Btrfs: Some code cleanups
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24 *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26 *root, struct btrfs_key *ins_key,
27 struct btrfs_path *path, int data_size);
28 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct buffer_head *dst, struct buffer_head
30 *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans, struct
32 btrfs_root *root, struct buffer_head *dst_buf,
33 struct buffer_head *src_buf);
34 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
35 struct btrfs_path *path, int level, int slot);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39 memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 struct btrfs_path *path;
45 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
46 if (path)
47 btrfs_init_path(path);
48 return path;
49 }
50
51 void btrfs_free_path(struct btrfs_path *p)
52 {
53 btrfs_release_path(NULL, p);
54 kmem_cache_free(btrfs_path_cachep, p);
55 }
56
57 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i])
62 break;
63 btrfs_block_release(root, p->nodes[i]);
64 }
65 memset(p, 0, sizeof(*p));
66 }
67
68 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
69 *root, struct buffer_head *buf, struct buffer_head
70 *parent, int parent_slot, struct buffer_head
71 **cow_ret)
72 {
73 struct buffer_head *cow;
74 struct btrfs_node *cow_node;
75 int ret;
76
77 WARN_ON(!buffer_uptodate(buf));
78 if (trans->transaction != root->fs_info->running_transaction) {
79 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
80 root->fs_info->running_transaction->transid);
81 WARN_ON(1);
82 }
83 if (trans->transid != root->fs_info->generation) {
84 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
85 root->fs_info->generation);
86 WARN_ON(1);
87 }
88 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
89 trans->transid) {
90 *cow_ret = buf;
91 return 0;
92 }
93 cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
94 if (IS_ERR(cow))
95 return PTR_ERR(cow);
96 cow_node = btrfs_buffer_node(cow);
97 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
98 WARN_ON(1);
99 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
100 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
101 btrfs_set_header_generation(&cow_node->header, trans->transid);
102 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
103 ret = btrfs_inc_ref(trans, root, buf);
104 if (ret)
105 return ret;
106 if (buf == root->node) {
107 root->node = cow;
108 get_bh(cow);
109 if (buf != root->commit_root) {
110 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
111 }
112 btrfs_block_release(root, buf);
113 } else {
114 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
115 bh_blocknr(cow));
116 btrfs_mark_buffer_dirty(parent);
117 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
118 }
119 btrfs_block_release(root, buf);
120 btrfs_mark_buffer_dirty(cow);
121 *cow_ret = cow;
122 return 0;
123 }
124
125 /*
126 * The leaf data grows from end-to-front in the node.
127 * this returns the address of the start of the last item,
128 * which is the stop of the leaf data stack
129 */
130 static inline unsigned int leaf_data_end(struct btrfs_root *root,
131 struct btrfs_leaf *leaf)
132 {
133 u32 nr = btrfs_header_nritems(&leaf->header);
134 if (nr == 0)
135 return BTRFS_LEAF_DATA_SIZE(root);
136 return btrfs_item_offset(leaf->items + nr - 1);
137 }
138
139 /*
140 * compare two keys in a memcmp fashion
141 */
142 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
143 {
144 struct btrfs_key k1;
145
146 btrfs_disk_key_to_cpu(&k1, disk);
147
148 if (k1.objectid > k2->objectid)
149 return 1;
150 if (k1.objectid < k2->objectid)
151 return -1;
152 if (k1.flags > k2->flags)
153 return 1;
154 if (k1.flags < k2->flags)
155 return -1;
156 if (k1.offset > k2->offset)
157 return 1;
158 if (k1.offset < k2->offset)
159 return -1;
160 return 0;
161 }
162
163 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
164 int level)
165 {
166 struct btrfs_node *parent = NULL;
167 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
168 int parent_slot;
169 int slot;
170 struct btrfs_key cpukey;
171 u32 nritems = btrfs_header_nritems(&node->header);
172
173 if (path->nodes[level + 1])
174 parent = btrfs_buffer_node(path->nodes[level + 1]);
175
176 slot = path->slots[level];
177 BUG_ON(nritems == 0);
178 if (parent) {
179 struct btrfs_disk_key *parent_key;
180
181 parent_slot = path->slots[level + 1];
182 parent_key = &parent->ptrs[parent_slot].key;
183 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
184 sizeof(struct btrfs_disk_key)));
185 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
186 btrfs_header_blocknr(&node->header));
187 }
188 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
189 if (slot != 0) {
190 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
191 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
192 }
193 if (slot < nritems - 1) {
194 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
195 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
196 }
197 return 0;
198 }
199
200 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
201 int level)
202 {
203 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
204 struct btrfs_node *parent = NULL;
205 int parent_slot;
206 int slot = path->slots[0];
207 struct btrfs_key cpukey;
208
209 u32 nritems = btrfs_header_nritems(&leaf->header);
210
211 if (path->nodes[level + 1])
212 parent = btrfs_buffer_node(path->nodes[level + 1]);
213
214 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
215
216 if (nritems == 0)
217 return 0;
218
219 if (parent) {
220 struct btrfs_disk_key *parent_key;
221
222 parent_slot = path->slots[level + 1];
223 parent_key = &parent->ptrs[parent_slot].key;
224 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
225 sizeof(struct btrfs_disk_key)));
226 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
227 btrfs_header_blocknr(&leaf->header));
228 }
229 if (slot != 0) {
230 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
231 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
232 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
233 btrfs_item_end(leaf->items + slot));
234 }
235 if (slot < nritems - 1) {
236 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
237 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
238 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
239 btrfs_item_end(leaf->items + slot + 1));
240 }
241 BUG_ON(btrfs_item_offset(leaf->items) +
242 btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
243 return 0;
244 }
245
246 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
247 int level)
248 {
249 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
250 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
251 sizeof(node->header.fsid)))
252 BUG();
253 if (level == 0)
254 return check_leaf(root, path, level);
255 return check_node(root, path, level);
256 }
257
258 /*
259 * search for key in the array p. items p are item_size apart
260 * and there are 'max' items in p
261 * the slot in the array is returned via slot, and it points to
262 * the place where you would insert key if it is not found in
263 * the array.
