)flags, item_size);
1005 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1006 return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1007 if (flags & BTRFS_EXTENT_FLAG_DATA)
1008 return BTRFS_EXTENT_FLAG_DATA;
1009
1010 return -EIO;
1011 }
1012
1013 /*
1014 * helper function to iterate extent inline refs. ptr must point to a 0 value
1015 * for the first call and may be modified. it is used to track state.
1016 * if more refs exist, 0 is returned and the next call to
1017 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1018 * next ref. after the last ref was processed, 1 is returned.
1019 * returns <0 on error
1020 */
1021 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1022 struct btrfs_extent_item *ei, u32 item_size,
1023 struct btrfs_extent_inline_ref **out_eiref,
1024 int *out_type)
1025 {
1026 unsigned long end;
1027 u64 flags;
1028 struct btrfs_tree_block_info *info;
1029
1030 if (!*ptr) {
1031 /* first call */
1032 flags = btrfs_extent_flags(eb, ei);
1033 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1034 info = (struct btrfs_tree_block_info *)(ei + 1);
1035 *out_eiref =
1036 (struct btrfs_extent_inline_ref *)(info + 1);
1037 } else {
1038 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1039 }
1040 *ptr = (unsigned long)*out_eiref;
1041 if ((void *)*ptr >= (void *)ei + item_size)
1042 return -ENOENT;
1043 }
1044
1045 end = (unsigned long)ei + item_size;
1046 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1047 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1048
1049 *ptr += btrfs_extent_inline_ref_size(*out_type);
1050 WARN_ON(*ptr > end);
1051 if (*ptr == end)
1052 return 1; /* last */
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * reads the tree block backref for an extent. tree level and root are returned
1059 * through out_level and out_root. ptr must point to a 0 value for the first
1060 * call and may be modified (see __get_extent_inline_ref comment).
1061 * returns 0 if data was provided, 1 if there was no more data to provide or
1062 * <0 on error.
1063 */
1064 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1065 struct btrfs_extent_item *ei, u32 item_size,
1066 u64 *out_root, u8 *out_level)
1067 {
1068 int ret;
1069 int type;
1070 struct btrfs_tree_block_info *info;
1071 struct btrfs_extent_inline_ref *eiref;
1072
1073 if (*ptr == (unsigned long)-1)
1074 return 1;
1075
1076 while (1) {
1077 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1078 &eiref, &type);
1079 if (ret < 0)
1080 return ret;
1081
1082 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1083 type == BTRFS_SHARED_BLOCK_REF_KEY)
1084 break;
1085
1086 if (ret == 1)
1087 return 1;
1088 }
1089
1090 /* we can treat both ref types equally here */
1091 info = (struct btrfs_tree_block_info *)(ei + 1);
1092 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1093 *out_level = btrfs_tree_block_level(eb, info);
1094
1095 if (ret == 1)
1096 *ptr = (unsigned long)-1;
1097
1098 return 0;
1099 }
1100
1101 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
1102 u64 orig_extent_item_objectid,
1103 u64 extent_item_pos, u64 root,
1104 iterate_extent_inodes_t *iterate, void *ctx)
1105 {
1106 u64 disk_byte;
1107 struct btrfs_key key;
1108 struct btrfs_file_extent_item *fi;
1109 struct extent_buffer *eb;
1110 int slot;
1111 int nritems;
1112 int ret = 0;
1113 int extent_type;
1114 u64 data_offset;
1115 u64 data_len;
1116
1117 eb = read_tree_block(fs_info->tree_root, logical,
1118 fs_info->tree_root->leafsize, 0);
1119 if (!eb)
1120 return -EIO;
1121
1122 /*
1123 * from the shared data ref, we only have the leaf but we need
1124 * the key. thus, we must look into all items and see that we
1125 * find one (some) with a reference to our extent item.
1126 */
1127 nritems = btrfs_header_nritems(eb);
1128 for (slot = 0; slot < nritems; ++slot) {
1129 btrfs_item_key_to_cpu(eb, &key, slot);
1130 if (key.type != BTRFS_EXTENT_DATA_KEY)
1131 continue;
1132 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
1133 extent_type = btrfs_file_extent_type(eb, fi);
1134 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1135 continue;
1136 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
1137 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1138 if (disk_byte != orig_extent_item_objectid)
1139 continue;
1140
1141 data_offset = btrfs_file_extent_offset(eb, fi);
1142 data_len = btrfs_file_extent_num_bytes(eb, fi);
1143
1144 if (extent_item_pos < data_offset ||
1145 extent_item_pos >= data_offset + data_len)
1146 continue;
1147
1148 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1149 "root %llu\n", orig_extent_item_objectid,
1150 key.objectid, key.offset, root);
1151 ret = iterate(key.objectid,
1152 key.offset + (extent_item_pos - data_offset),
1153 root, ctx);
1154 if (ret) {
1155 pr_debug("stopping iteration because ret=%d\n", ret);
1156 break;
1157 }
1158 }
1159
1160 free_extent_buffer(eb);
1161
1162 return ret;
1163 }
1164
1165 /*
1166 * calls iterate() for every inode that references the extent identified by
1167 * the given parameters.
