Btrfs: fix unblocked autodefraggers when remount
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53 struct btrfs_path *path;
54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 return path;
56 }
57
58 /*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73 }
74 }
75
76 /*
77 * reset all the locked nodes in the patch to spinning locks.
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
83 */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 struct extent_buffer *held, int held_rw)
86 {
87 int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
103 btrfs_set_path_blocking(p);
104 #endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
114 }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
118 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125 if (!p)
126 return;
127 btrfs_release_path(p);
128 kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139 int i;
140
141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 p->slots[i] = 0;
143 if (!p->nodes[i])
144 continue;
145 if (p->locks[i]) {
146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 p->locks[i] = 0;
148 }
149 free_extent_buffer(p->nodes[i]);
150 p->nodes[i] = NULL;
151 }
152 }
153
154 /*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166 struct extent_buffer *eb;
167
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
185 return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194 struct extent_buffer *eb;
195
196 while (1) {
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
199 if (eb == root->node)
200 break;
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232 spin_lock(&root->fs_info->trans_lock);
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
237 spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250 struct extent_buffer *cow;
251 int ret = 0;
252 int level;
253 struct btrfs_disk_key disk_key;
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
264
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
267 buf->start, 0);
268 if (IS_ERR(cow))
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
281
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 else
290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298 }
299
300 enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313 };
314
315 struct tree_mod_root {
316 u64 logical;
317 u8 level;
318 };
319
320 struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
323 u64 seq;
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345 read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350 read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355 write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360 write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
383 spin_unlock(&fs_info->tree_mod_seq_lock);
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391 {
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
405 elem->seq = 0;
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 if (cur_elem->seq < min_seq) {
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
426 tree_mod_log_write_lock(fs_info);
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
431 if (tm->seq > min_seq)
432 continue;
433 rb_erase(node, tm_root);
434 kfree(tm);
435 }
436 tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm || !tm->seq);
456
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
466 else if (cur->seq < tm->seq)
467 new = &((*new)->rb_left);
468 else if (cur->seq > tm->seq)
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
472 return -EEXIST;
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
502 return 1;
503 }
504
505 return 0;
506 }
507
508 /*
509 * This allocates memory and gets a tree modification sequence number.
510 *
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
513 */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
516 {
517 struct tree_mod_elem *tm;
518
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 if (!tm)
525 return -ENOMEM;
526
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
535 {
536 int ret;
537 struct tree_mod_elem *tm;
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
540 if (ret < 0)
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552 return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559 {
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
568 return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574 {
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582 {
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590 {
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
597
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
609 ret = tree_mod_alloc(fs_info, flags, &tm);
610 if (ret < 0)
611 goto out;
612
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
619 ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 tree_mod_log_write_unlock(fs_info);