264 *
265 * slot may point to max if the key is bigger than all of the keys
266 */
267 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
268 int max, int *slot)
269 {
270 int low = 0;
271 int high = max;
272 int mid;
273 int ret;
274 struct btrfs_disk_key *tmp;
275
276 while(low < high) {
277 mid = (low + high) / 2;
278 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
279 ret = comp_keys(tmp, key);
280
281 if (ret < 0)
282 low = mid + 1;
283 else if (ret > 0)
284 high = mid;
285 else {
286 *slot = mid;
287 return 0;
288 }
289 }
290 *slot = low;
291 return 1;
292 }
293
294 /*
295 * simple bin_search frontend that does the right thing for
296 * leaves vs nodes
297 */
298 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
299 {
300 if (btrfs_is_leaf(c)) {
301 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
302 return generic_bin_search((void *)l->items,
303 sizeof(struct btrfs_item),
304 key, btrfs_header_nritems(&c->header),
305 slot);
306 } else {
307 return generic_bin_search((void *)c->ptrs,
308 sizeof(struct btrfs_key_ptr),
309 key, btrfs_header_nritems(&c->header),
310 slot);
311 }
312 return -1;
313 }
314
315 static struct buffer_head *read_node_slot(struct btrfs_root *root,
316 struct buffer_head *parent_buf,
317 int slot)
318 {
319 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
320 if (slot < 0)
321 return NULL;
322 if (slot >= btrfs_header_nritems(&node->header))
323 return NULL;
324 return read_tree_block(root, btrfs_node_blockptr(node, slot));
325 }
326
327 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
328 *root, struct btrfs_path *path, int level)
329 {
330 struct buffer_head *right_buf;
331 struct buffer_head *mid_buf;
332 struct buffer_head *left_buf;
333 struct buffer_head *parent_buf = NULL;
334 struct btrfs_node *right = NULL;
335 struct btrfs_node *mid;
336 struct btrfs_node *left = NULL;
337 struct btrfs_node *parent = NULL;
338 int ret = 0;
339 int wret;
340 int pslot;
341 int orig_slot = path->slots[level];
342 int err_on_enospc = 0;
343 u64 orig_ptr;
344
345 if (level == 0)
346 return 0;
347
348 mid_buf = path->nodes[level];
349 mid = btrfs_buffer_node(mid_buf);
350 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
351
352 if (level < BTRFS_MAX_LEVEL - 1)
353 parent_buf = path->nodes[level + 1];
354 pslot = path->slots[level + 1];
355
356 /*
357 * deal with the case where there is only one pointer in the root
358 * by promoting the node below to a root
359 */
360 if (!parent_buf) {
361 struct buffer_head *child;
362 u64 blocknr = bh_blocknr(mid_buf);
363
364 if (btrfs_header_nritems(&mid->header) != 1)
365 return 0;
366
367 /* promote the child to a root */
368 child = read_node_slot(root, mid_buf, 0);
369 BUG_ON(!child);
370 root->node = child;
371 path->nodes[level] = NULL;
372 clean_tree_block(trans, root, mid_buf);
373 wait_on_buffer(mid_buf);
374 /* once for the path */
375 btrfs_block_release(root, mid_buf);
376 /* once for the root ptr */
377 btrfs_block_release(root, mid_buf);
378 return btrfs_free_extent(trans, root, blocknr, 1, 1);
379 }
380 parent = btrfs_buffer_node(parent_buf);
381
382 if (btrfs_header_nritems(&mid->header) >
383 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
384 return 0;
385
386 if (btrfs_header_nritems(&mid->header) < 2)
387 err_on_enospc = 1;
388
389 left_buf = read_node_slot(root, parent_buf, pslot - 1);
390 right_buf = read_node_slot(root, parent_buf, pslot + 1);
391
392 /* first, try to make some room in the middle buffer */
393 if (left_buf) {
394 wret = btrfs_cow_block(trans, root, left_buf,
395 parent_buf, pslot - 1, &left_buf);
396 if (wret) {
397 ret = wret;
398 goto enospc;
399 }
400 left = btrfs_buffer_node(left_buf);
401 orig_slot += btrfs_header_nritems(&left->header);
402 wret = push_node_left(trans, root, left_buf, mid_buf);
403 if (wret < 0)
404 ret = wret;
405 if (btrfs_header_nritems(&mid->header) < 2)
406 err_on_enospc = 1;
407 }
408
409 /*
410 * then try to empty the right most buffer into the middle
411 */
412 if (right_buf) {
413 wret = btrfs_cow_block(trans, root, right_buf,
414 parent_buf, pslot + 1, &right_buf);
415 if (wret) {
416 ret = wret;
417 goto enospc;
418 }
419
420 right = btrfs_buffer_node(right_buf);
421 wret = push_node_left(trans, root, mid_buf, right_buf);
422 if (wret < 0 && wret != -ENOSPC)
423 ret = wret;
424 if (btrfs_header_nritems(&right->header) == 0) {
425 u64 blocknr = bh_blocknr(right_buf);
426 clean_tree_block(trans, root, right_buf);
427 wait_on_buffer(right_buf);
428 btrfs_block_release(root, right_buf);
429 right_buf = NULL;
430 right = NULL;
431 wret = del_ptr(trans, root, path, level + 1, pslot +
432 1);
433 if (wret)
434 ret = wret;
435 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
436 if (wret)
437 ret = wret;
438 } else {
439 btrfs_memcpy(root, parent,
440 &parent->ptrs[pslot + 1].key,
441 &right->ptrs[0].key,
442 sizeof(struct btrfs_disk_key));
443 btrfs_mark_buffer_dirty(parent_buf);
444 }
445 }
446 if (btrfs_header_nritems(&mid->header) == 1) {
447 /*
448 * we're not allowed to leave a node with one item in the
449 * tree during a delete. A deletion from lower in the tree
450 * could try to delete the only pointer in this node.
451 * So, pull some keys from the left.
452 * There has to be a left pointer at this point because
453 * otherwise we would have pulled some pointers from the
454 * right
455 */
456 BUG_ON(!left_buf);
457 wret = balance_node_right(trans, root, mid_buf, left_buf);
458 if (wret < 0) {
459 ret = wret;
460 goto enospc;
461 }
462 BUG_ON(wret == 1);
463 }
464 if (btrfs_header_nritems(&mid->header) == 0) {
465 /* we've managed to empty the middle node, drop it */
466 u64 blocknr = bh_blocknr(mid_buf);
467 clean_tree_block(trans, root, mid_buf);
468 wait_on_buffer(mid_buf);
469 btrfs_block_release(root, mid_buf);
470 mid_buf = NULL;
471 mid = NULL;
472 wret = del_ptr(trans, root, path, level + 1, pslot);
473 if (wret)
474 ret = wret;
475 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
476 if (wret)
477 ret = wret;
478 } else {
479 /* update the parent key to reflect our changes */
480 btrfs_memcpy(root, parent,
481 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
482 sizeof(struct btrfs_disk_key));
483 btrfs_mark_buffer_dirty(parent_buf);
484 }
485
486 /* update the path */
487 if (left_buf) {
488 if (btrfs_header_nritems(&left->header) > orig_slot) {
489 get_bh(left_buf);
490 path->nodes[level] = left_buf;
491 path->slots[level + 1] -= 1;
492 path->slots[level] = orig_slot;
493 if (mid_buf)
494 btrfs_block_release(root, mid_buf);
495 } else {
496 orig_slot -= btrfs_header_nritems(&left->header);
497 path->slots[level] = orig_slot;
498 }
499 }
500 /* double check we haven't messed things up */
501 check_block(root, path, level);
502 if (orig_ptr !=
503 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
504 path->slots[level]))
505 BUG();
506 enospc:
507 if (right_buf)
508 btrfs_block_release(root, right_buf);
509 if (left_buf)
510 btrfs_block_release(root, left_buf);
511 return ret;
512 }
513
514 /* returns zero if the push worked, non-zero otherwise */
515 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
516 struct btrfs_root *root,
517 struct btrfs_path *path, int level)
518 {
519 struct buffer_head *right_buf;
520 struct buffer_head *mid_buf;
521 struct buffer_head *left_buf;
522 struct buffer_head *parent_buf = NULL;
523 struct btrfs_node *right = NULL;
524 struct btrfs_node *mid;
525 struct btrfs_node *left = NULL;
526 struct btrfs_node *parent = NULL;
527 int ret = 0;
528 int wret;
529 int pslot;
530 int orig_slot = path->slots[level];
531 u64 orig_ptr;
532
533 if (level == 0)
534 return 1;
535
536 mid_buf = path->nodes[level];
537 mid = btrfs_buffer_node(mid_buf);
538 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
539
540 if (level < BTRFS_MAX_LEVEL - 1)
541 parent_buf = path->nodes[level + 1];
