Btrfs: check if extent buffer is aligned to sectorsize
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51 }
52
53 /*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69 }
70
71 /*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81 {
82 int i;
83
84 if (held) {
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 }
91 btrfs_set_path_blocking(p);
92
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
100 }
101 }
102
103 if (held)
104 btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 if (!p)
111 return;
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
114 }
115
116 /*
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
119 *
120 * It is safe to call this on paths that no locks or extent buffers held.
121 */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 int i;
125
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 p->slots[i] = 0;
128 if (!p->nodes[i])
129 continue;
130 if (p->locks[i]) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 p->locks[i] = 0;
133 }
134 free_extent_buffer(p->nodes[i]);
135 p->nodes[i] = NULL;
136 }
137 }
138
139 /*
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
143 * looping required.
144 *
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
148 */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 struct extent_buffer *eb;
152
153 while (1) {
154 rcu_read_lock();
155 eb = rcu_dereference(root->node);
156
157 /*
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
162 */
163 if (atomic_inc_not_zero(&eb->refs)) {
164 rcu_read_unlock();
165 break;
166 }
167 rcu_read_unlock();
168 synchronize_rcu();
169 }
170 return eb;
171 }
172
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
176 */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 struct extent_buffer *eb;
180
181 while (1) {
182 eb = btrfs_root_node(root);
183 btrfs_tree_lock(eb);
184 if (eb == root->node)
185 break;
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
188 }
189 return eb;
190 }
191
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
195 */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 struct extent_buffer *eb;
199
200 while (1) {
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
204 break;
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
207 }
208 return eb;
209 }
210
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
214 */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 return;
220
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 else
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
230 }
231 spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 struct extent_buffer *cow;
245 int ret = 0;
246 int level;
247 struct btrfs_disk_key disk_key;
248
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
262 if (IS_ERR(cow))
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
275
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 BTRFS_FSID_SIZE);
278
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
282 else
283 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291 }
292
293 enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306 };
307
308 struct tree_mod_root {
309 u64 logical;
310 u8 level;
311 };
312
313 struct tree_mod_elem {
314 struct rb_node node;
315 u64 logical;
316 u64 seq;
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357 * Pull a new tree mod seq number for our operation.
358 */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363
364 /*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
374 {
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
377 if (!elem->seq) {
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 }
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
383
384 return elem->seq;
385 }
386
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
389 {
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
397
398 if (!seq_putting)
399 return;
400
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
403 elem->seq = 0;
404
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
408 /*
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
411 */
412 spin_unlock(&fs_info->tree_mod_seq_lock);
413 return;
414 }
415 min_seq = cur_elem->seq;
416 }
417 }
418 spin_unlock(&fs_info->tree_mod_seq_lock);
419
420 /*
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
423 */
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
430 continue;
431 rb_erase(node, tm_root);
432 kfree(tm);
433 }
434 tree_mod_log_write_unlock(fs_info);
435 }
436
437 /*
438 * key order of the log:
439 * node/leaf start address -> sequence
440 *
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
444 *
445 * Note: must be called with write lock (tree_mod_log_write_lock).
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm);
456
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
461 while (*new) {
462 cur = container_of(*new, struct tree_mod_elem, node);
463 parent = *new;
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
472 else
473 return -EEXIST;
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
498 return 1;
499 }
500
501 return 0;
502 }
503
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
507 {
508 smp_mb();
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 return 0;
511 if (eb && btrfs_header_level(eb) == 0)
512 return 0;
513
514 return 1;
515 }
516
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
520 {
521 struct tree_mod_elem *tm;
522
523 tm = kzalloc(sizeof(*tm), flags);
524 if (!tm)
525 return NULL;
526
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 }
532 tm->op = op;
533 tm->slot = slot;
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
536
537 return tm;
538 }
539
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
544 {
545 struct tree_mod_elem *tm;
546 int ret;
547
548 if (!tree_mod_need_log(fs_info, eb))
549 return 0;
550
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (!tm)
553 return -ENOMEM;
554
555 if (tree_mod_dont_log(fs_info, eb)) {
556 kfree(tm);
557 return 0;
558 }
559
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
562 if (ret)
563 kfree(tm);
564
565 return ret;
566 }
567
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
572 {
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
575 int ret = 0;
576 int i;
577 int locked = 0;
578
579 if (!tree_mod_need_log(fs_info, eb))
580 return 0;
581
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 if (!tm_list)
584 return -ENOMEM;
585
586 tm = kzalloc(sizeof(*tm), flags);
587 if (!tm) {
588 ret = -ENOMEM;
589 goto free_tms;
590 }
591
592 tm->logical = eb->start;
593 tm->slot = src_slot;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
597
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 if (!tm_list[i]) {
602 ret = -ENOMEM;
603 goto free_tms;
604 }
605 }
606
607 if (tree_mod_dont_log(fs_info, eb))
608 goto free_tms;
609 locked = 1;
610
611 /*
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
615 */
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 if (ret)
619 goto free_tms;
620 }
621
622 ret = __tree_mod_log_insert(fs_info, tm);
623 if (ret)
624 goto free_tms;
625 tree_mod_log_write_unlock(fs_info);
626 kfree(tm_list);
627
628 return 0;
629 free_tms:
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 kfree(tm_list[i]);
634 }
635 if (locked)
636 tree_mod_log_write_unlock(fs_info);
637 kfree(tm_list);
638 kfree(tm);
639
640 return ret;
641 }
642
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
646 int nritems)
647 {
648 int i, j;
649 int ret;
650
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret) {
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
657 return ret;
658 }
659 }
660
661 return 0;
662 }
663
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
668 int log_removal)
669 {
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
672 int nritems = 0;
673 int ret = 0;
674 int i;
675
676 if (!tree_mod_need_log(fs_info, NULL))
677 return 0;
678
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 flags);
683 if (!tm_list) {
684 ret = -ENOMEM;
685 goto free_tms;
686 }
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 if (!tm_list[i]) {
691 ret = -ENOMEM;
692 goto free_tms;
693 }
694 }
695 }
696
697 tm = kzalloc(sizeof(*tm), flags);
698 if (!tm) {
699 ret = -ENOMEM;
700 goto free_tms;
701 }
702
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
708
709 if (tree_mod_dont_log(fs_info, NULL))
710 goto free_tms;
711
712 if (tm_list)
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 if (!ret)
715 ret = __tree_mod_log_insert(fs_info, tm);
716
717 tree_mod_log_write_unlock(fs_info);
718 if (ret)
719 goto free_tms;
720 kfree(tm_list);
721
722 return ret;
723
724 free_tms:
725 if (tm_list) {
726 for (i = 0; i < nritems; i++)
727 kfree(tm_list[i]);
728 kfree(tm_list);
729 }
730 kfree(tm);
731
732 return ret;
733 }
734
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 int smallest)
738 {
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944 {
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949 }
950
951 /*
952 * check if the tree block can be shared by multiple trees
953 */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956 {
957 /*
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982 {
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, root, ret);
1164 return ret;
1165 }
1166 }
1167
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1173 else
1174 parent_start = 0;
1175
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1179
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1181 last_ref);
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1184 } else {
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1187 else
1188 parent_start = 0;
1189
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1194 cow->start);
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1196 trans->transid);
1197 btrfs_mark_buffer_dirty(parent);
1198 if (last_ref) {
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 if (ret) {
1201 btrfs_abort_transaction(trans, root, ret);
1202 return ret;
1203 }
1204 }
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1206 last_ref);
1207 }
1208 if (unlock_orig)
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1212 *cow_ret = cow;
1213 return 0;
1214 }
1215
1216 /*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1227 int looped = 0;
1228
1229 if (!time_seq)
1230 return NULL;
1231
1232 /*
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1237 */
1238 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq);
1241 if (!looped && !tm)
1242 return NULL;
1243 /*
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1246 * level 0.
1247 */
1248 if (!tm)
1249 break;
1250
1251 /*
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break;
1258
1259 found = tm;
1260 root_logical = tm->old_root.logical;
1261 looped = 1;
1262 }
1263
1264 /* if there's no old root to return, return what we found instead */
1265 if (!found)
1266 found = tm;
1267
1268 return found;
1269 }
1270
1271 /*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1274 * time_seq).
1275 */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 u32 n;
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1290 /*
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1294 */
1295 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1298 /* Fallthrough */
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation);
1305 n++;
1306 break;
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation);
1313 break;
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1316 n--;
1317 break;
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1323 break;
1324 case MOD_LOG_ROOT_REPLACE:
1325 /*
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1333 */
1334 break;
1335 }
1336 next = rb_next(&tm->node);
1337 if (!next)
1338 break;
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1341 break;
1342 }
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1345 }
1346
1347 /*
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1357 {
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1360
1361 if (!time_seq)
1362 return eb;
1363
1364 if (btrfs_header_level(eb) == 0)
1365 return eb;
1366
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm)
1369 return eb;
1370
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 eb->len);
1378 if (!eb_rewin) {
1379 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb);
1381 return NULL;
1382 }
1383 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 } else {
1389 eb_rewin = btrfs_clone_extent_buffer(eb);
1390 if (!eb_rewin) {
1391 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb);
1393 return NULL;
1394 }
1395 }
1396
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb);
1400
1401 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407 return eb_rewin;
1408 }
1409
1410 /*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1416 */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root;
1423 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0;
1426 u64 logical;
1427
1428 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 if (!tm)
1431 return eb_root;
1432
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root;
1435 old_generation = tm->generation;
1436 logical = old_root->logical;
1437 } else {
1438 logical = eb_root->start;
1439 }
1440
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 if (!IS_ERR(old))
1448 free_extent_buffer(old);
1449 btrfs_warn(root->fs_info,
1450 "failed to read tree block %llu from get_old_root", logical);
1451 } else {
1452 eb = btrfs_clone_extent_buffer(old);
1453 free_extent_buffer(old);
1454 }
1455 } else if (old_root) {
1456 btrfs_tree_read_unlock(eb_root);
1457 free_extent_buffer(eb_root);
1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 root->nodesize);
1460 } else {
1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 eb = btrfs_clone_extent_buffer(eb_root);
1463 btrfs_tree_read_unlock_blocking(eb_root);
1464 free_extent_buffer(eb_root);
1465 }
1466
1467 if (!eb)
1468 return NULL;
1469 extent_buffer_get(eb);
1470 btrfs_tree_read_lock(eb);
1471 if (old_root) {
1472 btrfs_set_header_bytenr(eb, eb->start);
1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 btrfs_set_header_level(eb, old_root->level);
1476 btrfs_set_header_generation(eb, old_generation);
1477 }
1478 if (tm)
1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 else
1481 WARN_ON(btrfs_header_level(eb) != 0);
1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484 return eb;
1485 }
1486
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489 struct tree_mod_elem *tm;
1490 int level;
1491 struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 level = tm->old_root.level;
1496 } else {
1497 level = btrfs_header_level(eb_root);
1498 }
1499 free_extent_buffer(eb_root);
1500
1501 return level;
1502 }
1503
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *root,
1506 struct extent_buffer *buf)
1507 {
1508 if (btrfs_test_is_dummy_root(root))
1509 return 0;
1510
1511 /* ensure we can see the force_cow */
1512 smp_rmb();
1513
1514 /*
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1519 *
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1524 */
1525 if (btrfs_header_generation(buf) == trans->transid &&
1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 return 0;
1531 return 1;
1532 }
1533
1534 /*
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1538 */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, struct extent_buffer *buf,
1541 struct extent_buffer *parent, int parent_slot,
1542 struct extent_buffer **cow_ret)
1543 {
1544 u64 search_start;
1545 int ret;
1546
1547 if (trans->transaction != root->fs_info->running_transaction)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid,
1550 root->fs_info->running_transaction->transid);
1551
1552 if (trans->transid != root->fs_info->generation)
1553 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 trans->transid, root->fs_info->generation);
1555
1556 if (!should_cow_block(trans, root, buf)) {
1557 *cow_ret = buf;
1558 return 0;
1559 }
1560
1561 search_start = buf->start & ~((u64)SZ_1G - 1);
1562
1563 if (parent)
1564 btrfs_set_lock_blocking(parent);
1565 btrfs_set_lock_blocking(buf);
1566
1567 ret = __btrfs_cow_block(trans, root, buf, parent,
1568 parent_slot, cow_ret, search_start, 0);
1569
1570 trace_btrfs_cow_block(root, buf, *cow_ret);
1571
1572 return ret;
1573 }
1574
1575 /*
1576 * helper function for defrag to decide if two blocks pointed to by a
1577 * node are actually close by
1578 */
1579 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1580 {
1581 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1582 return 1;
1583 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1584 return 1;
1585 return 0;
1586 }
1587
1588 /*
1589 * compare two keys in a memcmp fashion
1590 */
1591 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1592 {
1593 struct btrfs_key k1;
1594
1595 btrfs_disk_key_to_cpu(&k1, disk);
1596
1597 return btrfs_comp_cpu_keys(&k1, k2);
1598 }
1599
1600 /*
1601 * same as comp_keys only with two btrfs_key's
1602 */
1603 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1604 {
1605 if (k1->objectid > k2->objectid)
1606 return 1;
1607 if (k1->objectid < k2->objectid)
1608 return -1;
1609 if (k1->type > k2->type)
1610 return 1;
1611 if (k1->type < k2->type)
1612 return -1;
1613 if (k1->offset > k2->offset)
1614 return 1;
1615 if (k1->offset < k2->offset)
1616 return -1;
1617 return 0;
1618 }
1619
1620 /*
1621 * this is used by the defrag code to go through all the
1622 * leaves pointed to by a node and reallocate them so that
1623 * disk order is close to key order
1624 */
1625 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1626 struct btrfs_root *root, struct extent_buffer *parent,
1627 int start_slot, u64 *last_ret,
1628 struct btrfs_key *progress)
1629 {
1630 struct extent_buffer *cur;
1631 u64 blocknr;
1632 u64 gen;
1633 u64 search_start = *last_ret;
1634 u64 last_block = 0;
1635 u64 other;
1636 u32 parent_nritems;
1637 int end_slot;
1638 int i;
1639 int err = 0;
1640 int parent_level;
1641 int uptodate;
1642 u32 blocksize;
1643 int progress_passed = 0;
1644 struct btrfs_disk_key disk_key;
1645
1646 parent_level = btrfs_header_level(parent);
1647
1648 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1649 WARN_ON(trans->transid != root->fs_info->generation);
1650
1651 parent_nritems = btrfs_header_nritems(parent);
1652 blocksize = root->nodesize;
1653 end_slot = parent_nritems - 1;
1654
1655 if (parent_nritems <= 1)
1656 return 0;
1657
1658 btrfs_set_lock_blocking(parent);
1659
1660 for (i = start_slot; i <= end_slot; i++) {
1661 int close = 1;
1662
1663 btrfs_node_key(parent, &disk_key, i);
1664 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1665 continue;
1666
1667 progress_passed = 1;
1668 blocknr = btrfs_node_blockptr(parent, i);
1669 gen = btrfs_node_ptr_generation(parent, i);
1670 if (last_block == 0)
1671 last_block = blocknr;
1672
1673 if (i > 0) {
1674 other = btrfs_node_blockptr(parent, i - 1);
1675 close = close_blocks(blocknr, other, blocksize);
1676 }
1677 if (!close && i < end_slot) {
1678 other = btrfs_node_blockptr(parent, i + 1);
1679 close = close_blocks(blocknr, other, blocksize);
1680 }
1681 if (close) {
1682 last_block = blocknr;
1683 continue;
1684 }
1685
1686 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1687 if (cur)
1688 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1689 else
1690 uptodate = 0;
1691 if (!cur || !uptodate) {
1692 if (!cur) {
1693 cur = read_tree_block(root, blocknr, gen);
1694 if (IS_ERR(cur)) {
1695 return PTR_ERR(cur);
1696 } else if (!extent_buffer_uptodate(cur)) {
1697 free_extent_buffer(cur);
1698 return -EIO;
1699 }
1700 } else if (!uptodate) {
1701 err = btrfs_read_buffer(cur, gen);
1702 if (err) {
1703 free_extent_buffer(cur);
1704 return err;
1705 }
1706 }
1707 }
1708 if (search_start == 0)
1709 search_start = last_block;
1710
1711 btrfs_tree_lock(cur);
1712 btrfs_set_lock_blocking(cur);
1713 err = __btrfs_cow_block(trans, root, cur, parent, i,
1714 &cur, search_start,
1715 min(16 * blocksize,
1716 (end_slot - i) * blocksize));
1717 if (err) {
1718 btrfs_tree_unlock(cur);
1719 free_extent_buffer(cur);
1720 break;
1721 }
1722 search_start = cur->start;
1723 last_block = cur->start;
1724 *last_ret = search_start;
1725 btrfs_tree_unlock(cur);
1726 free_extent_buffer(cur);
1727 }
1728 return err;
1729 }
1730
1731 /*
1732 * The leaf data grows from end-to-front in the node.
1733 * this returns the address of the start of the last item,
1734 * which is the stop of the leaf data stack
1735 */
1736 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1737 struct extent_buffer *leaf)
1738 {
1739 u32 nr = btrfs_header_nritems(leaf);
1740 if (nr == 0)
1741 return BTRFS_LEAF_DATA_SIZE(root);
1742 return btrfs_item_offset_nr(leaf, nr - 1);
1743 }
1744
1745
1746 /*
1747 * search for key in the extent_buffer. The items start at offset p,
1748 * and they are item_size apart. There are 'max' items in p.
1749 *
1750 * the slot in the array is returned via slot, and it points to
1751 * the place where you would insert key if it is not found in
1752 * the array.