622 return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628 int i;
629 u32 nritems;
630 int ret;
631
632 if (btrfs_header_level(eb) == 0)
633 return;
634
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
647 {
648 struct tree_mod_elem *tm;
649 int ret;
650
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
653
654 __tree_mod_log_free_eb(fs_info, old_root);
655
656 ret = tree_mod_alloc(fs_info, flags, &tm);
657 if (ret < 0)
658 goto out;
659
660 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
661 tm->old_root.logical = old_root->start;
662 tm->old_root.level = btrfs_header_level(old_root);
663 tm->generation = btrfs_header_generation(old_root);
664 tm->op = MOD_LOG_ROOT_REPLACE;
665
666 ret = __tree_mod_log_insert(fs_info, tm);
667 out:
668 tree_mod_log_write_unlock(fs_info);
669 return ret;
670 }
671
672 static struct tree_mod_elem *
673 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
674 int smallest)
675 {
676 struct rb_root *tm_root;
677 struct rb_node *node;
678 struct tree_mod_elem *cur = NULL;
679 struct tree_mod_elem *found = NULL;
680 u64 index = start >> PAGE_CACHE_SHIFT;
681
682 tree_mod_log_read_lock(fs_info);
683 tm_root = &fs_info->tree_mod_log;
684 node = tm_root->rb_node;
685 while (node) {
686 cur = container_of(node, struct tree_mod_elem, node);
687 if (cur->index < index) {
688 node = node->rb_left;
689 } else if (cur->index > index) {
690 node = node->rb_right;
691 } else if (cur->seq < min_seq) {
692 node = node->rb_left;
693 } else if (!smallest) {
694 /* we want the node with the highest seq */
695 if (found)
696 BUG_ON(found->seq > cur->seq);
697 found = cur;
698 node = node->rb_left;
699 } else if (cur->seq > min_seq) {
700 /* we want the node with the smallest seq */
701 if (found)
702 BUG_ON(found->seq < cur->seq);
703 found = cur;
704 node = node->rb_right;
705 } else {
706 found = cur;
707 break;
708 }
709 }
710 tree_mod_log_read_unlock(fs_info);
711
712 return found;
713 }
714
715 /*
716 * this returns the element from the log with the smallest time sequence
717 * value that's in the log (the oldest log item). any element with a time
718 * sequence lower than min_seq will be ignored.
719 */
720 static struct tree_mod_elem *
721 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
722 u64 min_seq)
723 {
724 return __tree_mod_log_search(fs_info, start, min_seq, 1);
725 }
726
727 /*
728 * this returns the element from the log with the largest time sequence
729 * value that's in the log (the most recent log item). any element with
730 * a time sequence lower than min_seq will be ignored.
731 */
732 static struct tree_mod_elem *
733 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 {
735 return __tree_mod_log_search(fs_info, start, min_seq, 0);
736 }
737
738 static noinline void
739 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
740 struct extent_buffer *src, unsigned long dst_offset,
741 unsigned long src_offset, int nr_items, int log_removal)
742 {
743 int ret;
744 int i;
745
746 if (tree_mod_dont_log(fs_info, NULL))
747 return;
748
749 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
750 tree_mod_log_write_unlock(fs_info);
751 return;
752 }
753
754 for (i = 0; i < nr_items; i++) {
755 if (log_removal) {
756 ret = tree_mod_log_insert_key_locked(fs_info, src,
757 i + src_offset,
758 MOD_LOG_KEY_REMOVE);
759 BUG_ON(ret < 0);
760 }
761 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762 i + dst_offset,
763 MOD_LOG_KEY_ADD);
764 BUG_ON(ret < 0);
765 }
766
767 tree_mod_log_write_unlock(fs_info);
768 }
769
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772 int dst_offset, int src_offset, int nr_items)
773 {
774 int ret;
775 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776 nr_items, GFP_NOFS);
777 BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782 struct extent_buffer *eb, int slot, int atomic)
783 {
784 int ret;
785
786 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787 MOD_LOG_KEY_REPLACE,
788 atomic ? GFP_ATOMIC : GFP_NOFS);
789 BUG_ON(ret < 0);
790 }
791
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795 if (tree_mod_dont_log(fs_info, eb))
796 return;
797
798 __tree_mod_log_free_eb(fs_info, eb);
799
800 tree_mod_log_write_unlock(fs_info);
801 }
802
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805 struct extent_buffer *new_root_node)
806 {
807 int ret;
808 ret = tree_mod_log_insert_root(root->fs_info, root->node,
809 new_root_node, GFP_NOFS);
810 BUG_ON(ret < 0);
811 }
812
813 /*
814 * check if the tree block can be shared by multiple trees
815 */
816 int btrfs_block_can_be_shared(struct btrfs_root *root,
817 struct extent_buffer *buf)
818 {
819 /*
820 * Tree blocks not in refernece counted trees and tree roots
821 * are never shared. If a block was allocated after the last
822 * snapshot and the block was not allocated by tree relocation,
823 * we know the block is not shared.