542 pslot = path->slots[level + 1];
543
544 if (!parent_buf)
545 return 1;
546 parent = btrfs_buffer_node(parent_buf);
547
548 left_buf = read_node_slot(root, parent_buf, pslot - 1);
549
550 /* first, try to make some room in the middle buffer */
551 if (left_buf) {
552 u32 left_nr;
553 left = btrfs_buffer_node(left_buf);
554 left_nr = btrfs_header_nritems(&left->header);
555 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
556 wret = 1;
557 } else {
558 ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
559 pslot - 1, &left_buf);
560 if (ret)
561 wret = 1;
562 else {
563 left = btrfs_buffer_node(left_buf);
564 wret = push_node_left(trans, root,
565 left_buf, mid_buf);
566 }
567 }
568 if (wret < 0)
569 ret = wret;
570 if (wret == 0) {
571 orig_slot += left_nr;
572 btrfs_memcpy(root, parent,
573 &parent->ptrs[pslot].key,
574 &mid->ptrs[0].key,
575 sizeof(struct btrfs_disk_key));
576 btrfs_mark_buffer_dirty(parent_buf);
577 if (btrfs_header_nritems(&left->header) > orig_slot) {
578 path->nodes[level] = left_buf;
579 path->slots[level + 1] -= 1;
580 path->slots[level] = orig_slot;
581 btrfs_block_release(root, mid_buf);
582 } else {
583 orig_slot -=
584 btrfs_header_nritems(&left->header);
585 path->slots[level] = orig_slot;
586 btrfs_block_release(root, left_buf);
587 }
588 check_node(root, path, level);
589 return 0;
590 }
591 btrfs_block_release(root, left_buf);
592 }
593 right_buf = read_node_slot(root, parent_buf, pslot + 1);
594
595 /*
596 * then try to empty the right most buffer into the middle
597 */
598 if (right_buf) {
599 u32 right_nr;
600 right = btrfs_buffer_node(right_buf);
601 right_nr = btrfs_header_nritems(&right->header);
602 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
603 wret = 1;
604 } else {
605 ret = btrfs_cow_block(trans, root, right_buf,
606 parent_buf, pslot + 1,
607 &right_buf);
608 if (ret)
609 wret = 1;
610 else {
611 right = btrfs_buffer_node(right_buf);
612 wret = balance_node_right(trans, root,
613 right_buf, mid_buf);
614 }
615 }
616 if (wret < 0)
617 ret = wret;
618 if (wret == 0) {
619 btrfs_memcpy(root, parent,
620 &parent->ptrs[pslot + 1].key,
621 &right->ptrs[0].key,
622 sizeof(struct btrfs_disk_key));
623 btrfs_mark_buffer_dirty(parent_buf);
624 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
625 path->nodes[level] = right_buf;
626 path->slots[level + 1] += 1;
627 path->slots[level] = orig_slot -
628 btrfs_header_nritems(&mid->header);
629 btrfs_block_release(root, mid_buf);
630 } else {
631 btrfs_block_release(root, right_buf);
632 }
633 check_node(root, path, level);
634 return 0;
635 }
636 btrfs_block_release(root, right_buf);
637 }
638 check_node(root, path, level);
639 return 1;
640 }
641
642 /*
643 * look for key in the tree. path is filled in with nodes along the way
644 * if key is found, we return zero and you can find the item in the leaf
645 * level of the path (level 0)
646 *
647 * If the key isn't found, the path points to the slot where it should
648 * be inserted, and 1 is returned. If there are other errors during the
649 * search a negative error number is returned.
650 *
651 * if ins_len > 0, nodes and leaves will be split as we walk down the
652 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
653 * possible)
654 */
655 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
656 *root, struct btrfs_key *key, struct btrfs_path *p, int
657 ins_len, int cow)
658 {
659 struct buffer_head *b;
660 struct buffer_head *cow_buf;
661 struct btrfs_node *c;
662 int slot;
663 int ret;
664 int level;
665
666 WARN_ON(p->nodes[0] != NULL);
667 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
668 again:
669 b = root->node;
670 get_bh(b);
671 while (b) {
672 c = btrfs_buffer_node(b);
673 level = btrfs_header_level(&c->header);
674 if (cow) {
675 int wret;
676 wret = btrfs_cow_block(trans, root, b,
677 p->nodes[level + 1],
678 p->slots[level + 1],
679 &cow_buf);
680 if (wret) {
681 btrfs_block_release(root, cow_buf);
682 return wret;
683 }
684 b = cow_buf;
685 c = btrfs_buffer_node(b);
686 }
687 BUG_ON(!cow && ins_len);
688 if (level != btrfs_header_level(&c->header))
689 WARN_ON(1);
690 level = btrfs_header_level(&c->header);
691 p->nodes[level] = b;
692 ret = check_block(root, p, level);
693 if (ret)
694 return -1;
695 ret = bin_search(c, key, &slot);
696 if (!btrfs_is_leaf(c)) {
697 if (ret && slot > 0)
698 slot -= 1;
699 p->slots[level] = slot;
700 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
701 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
702 int sret = split_node(trans, root, p, level);
703 BUG_ON(sret > 0);
704 if (sret)
705 return sret;
706 b = p->nodes[level];
707 c = btrfs_buffer_node(b);
708 slot = p->slots[level];
709 } else if (ins_len < 0) {
710 int sret = balance_level(trans, root, p,
711 level);
712 if (sret)
713 return sret;
714 b = p->nodes[level];
715 if (!b)
716 goto again;
717 c = btrfs_buffer_node(b);
718 slot = p->slots[level];
719 BUG_ON(btrfs_header_nritems(&c->header) == 1);
720 }
721 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
722 } else {
723 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
724 p->slots[level] = slot;
725 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
726 sizeof(struct btrfs_item) + ins_len) {
727 int sret = split_leaf(trans, root, key,
728 p, ins_len);
729 BUG_ON(sret > 0);
730 if (sret)
731 return sret;
732 }
733 return ret;
734 }
735 }
736 return 1;
737 }
738
739 /*
740 * adjust the pointers going up the tree, starting at level
741 * making sure the right key of each node is points to 'key'.
742 * This is used after shifting pointers to the left, so it stops
743 * fixing up pointers when a given leaf/node is not in slot 0 of the
744 * higher levels
745 *
746 * If this fails to write a tree block, it returns -1, but continues
747 * fixing up the blocks in ram so the tree is consistent.
748 */
749 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
750 *root, struct btrfs_path *path, struct btrfs_disk_key
751 *key, int level)
752 {
753 int i;
754 int ret = 0;
755 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
756 struct btrfs_node *t;
757 int tslot = path->slots[i];
758 if (!path->nodes[i])
759 break;
760 t = btrfs_buffer_node(path->nodes[i]);
761 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
762 btrfs_mark_buffer_dirty(path->nodes[i]);
763 if (tslot != 0)
764 break;
765 }
766 return ret;
767 }
768
769 /*
770 * try to push data from one node into the next node left in the
771 * tree.
772 *
773 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
774 * error, and > 0 if there was no room in the left hand block.
775 */
776 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
777 *root, struct buffer_head *dst_buf, struct
778 buffer_head *src_buf)
779 {
780 struct btrfs_node *src = btrfs_buffer_node(src_buf);
781 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
782 int push_items = 0;
783 int src_nritems;
784 int dst_nritems;
785 int ret = 0;
786
787 src_nritems = btrfs_header_nritems(&src->header);
788 dst_nritems = btrfs_header_nritems(&dst->header);
789 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
790
791 if (push_items <= 0) {
792 return 1;
793 }
794
795 if (src_nritems < push_items)
796 push_items = src_nritems;
797
798 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
799 push_items * sizeof(struct btrfs_key_ptr));
800 if (push_items < src_nritems) {
801 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
802 (src_nritems - push_items) *
803 sizeof(struct btrfs_key_ptr));
804 }
805 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
806 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
807 btrfs_mark_buffer_dirty(src_buf);
808 btrfs_mark_buffer_dirty(dst_buf);
809 return ret;
810 }
811
812 /*
813 * try to push data from one node into the next node right in the
814 * tree.