1753 *
1754 * slot may point to max if the key is bigger than all of the keys
1755 */
1756 static noinline int generic_bin_search(struct extent_buffer *eb,
1757 unsigned long p,
1758 int item_size, struct btrfs_key *key,
1759 int max, int *slot)
1760 {
1761 int low = 0;
1762 int high = max;
1763 int mid;
1764 int ret;
1765 struct btrfs_disk_key *tmp = NULL;
1766 struct btrfs_disk_key unaligned;
1767 unsigned long offset;
1768 char *kaddr = NULL;
1769 unsigned long map_start = 0;
1770 unsigned long map_len = 0;
1771 int err;
1772
1773 while (low < high) {
1774 mid = (low + high) / 2;
1775 offset = p + mid * item_size;
1776
1777 if (!kaddr || offset < map_start ||
1778 (offset + sizeof(struct btrfs_disk_key)) >
1779 map_start + map_len) {
1780
1781 err = map_private_extent_buffer(eb, offset,
1782 sizeof(struct btrfs_disk_key),
1783 &kaddr, &map_start, &map_len);
1784
1785 if (!err) {
1786 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1787 map_start);
1788 } else {
1789 read_extent_buffer(eb, &unaligned,
1790 offset, sizeof(unaligned));
1791 tmp = &unaligned;
1792 }
1793
1794 } else {
1795 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 map_start);
1797 }
1798 ret = comp_keys(tmp, key);
1799
1800 if (ret < 0)
1801 low = mid + 1;
1802 else if (ret > 0)
1803 high = mid;
1804 else {
1805 *slot = mid;
1806 return 0;
1807 }
1808 }
1809 *slot = low;
1810 return 1;
1811 }
1812
1813 /*
1814 * simple bin_search frontend that does the right thing for
1815 * leaves vs nodes
1816 */
1817 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818 int level, int *slot)
1819 {
1820 if (level == 0)
1821 return generic_bin_search(eb,
1822 offsetof(struct btrfs_leaf, items),
1823 sizeof(struct btrfs_item),
1824 key, btrfs_header_nritems(eb),
1825 slot);
1826 else
1827 return generic_bin_search(eb,
1828 offsetof(struct btrfs_node, ptrs),
1829 sizeof(struct btrfs_key_ptr),
1830 key, btrfs_header_nritems(eb),
1831 slot);
1832 }
1833
1834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1835 int level, int *slot)
1836 {
1837 return bin_search(eb, key, level, slot);
1838 }
1839
1840 static void root_add_used(struct btrfs_root *root, u32 size)
1841 {
1842 spin_lock(&root->accounting_lock);
1843 btrfs_set_root_used(&root->root_item,
1844 btrfs_root_used(&root->root_item) + size);
1845 spin_unlock(&root->accounting_lock);
1846 }
1847
1848 static void root_sub_used(struct btrfs_root *root, u32 size)
1849 {
1850 spin_lock(&root->accounting_lock);
1851 btrfs_set_root_used(&root->root_item,
1852 btrfs_root_used(&root->root_item) - size);
1853 spin_unlock(&root->accounting_lock);
1854 }
1855
1856 /* given a node and slot number, this reads the blocks it points to. The
1857 * extent buffer is returned with a reference taken (but unlocked).
1858 * NULL is returned on error.
1859 */
1860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1861 struct extent_buffer *parent, int slot)
1862 {
1863 int level = btrfs_header_level(parent);
1864 struct extent_buffer *eb;
1865
1866 if (slot < 0)
1867 return NULL;
1868 if (slot >= btrfs_header_nritems(parent))
1869 return NULL;
1870
1871 BUG_ON(level == 0);
1872
1873 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1874 btrfs_node_ptr_generation(parent, slot));
1875 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1876 if (!IS_ERR(eb))
1877 free_extent_buffer(eb);
1878 eb = NULL;
1879 }
1880
1881 return eb;
1882 }
1883
1884 /*
1885 * node level balancing, used to make sure nodes are in proper order for
1886 * item deletion. We balance from the top down, so we have to make sure
1887 * that a deletion won't leave an node completely empty later on.
1888 */
1889 static noinline int balance_level(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path, int level)
1892 {
1893 struct extent_buffer *right = NULL;
1894 struct extent_buffer *mid;
1895 struct extent_buffer *left = NULL;
1896 struct extent_buffer *parent = NULL;
1897 int ret = 0;
1898 int wret;
1899 int pslot;
1900 int orig_slot = path->slots[level];
1901 u64 orig_ptr;
1902
1903 if (level == 0)
1904 return 0;
1905
1906 mid = path->nodes[level];
1907
1908 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1909 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1910 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1911
1912 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1913
1914 if (level < BTRFS_MAX_LEVEL - 1) {
1915 parent = path->nodes[level + 1];
1916 pslot = path->slots[level + 1];
1917 }
1918
1919 /*
1920 * deal with the case where there is only one pointer in the root
1921 * by promoting the node below to a root
1922 */
1923 if (!parent) {
1924 struct extent_buffer *child;
1925
1926 if (btrfs_header_nritems(mid) != 1)
1927 return 0;
1928
1929 /* promote the child to a root */
1930 child = read_node_slot(root, mid, 0);
1931 if (!child) {
1932 ret = -EROFS;
1933 btrfs_handle_fs_error(root->fs_info, ret, NULL);
1934 goto enospc;
1935 }
1936
1937 btrfs_tree_lock(child);
1938 btrfs_set_lock_blocking(child);
1939 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1940 if (ret) {
1941 btrfs_tree_unlock(child);
1942 free_extent_buffer(child);
1943 goto enospc;
1944 }
1945
1946 tree_mod_log_set_root_pointer(root, child, 1);
1947 rcu_assign_pointer(root->node, child);
1948
1949 add_root_to_dirty_list(root);
1950 btrfs_tree_unlock(child);
1951
1952 path->locks[level] = 0;
1953 path->nodes[level] = NULL;
1954 clean_tree_block(trans, root->fs_info, mid);
1955 btrfs_tree_unlock(mid);
1956 /* once for the path */
1957 free_extent_buffer(mid);
1958
1959 root_sub_used(root, mid->len);
1960 btrfs_free_tree_block(trans, root, mid, 0, 1);
1961 /* once for the root ptr */
1962 free_extent_buffer_stale(mid);
1963 return 0;
1964 }
1965 if (btrfs_header_nritems(mid) >
1966 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1967 return 0;
1968
1969 left = read_node_slot(root, parent, pslot - 1);
1970 if (left) {
1971 btrfs_tree_lock(left);
1972 btrfs_set_lock_blocking(left);
1973 wret = btrfs_cow_block(trans, root, left,
1974 parent, pslot - 1, &left);
1975 if (wret) {
1976 ret = wret;
1977 goto enospc;
1978 }
1979 }
1980 right = read_node_slot(root, parent, pslot + 1);
1981 if (right) {
1982 btrfs_tree_lock(right);
1983 btrfs_set_lock_blocking(right);
1984 wret = btrfs_cow_block(trans, root, right,
1985 parent, pslot + 1, &right);
1986 if (wret) {
1987 ret = wret;
1988 goto enospc;
1989 }
1990 }
1991
1992 /* first, try to make some room in the middle buffer */
1993 if (left) {
1994 orig_slot += btrfs_header_nritems(left);
1995 wret = push_node_left(trans, root, left, mid, 1);
1996 if (wret < 0)
1997 ret = wret;
1998 }
1999
2000 /*
2001 * then try to empty the right most buffer into the middle
2002 */
2003 if (right) {
2004 wret = push_node_left(trans, root, mid, right, 1);
2005 if (wret < 0 && wret != -ENOSPC)
2006 ret = wret;
2007 if (btrfs_header_nritems(right) == 0) {
2008 clean_tree_block(trans, root->fs_info, right);
2009 btrfs_tree_unlock(right);
2010 del_ptr(root, path, level + 1, pslot + 1);
2011 root_sub_used(root, right->len);
2012 btrfs_free_tree_block(trans, root, right, 0, 1);
2013 free_extent_buffer_stale(right);
2014 right = NULL;
2015 } else {
2016 struct btrfs_disk_key right_key;
2017 btrfs_node_key(right, &right_key, 0);
2018 tree_mod_log_set_node_key(root->fs_info, parent,
2019 pslot + 1, 0);
2020 btrfs_set_node_key(parent, &right_key, pslot + 1);
2021 btrfs_mark_buffer_dirty(parent);
2022 }
2023 }
2024 if (btrfs_header_nritems(mid) == 1) {
2025 /*
2026 * we're not allowed to leave a node with one item in the
2027 * tree during a delete. A deletion from lower in the tree
2028 * could try to delete the only pointer in this node.
2029 * So, pull some keys from the left.
2030 * There has to be a left pointer at this point because
2031 * otherwise we would have pulled some pointers from the
2032 * right
2033 */
2034 if (!left) {
2035 ret = -EROFS;
2036 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2037 goto enospc;
2038 }
2039 wret = balance_node_right(trans, root, mid, left);
2040 if (wret < 0) {
2041 ret = wret;
2042 goto enospc;
2043 }
2044 if (wret == 1) {
2045 wret = push_node_left(trans, root, left, mid, 1);
2046 if (wret < 0)
2047 ret = wret;
2048 }
2049 BUG_ON(wret == 1);
2050 }
2051 if (btrfs_header_nritems(mid) == 0) {
2052 clean_tree_block(trans, root->fs_info, mid);
2053 btrfs_tree_unlock(mid);
2054 del_ptr(root, path, level + 1, pslot);
2055 root_sub_used(root, mid->len);
2056 btrfs_free_tree_block(trans, root, mid, 0, 1);
2057 free_extent_buffer_stale(mid);
2058 mid = NULL;
2059 } else {
2060 /* update the parent key to reflect our changes */
2061 struct btrfs_disk_key mid_key;
2062 btrfs_node_key(mid, &mid_key, 0);
2063 tree_mod_log_set_node_key(root->fs_info, parent,
2064 pslot, 0);
2065 btrfs_set_node_key(parent, &mid_key, pslot);
2066 btrfs_mark_buffer_dirty(parent);
2067 }
2068
2069 /* update the path */
2070 if (left) {
2071 if (btrfs_header_nritems(left) > orig_slot) {
2072 extent_buffer_get(left);
2073 /* left was locked after cow */
2074 path->nodes[level] = left;
2075 path->slots[level + 1] -= 1;
2076 path->slots[level] = orig_slot;
2077 if (mid) {
2078 btrfs_tree_unlock(mid);
2079 free_extent_buffer(mid);
2080 }
2081 } else {
2082 orig_slot -= btrfs_header_nritems(left);
2083 path->slots[level] = orig_slot;
2084 }
2085 }
2086 /* double check we haven't messed things up */
2087 if (orig_ptr !=
2088 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2089 BUG();
2090 enospc:
2091 if (right) {
2092 btrfs_tree_unlock(right);
2093 free_extent_buffer(right);
2094 }
2095 if (left) {
2096 if (path->nodes[level] != left)
2097 btrfs_tree_unlock(left);
2098 free_extent_buffer(left);
2099 }
2100 return ret;
2101 }
2102
2103 /* Node balancing for insertion. Here we only split or push nodes around
2104 * when they are completely full. This is also done top down, so we
2105 * have to be pessimistic.
2106 */
2107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
2109 struct btrfs_path *path, int level)
2110 {
2111 struct extent_buffer *right = NULL;
2112 struct extent_buffer *mid;
2113 struct extent_buffer *left = NULL;
2114 struct extent_buffer *parent = NULL;
2115 int ret = 0;
2116 int wret;
2117 int pslot;
2118 int orig_slot = path->slots[level];
2119
2120 if (level == 0)
2121 return 1;
2122
2123 mid = path->nodes[level];
2124 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2125
2126 if (level < BTRFS_MAX_LEVEL - 1) {
2127 parent = path->nodes[level + 1];
2128 pslot = path->slots[level + 1];
2129 }
2130
2131 if (!parent)
2132 return 1;
2133
2134 left = read_node_slot(root, parent, pslot - 1);
2135
2136 /* first, try to make some room in the middle buffer */
2137 if (left) {
2138 u32 left_nr;
2139
2140 btrfs_tree_lock(left);
2141 btrfs_set_lock_blocking(left);
2142
2143 left_nr = btrfs_header_nritems(left);
2144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2145 wret = 1;
2146 } else {
2147 ret = btrfs_cow_block(trans, root, left, parent,
2148 pslot - 1, &left);
2149 if (ret)
2150 wret = 1;
2151 else {
2152 wret = push_node_left(trans, root,
2153 left, mid, 0);
2154 }
2155 }
2156 if (wret < 0)
2157 ret = wret;
2158 if (wret == 0) {
2159 struct btrfs_disk_key disk_key;
2160 orig_slot += left_nr;
2161 btrfs_node_key(mid, &disk_key, 0);
2162 tree_mod_log_set_node_key(root->fs_info, parent,
2163 pslot, 0);
2164 btrfs_set_node_key(parent, &disk_key, pslot);
2165 btrfs_mark_buffer_dirty(parent);
2166 if (btrfs_header_nritems(left) > orig_slot) {
2167 path->nodes[level] = left;
2168 path->slots[level + 1] -= 1;
2169 path->slots[level] = orig_slot;
2170 btrfs_tree_unlock(mid);
2171 free_extent_buffer(mid);
2172 } else {
2173 orig_slot -=
2174 btrfs_header_nritems(left);
2175 path->slots[level] = orig_slot;
2176 btrfs_tree_unlock(left);
2177 free_extent_buffer(left);
2178 }
2179 return 0;
2180 }
2181 btrfs_tree_unlock(left);
2182 free_extent_buffer(left);
2183 }
2184 right = read_node_slot(root, parent, pslot + 1);
2185
2186 /*
2187 * then try to empty the right most buffer into the middle
2188 */
2189 if (right) {
2190 u32 right_nr;
2191
2192 btrfs_tree_lock(right);
2193 btrfs_set_lock_blocking(right);
2194
2195 right_nr = btrfs_header_nritems(right);
2196 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2197 wret = 1;
2198 } else {
2199 ret = btrfs_cow_block(trans, root, right,
2200 parent, pslot + 1,
2201 &right);
2202 if (ret)
2203 wret = 1;
2204 else {
2205 wret = balance_node_right(trans, root,
2206 right, mid);
2207 }
2208 }
2209 if (wret < 0)
2210 ret = wret;
2211 if (wret == 0) {
2212 struct btrfs_disk_key disk_key;
2213
2214 btrfs_node_key(right, &disk_key, 0);
2215 tree_mod_log_set_node_key(root->fs_info, parent,
2216 pslot + 1, 0);
2217 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2218 btrfs_mark_buffer_dirty(parent);
2219
2220 if (btrfs_header_nritems(mid) <= orig_slot) {
2221 path->nodes[level] = right;
2222 path->slots[level + 1] += 1;
2223 path->slots[level] = orig_slot -
2224 btrfs_header_nritems(mid);
2225 btrfs_tree_unlock(mid);
2226 free_extent_buffer(mid);
2227 } else {
2228 btrfs_tree_unlock(right);
2229 free_extent_buffer(right);
2230 }
2231 return 0;
2232 }
2233 btrfs_tree_unlock(right);
2234 free_extent_buffer(right);
2235 }
2236 return 1;
2237 }
2238
2239 /*
2240 * readahead one full node of leaves, finding things that are close
2241 * to the block in 'slot', and triggering ra on them.
2242 */
2243 static void reada_for_search(struct btrfs_root *root,
2244 struct btrfs_path *path,
2245 int level, int slot, u64 objectid)
2246 {
2247 struct extent_buffer *node;
2248 struct btrfs_disk_key disk_key;
2249 u32 nritems;
2250 u64 search;
2251 u64 target;
2252 u64 nread = 0;
2253 u64 gen;
2254 struct extent_buffer *eb;
2255 u32 nr;
2256 u32 blocksize;
2257 u32 nscan = 0;
2258
2259 if (level != 1)
2260 return;
2261
2262 if (!path->nodes[level])
2263 return;
2264
2265 node = path->nodes[level];
2266
2267 search = btrfs_node_blockptr(node, slot);
2268 blocksize = root->nodesize;
2269 eb = btrfs_find_tree_block(root->fs_info, search);
2270 if (eb) {
2271 free_extent_buffer(eb);
2272 return;
2273 }
2274
2275 target = search;
2276
2277 nritems = btrfs_header_nritems(node);
2278 nr = slot;
2279
2280 while (1) {
2281 if (path->reada == READA_BACK) {
2282 if (nr == 0)
2283 break;
2284 nr--;
2285 } else if (path->reada == READA_FORWARD) {
2286 nr++;
2287 if (nr >= nritems)
2288 break;
2289 }
2290 if (path->reada == READA_BACK && objectid) {
2291 btrfs_node_key(node, &disk_key, nr);
2292 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2293 break;
2294 }
2295 search = btrfs_node_blockptr(node, nr);
2296 if ((search <= target && target - search <= 65536) ||
2297 (search > target && search - target <= 65536)) {
2298 gen = btrfs_node_ptr_generation(node, nr);
2299 readahead_tree_block(root, search);
2300 nread += blocksize;
2301 }
2302 nscan++;
2303 if ((nread > 65536 || nscan > 32))
2304 break;
2305 }
2306 }
2307
2308 static noinline void reada_for_balance(struct btrfs_root *root,
2309 struct btrfs_path *path, int level)
2310 {
2311 int slot;
2312 int nritems;
2313 struct extent_buffer *parent;
2314 struct extent_buffer *eb;
2315 u64 gen;
2316 u64 block1 = 0;
2317 u64 block2 = 0;
2318
2319 parent = path->nodes[level + 1];
2320 if (!parent)
2321 return;
2322
2323 nritems = btrfs_header_nritems(parent);
2324 slot = path->slots[level + 1];
2325
2326 if (slot > 0) {
2327 block1 = btrfs_node_blockptr(parent, slot - 1);
2328 gen = btrfs_node_ptr_generation(parent, slot - 1);
2329 eb = btrfs_find_tree_block(root->fs_info, block1);
2330 /*
2331 * if we get -eagain from btrfs_buffer_uptodate, we
2332 * don't want to return eagain here. That will loop
2333 * forever
2334 */
2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 block1 = 0;
2337 free_extent_buffer(eb);
2338 }
2339 if (slot + 1 < nritems) {
2340 block2 = btrfs_node_blockptr(parent, slot + 1);
2341 gen = btrfs_node_ptr_generation(parent, slot + 1);
2342 eb = btrfs_find_tree_block(root->fs_info, block2);
2343 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344 block2 = 0;
2345 free_extent_buffer(eb);
2346 }
2347
2348 if (block1)
2349 readahead_tree_block(root, block1);
2350 if (block2)
2351 readahead_tree_block(root, block2);
2352 }
2353
2354
2355 /*
2356 * when we walk down the tree, it is usually safe to unlock the higher layers
2357 * in the tree. The exceptions are when our path goes through slot 0, because
2358 * operations on the tree might require changing key pointers higher up in the
2359 * tree.