824 */
825 if (root->ref_cows &&
826 buf != root->node && buf != root->commit_root &&
827 (btrfs_header_generation(buf) <=
828 btrfs_root_last_snapshot(&root->root_item) ||
829 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
830 return 1;
831 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
832 if (root->ref_cows &&
833 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
834 return 1;
835 #endif
836 return 0;
837 }
838
839 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
840 struct btrfs_root *root,
841 struct extent_buffer *buf,
842 struct extent_buffer *cow,
843 int *last_ref)
844 {
845 u64 refs;
846 u64 owner;
847 u64 flags;
848 u64 new_flags = 0;
849 int ret;
850
851 /*
852 * Backrefs update rules:
853 *
854 * Always use full backrefs for extent pointers in tree block
855 * allocated by tree relocation.
856 *
857 * If a shared tree block is no longer referenced by its owner
858 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
859 * use full backrefs for extent pointers in tree block.
860 *
861 * If a tree block is been relocating
862 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
863 * use full backrefs for extent pointers in tree block.
864 * The reason for this is some operations (such as drop tree)
865 * are only allowed for blocks use full backrefs.
866 */
867
868 if (btrfs_block_can_be_shared(root, buf)) {
869 ret = btrfs_lookup_extent_info(trans, root, buf->start,
870 btrfs_header_level(buf), 1,
871 &refs, &flags);
872 if (ret)
873 return ret;
874 if (refs == 0) {
875 ret = -EROFS;
876 btrfs_std_error(root->fs_info, ret);
877 return ret;
878 }
879 } else {
880 refs = 1;
881 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
882 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
883 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884 else
885 flags = 0;
886 }
887
888 owner = btrfs_header_owner(buf);
889 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
890 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
891
892 if (refs > 1) {
893 if ((owner == root->root_key.objectid ||
894 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
895 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
896 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
897 BUG_ON(ret); /* -ENOMEM */
898
899 if (root->root_key.objectid ==
900 BTRFS_TREE_RELOC_OBJECTID) {
901 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
902 BUG_ON(ret); /* -ENOMEM */
903 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
904 BUG_ON(ret); /* -ENOMEM */
905 }
906 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 } else {
908
909 if (root->root_key.objectid ==
910 BTRFS_TREE_RELOC_OBJECTID)
911 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
912 else
913 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
914 BUG_ON(ret); /* -ENOMEM */
915 }
916 if (new_flags != 0) {
917 ret = btrfs_set_disk_extent_flags(trans, root,
918 buf->start,
919 buf->len,
920 new_flags, 0);
921 if (ret)
922 return ret;
923 }
924 } else {
925 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
926 if (root->root_key.objectid ==
927 BTRFS_TREE_RELOC_OBJECTID)
928 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
929 else
930 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
931 BUG_ON(ret); /* -ENOMEM */
932 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
933 BUG_ON(ret); /* -ENOMEM */
934 }
935 clean_tree_block(trans, root, buf);
936 *last_ref = 1;
937 }
938 return 0;
939 }
940
941 /*
942 * does the dirty work in cow of a single block. The parent block (if
943 * supplied) is updated to point to the new cow copy. The new buffer is marked
944 * dirty and returned locked. If you modify the block it needs to be marked
945 * dirty again.
946 *
947 * search_start -- an allocation hint for the new block
948 *
949 * empty_size -- a hint that you plan on doing more cow. This is the size in
950 * bytes the allocator should try to find free next to the block it returns.
951 * This is just a hint and may be ignored by the allocator.