815 *
816 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
817 * error, and > 0 if there was no room in the right hand block.
818 *
819 * this will only push up to 1/2 the contents of the left node over
820 */
821 static int balance_node_right(struct btrfs_trans_handle *trans, struct
822 btrfs_root *root, struct buffer_head *dst_buf,
823 struct buffer_head *src_buf)
824 {
825 struct btrfs_node *src = btrfs_buffer_node(src_buf);
826 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
827 int push_items = 0;
828 int max_push;
829 int src_nritems;
830 int dst_nritems;
831 int ret = 0;
832
833 src_nritems = btrfs_header_nritems(&src->header);
834 dst_nritems = btrfs_header_nritems(&dst->header);
835 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
836 if (push_items <= 0) {
837 return 1;
838 }
839
840 max_push = src_nritems / 2 + 1;
841 /* don't try to empty the node */
842 if (max_push > src_nritems)
843 return 1;
844 if (max_push < push_items)
845 push_items = max_push;
846
847 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
848 dst_nritems * sizeof(struct btrfs_key_ptr));
849
850 btrfs_memcpy(root, dst, dst->ptrs,
851 src->ptrs + src_nritems - push_items,
852 push_items * sizeof(struct btrfs_key_ptr));
853
854 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
855 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
856
857 btrfs_mark_buffer_dirty(src_buf);
858 btrfs_mark_buffer_dirty(dst_buf);
859 return ret;
860 }
861
862 /*
863 * helper function to insert a new root level in the tree.
864 * A new node is allocated, and a single item is inserted to
865 * point to the existing root
866 *
867 * returns zero on success or < 0 on failure.
868 */
869 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
870 *root, struct btrfs_path *path, int level)
871 {
872 struct buffer_head *t;
873 struct btrfs_node *lower;
874 struct btrfs_node *c;
875 struct btrfs_disk_key *lower_key;
876
877 BUG_ON(path->nodes[level]);
878 BUG_ON(path->nodes[level-1] != root->node);
879
880 t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
881 if (IS_ERR(t))
882 return PTR_ERR(t);
883 c = btrfs_buffer_node(t);
884 memset(c, 0, root->blocksize);
885 btrfs_set_header_nritems(&c->header, 1);
886 btrfs_set_header_level(&c->header, level);
887 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
888 btrfs_set_header_generation(&c->header, trans->transid);
889 btrfs_set_header_owner(&c->header, root->root_key.objectid);
890 lower = btrfs_buffer_node(path->nodes[level-1]);
891 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
892 sizeof(c->header.fsid));
893 if (btrfs_is_leaf(lower))
894 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
895 else
896 lower_key = &lower->ptrs[0].key;
897 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
898 sizeof(struct btrfs_disk_key));
899 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
900
901 btrfs_mark_buffer_dirty(t);
902
903 /* the super has an extra ref to root->node */
904 btrfs_block_release(root, root->node);
905 root->node = t;
906 get_bh(t);
907 path->nodes[level] = t;
908 path->slots[level] = 0;
909 return 0;
910 }
911
912 /*
913 * worker function to insert a single pointer in a node.
914 * the node should have enough room for the pointer already
915 *
916 * slot and level indicate where you want the key to go, and
917 * blocknr is the block the key points to.
918 *
919 * returns zero on success and < 0 on any error
920 */
921 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
922 *root, struct btrfs_path *path, struct btrfs_disk_key
923 *key, u64 blocknr, int slot, int level)
924 {
925 struct btrfs_node *lower;
926 int nritems;
927
928 BUG_ON(!path->nodes[level]);
929 lower = btrfs_buffer_node(path->nodes[level]);
930 nritems = btrfs_header_nritems(&lower->header);
931 if (slot > nritems)
932 BUG();
933 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
934 BUG();
935 if (slot != nritems) {
936 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
937 lower->ptrs + slot,
938 (nritems - slot) * sizeof(struct btrfs_key_ptr));
939 }
940 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
941 key, sizeof(struct btrfs_disk_key));
942 btrfs_set_node_blockptr(lower, slot, blocknr);
943 btrfs_set_header_nritems(&lower->header, nritems + 1);
944 btrfs_mark_buffer_dirty(path->nodes[level]);
945 check_node(root, path, level);
946 return 0;
947 }
948
949 /*
950 * split the node at the specified level in path in two.
951 * The path is corrected to point to the appropriate node after the split
952 *
953 * Before splitting this tries to make some room in the node by pushing
954 * left and right, if either one works, it returns right away.
955 *
956 * returns 0 on success and < 0 on failure
957 */
958 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
959 *root, struct btrfs_path *path, int level)
960 {
961 struct buffer_head *t;
962 struct btrfs_node *c;
963 struct buffer_head *split_buffer;
964 struct btrfs_node *split;
965 int mid;
966 int ret;
967 int wret;
968 u32 c_nritems;
969
970 t = path->nodes[level];
971 c = btrfs_buffer_node(t);
972 if (t == root->node) {
973 /* trying to split the root, lets make a new one */
974 ret = insert_new_root(trans, root, path, level + 1);
975 if (ret)
976 return ret;
977 } else {
978 ret = push_nodes_for_insert(trans, root, path, level);
979 t = path->nodes[level];
980 c = btrfs_buffer_node(t);
981 if (!ret &&
982 btrfs_header_nritems(&c->header) <
983 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
984 return 0;
985 if (ret < 0)
986 return ret;
987 }
988
989 c_nritems = btrfs_header_nritems(&c->header);
990 split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
991 if (IS_ERR(split_buffer))
992 return PTR_ERR(split_buffer);
993
994 split = btrfs_buffer_node(split_buffer);
995 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
996 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
997 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
998 btrfs_set_header_generation(&split->header, trans->transid);
999 btrfs_set_header_owner(&split->header, root->root_key.objectid);
1000 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
1001 sizeof(split->header.fsid));
1002 mid = (c_nritems + 1) / 2;
1003 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1004 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1005 btrfs_set_header_nritems(&split->header, c_nritems - mid);
1006 btrfs_set_header_nritems(&c->header, mid);
1007 ret = 0;
1008
1009 btrfs_mark_buffer_dirty(t);
1010 btrfs_mark_buffer_dirty(split_buffer);
1011 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1012 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1013 level + 1);
1014 if (wret)
1015 ret = wret;
1016
1017 if (path->slots[level] >= mid) {
1018 path->slots[level] -= mid;
1019 btrfs_block_release(root, t);
1020 path->nodes[level] = split_buffer;
1021 path->slots[level + 1] += 1;
1022 } else {
1023 btrfs_block_release(root, split_buffer);
1024 }
1025 return ret;
1026 }
1027
1028 /*
1029 * how many bytes are required to store the items in a leaf. start
1030 * and nr indicate which items in the leaf to check. This totals up the
1031 * space used both by the item structs and the item data
1032 */
1033 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1034 {
1035 int data_len;
1036 int nritems = btrfs_header_nritems(&l->header);
1037 int end = min(nritems, start + nr) - 1;
1038
1039 if (!nr)
1040 return 0;
1041 data_len = btrfs_item_end(l->items + start);
1042 data_len = data_len - btrfs_item_offset(l->items + end);
1043 data_len += sizeof(struct btrfs_item) * nr;
1044 WARN_ON(data_len < 0);
1045 return data_len;
1046 }
1047
1048 /*
1049 * The space between the end of the leaf items and
1050 * the start of the leaf data. IOW, how much room
1051 * the leaf has left for both items and data
1052 */
1053 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1054 {
1055 int nritems = btrfs_header_nritems(&leaf->header);
1056 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1057 }
1058
1059 /*
1060 * push some data in the path leaf to the right, trying to free up at
1061 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1062 *
1063 * returns 1 if the push failed because the other node didn't have enough
1064 * room, 0 if everything worked out and < 0 if there were major errors.