2360 *
2361 * callers might also have set path->keep_locks, which tells this code to keep
2362 * the lock if the path points to the last slot in the block. This is part of
2363 * walking through the tree, and selecting the next slot in the higher block.
2364 *
2365 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2366 * if lowest_unlock is 1, level 0 won't be unlocked
2367 */
2368 static noinline void unlock_up(struct btrfs_path *path, int level,
2369 int lowest_unlock, int min_write_lock_level,
2370 int *write_lock_level)
2371 {
2372 int i;
2373 int skip_level = level;
2374 int no_skips = 0;
2375 struct extent_buffer *t;
2376
2377 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378 if (!path->nodes[i])
2379 break;
2380 if (!path->locks[i])
2381 break;
2382 if (!no_skips && path->slots[i] == 0) {
2383 skip_level = i + 1;
2384 continue;
2385 }
2386 if (!no_skips && path->keep_locks) {
2387 u32 nritems;
2388 t = path->nodes[i];
2389 nritems = btrfs_header_nritems(t);
2390 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2391 skip_level = i + 1;
2392 continue;
2393 }
2394 }
2395 if (skip_level < i && i >= lowest_unlock)
2396 no_skips = 1;
2397
2398 t = path->nodes[i];
2399 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2400 btrfs_tree_unlock_rw(t, path->locks[i]);
2401 path->locks[i] = 0;
2402 if (write_lock_level &&
2403 i > min_write_lock_level &&
2404 i <= *write_lock_level) {
2405 *write_lock_level = i - 1;
2406 }
2407 }
2408 }
2409 }
2410
2411 /*
2412 * This releases any locks held in the path starting at level and
2413 * going all the way up to the root.
2414 *
2415 * btrfs_search_slot will keep the lock held on higher nodes in a few
2416 * corner cases, such as COW of the block at slot zero in the node. This
2417 * ignores those rules, and it should only be called when there are no
2418 * more updates to be done higher up in the tree.
2419 */
2420 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2421 {
2422 int i;
2423
2424 if (path->keep_locks)
2425 return;
2426
2427 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2428 if (!path->nodes[i])
2429 continue;
2430 if (!path->locks[i])
2431 continue;
2432 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2433 path->locks[i] = 0;
2434 }
2435 }
2436
2437 /*
2438 * helper function for btrfs_search_slot. The goal is to find a block
2439 * in cache without setting the path to blocking. If we find the block
2440 * we return zero and the path is unchanged.
2441 *
2442 * If we can't find the block, we set the path blocking and do some
2443 * reada. -EAGAIN is returned and the search must be repeated.
2444 */
2445 static int
2446 read_block_for_search(struct btrfs_trans_handle *trans,
2447 struct btrfs_root *root, struct btrfs_path *p,
2448 struct extent_buffer **eb_ret, int level, int slot,
2449 struct btrfs_key *key, u64 time_seq)
2450 {
2451 u64 blocknr;
2452 u64 gen;
2453 struct extent_buffer *b = *eb_ret;
2454 struct extent_buffer *tmp;
2455 int ret;
2456
2457 blocknr = btrfs_node_blockptr(b, slot);
2458 gen = btrfs_node_ptr_generation(b, slot);
2459
2460 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2461 if (tmp) {
2462 /* first we do an atomic uptodate check */
2463 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2464 *eb_ret = tmp;
2465 return 0;
2466 }
2467
2468 /* the pages were up to date, but we failed
2469 * the generation number check. Do a full
2470 * read for the generation number that is correct.
2471 * We must do this without dropping locks so
2472 * we can trust our generation number
2473 */
2474 btrfs_set_path_blocking(p);
2475
2476 /* now we're allowed to do a blocking uptodate check */
2477 ret = btrfs_read_buffer(tmp, gen);
2478 if (!ret) {
2479 *eb_ret = tmp;
2480 return 0;
2481 }
2482 free_extent_buffer(tmp);
2483 btrfs_release_path(p);
2484 return -EIO;
2485 }
2486
2487 /*
2488 * reduce lock contention at high levels
2489 * of the btree by dropping locks before
2490 * we read. Don't release the lock on the current
2491 * level because we need to walk this node to figure
2492 * out which blocks to read.
2493 */
2494 btrfs_unlock_up_safe(p, level + 1);
2495 btrfs_set_path_blocking(p);
2496
2497 free_extent_buffer(tmp);
2498 if (p->reada != READA_NONE)
2499 reada_for_search(root, p, level, slot, key->objectid);
2500
2501 btrfs_release_path(p);
2502
2503 ret = -EAGAIN;
2504 tmp = read_tree_block(root, blocknr, 0);
2505 if (!IS_ERR(tmp)) {
2506 /*
2507 * If the read above didn't mark this buffer up to date,
2508 * it will never end up being up to date. Set ret to EIO now
2509 * and give up so that our caller doesn't loop forever
2510 * on our EAGAINs.
2511 */
2512 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2513 ret = -EIO;
2514 free_extent_buffer(tmp);
2515 } else {
2516 ret = PTR_ERR(tmp);
2517 }
2518 return ret;
2519 }
2520
2521 /*
2522 * helper function for btrfs_search_slot. This does all of the checks
2523 * for node-level blocks and does any balancing required based on
2524 * the ins_len.
2525 *
2526 * If no extra work was required, zero is returned. If we had to
2527 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2528 * start over
2529 */
2530 static int
2531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root, struct btrfs_path *p,
2533 struct extent_buffer *b, int level, int ins_len,
2534 int *write_lock_level)
2535 {
2536 int ret;
2537 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2538 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2539 int sret;
2540
2541 if (*write_lock_level < level + 1) {
2542 *write_lock_level = level + 1;
2543 btrfs_release_path(p);
2544 goto again;
2545 }
2546
2547 btrfs_set_path_blocking(p);
2548 reada_for_balance(root, p, level);
2549 sret = split_node(trans, root, p, level);
2550 btrfs_clear_path_blocking(p, NULL, 0);
2551
2552 BUG_ON(sret > 0);
2553 if (sret) {
2554 ret = sret;
2555 goto done;
2556 }
2557 b = p->nodes[level];
2558 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2559 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2560 int sret;
2561
2562 if (*write_lock_level < level + 1) {
2563 *write_lock_level = level + 1;
2564 btrfs_release_path(p);
2565 goto again;
2566 }
2567
2568 btrfs_set_path_blocking(p);
2569 reada_for_balance(root, p, level);
2570 sret = balance_level(trans, root, p, level);
2571 btrfs_clear_path_blocking(p, NULL, 0);
2572
2573 if (sret) {
2574 ret = sret;
2575 goto done;
2576 }
2577 b = p->nodes[level];
2578 if (!b) {
2579 btrfs_release_path(p);
2580 goto again;
2581 }
2582 BUG_ON(btrfs_header_nritems(b) == 1);
2583 }
2584 return 0;
2585
2586 again:
2587 ret = -EAGAIN;
2588 done:
2589 return ret;
2590 }
2591
2592 static void key_search_validate(struct extent_buffer *b,
2593 struct btrfs_key *key,
2594 int level)
2595 {
2596 #ifdef CONFIG_BTRFS_ASSERT
2597 struct btrfs_disk_key disk_key;
2598
2599 btrfs_cpu_key_to_disk(&disk_key, key);
2600
2601 if (level == 0)
2602 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603 offsetof(struct btrfs_leaf, items[0].key),
2604 sizeof(disk_key)));
2605 else
2606 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2607 offsetof(struct btrfs_node, ptrs[0].key),
2608 sizeof(disk_key)));
2609 #endif
2610 }
2611
2612 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2613 int level, int *prev_cmp, int *slot)
2614 {
2615 if (*prev_cmp != 0) {
2616 *prev_cmp = bin_search(b, key, level, slot);
2617 return *prev_cmp;
2618 }
2619
2620 key_search_validate(b, key, level);
2621 *slot = 0;
2622
2623 return 0;
2624 }
2625
2626 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2627 u64 iobjectid, u64 ioff, u8 key_type,
2628 struct btrfs_key *found_key)
2629 {
2630 int ret;
2631 struct btrfs_key key;
2632 struct extent_buffer *eb;
2633
2634 ASSERT(path);
2635 ASSERT(found_key);
2636
2637 key.type = key_type;
2638 key.objectid = iobjectid;
2639 key.offset = ioff;
2640
2641 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2642 if (ret < 0)
2643 return ret;
2644
2645 eb = path->nodes[0];
2646 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2647 ret = btrfs_next_leaf(fs_root, path);
2648 if (ret)
2649 return ret;
2650 eb = path->nodes[0];
2651 }
2652
2653 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2654 if (found_key->type != key.type ||
2655 found_key->objectid != key.objectid)
2656 return 1;
2657
2658 return 0;
2659 }
2660
2661 /*
2662 * look for key in the tree. path is filled in with nodes along the way
2663 * if key is found, we return zero and you can find the item in the leaf
2664 * level of the path (level 0)
2665 *
2666 * If the key isn't found, the path points to the slot where it should
2667 * be inserted, and 1 is returned. If there are other errors during the
2668 * search a negative error number is returned.
2669 *
2670 * if ins_len > 0, nodes and leaves will be split as we walk down the
2671 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2672 * possible)
2673 */
2674 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2675 *root, struct btrfs_key *key, struct btrfs_path *p, int
2676 ins_len, int cow)
2677 {
2678 struct extent_buffer *b;
2679 int slot;
2680 int ret;
2681 int err;
2682 int level;
2683 int lowest_unlock = 1;
2684 int root_lock;
2685 /* everything at write_lock_level or lower must be write locked */
2686 int write_lock_level = 0;
2687 u8 lowest_level = 0;
2688 int min_write_lock_level;
2689 int prev_cmp;
2690
2691 lowest_level = p->lowest_level;
2692 WARN_ON(lowest_level && ins_len > 0);
2693 WARN_ON(p->nodes[0] != NULL);
2694 BUG_ON(!cow && ins_len);
2695
2696 if (ins_len < 0) {
2697 lowest_unlock = 2;
2698
2699 /* when we are removing items, we might have to go up to level
2700 * two as we update tree pointers Make sure we keep write
2701 * for those levels as well
2702 */
2703 write_lock_level = 2;
2704 } else if (ins_len > 0) {
2705 /*
2706 * for inserting items, make sure we have a write lock on
2707 * level 1 so we can update keys
2708 */
2709 write_lock_level = 1;
2710 }
2711
2712 if (!cow)
2713 write_lock_level = -1;
2714
2715 if (cow && (p->keep_locks || p->lowest_level))
2716 write_lock_level = BTRFS_MAX_LEVEL;
2717
2718 min_write_lock_level = write_lock_level;
2719
2720 again:
2721 prev_cmp = -1;
2722 /*
2723 * we try very hard to do read locks on the root
2724 */
2725 root_lock = BTRFS_READ_LOCK;
2726 level = 0;
2727 if (p->search_commit_root) {
2728 /*
2729 * the commit roots are read only
2730 * so we always do read locks
2731 */
2732 if (p->need_commit_sem)
2733 down_read(&root->fs_info->commit_root_sem);
2734 b = root->commit_root;
2735 extent_buffer_get(b);
2736 level = btrfs_header_level(b);
2737 if (p->need_commit_sem)
2738 up_read(&root->fs_info->commit_root_sem);
2739 if (!p->skip_locking)
2740 btrfs_tree_read_lock(b);
2741 } else {
2742 if (p->skip_locking) {
2743 b = btrfs_root_node(root);
2744 level = btrfs_header_level(b);
2745 } else {
2746 /* we don't know the level of the root node
2747 * until we actually have it read locked
2748 */
2749 b = btrfs_read_lock_root_node(root);
2750 level = btrfs_header_level(b);
2751 if (level <= write_lock_level) {
2752 /* whoops, must trade for write lock */
2753 btrfs_tree_read_unlock(b);
2754 free_extent_buffer(b);
2755 b = btrfs_lock_root_node(root);
2756 root_lock = BTRFS_WRITE_LOCK;
2757
2758 /* the level might have changed, check again */
2759 level = btrfs_header_level(b);
2760 }
2761 }
2762 }
2763 p->nodes[level] = b;
2764 if (!p->skip_locking)
2765 p->locks[level] = root_lock;
2766
2767 while (b) {
2768 level = btrfs_header_level(b);
2769
2770 /*
2771 * setup the path here so we can release it under lock
2772 * contention with the cow code
2773 */
2774 if (cow) {
2775 /*
2776 * if we don't really need to cow this block
2777 * then we don't want to set the path blocking,
2778 * so we test it here
2779 */
2780 if (!should_cow_block(trans, root, b))
2781 goto cow_done;
2782
2783 /*
2784 * must have write locks on this node and the
2785 * parent
2786 */
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2794 }
2795
2796 btrfs_set_path_blocking(p);
2797 err = btrfs_cow_block(trans, root, b,
2798 p->nodes[level + 1],
2799 p->slots[level + 1], &b);
2800 if (err) {
2801 ret = err;
2802 goto done;
2803 }
2804 }
2805 cow_done:
2806 p->nodes[level] = b;
2807 btrfs_clear_path_blocking(p, NULL, 0);
2808
2809 /*
2810 * we have a lock on b and as long as we aren't changing
2811 * the tree, there is no way to for the items in b to change.
2812 * It is safe to drop the lock on our parent before we
2813 * go through the expensive btree search on b.
2814 *
2815 * If we're inserting or deleting (ins_len != 0), then we might
2816 * be changing slot zero, which may require changing the parent.
2817 * So, we can't drop the lock until after we know which slot
2818 * we're operating on.
2819 */
2820 if (!ins_len && !p->keep_locks) {
2821 int u = level + 1;
2822
2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825 p->locks[u] = 0;
2826 }
2827 }
2828
2829 ret = key_search(b, key, level, &prev_cmp, &slot);
2830
2831 if (level != 0) {
2832 int dec = 0;
2833 if (ret && slot > 0) {
2834 dec = 1;
2835 slot -= 1;
2836 }
2837 p->slots[level] = slot;
2838 err = setup_nodes_for_search(trans, root, p, b, level,
2839 ins_len, &write_lock_level);
2840 if (err == -EAGAIN)
2841 goto again;
2842 if (err) {
2843 ret = err;
2844 goto done;
2845 }
2846 b = p->nodes[level];
2847 slot = p->slots[level];
2848
2849 /*
2850 * slot 0 is special, if we change the key
2851 * we have to update the parent pointer
2852 * which means we must have a write lock
2853 * on the parent
2854 */
2855 if (slot == 0 && ins_len &&
2856 write_lock_level < level + 1) {
2857 write_lock_level = level + 1;
2858 btrfs_release_path(p);
2859 goto again;
2860 }
2861
2862 unlock_up(p, level, lowest_unlock,
2863 min_write_lock_level, &write_lock_level);
2864
2865 if (level == lowest_level) {
2866 if (dec)
2867 p->slots[level]++;
2868 goto done;
2869 }
2870
2871 err = read_block_for_search(trans, root, p,
2872 &b, level, slot, key, 0);
2873 if (err == -EAGAIN)
2874 goto again;
2875 if (err) {
2876 ret = err;
2877 goto done;
2878 }
2879
2880 if (!p->skip_locking) {
2881 level = btrfs_header_level(b);
2882 if (level <= write_lock_level) {
2883 err = btrfs_try_tree_write_lock(b);
2884 if (!err) {
2885 btrfs_set_path_blocking(p);
2886 btrfs_tree_lock(b);
2887 btrfs_clear_path_blocking(p, b,
2888 BTRFS_WRITE_LOCK);
2889 }
2890 p->locks[level] = BTRFS_WRITE_LOCK;
2891 } else {
2892 err = btrfs_tree_read_lock_atomic(b);
2893 if (!err) {
2894 btrfs_set_path_blocking(p);
2895 btrfs_tree_read_lock(b);
2896 btrfs_clear_path_blocking(p, b,
2897 BTRFS_READ_LOCK);
2898 }
2899 p->locks[level] = BTRFS_READ_LOCK;
2900 }
2901 p->nodes[level] = b;
2902 }
2903 } else {
2904 p->slots[level] = slot;
2905 if (ins_len > 0 &&
2906 btrfs_leaf_free_space(root, b) < ins_len) {
2907 if (write_lock_level < 1) {
2908 write_lock_level = 1;
2909 btrfs_release_path(p);
2910 goto again;
2911 }
2912
2913 btrfs_set_path_blocking(p);
2914 err = split_leaf(trans, root, key,
2915 p, ins_len, ret == 0);
2916 btrfs_clear_path_blocking(p, NULL, 0);
2917
2918 BUG_ON(err > 0);
2919 if (err) {
2920 ret = err;
2921 goto done;
2922 }
2923 }
2924 if (!p->search_for_split)
2925 unlock_up(p, level, lowest_unlock,
2926 min_write_lock_level, &write_lock_level);
2927 goto done;
2928 }
2929 }
2930 ret = 1;
2931 done:
2932 /*
2933 * we don't really know what they plan on doing with the path
2934 * from here on, so for now just mark it as blocking
2935 */
2936 if (!p->leave_spinning)
2937 btrfs_set_path_blocking(p);
2938 if (ret < 0 && !p->skip_release_on_error)
2939 btrfs_release_path(p);
2940 return ret;
2941 }
2942
2943 /*
2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945 * current state of the tree together with the operations recorded in the tree
2946 * modification log to search for the key in a previous version of this tree, as
2947 * denoted by the time_seq parameter.
2948 *
2949 * Naturally, there is no support for insert, delete or cow operations.
2950 *
2951 * The resulting path and return value will be set up as if we called
2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953 */
2954 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2955 struct btrfs_path *p, u64 time_seq)
2956 {
2957 struct extent_buffer *b;
2958 int slot;
2959 int ret;
2960 int err;
2961 int level;
2962 int lowest_unlock = 1;
2963 u8 lowest_level = 0;
2964 int prev_cmp = -1;
2965
2966 lowest_level = p->lowest_level;
2967 WARN_ON(p->nodes[0] != NULL);
2968
2969 if (p->search_commit_root) {
2970 BUG_ON(time_seq);
2971 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2972 }
2973
2974 again:
2975 b = get_old_root(root, time_seq);
2976 level = btrfs_header_level(b);
2977 p->locks[level] = BTRFS_READ_LOCK;
2978
2979 while (b) {
2980 level = btrfs_header_level(b);
2981 p->nodes[level] = b;
2982 btrfs_clear_path_blocking(p, NULL, 0);
2983
2984 /*
2985 * we have a lock on b and as long as we aren't changing
2986 * the tree, there is no way to for the items in b to change.