952 */
953 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
954 struct btrfs_root *root,
955 struct extent_buffer *buf,
956 struct extent_buffer *parent, int parent_slot,
957 struct extent_buffer **cow_ret,
958 u64 search_start, u64 empty_size)
959 {
960 struct btrfs_disk_key disk_key;
961 struct extent_buffer *cow;
962 int level, ret;
963 int last_ref = 0;
964 int unlock_orig = 0;
965 u64 parent_start;
966
967 if (*cow_ret == buf)
968 unlock_orig = 1;
969
970 btrfs_assert_tree_locked(buf);
971
972 WARN_ON(root->ref_cows && trans->transid !=
973 root->fs_info->running_transaction->transid);
974 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
975
976 level = btrfs_header_level(buf);
977
978 if (level == 0)
979 btrfs_item_key(buf, &disk_key, 0);
980 else
981 btrfs_node_key(buf, &disk_key, 0);
982
983 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
984 if (parent)
985 parent_start = parent->start;
986 else
987 parent_start = 0;
988 } else
989 parent_start = 0;
990
991 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
992 root->root_key.objectid, &disk_key,
993 level, search_start, empty_size);
994 if (IS_ERR(cow))
995 return PTR_ERR(cow);
996
997 /* cow is set to blocking by btrfs_init_new_buffer */
998
999 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1000 btrfs_set_header_bytenr(cow, cow->start);
1001 btrfs_set_header_generation(cow, trans->transid);
1002 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1003 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1004 BTRFS_HEADER_FLAG_RELOC);
1005 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1006 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1007 else
1008 btrfs_set_header_owner(cow, root->root_key.objectid);
1009
1010 write_extent_buffer(cow, root->fs_info->fsid,
1011 (unsigned long)btrfs_header_fsid(cow),
1012 BTRFS_FSID_SIZE);
1013
1014 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1015 if (ret) {
1016 btrfs_abort_transaction(trans, root, ret);
1017 return ret;
1018 }
1019
1020 if (root->ref_cows)
1021 btrfs_reloc_cow_block(trans, root, buf, cow);
1022
1023 if (buf == root->node) {
1024 WARN_ON(parent && parent != buf);
1025 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1026 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1027 parent_start = buf->start;
1028 else
1029 parent_start = 0;
1030
1031 extent_buffer_get(cow);
1032 tree_mod_log_set_root_pointer(root, cow);
1033 rcu_assign_pointer(root->node, cow);
1034
1035 btrfs_free_tree_block(trans, root, buf, parent_start,
1036 last_ref);
1037 free_extent_buffer(buf);
1038 add_root_to_dirty_list(root);
1039 } else {
1040 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1041 parent_start = parent->start;
1042 else
1043 parent_start = 0;
1044
1045 WARN_ON(trans->transid != btrfs_header_generation(parent));
1046 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1047 MOD_LOG_KEY_REPLACE);
1048 btrfs_set_node_blockptr(parent, parent_slot,
1049 cow->start);
1050 btrfs_set_node_ptr_generation(parent, parent_slot,
1051 trans->transid);
1052 btrfs_mark_buffer_dirty(parent);
1053 tree_mod_log_free_eb(root->fs_info, buf);
1054 btrfs_free_tree_block(trans, root, buf, parent_start,
1055 last_ref);
1056 }
1057 if (unlock_orig)
1058 btrfs_tree_unlock(buf);
1059 free_extent_buffer_stale(buf);
1060 btrfs_mark_buffer_dirty(cow);
1061 *cow_ret = cow;
1062 return 0;
1063 }
1064
1065 /*
1066 * returns the logical address of the oldest predecessor of the given root.
1067 * entries older than time_seq are ignored.
1068 */
1069 static struct tree_mod_elem *
1070 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1071 struct btrfs_root *root, u64 time_seq)
1072 {
1073 struct tree_mod_elem *tm;
1074 struct tree_mod_elem *found = NULL;
1075 u64 root_logical = root->node->start;
1076 int looped = 0;
1077
1078 if (!time_seq)
1079 return 0;
1080
1081 /*
1082 * the very last operation that's logged for a root is the replacement
1083 * operation (if it is replaced at all). this has the index of the *new*
1084 * root, making it the very first operation that's logged for this root.