1065 */
1066 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1067 *root, struct btrfs_path *path, int data_size)
1068 {
1069 struct buffer_head *left_buf = path->nodes[0];
1070 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1071 struct btrfs_leaf *right;
1072 struct buffer_head *right_buf;
1073 struct buffer_head *upper;
1074 struct btrfs_node *upper_node;
1075 int slot;
1076 int i;
1077 int free_space;
1078 int push_space = 0;
1079 int push_items = 0;
1080 struct btrfs_item *item;
1081 u32 left_nritems;
1082 u32 right_nritems;
1083 int ret;
1084
1085 slot = path->slots[1];
1086 if (!path->nodes[1]) {
1087 return 1;
1088 }
1089 upper = path->nodes[1];
1090 upper_node = btrfs_buffer_node(upper);
1091 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1092 return 1;
1093 }
1094 right_buf = read_tree_block(root,
1095 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1096 right = btrfs_buffer_leaf(right_buf);
1097 free_space = btrfs_leaf_free_space(root, right);
1098 if (free_space < data_size + sizeof(struct btrfs_item)) {
1099 btrfs_block_release(root, right_buf);
1100 return 1;
1101 }
1102 /* cow and double check */
1103 ret = btrfs_cow_block(trans, root, right_buf, upper,
1104 slot + 1, &right_buf);
1105 if (ret) {
1106 btrfs_block_release(root, right_buf);
1107 return 1;
1108 }
1109 right = btrfs_buffer_leaf(right_buf);
1110 free_space = btrfs_leaf_free_space(root, right);
1111 if (free_space < data_size + sizeof(struct btrfs_item)) {
1112 btrfs_block_release(root, right_buf);
1113 return 1;
1114 }
1115
1116 left_nritems = btrfs_header_nritems(&left->header);
1117 if (left_nritems == 0) {
1118 btrfs_block_release(root, right_buf);
1119 return 1;
1120 }
1121 for (i = left_nritems - 1; i >= 1; i--) {
1122 item = left->items + i;
1123 if (path->slots[0] == i)
1124 push_space += data_size + sizeof(*item);
1125 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1126 free_space)
1127 break;
1128 push_items++;
1129 push_space += btrfs_item_size(item) + sizeof(*item);
1130 }
1131 if (push_items == 0) {
1132 btrfs_block_release(root, right_buf);
1133 return 1;
1134 }
1135 if (push_items == left_nritems)
1136 WARN_ON(1);
1137 right_nritems = btrfs_header_nritems(&right->header);
1138 /* push left to right */
1139 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1140 push_space -= leaf_data_end(root, left);
1141 /* make room in the right data area */
1142 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1143 leaf_data_end(root, right) - push_space,
1144 btrfs_leaf_data(right) +
1145 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1146 leaf_data_end(root, right));
1147 /* copy from the left data area */
1148 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1149 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1150 btrfs_leaf_data(left) + leaf_data_end(root, left),
1151 push_space);
1152 btrfs_memmove(root, right, right->items + push_items, right->items,
1153 right_nritems * sizeof(struct btrfs_item));
1154 /* copy the items from left to right */
1155 btrfs_memcpy(root, right, right->items, left->items +
1156 left_nritems - push_items,
1157 push_items * sizeof(struct btrfs_item));
1158
1159 /* update the item pointers */
1160 right_nritems += push_items;
1161 btrfs_set_header_nritems(&right->header, right_nritems);
1162 push_space = BTRFS_LEAF_DATA_SIZE(root);
1163 for (i = 0; i < right_nritems; i++) {
1164 btrfs_set_item_offset(right->items + i, push_space -
1165 btrfs_item_size(right->items + i));
1166 push_space = btrfs_item_offset(right->items + i);
1167 }
1168 left_nritems -= push_items;
1169 btrfs_set_header_nritems(&left->header, left_nritems);
1170
1171 btrfs_mark_buffer_dirty(left_buf);
1172 btrfs_mark_buffer_dirty(right_buf);
1173
1174 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1175 &right->items[0].key, sizeof(struct btrfs_disk_key));
1176 btrfs_mark_buffer_dirty(upper);
1177
1178 /* then fixup the leaf pointer in the path */
1179 if (path->slots[0] >= left_nritems) {
1180 path->slots[0] -= left_nritems;
1181 btrfs_block_release(root, path->nodes[0]);
1182 path->nodes[0] = right_buf;
1183 path->slots[1] += 1;
1184 } else {
1185 btrfs_block_release(root, right_buf);
1186 }
1187 if (path->nodes[1])
1188 check_node(root, path, 1);
1189 return 0;
1190 }
1191 /*
1192 * push some data in the path leaf to the left, trying to free up at
1193 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1194 */
1195 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1196 *root, struct btrfs_path *path, int data_size)
1197 {
1198 struct buffer_head *right_buf = path->nodes[0];
1199 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1200 struct buffer_head *t;
1201 struct btrfs_leaf *left;
1202 int slot;
1203 int i;
1204 int free_space;
1205 int push_space = 0;
1206 int push_items = 0;
1207 struct btrfs_item *item;
1208 u32 old_left_nritems;
1209 int ret = 0;
1210 int wret;
1211
1212 slot = path->slots[1];
1213 if (slot == 0) {
1214 return 1;
1215 }
1216 if (!path->nodes[1]) {
1217 return 1;
1218 }
1219 t = read_tree_block(root,
1220 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1221 left = btrfs_buffer_leaf(t);
1222 free_space = btrfs_leaf_free_space(root, left);
1223 if (free_space < data_size + sizeof(struct btrfs_item)) {
1224 btrfs_block_release(root, t);
1225 return 1;
1226 }
1227
1228 /* cow and double check */
1229 ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1230 if (ret) {
1231 /* we hit -ENOSPC, but it isn't fatal here */
1232 return 1;
1233 }
1234 left = btrfs_buffer_leaf(t);
1235 free_space = btrfs_leaf_free_space(root, left);
1236 if (free_space < data_size + sizeof(struct btrfs_item)) {
1237 btrfs_block_release(root, t);
1238 return 1;
1239 }
1240
1241 if (btrfs_header_nritems(&right->header) == 0) {
1242 btrfs_block_release(root, t);
1243 return 1;
1244 }
1245
1246 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1247 item = right->items + i;
1248 if (path->slots[0] == i)
1249 push_space += data_size + sizeof(*item);
1250 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1251 free_space)
1252 break;
1253 push_items++;
1254 push_space += btrfs_item_size(item) + sizeof(*item);
1255 }
1256 if (push_items == 0) {
1257 btrfs_block_release(root, t);
1258 return 1;
1259 }
1260 if (push_items == btrfs_header_nritems(&right->header))
1261 WARN_ON(1);
1262 /* push data from right to left */
1263 btrfs_memcpy(root, left, left->items +
1264 btrfs_header_nritems(&left->header),
1265 right->items, push_items * sizeof(struct btrfs_item));
1266 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1267 btrfs_item_offset(right->items + push_items -1);
1268 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1269 leaf_data_end(root, left) - push_space,
1270 btrfs_leaf_data(right) +