2987 * It is safe to drop the lock on our parent before we
2988 * go through the expensive btree search on b.
2989 */
2990 btrfs_unlock_up_safe(p, level + 1);
2991
2992 /*
2993 * Since we can unwind ebs we want to do a real search every
2994 * time.
2995 */
2996 prev_cmp = -1;
2997 ret = key_search(b, key, level, &prev_cmp, &slot);
2998
2999 if (level != 0) {
3000 int dec = 0;
3001 if (ret && slot > 0) {
3002 dec = 1;
3003 slot -= 1;
3004 }
3005 p->slots[level] = slot;
3006 unlock_up(p, level, lowest_unlock, 0, NULL);
3007
3008 if (level == lowest_level) {
3009 if (dec)
3010 p->slots[level]++;
3011 goto done;
3012 }
3013
3014 err = read_block_for_search(NULL, root, p, &b, level,
3015 slot, key, time_seq);
3016 if (err == -EAGAIN)
3017 goto again;
3018 if (err) {
3019 ret = err;
3020 goto done;
3021 }
3022
3023 level = btrfs_header_level(b);
3024 err = btrfs_tree_read_lock_atomic(b);
3025 if (!err) {
3026 btrfs_set_path_blocking(p);
3027 btrfs_tree_read_lock(b);
3028 btrfs_clear_path_blocking(p, b,
3029 BTRFS_READ_LOCK);
3030 }
3031 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3032 if (!b) {
3033 ret = -ENOMEM;
3034 goto done;
3035 }
3036 p->locks[level] = BTRFS_READ_LOCK;
3037 p->nodes[level] = b;
3038 } else {
3039 p->slots[level] = slot;
3040 unlock_up(p, level, lowest_unlock, 0, NULL);
3041 goto done;
3042 }
3043 }
3044 ret = 1;
3045 done:
3046 if (!p->leave_spinning)
3047 btrfs_set_path_blocking(p);
3048 if (ret < 0)
3049 btrfs_release_path(p);
3050
3051 return ret;
3052 }
3053
3054 /*
3055 * helper to use instead of search slot if no exact match is needed but
3056 * instead the next or previous item should be returned.
3057 * When find_higher is true, the next higher item is returned, the next lower
3058 * otherwise.
3059 * When return_any and find_higher are both true, and no higher item is found,
3060 * return the next lower instead.
3061 * When return_any is true and find_higher is false, and no lower item is found,
3062 * return the next higher instead.
3063 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3064 * < 0 on error
3065 */
3066 int btrfs_search_slot_for_read(struct btrfs_root *root,
3067 struct btrfs_key *key, struct btrfs_path *p,
3068 int find_higher, int return_any)
3069 {
3070 int ret;
3071 struct extent_buffer *leaf;
3072
3073 again:
3074 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3075 if (ret <= 0)
3076 return ret;
3077 /*
3078 * a return value of 1 means the path is at the position where the
3079 * item should be inserted. Normally this is the next bigger item,
3080 * but in case the previous item is the last in a leaf, path points
3081 * to the first free slot in the previous leaf, i.e. at an invalid
3082 * item.
3083 */
3084 leaf = p->nodes[0];
3085
3086 if (find_higher) {
3087 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3088 ret = btrfs_next_leaf(root, p);
3089 if (ret <= 0)
3090 return ret;
3091 if (!return_any)
3092 return 1;
3093 /*
3094 * no higher item found, return the next
3095 * lower instead
3096 */
3097 return_any = 0;
3098 find_higher = 0;
3099 btrfs_release_path(p);
3100 goto again;
3101 }
3102 } else {
3103 if (p->slots[0] == 0) {
3104 ret = btrfs_prev_leaf(root, p);
3105 if (ret < 0)
3106 return ret;
3107 if (!ret) {
3108 leaf = p->nodes[0];
3109 if (p->slots[0] == btrfs_header_nritems(leaf))
3110 p->slots[0]--;
3111 return 0;
3112 }
3113 if (!return_any)
3114 return 1;
3115 /*
3116 * no lower item found, return the next
3117 * higher instead
3118 */
3119 return_any = 0;
3120 find_higher = 1;
3121 btrfs_release_path(p);
3122 goto again;
3123 } else {
3124 --p->slots[0];
3125 }
3126 }
3127 return 0;
3128 }
3129
3130 /*
3131 * adjust the pointers going up the tree, starting at level
3132 * making sure the right key of each node is points to 'key'.
3133 * This is used after shifting pointers to the left, so it stops
3134 * fixing up pointers when a given leaf/node is not in slot 0 of the
3135 * higher levels
3136 *
3137 */
3138 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3139 struct btrfs_path *path,
3140 struct btrfs_disk_key *key, int level)
3141 {
3142 int i;
3143 struct extent_buffer *t;
3144
3145 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3146 int tslot = path->slots[i];
3147 if (!path->nodes[i])
3148 break;
3149 t = path->nodes[i];
3150 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3151 btrfs_set_node_key(t, key, tslot);
3152 btrfs_mark_buffer_dirty(path->nodes[i]);
3153 if (tslot != 0)
3154 break;
3155 }
3156 }
3157
3158 /*
3159 * update item key.
3160 *
3161 * This function isn't completely safe. It's the caller's responsibility
3162 * that the new key won't break the order
3163 */
3164 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3165 struct btrfs_path *path,
3166 struct btrfs_key *new_key)
3167 {
3168 struct btrfs_disk_key disk_key;
3169 struct extent_buffer *eb;
3170 int slot;
3171
3172 eb = path->nodes[0];
3173 slot = path->slots[0];
3174 if (slot > 0) {
3175 btrfs_item_key(eb, &disk_key, slot - 1);
3176 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3177 }
3178 if (slot < btrfs_header_nritems(eb) - 1) {
3179 btrfs_item_key(eb, &disk_key, slot + 1);
3180 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3181 }
3182
3183 btrfs_cpu_key_to_disk(&disk_key, new_key);
3184 btrfs_set_item_key(eb, &disk_key, slot);
3185 btrfs_mark_buffer_dirty(eb);
3186 if (slot == 0)
3187 fixup_low_keys(fs_info, path, &disk_key, 1);
3188 }
3189
3190 /*
3191 * try to push data from one node into the next node left in the
3192 * tree.
3193 *
3194 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3195 * error, and > 0 if there was no room in the left hand block.
3196 */
3197 static int push_node_left(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root, struct extent_buffer *dst,
3199 struct extent_buffer *src, int empty)
3200 {
3201 int push_items = 0;
3202 int src_nritems;
3203 int dst_nritems;
3204 int ret = 0;
3205
3206 src_nritems = btrfs_header_nritems(src);
3207 dst_nritems = btrfs_header_nritems(dst);
3208 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3209 WARN_ON(btrfs_header_generation(src) != trans->transid);
3210 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3211
3212 if (!empty && src_nritems <= 8)
3213 return 1;
3214
3215 if (push_items <= 0)
3216 return 1;
3217
3218 if (empty) {
3219 push_items = min(src_nritems, push_items);
3220 if (push_items < src_nritems) {
3221 /* leave at least 8 pointers in the node if
3222 * we aren't going to empty it
3223 */
3224 if (src_nritems - push_items < 8) {
3225 if (push_items <= 8)
3226 return 1;
3227 push_items -= 8;
3228 }
3229 }
3230 } else
3231 push_items = min(src_nritems - 8, push_items);
3232
3233 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3234 push_items);
3235 if (ret) {
3236 btrfs_abort_transaction(trans, root, ret);
3237 return ret;
3238 }
3239 copy_extent_buffer(dst, src,
3240 btrfs_node_key_ptr_offset(dst_nritems),
3241 btrfs_node_key_ptr_offset(0),
3242 push_items * sizeof(struct btrfs_key_ptr));
3243
3244 if (push_items < src_nritems) {
3245 /*
3246 * don't call tree_mod_log_eb_move here, key removal was already
3247 * fully logged by tree_mod_log_eb_copy above.
3248 */
3249 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3250 btrfs_node_key_ptr_offset(push_items),
3251 (src_nritems - push_items) *
3252 sizeof(struct btrfs_key_ptr));
3253 }
3254 btrfs_set_header_nritems(src, src_nritems - push_items);
3255 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3256 btrfs_mark_buffer_dirty(src);
3257 btrfs_mark_buffer_dirty(dst);
3258
3259 return ret;
3260 }
3261
3262 /*
3263 * try to push data from one node into the next node right in the
3264 * tree.
3265 *
3266 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3267 * error, and > 0 if there was no room in the right hand block.
3268 *
3269 * this will only push up to 1/2 the contents of the left node over
3270 */
3271 static int balance_node_right(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *root,
3273 struct extent_buffer *dst,
3274 struct extent_buffer *src)
3275 {
3276 int push_items = 0;
3277 int max_push;
3278 int src_nritems;
3279 int dst_nritems;
3280 int ret = 0;
3281
3282 WARN_ON(btrfs_header_generation(src) != trans->transid);
3283 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3284
3285 src_nritems = btrfs_header_nritems(src);
3286 dst_nritems = btrfs_header_nritems(dst);
3287 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3288 if (push_items <= 0)
3289 return 1;
3290
3291 if (src_nritems < 4)
3292 return 1;
3293
3294 max_push = src_nritems / 2 + 1;
3295 /* don't try to empty the node */
3296 if (max_push >= src_nritems)
3297 return 1;
3298
3299 if (max_push < push_items)
3300 push_items = max_push;
3301
3302 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3303 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3304 btrfs_node_key_ptr_offset(0),
3305 (dst_nritems) *
3306 sizeof(struct btrfs_key_ptr));
3307
3308 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3309 src_nritems - push_items, push_items);
3310 if (ret) {
3311 btrfs_abort_transaction(trans, root, ret);
3312 return ret;
3313 }
3314 copy_extent_buffer(dst, src,
3315 btrfs_node_key_ptr_offset(0),
3316 btrfs_node_key_ptr_offset(src_nritems - push_items),
3317 push_items * sizeof(struct btrfs_key_ptr));
3318
3319 btrfs_set_header_nritems(src, src_nritems - push_items);
3320 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3321
3322 btrfs_mark_buffer_dirty(src);
3323 btrfs_mark_buffer_dirty(dst);
3324
3325 return ret;
3326 }
3327
3328 /*
3329 * helper function to insert a new root level in the tree.
3330 * A new node is allocated, and a single item is inserted to
3331 * point to the existing root
3332 *
3333 * returns zero on success or < 0 on failure.
3334 */
3335 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3336 struct btrfs_root *root,
3337 struct btrfs_path *path, int level)
3338 {
3339 u64 lower_gen;
3340 struct extent_buffer *lower;
3341 struct extent_buffer *c;
3342 struct extent_buffer *old;
3343 struct btrfs_disk_key lower_key;
3344
3345 BUG_ON(path->nodes[level]);
3346 BUG_ON(path->nodes[level-1] != root->node);
3347
3348 lower = path->nodes[level-1];
3349 if (level == 1)
3350 btrfs_item_key(lower, &lower_key, 0);
3351 else
3352 btrfs_node_key(lower, &lower_key, 0);
3353
3354 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3355 &lower_key, level, root->node->start, 0);
3356 if (IS_ERR(c))
3357 return PTR_ERR(c);
3358
3359 root_add_used(root, root->nodesize);
3360
3361 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3362 btrfs_set_header_nritems(c, 1);
3363 btrfs_set_header_level(c, level);
3364 btrfs_set_header_bytenr(c, c->start);
3365 btrfs_set_header_generation(c, trans->transid);
3366 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3367 btrfs_set_header_owner(c, root->root_key.objectid);
3368
3369 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3370 BTRFS_FSID_SIZE);
3371
3372 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3373 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3374
3375 btrfs_set_node_key(c, &lower_key, 0);
3376 btrfs_set_node_blockptr(c, 0, lower->start);
3377 lower_gen = btrfs_header_generation(lower);
3378 WARN_ON(lower_gen != trans->transid);
3379
3380 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3381
3382 btrfs_mark_buffer_dirty(c);
3383
3384 old = root->node;
3385 tree_mod_log_set_root_pointer(root, c, 0);
3386 rcu_assign_pointer(root->node, c);
3387
3388 /* the super has an extra ref to root->node */
3389 free_extent_buffer(old);
3390
3391 add_root_to_dirty_list(root);
3392 extent_buffer_get(c);
3393 path->nodes[level] = c;
3394 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3395 path->slots[level] = 0;
3396 return 0;
3397 }
3398
3399 /*
3400 * worker function to insert a single pointer in a node.
3401 * the node should have enough room for the pointer already
3402 *
3403 * slot and level indicate where you want the key to go, and
3404 * blocknr is the block the key points to.
3405 */
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407 struct btrfs_root *root, struct btrfs_path *path,
3408 struct btrfs_disk_key *key, u64 bytenr,
3409 int slot, int level)
3410 {
3411 struct extent_buffer *lower;
3412 int nritems;
3413 int ret;
3414
3415 BUG_ON(!path->nodes[level]);
3416 btrfs_assert_tree_locked(path->nodes[level]);
3417 lower = path->nodes[level];
3418 nritems = btrfs_header_nritems(lower);
3419 BUG_ON(slot > nritems);
3420 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3421 if (slot != nritems) {
3422 if (level)
3423 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3424 slot, nritems - slot);
3425 memmove_extent_buffer(lower,
3426 btrfs_node_key_ptr_offset(slot + 1),
3427 btrfs_node_key_ptr_offset(slot),
3428 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3429 }
3430 if (level) {
3431 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3432 MOD_LOG_KEY_ADD, GFP_NOFS);
3433 BUG_ON(ret < 0);
3434 }
3435 btrfs_set_node_key(lower, key, slot);
3436 btrfs_set_node_blockptr(lower, slot, bytenr);
3437 WARN_ON(trans->transid == 0);
3438 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3439 btrfs_set_header_nritems(lower, nritems + 1);
3440 btrfs_mark_buffer_dirty(lower);
3441 }
3442
3443 /*
3444 * split the node at the specified level in path in two.
3445 * The path is corrected to point to the appropriate node after the split
3446 *
3447 * Before splitting this tries to make some room in the node by pushing
3448 * left and right, if either one works, it returns right away.
3449 *
3450 * returns 0 on success and < 0 on failure
3451 */
3452 static noinline int split_node(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root,
3454 struct btrfs_path *path, int level)
3455 {
3456 struct extent_buffer *c;
3457 struct extent_buffer *split;
3458 struct btrfs_disk_key disk_key;
3459 int mid;
3460 int ret;
3461 u32 c_nritems;
3462
3463 c = path->nodes[level];
3464 WARN_ON(btrfs_header_generation(c) != trans->transid);
3465 if (c == root->node) {
3466 /*
3467 * trying to split the root, lets make a new one
3468 *
3469 * tree mod log: We don't log_removal old root in
3470 * insert_new_root, because that root buffer will be kept as a
3471 * normal node. We are going to log removal of half of the
3472 * elements below with tree_mod_log_eb_copy. We're holding a
3473 * tree lock on the buffer, which is why we cannot race with
3474 * other tree_mod_log users.