1085 */
1086 while (1) {
1087 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1088 time_seq);
1089 if (!looped && !tm)
1090 return 0;
1091 /*
1092 * if there are no tree operation for the oldest root, we simply
1093 * return it. this should only happen if that (old) root is at
1094 * level 0.
1095 */
1096 if (!tm)
1097 break;
1098
1099 /*
1100 * if there's an operation that's not a root replacement, we
1101 * found the oldest version of our root. normally, we'll find a
1102 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1103 */
1104 if (tm->op != MOD_LOG_ROOT_REPLACE)
1105 break;
1106
1107 found = tm;
1108 root_logical = tm->old_root.logical;
1109 BUG_ON(root_logical == root->node->start);
1110 looped = 1;
1111 }
1112
1113 /* if there's no old root to return, return what we found instead */
1114 if (!found)
1115 found = tm;
1116
1117 return found;
1118 }
1119
1120 /*
1121 * tm is a pointer to the first operation to rewind within eb. then, all
1122 * previous operations will be rewinded (until we reach something older than
1123 * time_seq).
1124 */
1125 static void
1126 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1127 struct tree_mod_elem *first_tm)
1128 {
1129 u32 n;
1130 struct rb_node *next;
1131 struct tree_mod_elem *tm = first_tm;
1132 unsigned long o_dst;
1133 unsigned long o_src;
1134 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1135
1136 n = btrfs_header_nritems(eb);
1137 while (tm && tm->seq >= time_seq) {
1138 /*
1139 * all the operations are recorded with the operator used for
1140 * the modification. as we're going backwards, we do the
1141 * opposite of each operation here.
1142 */
1143 switch (tm->op) {
1144 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1145 BUG_ON(tm->slot < n);
1146 /* Fallthrough */
1147 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1148 case MOD_LOG_KEY_REMOVE:
1149 btrfs_set_node_key(eb, &tm->key, tm->slot);
1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151 btrfs_set_node_ptr_generation(eb, tm->slot,
1152 tm->generation);
1153 n++;
1154 break;
1155 case MOD_LOG_KEY_REPLACE:
1156 BUG_ON(tm->slot >= n);
1157 btrfs_set_node_key(eb, &tm->key, tm->slot);
1158 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1159 btrfs_set_node_ptr_generation(eb, tm->slot,
1160 tm->generation);
1161 break;
1162 case MOD_LOG_KEY_ADD:
1163 /* if a move operation is needed it's in the log */
1164 n--;
1165 break;
1166 case MOD_LOG_MOVE_KEYS:
1167 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1168 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1169 memmove_extent_buffer(eb, o_dst, o_src,
1170 tm->move.nr_items * p_size);
1171 break;
1172 case MOD_LOG_ROOT_REPLACE:
1173 /*
1174 * this operation is special. for roots, this must be
1175 * handled explicitly before rewinding.
1176 * for non-roots, this operation may exist if the node
1177 * was a root: root A -> child B; then A gets empty and
1178 * B is promoted to the new root. in the mod log, we'll
1179 * have a root-replace operation for B, a tree block
1180 * that is no root. we simply ignore that operation.
1181 */
1182 break;
1183 }
1184 next = rb_next(&tm->node);
1185 if (!next)
1186 break;
1187 tm = container_of(next, struct tree_mod_elem, node);
1188 if (tm->index != first_tm->index)
1189 break;
1190 }
1191 btrfs_set_header_nritems(eb, n);
1192 }
1193
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1196 u64 time_seq)
1197 {
1198 struct extent_buffer *eb_rewin;
1199 struct tree_mod_elem *tm;
1200
1201 if (!time_seq)
1202 return eb;
1203
1204 if (btrfs_header_level(eb) == 0)
1205 return eb;
1206
1207 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208 if (!tm)
1209 return eb;
1210
1211 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1212 BUG_ON(tm->slot != 0);
1213 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1214 fs_info->tree_root->nodesize);
1215 BUG_ON(!eb_rewin);
1216 btrfs_set_header_bytenr(eb_rewin, eb->start);
1217 btrfs_set_header_backref_rev(eb_rewin,
1218 btrfs_header_backref_rev(eb));
1219 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1220 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1221 } else {
1222 eb_rewin = btrfs_clone_extent_buffer(eb);
1223 BUG_ON(!eb_rewin);
1224 }
1225
1226 extent_buffer_get(eb_rewin);
1227 free_extent_buffer(eb);
1228
1229 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1230 WARN_ON(btrfs_header_nritems(eb_rewin) >
1231 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1232
1233 return eb_rewin;
1234 }
1235
1236 /*
1237 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1238 * value. If there are no changes, the current root->root_node is returned. If
1239 * anything changed in between, there's a fresh buffer allocated on which the
1240 * rewind operations are done. In any case, the returned buffer is read locked.