1271 btrfs_item_offset(right->items + push_items - 1),
1272 push_space);
1273 old_left_nritems = btrfs_header_nritems(&left->header);
1274 BUG_ON(old_left_nritems < 0);
1275
1276 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1277 u32 ioff = btrfs_item_offset(left->items + i);
1278 btrfs_set_item_offset(left->items + i, ioff -
1279 (BTRFS_LEAF_DATA_SIZE(root) -
1280 btrfs_item_offset(left->items +
1281 old_left_nritems - 1)));
1282 }
1283 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1284
1285 /* fixup right node */
1286 push_space = btrfs_item_offset(right->items + push_items - 1) -
1287 leaf_data_end(root, right);
1288 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1289 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1290 btrfs_leaf_data(right) +
1291 leaf_data_end(root, right), push_space);
1292 btrfs_memmove(root, right, right->items, right->items + push_items,
1293 (btrfs_header_nritems(&right->header) - push_items) *
1294 sizeof(struct btrfs_item));
1295 btrfs_set_header_nritems(&right->header,
1296 btrfs_header_nritems(&right->header) -
1297 push_items);
1298 push_space = BTRFS_LEAF_DATA_SIZE(root);
1299
1300 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1301 btrfs_set_item_offset(right->items + i, push_space -
1302 btrfs_item_size(right->items + i));
1303 push_space = btrfs_item_offset(right->items + i);
1304 }
1305
1306 btrfs_mark_buffer_dirty(t);
1307 btrfs_mark_buffer_dirty(right_buf);
1308
1309 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1310 if (wret)
1311 ret = wret;
1312
1313 /* then fixup the leaf pointer in the path */
1314 if (path->slots[0] < push_items) {
1315 path->slots[0] += old_left_nritems;
1316 btrfs_block_release(root, path->nodes[0]);
1317 path->nodes[0] = t;
1318 path->slots[1] -= 1;
1319 } else {
1320 btrfs_block_release(root, t);
1321 path->slots[0] -= push_items;
1322 }
1323 BUG_ON(path->slots[0] < 0);
1324 if (path->nodes[1])
1325 check_node(root, path, 1);
1326 return ret;
1327 }
1328
1329 /*
1330 * split the path's leaf in two, making sure there is at least data_size
1331 * available for the resulting leaf level of the path.
1332 *
1333 * returns 0 if all went well and < 0 on failure.
1334 */
1335 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1336 *root, struct btrfs_key *ins_key,
1337 struct btrfs_path *path, int data_size)
1338 {
1339 struct buffer_head *l_buf;
1340 struct btrfs_leaf *l;
1341 u32 nritems;
1342 int mid;
1343 int slot;
1344 struct btrfs_leaf *right;
1345 struct buffer_head *right_buffer;
1346 int space_needed = data_size + sizeof(struct btrfs_item);
1347 int data_copy_size;
1348 int rt_data_off;
1349 int i;
1350 int ret = 0;
1351 int wret;
1352 int double_split = 0;
1353 struct btrfs_disk_key disk_key;
1354
1355 /* first try to make some room by pushing left and right */
1356 wret = push_leaf_left(trans, root, path, data_size);
1357 if (wret < 0)
1358 return wret;
1359 if (wret) {
1360 wret = push_leaf_right(trans, root, path, data_size);
1361 if (wret < 0)
1362 return wret;
1363 }
1364 l_buf = path->nodes[0];
1365 l = btrfs_buffer_leaf(l_buf);
1366
1367 /* did the pushes work? */
1368 if (btrfs_leaf_free_space(root, l) >=
1369 sizeof(struct btrfs_item) + data_size)
1370 return 0;
1371
1372 if (!path->nodes[1]) {
1373 ret = insert_new_root(trans, root, path, 1);
1374 if (ret)
1375 return ret;
1376 }
1377 slot = path->slots[0];
1378 nritems = btrfs_header_nritems(&l->header);
1379 mid = (nritems + 1)/ 2;
1380
1381 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1382 if (IS_ERR(right_buffer))
1383 return PTR_ERR(right_buffer);
1384
1385 right = btrfs_buffer_leaf(right_buffer);
1386 memset(&right->header, 0, sizeof(right->header));
1387 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1388 btrfs_set_header_generation(&right->header, trans->transid);
1389 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1390 btrfs_set_header_level(&right->header, 0);
1391 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1392 sizeof(right->header.fsid));
1393 if (mid <= slot) {
1394 if (nritems == 1 ||
1395 leaf_space_used(l, mid, nritems - mid) + space_needed >
1396 BTRFS_LEAF_DATA_SIZE(root)) {
1397 if (slot >= nritems) {
1398 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1399 btrfs_set_header_nritems(&right->header, 0);
1400 wret = insert_ptr(trans, root, path,
1401 &disk_key,
1402 bh_blocknr(right_buffer),
1403 path->slots[1] + 1, 1);
1404 if (wret)
1405 ret = wret;
1406 btrfs_block_release(root, path->nodes[0]);
1407 path->nodes[0] = right_buffer;
1408 path->slots[0] = 0;
1409 path->slots[1] += 1;
1410 return ret;
1411 }
1412 mid = slot;
1413 double_split = 1;
1414 }
1415 } else {
1416 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1417 BTRFS_LEAF_DATA_SIZE(root)) {
1418 if (slot == 0) {
1419 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1420 btrfs_set_header_nritems(&right->header, 0);
1421 wret = insert_ptr(trans, root, path,
1422 &disk_key,
1423 bh_blocknr(right_buffer),
1424 path->slots[1], 1);
1425 if (wret)
1426 ret = wret;
1427 btrfs_block_release(root, path->nodes[0]);
1428 path->nodes[0] = right_buffer;
1429 path->slots[0] = 0;
1430 if (path->slots[1] == 0) {
1431 wret = fixup_low_keys(trans, root,
1432 path, &disk_key, 1);
1433 if (wret)
1434 ret = wret;
1435 }
1436 return ret;
1437 }
1438 mid = slot;
1439 double_split = 1;
1440 }
1441 }
1442 btrfs_set_header_nritems(&right->header, nritems - mid);
1443 data_copy_size = btrfs_item_end(l->items + mid) -
1444 leaf_data_end(root, l);
1445 btrfs_memcpy(root, right, right->items, l->items + mid,
1446 (nritems - mid) * sizeof(struct btrfs_item));
1447 btrfs_memcpy(root, right,
1448 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1449 data_copy_size, btrfs_leaf_data(l) +
1450 leaf_data_end(root, l), data_copy_size);
1451 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1452 btrfs_item_end(l->items + mid);
1453
1454 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1455 u32 ioff = btrfs_item_offset(right->items + i);
1456 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1457 }
1458
1459 btrfs_set_header_nritems(&l->header, mid);
1460 ret = 0;
1461 wret = insert_ptr(trans, root, path, &right->items[0].key,
1462 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1463 if (wret)
1464 ret = wret;
1465 btrfs_mark_buffer_dirty(right_buffer);
1466 btrfs_mark_buffer_dirty(l_buf);
1467 BUG_ON(path->slots[0] != slot);
1468 if (mid <= slot) {
1469 btrfs_block_release(root, path->nodes[0]);
1470 path->nodes[0] = right_buffer;
1471 path->slots[0] -= mid;
1472 path->slots[1] += 1;
1473 } else
1474 btrfs_block_release(root, right_buffer);
1475 BUG_ON(path->slots[0] < 0);
1476 check_node(root, path, 1);
1477
1478 if (!double_split)
1479 return ret;
1480 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1481 if (IS_ERR(right_buffer))