3475 */
3476 ret = insert_new_root(trans, root, path, level + 1);
3477 if (ret)
3478 return ret;
3479 } else {
3480 ret = push_nodes_for_insert(trans, root, path, level);
3481 c = path->nodes[level];
3482 if (!ret && btrfs_header_nritems(c) <
3483 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3484 return 0;
3485 if (ret < 0)
3486 return ret;
3487 }
3488
3489 c_nritems = btrfs_header_nritems(c);
3490 mid = (c_nritems + 1) / 2;
3491 btrfs_node_key(c, &disk_key, mid);
3492
3493 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494 &disk_key, level, c->start, 0);
3495 if (IS_ERR(split))
3496 return PTR_ERR(split);
3497
3498 root_add_used(root, root->nodesize);
3499
3500 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3501 btrfs_set_header_level(split, btrfs_header_level(c));
3502 btrfs_set_header_bytenr(split, split->start);
3503 btrfs_set_header_generation(split, trans->transid);
3504 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3505 btrfs_set_header_owner(split, root->root_key.objectid);
3506 write_extent_buffer(split, root->fs_info->fsid,
3507 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3508 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3509 btrfs_header_chunk_tree_uuid(split),
3510 BTRFS_UUID_SIZE);
3511
3512 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3513 mid, c_nritems - mid);
3514 if (ret) {
3515 btrfs_abort_transaction(trans, root, ret);
3516 return ret;
3517 }
3518 copy_extent_buffer(split, c,
3519 btrfs_node_key_ptr_offset(0),
3520 btrfs_node_key_ptr_offset(mid),
3521 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522 btrfs_set_header_nritems(split, c_nritems - mid);
3523 btrfs_set_header_nritems(c, mid);
3524 ret = 0;
3525
3526 btrfs_mark_buffer_dirty(c);
3527 btrfs_mark_buffer_dirty(split);
3528
3529 insert_ptr(trans, root, path, &disk_key, split->start,
3530 path->slots[level + 1] + 1, level + 1);
3531
3532 if (path->slots[level] >= mid) {
3533 path->slots[level] -= mid;
3534 btrfs_tree_unlock(c);
3535 free_extent_buffer(c);
3536 path->nodes[level] = split;
3537 path->slots[level + 1] += 1;
3538 } else {
3539 btrfs_tree_unlock(split);
3540 free_extent_buffer(split);
3541 }
3542 return ret;
3543 }
3544
3545 /*
3546 * how many bytes are required to store the items in a leaf. start
3547 * and nr indicate which items in the leaf to check. This totals up the
3548 * space used both by the item structs and the item data
3549 */
3550 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3551 {
3552 struct btrfs_item *start_item;
3553 struct btrfs_item *end_item;
3554 struct btrfs_map_token token;
3555 int data_len;
3556 int nritems = btrfs_header_nritems(l);
3557 int end = min(nritems, start + nr) - 1;
3558
3559 if (!nr)
3560 return 0;
3561 btrfs_init_map_token(&token);
3562 start_item = btrfs_item_nr(start);
3563 end_item = btrfs_item_nr(end);
3564 data_len = btrfs_token_item_offset(l, start_item, &token) +
3565 btrfs_token_item_size(l, start_item, &token);
3566 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3567 data_len += sizeof(struct btrfs_item) * nr;
3568 WARN_ON(data_len < 0);
3569 return data_len;
3570 }
3571
3572 /*
3573 * The space between the end of the leaf items and
3574 * the start of the leaf data. IOW, how much room
3575 * the leaf has left for both items and data
3576 */
3577 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3578 struct extent_buffer *leaf)
3579 {
3580 int nritems = btrfs_header_nritems(leaf);
3581 int ret;
3582 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3583 if (ret < 0) {
3584 btrfs_crit(root->fs_info,
3585 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3587 leaf_space_used(leaf, 0, nritems), nritems);
3588 }
3589 return ret;
3590 }
3591
3592 /*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right. We'll push up to and including min_slot, but no lower
3595 */
3596 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root,
3598 struct btrfs_path *path,
3599 int data_size, int empty,
3600 struct extent_buffer *right,
3601 int free_space, u32 left_nritems,
3602 u32 min_slot)
3603 {
3604 struct extent_buffer *left = path->nodes[0];
3605 struct extent_buffer *upper = path->nodes[1];
3606 struct btrfs_map_token token;
3607 struct btrfs_disk_key disk_key;
3608 int slot;
3609 u32 i;
3610 int push_space = 0;
3611 int push_items = 0;
3612 struct btrfs_item *item;
3613 u32 nr;
3614 u32 right_nritems;
3615 u32 data_end;
3616 u32 this_item_size;
3617
3618 btrfs_init_map_token(&token);
3619
3620 if (empty)
3621 nr = 0;
3622 else
3623 nr = max_t(u32, 1, min_slot);
3624
3625 if (path->slots[0] >= left_nritems)
3626 push_space += data_size;
3627
3628 slot = path->slots[1];
3629 i = left_nritems - 1;
3630 while (i >= nr) {
3631 item = btrfs_item_nr(i);
3632
3633 if (!empty && push_items > 0) {
3634 if (path->slots[0] > i)
3635 break;
3636 if (path->slots[0] == i) {
3637 int space = btrfs_leaf_free_space(root, left);
3638 if (space + push_space * 2 > free_space)
3639 break;
3640 }
3641 }
3642
3643 if (path->slots[0] == i)
3644 push_space += data_size;
3645
3646 this_item_size = btrfs_item_size(left, item);
3647 if (this_item_size + sizeof(*item) + push_space > free_space)
3648 break;
3649
3650 push_items++;
3651 push_space += this_item_size + sizeof(*item);
3652 if (i == 0)
3653 break;
3654 i--;
3655 }
3656
3657 if (push_items == 0)
3658 goto out_unlock;
3659
3660 WARN_ON(!empty && push_items == left_nritems);
3661
3662 /* push left to right */
3663 right_nritems = btrfs_header_nritems(right);
3664
3665 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3666 push_space -= leaf_data_end(root, left);
3667
3668 /* make room in the right data area */
3669 data_end = leaf_data_end(root, right);
3670 memmove_extent_buffer(right,
3671 btrfs_leaf_data(right) + data_end - push_space,
3672 btrfs_leaf_data(right) + data_end,
3673 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3674
3675 /* copy from the left data area */
3676 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3677 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3678 btrfs_leaf_data(left) + leaf_data_end(root, left),
3679 push_space);
3680
3681 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3682 btrfs_item_nr_offset(0),
3683 right_nritems * sizeof(struct btrfs_item));
3684
3685 /* copy the items from left to right */
3686 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3687 btrfs_item_nr_offset(left_nritems - push_items),
3688 push_items * sizeof(struct btrfs_item));
3689
3690 /* update the item pointers */
3691 right_nritems += push_items;
3692 btrfs_set_header_nritems(right, right_nritems);
3693 push_space = BTRFS_LEAF_DATA_SIZE(root);
3694 for (i = 0; i < right_nritems; i++) {
3695 item = btrfs_item_nr(i);
3696 push_space -= btrfs_token_item_size(right, item, &token);
3697 btrfs_set_token_item_offset(right, item, push_space, &token);
3698 }
3699
3700 left_nritems -= push_items;
3701 btrfs_set_header_nritems(left, left_nritems);
3702
3703 if (left_nritems)
3704 btrfs_mark_buffer_dirty(left);
3705 else
3706 clean_tree_block(trans, root->fs_info, left);
3707
3708 btrfs_mark_buffer_dirty(right);
3709
3710 btrfs_item_key(right, &disk_key, 0);
3711 btrfs_set_node_key(upper, &disk_key, slot + 1);
3712 btrfs_mark_buffer_dirty(upper);
3713
3714 /* then fixup the leaf pointer in the path */
3715 if (path->slots[0] >= left_nritems) {
3716 path->slots[0] -= left_nritems;
3717 if (btrfs_header_nritems(path->nodes[0]) == 0)
3718 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3719 btrfs_tree_unlock(path->nodes[0]);
3720 free_extent_buffer(path->nodes[0]);
3721 path->nodes[0] = right;
3722 path->slots[1] += 1;
3723 } else {
3724 btrfs_tree_unlock(right);
3725 free_extent_buffer(right);
3726 }
3727 return 0;
3728
3729 out_unlock:
3730 btrfs_tree_unlock(right);
3731 free_extent_buffer(right);
3732 return 1;
3733 }
3734
3735 /*
3736 * push some data in the path leaf to the right, trying to free up at
3737 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3738 *
3739 * returns 1 if the push failed because the other node didn't have enough
3740 * room, 0 if everything worked out and < 0 if there were major errors.
3741 *
3742 * this will push starting from min_slot to the end of the leaf. It won't
3743 * push any slot lower than min_slot
3744 */
3745 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3746 *root, struct btrfs_path *path,
3747 int min_data_size, int data_size,
3748 int empty, u32 min_slot)
3749 {
3750 struct extent_buffer *left = path->nodes[0];
3751 struct extent_buffer *right;
3752 struct extent_buffer *upper;
3753 int slot;
3754 int free_space;
3755 u32 left_nritems;
3756 int ret;
3757
3758 if (!path->nodes[1])
3759 return 1;
3760
3761 slot = path->slots[1];
3762 upper = path->nodes[1];
3763 if (slot >= btrfs_header_nritems(upper) - 1)
3764 return 1;
3765
3766 btrfs_assert_tree_locked(path->nodes[1]);
3767
3768 right = read_node_slot(root, upper, slot + 1);
3769 if (right == NULL)
3770 return 1;
3771
3772 btrfs_tree_lock(right);
3773 btrfs_set_lock_blocking(right);
3774
3775 free_space = btrfs_leaf_free_space(root, right);
3776 if (free_space < data_size)
3777 goto out_unlock;
3778
3779 /* cow and double check */
3780 ret = btrfs_cow_block(trans, root, right, upper,
3781 slot + 1, &right);
3782 if (ret)
3783 goto out_unlock;
3784
3785 free_space = btrfs_leaf_free_space(root, right);
3786 if (free_space < data_size)
3787 goto out_unlock;
3788
3789 left_nritems = btrfs_header_nritems(left);
3790 if (left_nritems == 0)
3791 goto out_unlock;
3792
3793 if (path->slots[0] == left_nritems && !empty) {
3794 /* Key greater than all keys in the leaf, right neighbor has
3795 * enough room for it and we're not emptying our leaf to delete
3796 * it, therefore use right neighbor to insert the new item and
3797 * no need to touch/dirty our left leaft. */
3798 btrfs_tree_unlock(left);
3799 free_extent_buffer(left);
3800 path->nodes[0] = right;
3801 path->slots[0] = 0;
3802 path->slots[1]++;
3803 return 0;
3804 }
3805
3806 return __push_leaf_right(trans, root, path, min_data_size, empty,
3807 right, free_space, left_nritems, min_slot);
3808 out_unlock:
3809 btrfs_tree_unlock(right);
3810 free_extent_buffer(right);
3811 return 1;
3812 }
3813
3814 /*
3815 * push some data in the path leaf to the left, trying to free up at
3816 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3817 *
3818 * max_slot can put a limit on how far into the leaf we'll push items. The
3819 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3820 * items
3821 */
3822 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3823 struct btrfs_root *root,
3824 struct btrfs_path *path, int data_size,
3825 int empty, struct extent_buffer *left,
3826 int free_space, u32 right_nritems,
3827 u32 max_slot)
3828 {
3829 struct btrfs_disk_key disk_key;
3830 struct extent_buffer *right = path->nodes[0];
3831 int i;
3832 int push_space = 0;
3833 int push_items = 0;
3834 struct btrfs_item *item;
3835 u32 old_left_nritems;
3836 u32 nr;
3837 int ret = 0;
3838 u32 this_item_size;
3839 u32 old_left_item_size;
3840 struct btrfs_map_token token;
3841
3842 btrfs_init_map_token(&token);
3843
3844 if (empty)
3845 nr = min(right_nritems, max_slot);
3846 else
3847 nr = min(right_nritems - 1, max_slot);
3848
3849 for (i = 0; i < nr; i++) {
3850 item = btrfs_item_nr(i);
3851
3852 if (!empty && push_items > 0) {
3853 if (path->slots[0] < i)
3854 break;
3855 if (path->slots[0] == i) {
3856 int space = btrfs_leaf_free_space(root, right);
3857 if (space + push_space * 2 > free_space)
3858 break;
3859 }
3860 }
3861
3862 if (path->slots[0] == i)
3863 push_space += data_size;
3864
3865 this_item_size = btrfs_item_size(right, item);
3866 if (this_item_size + sizeof(*item) + push_space > free_space)
3867 break;
3868
3869 push_items++;
3870 push_space += this_item_size + sizeof(*item);
3871 }
3872
3873 if (push_items == 0) {
3874 ret = 1;
3875 goto out;
3876 }
3877 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3878
3879 /* push data from right to left */
3880 copy_extent_buffer(left, right,
3881 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3882 btrfs_item_nr_offset(0),
3883 push_items * sizeof(struct btrfs_item));
3884
3885 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3886 btrfs_item_offset_nr(right, push_items - 1);
3887
3888 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3889 leaf_data_end(root, left) - push_space,
3890 btrfs_leaf_data(right) +
3891 btrfs_item_offset_nr(right, push_items - 1),
3892 push_space);
3893 old_left_nritems = btrfs_header_nritems(left);
3894 BUG_ON(old_left_nritems <= 0);
3895
3896 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3897 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3898 u32 ioff;
3899
3900 item = btrfs_item_nr(i);
3901
3902 ioff = btrfs_token_item_offset(left, item, &token);
3903 btrfs_set_token_item_offset(left, item,
3904 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3905 &token);
3906 }
3907 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3908
3909 /* fixup right node */
3910 if (push_items > right_nritems)
3911 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3912 right_nritems);
3913
3914 if (push_items < right_nritems) {
3915 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3916 leaf_data_end(root, right);
3917 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3918 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3919 btrfs_leaf_data(right) +
3920 leaf_data_end(root, right), push_space);
3921
3922 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3923 btrfs_item_nr_offset(push_items),
3924 (btrfs_header_nritems(right) - push_items) *
3925 sizeof(struct btrfs_item));
3926 }
3927 right_nritems -= push_items;
3928 btrfs_set_header_nritems(right, right_nritems);
3929 push_space = BTRFS_LEAF_DATA_SIZE(root);
3930 for (i = 0; i < right_nritems; i++) {
3931 item = btrfs_item_nr(i);
3932
3933 push_space = push_space - btrfs_token_item_size(right,
3934 item, &token);
3935 btrfs_set_token_item_offset(right, item, push_space, &token);
3936 }
3937
3938 btrfs_mark_buffer_dirty(left);
3939 if (right_nritems)
3940 btrfs_mark_buffer_dirty(right);
3941 else
3942 clean_tree_block(trans, root->fs_info, right);
3943
3944 btrfs_item_key(right, &disk_key, 0);
3945 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3946
3947 /* then fixup the leaf pointer in the path */
3948 if (path->slots[0] < push_items) {
3949 path->slots[0] += old_left_nritems;
3950 btrfs_tree_unlock(path->nodes[0]);
3951 free_extent_buffer(path->nodes[0]);
3952 path->nodes[0] = left;
3953 path->slots[1] -= 1;
3954 } else {
3955 btrfs_tree_unlock(left);
3956 free_extent_buffer(left);
3957 path->slots[0] -= push_items;
3958 }
3959 BUG_ON(path->slots[0] < 0);
3960 return ret;
3961 out:
3962 btrfs_tree_unlock(left);
3963 free_extent_buffer(left);
3964 return ret;
3965 }
3966
3967 /*
3968 * push some data in the path leaf to the left, trying to free up at
3969 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3970 *
3971 * max_slot can put a limit on how far into the leaf we'll push items. The
3972 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3973 * items
3974 */
3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976 *root, struct btrfs_path *path, int min_data_size,
3977 int data_size, int empty, u32 max_slot)
3978 {
3979 struct extent_buffer *right = path->nodes[0];
3980 struct extent_buffer *left;
3981 int slot;
3982 int free_space;
3983 u32 right_nritems;
3984 int ret = 0;
3985
3986 slot = path->slots[1];
3987 if (slot == 0)
3988 return 1;
3989 if (!path->nodes[1])
3990 return 1;
3991
3992 right_nritems = btrfs_header_nritems(right);
3993 if (right_nritems == 0)
3994 return 1;
3995
3996 btrfs_assert_tree_locked(path->nodes[1]);
3997
3998 left = read_node_slot(root, path->nodes[1], slot - 1);
3999 if (left == NULL)
4000 return 1;
4001
4002 btrfs_tree_lock(left);
4003 btrfs_set_lock_blocking(left);
4004
4005 free_space = btrfs_leaf_free_space(root, left);
4006 if (free_space < data_size) {
4007 ret = 1;
4008 goto out;
4009 }
4010
4011 /* cow and double check */
4012 ret = btrfs_cow_block(trans, root, left,
4013 path->nodes[1], slot - 1, &left);
4014 if (ret) {
4015 /* we hit -ENOSPC, but it isn't fatal here */
4016 if (ret == -ENOSPC)
4017 ret = 1;
4018 goto out;
4019 }
4020
4021 free_space = btrfs_leaf_free_space(root, left);
4022 if (free_space < data_size) {
4023 ret = 1;
4024 goto out;
4025 }
4026
4027 return __push_leaf_left(trans, root, path, min_data_size,
4028 empty, left, free_space, right_nritems,
4029 max_slot);
4030 out:
4031 btrfs_tree_unlock(left);
4032 free_extent_buffer(left);
4033 return ret;
4034 }
4035
4036 /*
4037 * split the path's leaf in two, making sure there is at least data_size
4038 * available for the resulting leaf level of the path.
4039 */
4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4041 struct btrfs_root *root,
4042 struct btrfs_path *path,
4043 struct extent_buffer *l,
4044 struct extent_buffer *right,
4045 int slot, int mid, int nritems)
4046 {
4047 int data_copy_size;
4048 int rt_data_off;
4049 int i;
4050 struct btrfs_disk_key disk_key;
4051 struct btrfs_map_token token;
4052
4053 btrfs_init_map_token(&token);
4054
4055 nritems = nritems - mid;
4056 btrfs_set_header_nritems(right, nritems);
4057 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4058
4059 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060 btrfs_item_nr_offset(mid),
4061 nritems * sizeof(struct btrfs_item));
4062
4063 copy_extent_buffer(right, l,
4064 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4065 data_copy_size, btrfs_leaf_data(l) +
4066 leaf_data_end(root, l), data_copy_size);
4067
4068 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4069 btrfs_item_end_nr(l, mid);
4070
4071 for (i = 0; i < nritems; i++) {
4072 struct btrfs_item *item = btrfs_item_nr(i);
4073 u32 ioff;
4074
4075 ioff = btrfs_token_item_offset(right, item, &token);
4076 btrfs_set_token_item_offset(right, item,
4077 ioff + rt_data_off, &token);
4078 }
4079
4080 btrfs_set_header_nritems(l, mid);
4081 btrfs_item_key(right, &disk_key, 0);
4082 insert_ptr(trans, root, path, &disk_key, right->start,
4083 path->slots[1] + 1, 1);
4084
4085 btrfs_mark_buffer_dirty(right);
4086 btrfs_mark_buffer_dirty(l);
4087 BUG_ON(path->slots[0] != slot);
4088
4089 if (mid <= slot) {
4090 btrfs_tree_unlock(path->nodes[0]);
4091 free_extent_buffer(path->nodes[0]);
4092 path->nodes[0] = right;
4093 path->slots[0] -= mid;
4094 path->slots[1] += 1;
4095 } else {
4096 btrfs_tree_unlock(right);
4097 free_extent_buffer(right);
4098 }
4099
4100 BUG_ON(path->slots[0] < 0);
4101 }
4102
4103 /*
4104 * double splits happen when we need to insert a big item in the middle
4105 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4106 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107 * A B C
4108 *
4109 * We avoid this by trying to push the items on either side of our target
4110 * into the adjacent leaves. If all goes well we can avoid the double split
4111 * completely.
4112 */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root,
4115 struct btrfs_path *path,
4116 int data_size)
4117 {
4118 int ret;
4119 int progress = 0;
4120 int slot;
4121 u32 nritems;
4122 int space_needed = data_size;
4123
4124 slot = path->slots[0];
4125 if (slot < btrfs_header_nritems(path->nodes[0]))
4126 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4127
4128 /*
4129 * try to push all the items after our slot into the
4130 * right leaf
4131 */
4132 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4133 if (ret < 0)
4134 return ret;
4135
4136 if (ret == 0)
4137 progress++;
4138
4139 nritems = btrfs_header_nritems(path->nodes[0]);
4140 /*
4141 * our goal is to get our slot at the start or end of a leaf. If
4142 * we've done so we're done
4143 */
4144 if (path->slots[0] == 0 || path->slots[0] == nritems)
4145 return 0;
4146
4147 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4148 return 0;
4149
4150 /* try to push all the items before our slot into the next leaf */
4151 slot = path->slots[0];
4152 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4153 if (ret < 0)
4154 return ret;
4155
4156 if (ret == 0)
4157 progress++;
4158
4159 if (progress)
4160 return 0;
4161 return 1;
4162 }
4163
4164 /*
4165 * split the path's leaf in two, making sure there is at least data_size
4166 * available for the resulting leaf level of the path.