1241 * Returns NULL on error (with no locks held).
1242 */
1243 static inline struct extent_buffer *
1244 get_old_root(struct btrfs_root *root, u64 time_seq)
1245 {
1246 struct tree_mod_elem *tm;
1247 struct extent_buffer *eb;
1248 struct extent_buffer *old;
1249 struct tree_mod_root *old_root = NULL;
1250 u64 old_generation = 0;
1251 u64 logical;
1252 u32 blocksize;
1253
1254 eb = btrfs_read_lock_root_node(root);
1255 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1256 if (!tm)
1257 return root->node;
1258
1259 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1260 old_root = &tm->old_root;
1261 old_generation = tm->generation;
1262 logical = old_root->logical;
1263 } else {
1264 logical = root->node->start;
1265 }
1266
1267 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1268 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1269 btrfs_tree_read_unlock(root->node);
1270 free_extent_buffer(root->node);
1271 blocksize = btrfs_level_size(root, old_root->level);
1272 old = read_tree_block(root, logical, blocksize, 0);
1273 if (!old) {
1274 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1275 logical);
1276 WARN_ON(1);
1277 } else {
1278 eb = btrfs_clone_extent_buffer(old);
1279 free_extent_buffer(old);
1280 }
1281 } else if (old_root) {
1282 btrfs_tree_read_unlock(root->node);
1283 free_extent_buffer(root->node);
1284 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1285 } else {
1286 eb = btrfs_clone_extent_buffer(root->node);
1287 btrfs_tree_read_unlock(root->node);
1288 free_extent_buffer(root->node);
1289 }
1290
1291 if (!eb)
1292 return NULL;
1293 extent_buffer_get(eb);
1294 btrfs_tree_read_lock(eb);
1295 if (old_root) {
1296 btrfs_set_header_bytenr(eb, eb->start);
1297 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1298 btrfs_set_header_owner(eb, root->root_key.objectid);
1299 btrfs_set_header_level(eb, old_root->level);
1300 btrfs_set_header_generation(eb, old_generation);
1301 }
1302 if (tm)
1303 __tree_mod_log_rewind(eb, time_seq, tm);
1304 else
1305 WARN_ON(btrfs_header_level(eb) != 0);
1306 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1307
1308 return eb;
1309 }
1310
1311 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1312 {
1313 struct tree_mod_elem *tm;
1314 int level;
1315
1316 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1317 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1318 level = tm->old_root.level;
1319 } else {
1320 rcu_read_lock();
1321 level = btrfs_header_level(root->node);
1322 rcu_read_unlock();
1323 }
1324
1325 return level;
1326 }
1327
1328 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct extent_buffer *buf)
1331 {
1332 /* ensure we can see the force_cow */
1333 smp_rmb();
1334
1335 /*
1336 * We do not need to cow a block if
1337 * 1) this block is not created or changed in this transaction;
1338 * 2) this block does not belong to TREE_RELOC tree;
1339 * 3) the root is not forced COW.
1340 *
1341 * What is forced COW:
1342 * when we create snapshot during commiting the transaction,
1343 * after we've finished coping src root, we must COW the shared
1344 * block to ensure the metadata consistency.