1168 * when the iterator function returns a non-zero value, iteration stops.
1169 */
1170 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1171 u64 extent_item_objectid, u64 extent_item_pos,
1172 int search_commit_root,
1173 iterate_extent_inodes_t *iterate, void *ctx)
1174 {
1175 int ret;
1176 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1177 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1178 struct btrfs_trans_handle *trans;
1179 struct ulist *refs = NULL;
1180 struct ulist *roots = NULL;
1181 struct ulist_node *ref_node = NULL;
1182 struct ulist_node *root_node = NULL;
1183 struct seq_list seq_elem;
1184 struct ulist_iterator ref_uiter;
1185 struct ulist_iterator root_uiter;
1186 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1187
1188 pr_debug("resolving all inodes for extent %llu\n",
1189 extent_item_objectid);
1190
1191 if (search_commit_root) {
1192 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1193 } else {
1194 trans = btrfs_join_transaction(fs_info->extent_root);
1195 if (IS_ERR(trans))
1196 return PTR_ERR(trans);
1197
1198 delayed_refs = &trans->transaction->delayed_refs;
1199 spin_lock(&delayed_refs->lock);
1200 btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1201 spin_unlock(&delayed_refs->lock);
1202 }
1203
1204 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1205 extent_item_pos, seq_elem.seq,
1206 &refs);
1207
1208 if (ret)
1209 goto out;
1210
1211 ULIST_ITER_INIT(&ref_uiter);
1212 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1213 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
1214 seq_elem.seq, &roots);
1215 if (ret)
1216 break;
1217 ULIST_ITER_INIT(&root_uiter);
1218 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1219 pr_debug("root %llu references leaf %llu\n",
1220 root_node->val, ref_node->val);
1221 ret = iterate_leaf_refs(fs_info, ref_node->val,
1222 extent_item_objectid,
1223 extent_item_pos, root_node->val,
1224 iterate, ctx);
1225 }
1226 }
1227
1228 ulist_free(refs);
1229 ulist_free(roots);
1230 out:
1231 if (!search_commit_root) {
1232 btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1233 btrfs_end_transaction(trans, fs_info->extent_root);
1234 }
1235
1236 return ret;
1237 }
1238
1239 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1240 struct btrfs_path *path,
1241 iterate_extent_inodes_t *iterate, void *ctx)
1242 {
1243 int ret;
1244 u64 extent_item_pos;
1245 struct btrfs_key found_key;
1246 int search_commit_root = path->search_commit_root;
1247
1248 ret = extent_from_logical(fs_info, logical, path,
1249 &found_key);
1250 btrfs_release_path(path);
1251 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1252 ret = -EINVAL;
1253 if (ret < 0)
1254 return ret;
1255
1256 extent_item_pos = logical - found_key.objectid;
1257 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1258 extent_item_pos, search_commit_root,
1259 iterate, ctx);
1260
1261 return ret;
1262 }
1263
1264 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1265 struct btrfs_path *path,
1266 iterate_irefs_t *iterate, void *ctx)
1267 {
1268 int ret = 0;
1269 int slot;
1270 u32 cur;
1271 u32 len;
1272 u32 name_len;
1273 u64 parent = 0;
1274 int found = 0;
1275 struct extent_buffer *eb;
1276 struct btrfs_item *item;
1277 struct btrfs_inode_ref *iref;
1278 struct btrfs_key found_key;
1279
1280 while (!ret) {
1281 path->leave_spinning = 1;
1282 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1283 &found_key);
1284 if (ret < 0)
1285 break;
1286 if (ret) {
1287 ret = found ? 0 : -ENOENT;
1288 break;
1289 }
1290 ++found;
1291
1292 parent = found_key.offset;
1293 slot = path->slots[0];
1294 eb = path->nodes[0];
1295 /* make sure we can use eb after releasing the path */
1296 atomic_inc(&eb->refs);
1297 btrfs_tree_read_lock(eb);
1298 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1299 btrfs_release_path(path);
1300
1301 item = btrfs_item_nr(eb, slot);
1302 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1303
1304 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1305 name_len = btrfs_inode_ref_name_len(eb, iref);
1306 /* path must be released before calling iterate()! */