4167 *
4168 * returns 0 if all went well and < 0 on failure.
4169 */
4170 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4171 struct btrfs_root *root,
4172 struct btrfs_key *ins_key,
4173 struct btrfs_path *path, int data_size,
4174 int extend)
4175 {
4176 struct btrfs_disk_key disk_key;
4177 struct extent_buffer *l;
4178 u32 nritems;
4179 int mid;
4180 int slot;
4181 struct extent_buffer *right;
4182 struct btrfs_fs_info *fs_info = root->fs_info;
4183 int ret = 0;
4184 int wret;
4185 int split;
4186 int num_doubles = 0;
4187 int tried_avoid_double = 0;
4188
4189 l = path->nodes[0];
4190 slot = path->slots[0];
4191 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4192 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4193 return -EOVERFLOW;
4194
4195 /* first try to make some room by pushing left and right */
4196 if (data_size && path->nodes[1]) {
4197 int space_needed = data_size;
4198
4199 if (slot < btrfs_header_nritems(l))
4200 space_needed -= btrfs_leaf_free_space(root, l);
4201
4202 wret = push_leaf_right(trans, root, path, space_needed,
4203 space_needed, 0, 0);
4204 if (wret < 0)
4205 return wret;
4206 if (wret) {
4207 wret = push_leaf_left(trans, root, path, space_needed,
4208 space_needed, 0, (u32)-1);
4209 if (wret < 0)
4210 return wret;
4211 }
4212 l = path->nodes[0];
4213
4214 /* did the pushes work? */
4215 if (btrfs_leaf_free_space(root, l) >= data_size)
4216 return 0;
4217 }
4218
4219 if (!path->nodes[1]) {
4220 ret = insert_new_root(trans, root, path, 1);
4221 if (ret)
4222 return ret;
4223 }
4224 again:
4225 split = 1;
4226 l = path->nodes[0];
4227 slot = path->slots[0];
4228 nritems = btrfs_header_nritems(l);
4229 mid = (nritems + 1) / 2;
4230
4231 if (mid <= slot) {
4232 if (nritems == 1 ||
4233 leaf_space_used(l, mid, nritems - mid) + data_size >
4234 BTRFS_LEAF_DATA_SIZE(root)) {
4235 if (slot >= nritems) {
4236 split = 0;
4237 } else {
4238 mid = slot;
4239 if (mid != nritems &&
4240 leaf_space_used(l, mid, nritems - mid) +
4241 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4242 if (data_size && !tried_avoid_double)
4243 goto push_for_double;
4244 split = 2;
4245 }
4246 }
4247 }
4248 } else {
4249 if (leaf_space_used(l, 0, mid) + data_size >
4250 BTRFS_LEAF_DATA_SIZE(root)) {
4251 if (!extend && data_size && slot == 0) {
4252 split = 0;
4253 } else if ((extend || !data_size) && slot == 0) {
4254 mid = 1;
4255 } else {
4256 mid = slot;
4257 if (mid != nritems &&
4258 leaf_space_used(l, mid, nritems - mid) +
4259 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4260 if (data_size && !tried_avoid_double)
4261 goto push_for_double;
4262 split = 2;
4263 }
4264 }
4265 }
4266 }
4267
4268 if (split == 0)
4269 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4270 else
4271 btrfs_item_key(l, &disk_key, mid);
4272
4273 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4274 &disk_key, 0, l->start, 0);
4275 if (IS_ERR(right))
4276 return PTR_ERR(right);
4277
4278 root_add_used(root, root->nodesize);
4279
4280 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4281 btrfs_set_header_bytenr(right, right->start);
4282 btrfs_set_header_generation(right, trans->transid);
4283 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4284 btrfs_set_header_owner(right, root->root_key.objectid);
4285 btrfs_set_header_level(right, 0);
4286 write_extent_buffer(right, fs_info->fsid,
4287 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4288
4289 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4290 btrfs_header_chunk_tree_uuid(right),
4291 BTRFS_UUID_SIZE);
4292
4293 if (split == 0) {
4294 if (mid <= slot) {
4295 btrfs_set_header_nritems(right, 0);
4296 insert_ptr(trans, root, path, &disk_key, right->start,
4297 path->slots[1] + 1, 1);
4298 btrfs_tree_unlock(path->nodes[0]);
4299 free_extent_buffer(path->nodes[0]);
4300 path->nodes[0] = right;
4301 path->slots[0] = 0;
4302 path->slots[1] += 1;
4303 } else {
4304 btrfs_set_header_nritems(right, 0);
4305 insert_ptr(trans, root, path, &disk_key, right->start,
4306 path->slots[1], 1);
4307 btrfs_tree_unlock(path->nodes[0]);
4308 free_extent_buffer(path->nodes[0]);
4309 path->nodes[0] = right;
4310 path->slots[0] = 0;
4311 if (path->slots[1] == 0)
4312 fixup_low_keys(fs_info, path, &disk_key, 1);
4313 }
4314 btrfs_mark_buffer_dirty(right);
4315 return ret;
4316 }
4317
4318 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4319
4320 if (split == 2) {
4321 BUG_ON(num_doubles != 0);
4322 num_doubles++;
4323 goto again;
4324 }
4325
4326 return 0;
4327
4328 push_for_double:
4329 push_for_double_split(trans, root, path, data_size);
4330 tried_avoid_double = 1;
4331 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4332 return 0;
4333 goto again;
4334 }
4335
4336 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4337 struct btrfs_root *root,
4338 struct btrfs_path *path, int ins_len)
4339 {
4340 struct btrfs_key key;
4341 struct extent_buffer *leaf;
4342 struct btrfs_file_extent_item *fi;
4343 u64 extent_len = 0;
4344 u32 item_size;
4345 int ret;
4346
4347 leaf = path->nodes[0];
4348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4349
4350 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4351 key.type != BTRFS_EXTENT_CSUM_KEY);
4352
4353 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4354 return 0;
4355
4356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4357 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4358 fi = btrfs_item_ptr(leaf, path->slots[0],
4359 struct btrfs_file_extent_item);
4360 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4361 }
4362 btrfs_release_path(path);
4363
4364 path->keep_locks = 1;
4365 path->search_for_split = 1;
4366 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4367 path->search_for_split = 0;
4368 if (ret > 0)
4369 ret = -EAGAIN;
4370 if (ret < 0)
4371 goto err;
4372
4373 ret = -EAGAIN;
4374 leaf = path->nodes[0];
4375 /* if our item isn't there, return now */
4376 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4377 goto err;
4378
4379 /* the leaf has changed, it now has room. return now */
4380 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4381 goto err;
4382
4383 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384 fi = btrfs_item_ptr(leaf, path->slots[0],
4385 struct btrfs_file_extent_item);
4386 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4387 goto err;
4388 }
4389
4390 btrfs_set_path_blocking(path);
4391 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4392 if (ret)
4393 goto err;
4394
4395 path->keep_locks = 0;
4396 btrfs_unlock_up_safe(path, 1);
4397 return 0;
4398 err:
4399 path->keep_locks = 0;
4400 return ret;
4401 }
4402
4403 static noinline int split_item(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4405 struct btrfs_path *path,
4406 struct btrfs_key *new_key,
4407 unsigned long split_offset)
4408 {
4409 struct extent_buffer *leaf;
4410 struct btrfs_item *item;
4411 struct btrfs_item *new_item;
4412 int slot;
4413 char *buf;
4414 u32 nritems;
4415 u32 item_size;
4416 u32 orig_offset;
4417 struct btrfs_disk_key disk_key;
4418
4419 leaf = path->nodes[0];
4420 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4421
4422 btrfs_set_path_blocking(path);
4423
4424 item = btrfs_item_nr(path->slots[0]);
4425 orig_offset = btrfs_item_offset(leaf, item);
4426 item_size = btrfs_item_size(leaf, item);
4427
4428 buf = kmalloc(item_size, GFP_NOFS);
4429 if (!buf)
4430 return -ENOMEM;
4431
4432 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433 path->slots[0]), item_size);
4434
4435 slot = path->slots[0] + 1;
4436 nritems = btrfs_header_nritems(leaf);
4437 if (slot != nritems) {
4438 /* shift the items */
4439 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440 btrfs_item_nr_offset(slot),
4441 (nritems - slot) * sizeof(struct btrfs_item));
4442 }
4443
4444 btrfs_cpu_key_to_disk(&disk_key, new_key);
4445 btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447 new_item = btrfs_item_nr(slot);
4448
4449 btrfs_set_item_offset(leaf, new_item, orig_offset);
4450 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452 btrfs_set_item_offset(leaf, item,
4453 orig_offset + item_size - split_offset);
4454 btrfs_set_item_size(leaf, item, split_offset);
4455
4456 btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458 /* write the data for the start of the original item */
4459 write_extent_buffer(leaf, buf,
4460 btrfs_item_ptr_offset(leaf, path->slots[0]),
4461 split_offset);
4462
4463 /* write the data for the new item */
4464 write_extent_buffer(leaf, buf + split_offset,
4465 btrfs_item_ptr_offset(leaf, slot),
4466 item_size - split_offset);
4467 btrfs_mark_buffer_dirty(leaf);
4468
4469 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4470 kfree(buf);
4471 return 0;
4472 }
4473
4474 /*
4475 * This function splits a single item into two items,
4476 * giving 'new_key' to the new item and splitting the
4477 * old one at split_offset (from the start of the item).
4478 *
4479 * The path may be released by this operation. After
4480 * the split, the path is pointing to the old item. The
4481 * new item is going to be in the same node as the old one.
4482 *
4483 * Note, the item being split must be smaller enough to live alone on
4484 * a tree block with room for one extra struct btrfs_item
4485 *
4486 * This allows us to split the item in place, keeping a lock on the
4487 * leaf the entire time.
4488 */
4489 int btrfs_split_item(struct btrfs_trans_handle *trans,
4490 struct btrfs_root *root,
4491 struct btrfs_path *path,
4492 struct btrfs_key *new_key,
4493 unsigned long split_offset)
4494 {
4495 int ret;
4496 ret = setup_leaf_for_split(trans, root, path,
4497 sizeof(struct btrfs_item));
4498 if (ret)
4499 return ret;
4500
4501 ret = split_item(trans, root, path, new_key, split_offset);
4502 return ret;
4503 }
4504
4505 /*
4506 * This function duplicate a item, giving 'new_key' to the new item.
4507 * It guarantees both items live in the same tree leaf and the new item
4508 * is contiguous with the original item.
4509 *
4510 * This allows us to split file extent in place, keeping a lock on the
4511 * leaf the entire time.
4512 */
4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514 struct btrfs_root *root,
4515 struct btrfs_path *path,
4516 struct btrfs_key *new_key)
4517 {
4518 struct extent_buffer *leaf;
4519 int ret;
4520 u32 item_size;
4521
4522 leaf = path->nodes[0];
4523 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524 ret = setup_leaf_for_split(trans, root, path,
4525 item_size + sizeof(struct btrfs_item));
4526 if (ret)
4527 return ret;
4528
4529 path->slots[0]++;
4530 setup_items_for_insert(root, path, new_key, &item_size,
4531 item_size, item_size +
4532 sizeof(struct btrfs_item), 1);
4533 leaf = path->nodes[0];
4534 memcpy_extent_buffer(leaf,
4535 btrfs_item_ptr_offset(leaf, path->slots[0]),
4536 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537 item_size);
4538 return 0;
4539 }
4540
4541 /*
4542 * make the item pointed to by the path smaller. new_size indicates
4543 * how small to make it, and from_end tells us if we just chop bytes
4544 * off the end of the item or if we shift the item to chop bytes off
4545 * the front.
4546 */
4547 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4548 u32 new_size, int from_end)
4549 {
4550 int slot;
4551 struct extent_buffer *leaf;
4552 struct btrfs_item *item;
4553 u32 nritems;
4554 unsigned int data_end;
4555 unsigned int old_data_start;
4556 unsigned int old_size;
4557 unsigned int size_diff;
4558 int i;
4559 struct btrfs_map_token token;
4560
4561 btrfs_init_map_token(&token);
4562
4563 leaf = path->nodes[0];
4564 slot = path->slots[0];
4565
4566 old_size = btrfs_item_size_nr(leaf, slot);
4567 if (old_size == new_size)
4568 return;
4569
4570 nritems = btrfs_header_nritems(leaf);
4571 data_end = leaf_data_end(root, leaf);
4572
4573 old_data_start = btrfs_item_offset_nr(leaf, slot);
4574
4575 size_diff = old_size - new_size;
4576
4577 BUG_ON(slot < 0);
4578 BUG_ON(slot >= nritems);
4579
4580 /*
4581 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4582 */
4583 /* first correct the data pointers */
4584 for (i = slot; i < nritems; i++) {
4585 u32 ioff;
4586 item = btrfs_item_nr(i);
4587
4588 ioff = btrfs_token_item_offset(leaf, item, &token);
4589 btrfs_set_token_item_offset(leaf, item,
4590 ioff + size_diff, &token);
4591 }
4592
4593 /* shift the data */
4594 if (from_end) {
4595 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4596 data_end + size_diff, btrfs_leaf_data(leaf) +
4597 data_end, old_data_start + new_size - data_end);
4598 } else {
4599 struct btrfs_disk_key disk_key;
4600 u64 offset;
4601
4602 btrfs_item_key(leaf, &disk_key, slot);
4603
4604 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4605 unsigned long ptr;
4606 struct btrfs_file_extent_item *fi;
4607
4608 fi = btrfs_item_ptr(leaf, slot,
4609 struct btrfs_file_extent_item);
4610 fi = (struct btrfs_file_extent_item *)(
4611 (unsigned long)fi - size_diff);
4612
4613 if (btrfs_file_extent_type(leaf, fi) ==
4614 BTRFS_FILE_EXTENT_INLINE) {
4615 ptr = btrfs_item_ptr_offset(leaf, slot);
4616 memmove_extent_buffer(leaf, ptr,
4617 (unsigned long)fi,
4618 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4619 }
4620 }
4621
4622 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4623 data_end + size_diff, btrfs_leaf_data(leaf) +
4624 data_end, old_data_start - data_end);
4625
4626 offset = btrfs_disk_key_offset(&disk_key);
4627 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4628 btrfs_set_item_key(leaf, &disk_key, slot);
4629 if (slot == 0)
4630 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4631 }
4632
4633 item = btrfs_item_nr(slot);
4634 btrfs_set_item_size(leaf, item, new_size);
4635 btrfs_mark_buffer_dirty(leaf);
4636
4637 if (btrfs_leaf_free_space(root, leaf) < 0) {
4638 btrfs_print_leaf(root, leaf);
4639 BUG();
4640 }
4641 }
4642
4643 /*
4644 * make the item pointed to by the path bigger, data_size is the added size.
4645 */
4646 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4647 u32 data_size)
4648 {
4649 int slot;
4650 struct extent_buffer *leaf;
4651 struct btrfs_item *item;
4652 u32 nritems;
4653 unsigned int data_end;
4654 unsigned int old_data;
4655 unsigned int old_size;
4656 int i;
4657 struct btrfs_map_token token;
4658
4659 btrfs_init_map_token(&token);
4660
4661 leaf = path->nodes[0];
4662
4663 nritems = btrfs_header_nritems(leaf);
4664 data_end = leaf_data_end(root, leaf);
4665
4666 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4667 btrfs_print_leaf(root, leaf);
4668 BUG();
4669 }
4670 slot = path->slots[0];
4671 old_data = btrfs_item_end_nr(leaf, slot);
4672
4673 BUG_ON(slot < 0);
4674 if (slot >= nritems) {
4675 btrfs_print_leaf(root, leaf);
4676 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4677 slot, nritems);
4678 BUG_ON(1);
4679 }
4680
4681 /*
4682 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4683 */
4684 /* first correct the data pointers */
4685 for (i = slot; i < nritems; i++) {
4686 u32 ioff;
4687 item = btrfs_item_nr(i);
4688
4689 ioff = btrfs_token_item_offset(leaf, item, &token);
4690 btrfs_set_token_item_offset(leaf, item,
4691 ioff - data_size, &token);
4692 }
4693
4694 /* shift the data */
4695 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4696 data_end - data_size, btrfs_leaf_data(leaf) +
4697 data_end, old_data - data_end);
4698
4699 data_end = old_data;
4700 old_size = btrfs_item_size_nr(leaf, slot);
4701 item = btrfs_item_nr(slot);
4702 btrfs_set_item_size(leaf, item, old_size + data_size);
4703 btrfs_mark_buffer_dirty(leaf);
4704
4705 if (btrfs_leaf_free_space(root, leaf) < 0) {
4706 btrfs_print_leaf(root, leaf);
4707 BUG();
4708 }
4709 }
4710
4711 /*
4712 * this is a helper for btrfs_insert_empty_items, the main goal here is
4713 * to save stack depth by doing the bulk of the work in a function
4714 * that doesn't call btrfs_search_slot
4715 */
4716 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4717 struct btrfs_key *cpu_key, u32 *data_size,
4718 u32 total_data, u32 total_size, int nr)
4719 {
4720 struct btrfs_item *item;
4721 int i;
4722 u32 nritems;
4723 unsigned int data_end;
4724 struct btrfs_disk_key disk_key;
4725 struct extent_buffer *leaf;
4726 int slot;
4727 struct btrfs_map_token token;
4728
4729 if (path->slots[0] == 0) {
4730 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4731 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4732 }
4733 btrfs_unlock_up_safe(path, 1);
4734
4735 btrfs_init_map_token(&token);
4736
4737 leaf = path->nodes[0];
4738 slot = path->slots[0];
4739
4740 nritems = btrfs_header_nritems(leaf);
4741 data_end = leaf_data_end(root, leaf);
4742
4743 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4744 btrfs_print_leaf(root, leaf);
4745 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4746 total_size, btrfs_leaf_free_space(root, leaf));
4747 BUG();
4748 }
4749
4750 if (slot != nritems) {
4751 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4752
4753 if (old_data < data_end) {
4754 btrfs_print_leaf(root, leaf);
4755 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4756 slot, old_data, data_end);
4757 BUG_ON(1);
4758 }
4759 /*
4760 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4761 */
4762 /* first correct the data pointers */
4763 for (i = slot; i < nritems; i++) {
4764 u32 ioff;
4765
4766 item = btrfs_item_nr( i);
4767 ioff = btrfs_token_item_offset(leaf, item, &token);
4768 btrfs_set_token_item_offset(leaf, item,
4769 ioff - total_data, &token);
4770 }
4771 /* shift the items */
4772 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4773 btrfs_item_nr_offset(slot),
4774 (nritems - slot) * sizeof(struct btrfs_item));
4775
4776 /* shift the data */
4777 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4778 data_end - total_data, btrfs_leaf_data(leaf) +
4779 data_end, old_data - data_end);
4780 data_end = old_data;
4781 }
4782
4783 /* setup the item for the new data */
4784 for (i = 0; i < nr; i++) {
4785 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4786 btrfs_set_item_key(leaf, &disk_key, slot + i);
4787 item = btrfs_item_nr(slot + i);
4788 btrfs_set_token_item_offset(leaf, item,
4789 data_end - data_size[i], &token);
4790 data_end -= data_size[i];
4791 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4792 }
4793
4794 btrfs_set_header_nritems(leaf, nritems + nr);
4795 btrfs_mark_buffer_dirty(leaf);
4796
4797 if (btrfs_leaf_free_space(root, leaf) < 0) {
4798 btrfs_print_leaf(root, leaf);
4799 BUG();
4800 }
4801 }
4802
4803 /*
4804 * Given a key and some data, insert items into the tree.