1482 return PTR_ERR(right_buffer);
1483
1484 right = btrfs_buffer_leaf(right_buffer);
1485 memset(&right->header, 0, sizeof(right->header));
1486 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1487 btrfs_set_header_generation(&right->header, trans->transid);
1488 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1489 btrfs_set_header_level(&right->header, 0);
1490 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1491 sizeof(right->header.fsid));
1492 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1493 btrfs_set_header_nritems(&right->header, 0);
1494 wret = insert_ptr(trans, root, path,
1495 &disk_key,
1496 bh_blocknr(right_buffer),
1497 path->slots[1], 1);
1498 if (wret)
1499 ret = wret;
1500 if (path->slots[1] == 0) {
1501 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1502 if (wret)
1503 ret = wret;
1504 }
1505 btrfs_block_release(root, path->nodes[0]);
1506 path->nodes[0] = right_buffer;
1507 path->slots[0] = 0;
1508 check_node(root, path, 1);
1509 check_leaf(root, path, 0);
1510 return ret;
1511 }
1512
1513 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_path *path,
1516 u32 new_size)
1517 {
1518 int ret = 0;
1519 int slot;
1520 int slot_orig;
1521 struct btrfs_leaf *leaf;
1522 struct buffer_head *leaf_buf;
1523 u32 nritems;
1524 unsigned int data_end;
1525 unsigned int old_data_start;
1526 unsigned int old_size;
1527 unsigned int size_diff;
1528 int i;
1529
1530 slot_orig = path->slots[0];
1531 leaf_buf = path->nodes[0];
1532 leaf = btrfs_buffer_leaf(leaf_buf);
1533
1534 nritems = btrfs_header_nritems(&leaf->header);
1535 data_end = leaf_data_end(root, leaf);
1536
1537 slot = path->slots[0];
1538 old_data_start = btrfs_item_offset(leaf->items + slot);
1539 old_size = btrfs_item_size(leaf->items + slot);
1540 BUG_ON(old_size <= new_size);
1541 size_diff = old_size - new_size;
1542
1543 BUG_ON(slot < 0);
1544 BUG_ON(slot >= nritems);
1545
1546 /*
1547 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1548 */
1549 /* first correct the data pointers */
1550 for (i = slot; i < nritems; i++) {
1551 u32 ioff = btrfs_item_offset(leaf->items + i);
1552 btrfs_set_item_offset(leaf->items + i,
1553 ioff + size_diff);
1554 }
1555 /* shift the data */
1556 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1557 data_end + size_diff, btrfs_leaf_data(leaf) +
1558 data_end, old_data_start + new_size - data_end);
1559 btrfs_set_item_size(leaf->items + slot, new_size);
1560 btrfs_mark_buffer_dirty(leaf_buf);
1561
1562 ret = 0;
1563 if (btrfs_leaf_free_space(root, leaf) < 0)
1564 BUG();
1565 check_leaf(root, path, 0);
1566 return ret;
1567 }
1568
1569 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1570 *root, struct btrfs_path *path, u32 data_size)
1571 {
1572 int ret = 0;
1573 int slot;
1574 int slot_orig;
1575 struct btrfs_leaf *leaf;
1576 struct buffer_head *leaf_buf;
1577 u32 nritems;
1578 unsigned int data_end;
1579 unsigned int old_data;
1580 unsigned int old_size;
1581 int i;
1582
1583 slot_orig = path->slots[0];
1584 leaf_buf = path->nodes[0];
1585 leaf = btrfs_buffer_leaf(leaf_buf);
1586
1587 nritems = btrfs_header_nritems(&leaf->header);
1588 data_end = leaf_data_end(root, leaf);
1589
1590 if (btrfs_leaf_free_space(root, leaf) < data_size)
1591 BUG();
1592 slot = path->slots[0];
1593 old_data = btrfs_item_end(leaf->items + slot);
1594
1595 BUG_ON(slot < 0);
1596 BUG_ON(slot >= nritems);
1597
1598 /*
1599 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1600 */
1601 /* first correct the data pointers */
1602 for (i = slot; i < nritems; i++) {
1603 u32 ioff = btrfs_item_offset(leaf->items + i);
1604 btrfs_set_item_offset(leaf->items + i,
1605 ioff - data_size);
1606 }
1607 /* shift the data */
1608 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1609 data_end - data_size, btrfs_leaf_data(leaf) +
1610 data_end, old_data - data_end);
1611 data_end = old_data;
1612 old_size = btrfs_item_size(leaf->items + slot);
1613 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1614 btrfs_mark_buffer_dirty(leaf_buf);
1615
1616 ret = 0;
1617 if (btrfs_leaf_free_space(root, leaf) < 0)
1618 BUG();
1619 check_leaf(root, path, 0);
1620 return ret;
1621 }
1622
1623 /*
1624 * Given a key and some data, insert an item into the tree.
1625 * This does all the path init required, making room in the tree if needed.
1626 */
1627 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1628 *root, struct btrfs_path *path, struct btrfs_key
1629 *cpu_key, u32 data_size)
1630 {
1631 int ret = 0;
1632 int slot;
1633 int slot_orig;
1634 struct btrfs_leaf *leaf;
1635 struct buffer_head *leaf_buf;
1636 u32 nritems;
1637 unsigned int data_end;
1638 struct btrfs_disk_key disk_key;
1639
1640 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1641
1642 /* create a root if there isn't one */
1643 if (!root->node)
1644 BUG();
1645 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1646 if (ret == 0) {
1647 return -EEXIST;
1648 }
1649 if (ret < 0)
1650 goto out;
1651
1652 slot_orig = path->slots[0];
1653 leaf_buf = path->nodes[0];
1654 leaf = btrfs_buffer_leaf(leaf_buf);
1655
1656 nritems = btrfs_header_nritems(&leaf->header);
1657 data_end = leaf_data_end(root, leaf);
1658
1659 if (btrfs_leaf_free_space(root, leaf) <
1660 sizeof(struct btrfs_item) + data_size) {
1661 BUG();
1662 }
1663 slot = path->slots[0];
1664 BUG_ON(slot < 0);
1665 if (slot != nritems) {
1666 int i;
1667 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1668
1669 /*
1670 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1671 */
1672 /* first correct the data pointers */
1673 for (i = slot; i < nritems; i++) {
1674 u32 ioff = btrfs_item_offset(leaf->items + i);
1675 btrfs_set_item_offset(leaf->items + i,
1676 ioff - data_size);
1677 }
1678
1679 /* shift the items */
1680 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1681 leaf->items + slot,
1682 (nritems - slot) * sizeof(struct btrfs_item));
1683
1684 /* shift the data */
1685 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1686 data_end - data_size, btrfs_leaf_data(leaf) +
1687 data_end, old_data - data_end);
1688 data_end = old_data;
1689 }
1690 /* setup the item for the new data */
1691 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1692 sizeof(struct btrfs_disk_key));
1693 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1694 btrfs_set_item_size(leaf->items + slot, data_size);
1695 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1696 btrfs_mark_buffer_dirty(leaf_buf);
1697
1698 ret = 0;
1699 if (slot == 0)
1700 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1701
1702 if (btrfs_leaf_free_space(root, leaf) < 0)
1703 BUG();
1704 check_leaf(root, path, 0);
1705 out:
1706 return ret;
1707 }
1708
1709 /*
1710 * Given a key and some data, insert an item into the tree.