1307 pr_debug("following ref at offset %u for inode %llu in "
1308 "tree %llu\n", cur,
1309 (unsigned long long)found_key.objectid,
1310 (unsigned long long)fs_root->objectid);
1311 ret = iterate(parent, iref, eb, ctx);
1312 if (ret)
1313 break;
1314 len = sizeof(*iref) + name_len;
1315 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1316 }
1317 btrfs_tree_read_unlock_blocking(eb);
1318 free_extent_buffer(eb);
1319 }
1320
1321 btrfs_release_path(path);
1322
1323 return ret;
1324 }
1325
1326 /*
1327 * returns 0 if the path could be dumped (probably truncated)
1328 * returns <0 in case of an error
1329 */
1330 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1331 struct extent_buffer *eb, void *ctx)
1332 {
1333 struct inode_fs_paths *ipath = ctx;
1334 char *fspath;
1335 char *fspath_min;
1336 int i = ipath->fspath->elem_cnt;
1337 const int s_ptr = sizeof(char *);
1338 u32 bytes_left;
1339
1340 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1341 ipath->fspath->bytes_left - s_ptr : 0;
1342
1343 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1344 fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1345 inum, fspath_min, bytes_left);
1346 if (IS_ERR(fspath))
1347 return PTR_ERR(fspath);
1348
1349 if (fspath > fspath_min) {
1350 pr_debug("path resolved: %s\n", fspath);
1351 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1352 ++ipath->fspath->elem_cnt;
1353 ipath->fspath->bytes_left = fspath - fspath_min;
1354 } else {
1355 pr_debug("missed path, not enough space. missing bytes: %lu, "
1356 "constructed so far: %s\n",
1357 (unsigned long)(fspath_min - fspath), fspath_min);
1358 ++ipath->fspath->elem_missed;
1359 ipath->fspath->bytes_missing += fspath_min - fspath;
1360 ipath->fspath->bytes_left = 0;
1361 }
1362
1363 return 0;
1364 }
1365
1366 /*
1367 * this dumps all file system paths to the inode into the ipath struct, provided
1368 * is has been created large enough. each path is zero-terminated and accessed
1369 * from ipath->fspath->val[i].
1370 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1371 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1372 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1373 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1374 * have been needed to return all paths.
1375 */
1376 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1377 {
1378 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1379 inode_to_path, ipath);
1380 }
1381
1382 struct btrfs_data_container *init_data_container(u32 total_bytes)
1383 {
1384 struct btrfs_data_container *data;
1385 size_t alloc_bytes;
1386
1387 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1388 data = kmalloc(alloc_bytes, GFP_NOFS);
1389 if (!data)
1390 return ERR_PTR(-ENOMEM);
1391
1392 if (total_bytes >= sizeof(*data)) {
1393 data->bytes_left = total_bytes - sizeof(*data);
1394 data->bytes_missing = 0;
1395 } else {
1396 data->bytes_missing = sizeof(*data) - total_bytes;
1397 data->bytes_left = 0;
1398 }
1399
1400 data->elem_cnt = 0;
1401 data->elem_missed = 0;
1402
1403 return data;
1404 }
1405
1406 /*
1407 * allocates space to return multiple file system paths for an inode.
1408 * total_bytes to allocate are passed, note that space usable for actual path
1409 * information will be total_bytes - sizeof(struct inode_fs_paths).
1410 * the returned pointer must be freed with free_ipath() in the end.
1411 */
1412 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1413 struct btrfs_path *path)
1414 {
1415 struct inode_fs_paths *ifp;
1416 struct btrfs_data_container *fspath;
1417
1418 fspath = init_data_container(total_bytes);
1419 if (IS_ERR(fspath))
1420 return (void *)fspath;
1421
1422 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1423 if (!ifp) {
1424 kfree(fspath);
1425 return ERR_PTR(-ENOMEM);
1426 }
1427
1428 ifp->btrfs_path = path;
1429 ifp->fspath = fspath;
1430 ifp->fs_root = fs_root;
1431
1432 return ifp;
1433 }
1434
1435 void free_ipath(struct inode_fs_paths *ipath)
1436 {
1437 if (!ipath)
1438 return;
1439 kfree(ipath->fspath);
1440 kfree(ipath);
1441 }
This page took 0.076457 seconds and 5 git commands to generate.