4805 * This does all the path init required, making room in the tree if needed.
4806 */
4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4808 struct btrfs_root *root,
4809 struct btrfs_path *path,
4810 struct btrfs_key *cpu_key, u32 *data_size,
4811 int nr)
4812 {
4813 int ret = 0;
4814 int slot;
4815 int i;
4816 u32 total_size = 0;
4817 u32 total_data = 0;
4818
4819 for (i = 0; i < nr; i++)
4820 total_data += data_size[i];
4821
4822 total_size = total_data + (nr * sizeof(struct btrfs_item));
4823 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4824 if (ret == 0)
4825 return -EEXIST;
4826 if (ret < 0)
4827 return ret;
4828
4829 slot = path->slots[0];
4830 BUG_ON(slot < 0);
4831
4832 setup_items_for_insert(root, path, cpu_key, data_size,
4833 total_data, total_size, nr);
4834 return 0;
4835 }
4836
4837 /*
4838 * Given a key and some data, insert an item into the tree.
4839 * This does all the path init required, making room in the tree if needed.
4840 */
4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4842 *root, struct btrfs_key *cpu_key, void *data, u32
4843 data_size)
4844 {
4845 int ret = 0;
4846 struct btrfs_path *path;
4847 struct extent_buffer *leaf;
4848 unsigned long ptr;
4849
4850 path = btrfs_alloc_path();
4851 if (!path)
4852 return -ENOMEM;
4853 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4854 if (!ret) {
4855 leaf = path->nodes[0];
4856 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4857 write_extent_buffer(leaf, data, ptr, data_size);
4858 btrfs_mark_buffer_dirty(leaf);
4859 }
4860 btrfs_free_path(path);
4861 return ret;
4862 }
4863
4864 /*
4865 * delete the pointer from a given node.
4866 *
4867 * the tree should have been previously balanced so the deletion does not
4868 * empty a node.
4869 */
4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4871 int level, int slot)
4872 {
4873 struct extent_buffer *parent = path->nodes[level];
4874 u32 nritems;
4875 int ret;
4876
4877 nritems = btrfs_header_nritems(parent);
4878 if (slot != nritems - 1) {
4879 if (level)
4880 tree_mod_log_eb_move(root->fs_info, parent, slot,
4881 slot + 1, nritems - slot - 1);
4882 memmove_extent_buffer(parent,
4883 btrfs_node_key_ptr_offset(slot),
4884 btrfs_node_key_ptr_offset(slot + 1),
4885 sizeof(struct btrfs_key_ptr) *
4886 (nritems - slot - 1));
4887 } else if (level) {
4888 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4889 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4890 BUG_ON(ret < 0);
4891 }
4892
4893 nritems--;
4894 btrfs_set_header_nritems(parent, nritems);
4895 if (nritems == 0 && parent == root->node) {
4896 BUG_ON(btrfs_header_level(root->node) != 1);
4897 /* just turn the root into a leaf and break */
4898 btrfs_set_header_level(root->node, 0);
4899 } else if (slot == 0) {
4900 struct btrfs_disk_key disk_key;
4901
4902 btrfs_node_key(parent, &disk_key, 0);
4903 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4904 }
4905 btrfs_mark_buffer_dirty(parent);
4906 }
4907
4908 /*
4909 * a helper function to delete the leaf pointed to by path->slots[1] and
4910 * path->nodes[1].
4911 *
4912 * This deletes the pointer in path->nodes[1] and frees the leaf
4913 * block extent. zero is returned if it all worked out, < 0 otherwise.
4914 *
4915 * The path must have already been setup for deleting the leaf, including
4916 * all the proper balancing. path->nodes[1] must be locked.
4917 */
4918 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4919 struct btrfs_root *root,
4920 struct btrfs_path *path,
4921 struct extent_buffer *leaf)
4922 {
4923 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4924 del_ptr(root, path, 1, path->slots[1]);
4925
4926 /*
4927 * btrfs_free_extent is expensive, we want to make sure we
4928 * aren't holding any locks when we call it
4929 */
4930 btrfs_unlock_up_safe(path, 0);
4931
4932 root_sub_used(root, leaf->len);
4933
4934 extent_buffer_get(leaf);
4935 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4936 free_extent_buffer_stale(leaf);
4937 }
4938 /*
4939 * delete the item at the leaf level in path. If that empties
4940 * the leaf, remove it from the tree
4941 */
4942 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4943 struct btrfs_path *path, int slot, int nr)
4944 {
4945 struct extent_buffer *leaf;
4946 struct btrfs_item *item;
4947 u32 last_off;
4948 u32 dsize = 0;
4949 int ret = 0;
4950 int wret;
4951 int i;
4952 u32 nritems;
4953 struct btrfs_map_token token;
4954
4955 btrfs_init_map_token(&token);
4956
4957 leaf = path->nodes[0];
4958 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4959
4960 for (i = 0; i < nr; i++)
4961 dsize += btrfs_item_size_nr(leaf, slot + i);
4962
4963 nritems = btrfs_header_nritems(leaf);
4964
4965 if (slot + nr != nritems) {
4966 int data_end = leaf_data_end(root, leaf);
4967
4968 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4969 data_end + dsize,
4970 btrfs_leaf_data(leaf) + data_end,
4971 last_off - data_end);
4972
4973 for (i = slot + nr; i < nritems; i++) {
4974 u32 ioff;
4975
4976 item = btrfs_item_nr(i);
4977 ioff = btrfs_token_item_offset(leaf, item, &token);
4978 btrfs_set_token_item_offset(leaf, item,
4979 ioff + dsize, &token);
4980 }
4981
4982 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4983 btrfs_item_nr_offset(slot + nr),
4984 sizeof(struct btrfs_item) *
4985 (nritems - slot - nr));
4986 }
4987 btrfs_set_header_nritems(leaf, nritems - nr);
4988 nritems -= nr;
4989
4990 /* delete the leaf if we've emptied it */
4991 if (nritems == 0) {
4992 if (leaf == root->node) {
4993 btrfs_set_header_level(leaf, 0);
4994 } else {
4995 btrfs_set_path_blocking(path);
4996 clean_tree_block(trans, root->fs_info, leaf);
4997 btrfs_del_leaf(trans, root, path, leaf);
4998 }
4999 } else {
5000 int used = leaf_space_used(leaf, 0, nritems);
5001 if (slot == 0) {
5002 struct btrfs_disk_key disk_key;
5003
5004 btrfs_item_key(leaf, &disk_key, 0);
5005 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5006 }
5007
5008 /* delete the leaf if it is mostly empty */
5009 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5010 /* push_leaf_left fixes the path.
5011 * make sure the path still points to our leaf
5012 * for possible call to del_ptr below
5013 */
5014 slot = path->slots[1];
5015 extent_buffer_get(leaf);
5016
5017 btrfs_set_path_blocking(path);
5018 wret = push_leaf_left(trans, root, path, 1, 1,
5019 1, (u32)-1);
5020 if (wret < 0 && wret != -ENOSPC)
5021 ret = wret;
5022
5023 if (path->nodes[0] == leaf &&
5024 btrfs_header_nritems(leaf)) {
5025 wret = push_leaf_right(trans, root, path, 1,
5026 1, 1, 0);
5027 if (wret < 0 && wret != -ENOSPC)
5028 ret = wret;
5029 }
5030
5031 if (btrfs_header_nritems(leaf) == 0) {
5032 path->slots[1] = slot;
5033 btrfs_del_leaf(trans, root, path, leaf);
5034 free_extent_buffer(leaf);
5035 ret = 0;
5036 } else {
5037 /* if we're still in the path, make sure
5038 * we're dirty. Otherwise, one of the
5039 * push_leaf functions must have already
5040 * dirtied this buffer
5041 */
5042 if (path->nodes[0] == leaf)
5043 btrfs_mark_buffer_dirty(leaf);
5044 free_extent_buffer(leaf);
5045 }
5046 } else {
5047 btrfs_mark_buffer_dirty(leaf);
5048 }
5049 }
5050 return ret;
5051 }
5052
5053 /*
5054 * search the tree again to find a leaf with lesser keys
5055 * returns 0 if it found something or 1 if there are no lesser leaves.
5056 * returns < 0 on io errors.
5057 *
5058 * This may release the path, and so you may lose any locks held at the
5059 * time you call it.
5060 */
5061 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5062 {
5063 struct btrfs_key key;
5064 struct btrfs_disk_key found_key;
5065 int ret;
5066
5067 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5068
5069 if (key.offset > 0) {
5070 key.offset--;
5071 } else if (key.type > 0) {
5072 key.type--;
5073 key.offset = (u64)-1;
5074 } else if (key.objectid > 0) {
5075 key.objectid--;
5076 key.type = (u8)-1;
5077 key.offset = (u64)-1;
5078 } else {
5079 return 1;
5080 }
5081
5082 btrfs_release_path(path);
5083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5084 if (ret < 0)
5085 return ret;
5086 btrfs_item_key(path->nodes[0], &found_key, 0);
5087 ret = comp_keys(&found_key, &key);
5088 /*
5089 * We might have had an item with the previous key in the tree right
5090 * before we released our path. And after we released our path, that
5091 * item might have been pushed to the first slot (0) of the leaf we
5092 * were holding due to a tree balance. Alternatively, an item with the
5093 * previous key can exist as the only element of a leaf (big fat item).
5094 * Therefore account for these 2 cases, so that our callers (like
5095 * btrfs_previous_item) don't miss an existing item with a key matching
5096 * the previous key we computed above.
5097 */
5098 if (ret <= 0)
5099 return 0;
5100 return 1;
5101 }
5102
5103 /*
5104 * A helper function to walk down the tree starting at min_key, and looking
5105 * for nodes or leaves that are have a minimum transaction id.
5106 * This is used by the btree defrag code, and tree logging
5107 *
5108 * This does not cow, but it does stuff the starting key it finds back
5109 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5110 * key and get a writable path.
5111 *
5112 * This does lock as it descends, and path->keep_locks should be set
5113 * to 1 by the caller.
5114 *
5115 * This honors path->lowest_level to prevent descent past a given level
5116 * of the tree.
5117 *
5118 * min_trans indicates the oldest transaction that you are interested
5119 * in walking through. Any nodes or leaves older than min_trans are
5120 * skipped over (without reading them).
5121 *
5122 * returns zero if something useful was found, < 0 on error and 1 if there
5123 * was nothing in the tree that matched the search criteria.
5124 */
5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5126 struct btrfs_path *path,
5127 u64 min_trans)
5128 {
5129 struct extent_buffer *cur;
5130 struct btrfs_key found_key;
5131 int slot;
5132 int sret;
5133 u32 nritems;
5134 int level;
5135 int ret = 1;
5136 int keep_locks = path->keep_locks;
5137
5138 path->keep_locks = 1;
5139 again:
5140 cur = btrfs_read_lock_root_node(root);
5141 level = btrfs_header_level(cur);
5142 WARN_ON(path->nodes[level]);
5143 path->nodes[level] = cur;
5144 path->locks[level] = BTRFS_READ_LOCK;
5145
5146 if (btrfs_header_generation(cur) < min_trans) {
5147 ret = 1;
5148 goto out;
5149 }
5150 while (1) {
5151 nritems = btrfs_header_nritems(cur);
5152 level = btrfs_header_level(cur);
5153 sret = bin_search(cur, min_key, level, &slot);
5154
5155 /* at the lowest level, we're done, setup the path and exit */
5156 if (level == path->lowest_level) {
5157 if (slot >= nritems)
5158 goto find_next_key;
5159 ret = 0;
5160 path->slots[level] = slot;
5161 btrfs_item_key_to_cpu(cur, &found_key, slot);
5162 goto out;
5163 }
5164 if (sret && slot > 0)
5165 slot--;
5166 /*
5167 * check this node pointer against the min_trans parameters.
5168 * If it is too old, old, skip to the next one.
5169 */
5170 while (slot < nritems) {
5171 u64 gen;
5172
5173 gen = btrfs_node_ptr_generation(cur, slot);
5174 if (gen < min_trans) {
5175 slot++;
5176 continue;
5177 }
5178 break;
5179 }
5180 find_next_key:
5181 /*
5182 * we didn't find a candidate key in this node, walk forward
5183 * and find another one
5184 */
5185 if (slot >= nritems) {
5186 path->slots[level] = slot;
5187 btrfs_set_path_blocking(path);
5188 sret = btrfs_find_next_key(root, path, min_key, level,
5189 min_trans);
5190 if (sret == 0) {
5191 btrfs_release_path(path);
5192 goto again;
5193 } else {
5194 goto out;
5195 }
5196 }
5197 /* save our key for returning back */
5198 btrfs_node_key_to_cpu(cur, &found_key, slot);
5199 path->slots[level] = slot;
5200 if (level == path->lowest_level) {
5201 ret = 0;
5202 goto out;
5203 }
5204 btrfs_set_path_blocking(path);
5205 cur = read_node_slot(root, cur, slot);
5206 BUG_ON(!cur); /* -ENOMEM */
5207
5208 btrfs_tree_read_lock(cur);
5209
5210 path->locks[level - 1] = BTRFS_READ_LOCK;
5211 path->nodes[level - 1] = cur;
5212 unlock_up(path, level, 1, 0, NULL);
5213 btrfs_clear_path_blocking(path, NULL, 0);
5214 }
5215 out:
5216 path->keep_locks = keep_locks;
5217 if (ret == 0) {
5218 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5219 btrfs_set_path_blocking(path);
5220 memcpy(min_key, &found_key, sizeof(found_key));
5221 }
5222 return ret;
5223 }
5224
5225 static void tree_move_down(struct btrfs_root *root,
5226 struct btrfs_path *path,
5227 int *level, int root_level)
5228 {
5229 BUG_ON(*level == 0);
5230 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5231 path->slots[*level]);
5232 path->slots[*level - 1] = 0;
5233 (*level)--;
5234 }
5235
5236 static int tree_move_next_or_upnext(struct btrfs_root *root,
5237 struct btrfs_path *path,
5238 int *level, int root_level)
5239 {
5240 int ret = 0;
5241 int nritems;
5242 nritems = btrfs_header_nritems(path->nodes[*level]);
5243
5244 path->slots[*level]++;
5245
5246 while (path->slots[*level] >= nritems) {
5247 if (*level == root_level)
5248 return -1;
5249
5250 /* move upnext */
5251 path->slots[*level] = 0;
5252 free_extent_buffer(path->nodes[*level]);
5253 path->nodes[*level] = NULL;
5254 (*level)++;
5255 path->slots[*level]++;
5256
5257 nritems = btrfs_header_nritems(path->nodes[*level]);
5258 ret = 1;
5259 }
5260 return ret;
5261 }
5262
5263 /*
5264 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5265 * or down.
5266 */
5267 static int tree_advance(struct btrfs_root *root,
5268 struct btrfs_path *path,
5269 int *level, int root_level,
5270 int allow_down,
5271 struct btrfs_key *key)
5272 {
5273 int ret;
5274
5275 if (*level == 0 || !allow_down) {
5276 ret = tree_move_next_or_upnext(root, path, level, root_level);
5277 } else {
5278 tree_move_down(root, path, level, root_level);
5279 ret = 0;
5280 }
5281 if (ret >= 0) {
5282 if (*level == 0)
5283 btrfs_item_key_to_cpu(path->nodes[*level], key,
5284 path->slots[*level]);
5285 else
5286 btrfs_node_key_to_cpu(path->nodes[*level], key,
5287 path->slots[*level]);
5288 }
5289 return ret;
5290 }
5291
5292 static int tree_compare_item(struct btrfs_root *left_root,
5293 struct btrfs_path *left_path,
5294 struct btrfs_path *right_path,
5295 char *tmp_buf)
5296 {
5297 int cmp;
5298 int len1, len2;
5299 unsigned long off1, off2;
5300
5301 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5302 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5303 if (len1 != len2)
5304 return 1;
5305
5306 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5307 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5308 right_path->slots[0]);
5309
5310 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5311
5312 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5313 if (cmp)
5314 return 1;
5315 return 0;
5316 }
5317
5318 #define ADVANCE 1
5319 #define ADVANCE_ONLY_NEXT -1
5320
5321 /*
5322 * This function compares two trees and calls the provided callback for
5323 * every changed/new/deleted item it finds.
5324 * If shared tree blocks are encountered, whole subtrees are skipped, making
5325 * the compare pretty fast on snapshotted subvolumes.
5326 *
5327 * This currently works on commit roots only. As commit roots are read only,
5328 * we don't do any locking. The commit roots are protected with transactions.
5329 * Transactions are ended and rejoined when a commit is tried in between.
5330 *
5331 * This function checks for modifications done to the trees while comparing.
5332 * If it detects a change, it aborts immediately.