1711 * This does all the path init required, making room in the tree if needed.
1712 */
1713 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1714 *root, struct btrfs_key *cpu_key, void *data, u32
1715 data_size)
1716 {
1717 int ret = 0;
1718 struct btrfs_path *path;
1719 u8 *ptr;
1720
1721 path = btrfs_alloc_path();
1722 BUG_ON(!path);
1723 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1724 if (!ret) {
1725 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1726 path->slots[0], u8);
1727 btrfs_memcpy(root, path->nodes[0]->b_data,
1728 ptr, data, data_size);
1729 btrfs_mark_buffer_dirty(path->nodes[0]);
1730 }
1731 btrfs_free_path(path);
1732 return ret;
1733 }
1734
1735 /*
1736 * delete the pointer from a given node.
1737 *
1738 * If the delete empties a node, the node is removed from the tree,
1739 * continuing all the way the root if required. The root is converted into
1740 * a leaf if all the nodes are emptied.
1741 */
1742 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1743 struct btrfs_path *path, int level, int slot)
1744 {
1745 struct btrfs_node *node;
1746 struct buffer_head *parent = path->nodes[level];
1747 u32 nritems;
1748 int ret = 0;
1749 int wret;
1750
1751 node = btrfs_buffer_node(parent);
1752 nritems = btrfs_header_nritems(&node->header);
1753 if (slot != nritems -1) {
1754 btrfs_memmove(root, node, node->ptrs + slot,
1755 node->ptrs + slot + 1,
1756 sizeof(struct btrfs_key_ptr) *
1757 (nritems - slot - 1));
1758 }
1759 nritems--;
1760 btrfs_set_header_nritems(&node->header, nritems);
1761 if (nritems == 0 && parent == root->node) {
1762 struct btrfs_header *header = btrfs_buffer_header(root->node);
1763 BUG_ON(btrfs_header_level(header) != 1);
1764 /* just turn the root into a leaf and break */
1765 btrfs_set_header_level(header, 0);
1766 } else if (slot == 0) {
1767 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1768 level + 1);
1769 if (wret)
1770 ret = wret;
1771 }
1772 btrfs_mark_buffer_dirty(parent);
1773 return ret;
1774 }
1775
1776 /*
1777 * delete the item at the leaf level in path. If that empties
1778 * the leaf, remove it from the tree
1779 */
1780 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1781 struct btrfs_path *path)
1782 {
1783 int slot;
1784 struct btrfs_leaf *leaf;
1785 struct buffer_head *leaf_buf;
1786 int doff;
1787 int dsize;
1788 int ret = 0;
1789 int wret;
1790 u32 nritems;
1791
1792 leaf_buf = path->nodes[0];
1793 leaf = btrfs_buffer_leaf(leaf_buf);
1794 slot = path->slots[0];
1795 doff = btrfs_item_offset(leaf->items + slot);
1796 dsize = btrfs_item_size(leaf->items + slot);
1797 nritems = btrfs_header_nritems(&leaf->header);
1798
1799 if (slot != nritems - 1) {
1800 int i;
1801 int data_end = leaf_data_end(root, leaf);
1802 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1803 data_end + dsize,
1804 btrfs_leaf_data(leaf) + data_end,
1805 doff - data_end);
1806 for (i = slot + 1; i < nritems; i++) {
1807 u32 ioff = btrfs_item_offset(leaf->items + i);
1808 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1809 }
1810 btrfs_memmove(root, leaf, leaf->items + slot,
1811 leaf->items + slot + 1,
1812 sizeof(struct btrfs_item) *
1813 (nritems - slot - 1));
1814 }
1815 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1816 nritems--;
1817 /* delete the leaf if we've emptied it */
1818 if (nritems == 0) {
1819 if (leaf_buf == root->node) {
1820 btrfs_set_header_level(&leaf->header, 0);
1821 } else {
1822 clean_tree_block(trans, root, leaf_buf);
1823 wait_on_buffer(leaf_buf);
1824 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1825 if (wret)
1826 ret = wret;
1827 wret = btrfs_free_extent(trans, root,
1828 bh_blocknr(leaf_buf), 1, 1);
1829 if (wret)
1830 ret = wret;
1831 }
1832 } else {
1833 int used = leaf_space_used(leaf, 0, nritems);
1834 if (slot == 0) {
1835 wret = fixup_low_keys(trans, root, path,
1836 &leaf->items[0].key, 1);
1837 if (wret)
1838 ret = wret;
1839 }
1840
1841 /* delete the leaf if it is mostly empty */
1842 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1843 /* push_leaf_left fixes the path.
1844 * make sure the path still points to our leaf
1845 * for possible call to del_ptr below
1846 */
1847 slot = path->slots[1];
1848 get_bh(leaf_buf);
1849 wret = push_leaf_left(trans, root, path, 1);
1850 if (wret < 0 && wret != -ENOSPC)
1851 ret = wret;
1852 if (path->nodes[0] == leaf_buf &&
1853 btrfs_header_nritems(&leaf->header)) {
1854 wret = push_leaf_right(trans, root, path, 1);
1855 if (wret < 0 && wret != -ENOSPC)
1856 ret = wret;
1857 }
1858 if (btrfs_header_nritems(&leaf->header) == 0) {
1859 u64 blocknr = bh_blocknr(leaf_buf);
1860 clean_tree_block(trans, root, leaf_buf);
1861 wait_on_buffer(leaf_buf);
1862 wret = del_ptr(trans, root, path, 1, slot);
1863 if (wret)
1864 ret = wret;
1865 btrfs_block_release(root, leaf_buf);
1866 wret = btrfs_free_extent(trans, root, blocknr,
1867 1, 1);
1868 if (wret)
1869 ret = wret;
1870 } else {
1871 btrfs_mark_buffer_dirty(leaf_buf);
1872 btrfs_block_release(root, leaf_buf);
1873 }
1874 } else {
1875 btrfs_mark_buffer_dirty(leaf_buf);
1876 }
1877 }
1878 return ret;
1879 }
1880
1881 /*
1882 * walk up the tree as far as required to find the next leaf.
1883 * returns 0 if it found something or 1 if there are no greater leaves.
1884 * returns < 0 on io errors.
1885 */
1886 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1887 {
1888 int slot;
1889 int level = 1;
1890 u64 blocknr;
1891 struct buffer_head *c;
1892 struct btrfs_node *c_node;
1893 struct buffer_head *next = NULL;
1894
1895 while(level < BTRFS_MAX_LEVEL) {
1896 if (!path->nodes[level])
1897 return 1;
1898 slot = path->slots[level] + 1;
1899 c = path->nodes[level];
1900 c_node = btrfs_buffer_node(c);
1901 if (slot >= btrfs_header_nritems(&c_node->header)) {
1902 level++;
1903 continue;
1904 }
1905 blocknr = btrfs_node_blockptr(c_node, slot);
1906 if (next)
1907 btrfs_block_release(root, next);
1908 next = read_tree_block(root, blocknr);
1909 break;
1910 }
1911 path->slots[level] = slot;
1912 while(1) {
1913 level--;
1914 c = path->nodes[level];
1915 btrfs_block_release(root, c);
1916 path->nodes[level] = next;
1917 path->slots[level] = 0;
1918 if (!level)
1919 break;
1920 next = read_tree_block(root,
1921 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1922 }
1923 return 0;
1924 }
This page took 0.073618 seconds and 5 git commands to generate.