5333 */
5334 int btrfs_compare_trees(struct btrfs_root *left_root,
5335 struct btrfs_root *right_root,
5336 btrfs_changed_cb_t changed_cb, void *ctx)
5337 {
5338 int ret;
5339 int cmp;
5340 struct btrfs_path *left_path = NULL;
5341 struct btrfs_path *right_path = NULL;
5342 struct btrfs_key left_key;
5343 struct btrfs_key right_key;
5344 char *tmp_buf = NULL;
5345 int left_root_level;
5346 int right_root_level;
5347 int left_level;
5348 int right_level;
5349 int left_end_reached;
5350 int right_end_reached;
5351 int advance_left;
5352 int advance_right;
5353 u64 left_blockptr;
5354 u64 right_blockptr;
5355 u64 left_gen;
5356 u64 right_gen;
5357
5358 left_path = btrfs_alloc_path();
5359 if (!left_path) {
5360 ret = -ENOMEM;
5361 goto out;
5362 }
5363 right_path = btrfs_alloc_path();
5364 if (!right_path) {
5365 ret = -ENOMEM;
5366 goto out;
5367 }
5368
5369 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5370 if (!tmp_buf) {
5371 tmp_buf = vmalloc(left_root->nodesize);
5372 if (!tmp_buf) {
5373 ret = -ENOMEM;
5374 goto out;
5375 }
5376 }
5377
5378 left_path->search_commit_root = 1;
5379 left_path->skip_locking = 1;
5380 right_path->search_commit_root = 1;
5381 right_path->skip_locking = 1;
5382
5383 /*
5384 * Strategy: Go to the first items of both trees. Then do
5385 *
5386 * If both trees are at level 0
5387 * Compare keys of current items
5388 * If left < right treat left item as new, advance left tree
5389 * and repeat
5390 * If left > right treat right item as deleted, advance right tree
5391 * and repeat
5392 * If left == right do deep compare of items, treat as changed if
5393 * needed, advance both trees and repeat
5394 * If both trees are at the same level but not at level 0
5395 * Compare keys of current nodes/leafs
5396 * If left < right advance left tree and repeat
5397 * If left > right advance right tree and repeat
5398 * If left == right compare blockptrs of the next nodes/leafs
5399 * If they match advance both trees but stay at the same level
5400 * and repeat
5401 * If they don't match advance both trees while allowing to go
5402 * deeper and repeat
5403 * If tree levels are different
5404 * Advance the tree that needs it and repeat
5405 *
5406 * Advancing a tree means:
5407 * If we are at level 0, try to go to the next slot. If that's not
5408 * possible, go one level up and repeat. Stop when we found a level
5409 * where we could go to the next slot. We may at this point be on a
5410 * node or a leaf.
5411 *
5412 * If we are not at level 0 and not on shared tree blocks, go one
5413 * level deeper.
5414 *
5415 * If we are not at level 0 and on shared tree blocks, go one slot to
5416 * the right if possible or go up and right.
5417 */
5418
5419 down_read(&left_root->fs_info->commit_root_sem);
5420 left_level = btrfs_header_level(left_root->commit_root);
5421 left_root_level = left_level;
5422 left_path->nodes[left_level] = left_root->commit_root;
5423 extent_buffer_get(left_path->nodes[left_level]);
5424
5425 right_level = btrfs_header_level(right_root->commit_root);
5426 right_root_level = right_level;
5427 right_path->nodes[right_level] = right_root->commit_root;
5428 extent_buffer_get(right_path->nodes[right_level]);
5429 up_read(&left_root->fs_info->commit_root_sem);
5430
5431 if (left_level == 0)
5432 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5433 &left_key, left_path->slots[left_level]);
5434 else
5435 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5436 &left_key, left_path->slots[left_level]);
5437 if (right_level == 0)
5438 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5439 &right_key, right_path->slots[right_level]);
5440 else
5441 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5442 &right_key, right_path->slots[right_level]);
5443
5444 left_end_reached = right_end_reached = 0;
5445 advance_left = advance_right = 0;
5446
5447 while (1) {
5448 if (advance_left && !left_end_reached) {
5449 ret = tree_advance(left_root, left_path, &left_level,
5450 left_root_level,
5451 advance_left != ADVANCE_ONLY_NEXT,
5452 &left_key);
5453 if (ret < 0)
5454 left_end_reached = ADVANCE;
5455 advance_left = 0;
5456 }
5457 if (advance_right && !right_end_reached) {
5458 ret = tree_advance(right_root, right_path, &right_level,
5459 right_root_level,
5460 advance_right != ADVANCE_ONLY_NEXT,
5461 &right_key);
5462 if (ret < 0)
5463 right_end_reached = ADVANCE;
5464 advance_right = 0;
5465 }
5466
5467 if (left_end_reached && right_end_reached) {
5468 ret = 0;
5469 goto out;
5470 } else if (left_end_reached) {
5471 if (right_level == 0) {
5472 ret = changed_cb(left_root, right_root,
5473 left_path, right_path,
5474 &right_key,
5475 BTRFS_COMPARE_TREE_DELETED,
5476 ctx);
5477 if (ret < 0)
5478 goto out;
5479 }
5480 advance_right = ADVANCE;
5481 continue;
5482 } else if (right_end_reached) {
5483 if (left_level == 0) {
5484 ret = changed_cb(left_root, right_root,
5485 left_path, right_path,
5486 &left_key,
5487 BTRFS_COMPARE_TREE_NEW,
5488 ctx);
5489 if (ret < 0)
5490 goto out;
5491 }
5492 advance_left = ADVANCE;
5493 continue;
5494 }
5495
5496 if (left_level == 0 && right_level == 0) {
5497 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5498 if (cmp < 0) {
5499 ret = changed_cb(left_root, right_root,
5500 left_path, right_path,
5501 &left_key,
5502 BTRFS_COMPARE_TREE_NEW,
5503 ctx);
5504 if (ret < 0)
5505 goto out;
5506 advance_left = ADVANCE;
5507 } else if (cmp > 0) {
5508 ret = changed_cb(left_root, right_root,
5509 left_path, right_path,
5510 &right_key,
5511 BTRFS_COMPARE_TREE_DELETED,
5512 ctx);
5513 if (ret < 0)
5514 goto out;
5515 advance_right = ADVANCE;
5516 } else {
5517 enum btrfs_compare_tree_result result;
5518
5519 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5520 ret = tree_compare_item(left_root, left_path,
5521 right_path, tmp_buf);
5522 if (ret)
5523 result = BTRFS_COMPARE_TREE_CHANGED;
5524 else
5525 result = BTRFS_COMPARE_TREE_SAME;
5526 ret = changed_cb(left_root, right_root,
5527 left_path, right_path,
5528 &left_key, result, ctx);
5529 if (ret < 0)
5530 goto out;
5531 advance_left = ADVANCE;
5532 advance_right = ADVANCE;
5533 }
5534 } else if (left_level == right_level) {
5535 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5536 if (cmp < 0) {
5537 advance_left = ADVANCE;
5538 } else if (cmp > 0) {
5539 advance_right = ADVANCE;
5540 } else {
5541 left_blockptr = btrfs_node_blockptr(
5542 left_path->nodes[left_level],
5543 left_path->slots[left_level]);
5544 right_blockptr = btrfs_node_blockptr(
5545 right_path->nodes[right_level],
5546 right_path->slots[right_level]);
5547 left_gen = btrfs_node_ptr_generation(
5548 left_path->nodes[left_level],
5549 left_path->slots[left_level]);
5550 right_gen = btrfs_node_ptr_generation(
5551 right_path->nodes[right_level],
5552 right_path->slots[right_level]);
5553 if (left_blockptr == right_blockptr &&
5554 left_gen == right_gen) {
5555 /*
5556 * As we're on a shared block, don't
5557 * allow to go deeper.
5558 */
5559 advance_left = ADVANCE_ONLY_NEXT;
5560 advance_right = ADVANCE_ONLY_NEXT;
5561 } else {
5562 advance_left = ADVANCE;
5563 advance_right = ADVANCE;
5564 }
5565 }
5566 } else if (left_level < right_level) {
5567 advance_right = ADVANCE;
5568 } else {
5569 advance_left = ADVANCE;
5570 }
5571 }
5572
5573 out:
5574 btrfs_free_path(left_path);
5575 btrfs_free_path(right_path);
5576 kvfree(tmp_buf);
5577 return ret;
5578 }
5579
5580 /*
5581 * this is similar to btrfs_next_leaf, but does not try to preserve
5582 * and fixup the path. It looks for and returns the next key in the
5583 * tree based on the current path and the min_trans parameters.
5584 *
5585 * 0 is returned if another key is found, < 0 if there are any errors
5586 * and 1 is returned if there are no higher keys in the tree
5587 *
5588 * path->keep_locks should be set to 1 on the search made before
5589 * calling this function.
5590 */
5591 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5592 struct btrfs_key *key, int level, u64 min_trans)
5593 {
5594 int slot;
5595 struct extent_buffer *c;
5596
5597 WARN_ON(!path->keep_locks);
5598 while (level < BTRFS_MAX_LEVEL) {
5599 if (!path->nodes[level])
5600 return 1;
5601
5602 slot = path->slots[level] + 1;
5603 c = path->nodes[level];
5604 next:
5605 if (slot >= btrfs_header_nritems(c)) {
5606 int ret;
5607 int orig_lowest;
5608 struct btrfs_key cur_key;
5609 if (level + 1 >= BTRFS_MAX_LEVEL ||
5610 !path->nodes[level + 1])
5611 return 1;
5612
5613 if (path->locks[level + 1]) {
5614 level++;
5615 continue;
5616 }
5617
5618 slot = btrfs_header_nritems(c) - 1;
5619 if (level == 0)
5620 btrfs_item_key_to_cpu(c, &cur_key, slot);
5621 else
5622 btrfs_node_key_to_cpu(c, &cur_key, slot);
5623
5624 orig_lowest = path->lowest_level;
5625 btrfs_release_path(path);
5626 path->lowest_level = level;
5627 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5628 0, 0);
5629 path->lowest_level = orig_lowest;
5630 if (ret < 0)
5631 return ret;
5632
5633 c = path->nodes[level];
5634 slot = path->slots[level];
5635 if (ret == 0)
5636 slot++;
5637 goto next;
5638 }
5639
5640 if (level == 0)
5641 btrfs_item_key_to_cpu(c, key, slot);
5642 else {
5643 u64 gen = btrfs_node_ptr_generation(c, slot);
5644
5645 if (gen < min_trans) {
5646 slot++;
5647 goto next;
5648 }
5649 btrfs_node_key_to_cpu(c, key, slot);
5650 }
5651 return 0;
5652 }
5653 return 1;
5654 }
5655
5656 /*
5657 * search the tree again to find a leaf with greater keys
5658 * returns 0 if it found something or 1 if there are no greater leaves.
5659 * returns < 0 on io errors.
5660 */
5661 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5662 {
5663 return btrfs_next_old_leaf(root, path, 0);
5664 }
5665
5666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5667 u64 time_seq)
5668 {
5669 int slot;
5670 int level;
5671 struct extent_buffer *c;
5672 struct extent_buffer *next;
5673 struct btrfs_key key;
5674 u32 nritems;
5675 int ret;
5676 int old_spinning = path->leave_spinning;
5677 int next_rw_lock = 0;
5678
5679 nritems = btrfs_header_nritems(path->nodes[0]);
5680 if (nritems == 0)
5681 return 1;
5682
5683 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5684 again:
5685 level = 1;
5686 next = NULL;
5687 next_rw_lock = 0;
5688 btrfs_release_path(path);
5689
5690 path->keep_locks = 1;
5691 path->leave_spinning = 1;
5692
5693 if (time_seq)
5694 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5695 else
5696 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5697 path->keep_locks = 0;
5698
5699 if (ret < 0)
5700 return ret;
5701
5702 nritems = btrfs_header_nritems(path->nodes[0]);
5703 /*
5704 * by releasing the path above we dropped all our locks. A balance
5705 * could have added more items next to the key that used to be
5706 * at the very end of the block. So, check again here and
5707 * advance the path if there are now more items available.
5708 */
5709 if (nritems > 0 && path->slots[0] < nritems - 1) {
5710 if (ret == 0)
5711 path->slots[0]++;
5712 ret = 0;
5713 goto done;
5714 }
5715 /*
5716 * So the above check misses one case:
5717 * - after releasing the path above, someone has removed the item that
5718 * used to be at the very end of the block, and balance between leafs
5719 * gets another one with bigger key.offset to replace it.
5720 *
5721 * This one should be returned as well, or we can get leaf corruption
5722 * later(esp. in __btrfs_drop_extents()).
5723 *
5724 * And a bit more explanation about this check,
5725 * with ret > 0, the key isn't found, the path points to the slot
5726 * where it should be inserted, so the path->slots[0] item must be the
5727 * bigger one.
5728 */
5729 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5730 ret = 0;
5731 goto done;
5732 }
5733
5734 while (level < BTRFS_MAX_LEVEL) {
5735 if (!path->nodes[level]) {
5736 ret = 1;
5737 goto done;
5738 }
5739
5740 slot = path->slots[level] + 1;
5741 c = path->nodes[level];
5742 if (slot >= btrfs_header_nritems(c)) {
5743 level++;
5744 if (level == BTRFS_MAX_LEVEL) {
5745 ret = 1;
5746 goto done;
5747 }
5748 continue;
5749 }
5750
5751 if (next) {
5752 btrfs_tree_unlock_rw(next, next_rw_lock);
5753 free_extent_buffer(next);
5754 }
5755
5756 next = c;
5757 next_rw_lock = path->locks[level];
5758 ret = read_block_for_search(NULL, root, path, &next, level,
5759 slot, &key, 0);
5760 if (ret == -EAGAIN)
5761 goto again;
5762
5763 if (ret < 0) {
5764 btrfs_release_path(path);
5765 goto done;
5766 }
5767
5768 if (!path->skip_locking) {
5769 ret = btrfs_try_tree_read_lock(next);
5770 if (!ret && time_seq) {
5771 /*
5772 * If we don't get the lock, we may be racing
5773 * with push_leaf_left, holding that lock while
5774 * itself waiting for the leaf we've currently
5775 * locked. To solve this situation, we give up
5776 * on our lock and cycle.
5777 */
5778 free_extent_buffer(next);
5779 btrfs_release_path(path);
5780 cond_resched();
5781 goto again;
5782 }
5783 if (!ret) {
5784 btrfs_set_path_blocking(path);
5785 btrfs_tree_read_lock(next);
5786 btrfs_clear_path_blocking(path, next,
5787 BTRFS_READ_LOCK);
5788 }
5789 next_rw_lock = BTRFS_READ_LOCK;
5790 }
5791 break;
5792 }
5793 path->slots[level] = slot;
5794 while (1) {
5795 level--;
5796 c = path->nodes[level];
5797 if (path->locks[level])
5798 btrfs_tree_unlock_rw(c, path->locks[level]);
5799
5800 free_extent_buffer(c);
5801 path->nodes[level] = next;
5802 path->slots[level] = 0;
5803 if (!path->skip_locking)
5804 path->locks[level] = next_rw_lock;
5805 if (!level)
5806 break;
5807
5808 ret = read_block_for_search(NULL, root, path, &next, level,
5809 0, &key, 0);
5810 if (ret == -EAGAIN)
5811 goto again;
5812
5813 if (ret < 0) {
5814 btrfs_release_path(path);
5815 goto done;
5816 }
5817
5818 if (!path->skip_locking) {
5819 ret = btrfs_try_tree_read_lock(next);
5820 if (!ret) {
5821 btrfs_set_path_blocking(path);
5822 btrfs_tree_read_lock(next);
5823 btrfs_clear_path_blocking(path, next,
5824 BTRFS_READ_LOCK);
5825 }
5826 next_rw_lock = BTRFS_READ_LOCK;
5827 }
5828 }
5829 ret = 0;
5830 done:
5831 unlock_up(path, 0, 1, 0, NULL);
5832 path->leave_spinning = old_spinning;
5833 if (!old_spinning)
5834 btrfs_set_path_blocking(path);
5835
5836 return ret;
5837 }
5838
5839 /*
5840 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5841 * searching until it gets past min_objectid or finds an item of 'type'
5842 *
5843 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5844 */
5845 int btrfs_previous_item(struct btrfs_root *root,
5846 struct btrfs_path *path, u64 min_objectid,
5847 int type)
5848 {
5849 struct btrfs_key found_key;
5850 struct extent_buffer *leaf;
5851 u32 nritems;
5852 int ret;
5853
5854 while (1) {
5855 if (path->slots[0] == 0) {
5856 btrfs_set_path_blocking(path);
5857 ret = btrfs_prev_leaf(root, path);
5858 if (ret != 0)
5859 return ret;
5860 } else {
5861 path->slots[0]--;
5862 }
5863 leaf = path->nodes[0];
5864 nritems = btrfs_header_nritems(leaf);
5865 if (nritems == 0)
5866 return 1;
5867 if (path->slots[0] == nritems)
5868 path->slots[0]--;
5869
5870 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5871 if (found_key.objectid < min_objectid)
5872 break;
5873 if (found_key.type == type)
5874 return 0;
5875 if (found_key.objectid == min_objectid &&
5876 found_key.type < type)
5877 break;
5878 }
5879 return 1;
5880 }
5881
5882 /*
5883 * search in extent tree to find a previous Metadata/Data extent item with
5884 * min objecitd.
5885 *
5886 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5887 */
5888 int btrfs_previous_extent_item(struct btrfs_root *root,
5889 struct btrfs_path *path, u64 min_objectid)
5890 {
5891 struct btrfs_key found_key;
5892 struct extent_buffer *leaf;
5893 u32 nritems;
5894 int ret;
5895
5896 while (1) {
5897 if (path->slots[0] == 0) {
5898 btrfs_set_path_blocking(path);
5899 ret = btrfs_prev_leaf(root, path);
5900 if (ret != 0)
5901 return ret;
5902 } else {
5903 path->slots[0]--;
5904 }
5905 leaf = path->nodes[0];
5906 nritems = btrfs_header_nritems(leaf);
5907 if (nritems == 0)
5908 return 1;
5909 if (path->slots[0] == nritems)
5910 path->slots[0]--;
5911
5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913 if (found_key.objectid < min_objectid)
5914 break;
5915 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5916 found_key.type == BTRFS_METADATA_ITEM_KEY)
5917 return 0;
5918 if (found_key.objectid == min_objectid &&
5919 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5920 break;
5921 }
5922 return 1;
5923 }
This page took 0.165982 seconds and 5 git commands to generate.