1345 */
1346 if (btrfs_header_generation(buf) == trans->transid &&
1347 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1348 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1349 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1350 !root->force_cow)
1351 return 0;
1352 return 1;
1353 }
1354
1355 /*
1356 * cows a single block, see __btrfs_cow_block for the real work.
1357 * This version of it has extra checks so that a block isn't cow'd more than
1358 * once per transaction, as long as it hasn't been written yet
1359 */
1360 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root, struct extent_buffer *buf,
1362 struct extent_buffer *parent, int parent_slot,
1363 struct extent_buffer **cow_ret)
1364 {
1365 u64 search_start;
1366 int ret;
1367
1368 if (trans->transaction != root->fs_info->running_transaction)
1369 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1370 (unsigned long long)trans->transid,
1371 (unsigned long long)
1372 root->fs_info->running_transaction->transid);
1373
1374 if (trans->transid != root->fs_info->generation)
1375 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1376 (unsigned long long)trans->transid,
1377 (unsigned long long)root->fs_info->generation);
1378
1379 if (!should_cow_block(trans, root, buf)) {
1380 *cow_ret = buf;
1381 return 0;
1382 }
1383
1384 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1385
1386 if (parent)
1387 btrfs_set_lock_blocking(parent);
1388 btrfs_set_lock_blocking(buf);
1389
1390 ret = __btrfs_cow_block(trans, root, buf, parent,
1391 parent_slot, cow_ret, search_start, 0);
1392
1393 trace_btrfs_cow_block(root, buf, *cow_ret);
1394
1395 return ret;
1396 }
1397
1398 /*
1399 * helper function for defrag to decide if two blocks pointed to by a
1400 * node are actually close by
1401 */
1402 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1403 {
1404 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1405 return 1;
1406 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1407 return 1;
1408 return 0;
1409 }
1410
1411 /*
1412 * compare two keys in a memcmp fashion
1413 */
1414 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1415 {
1416 struct btrfs_key k1;
1417
1418 btrfs_disk_key_to_cpu(&k1, disk);
1419
1420 return btrfs_comp_cpu_keys(&k1, k2);
1421 }
1422
1423 /*
1424 * same as comp_keys only with two btrfs_key's
1425 */
1426 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1427 {
1428 if (k1->objectid > k2->objectid)
1429 return 1;
1430 if (k1->objectid < k2->objectid)
1431 return -1;
1432 if (k1->type > k2->type)
1433 return 1;
1434 if (k1->type < k2->type)
1435 return -1;
1436 if (k1->offset > k2->offset)
1437 return 1;
1438 if (k1->offset < k2->offset)
1439 return -1;
1440 return 0;
1441 }
1442
1443 /*
1444 * this is used by the defrag code to go through all the
1445 * leaves pointed to by a node and reallocate them so that
1446 * disk order is close to key order
1447 */
1448 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root, struct extent_buffer *parent,
1450 int start_slot, u64 *last_ret,
1451 struct btrfs_key *progress)
1452 {
1453 struct extent_buffer *cur;
1454 u64 blocknr;
1455 u64 gen;
1456 u64 search_start = *last_ret;
1457 u64 last_block = 0;
1458 u64 other;
1459 u32 parent_nritems;
1460 int end_slot;
1461 int i;
1462 int err = 0;
1463 int parent_level;
1464 int uptodate;
1465 u32 blocksize;
1466 int progress_passed = 0;
1467 struct btrfs_disk_key disk_key;
1468
1469 parent_level = btrfs_header_level(parent);
1470
1471 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1472 WARN_ON(trans->transid != root->fs_info->generation);
1473
1474 parent_nritems = btrfs_header_nritems(parent);
1475 blocksize = btrfs_level_size(root, parent_level - 1);
1476 end_slot = parent_nritems;
1477
1478 if (parent_nritems == 1)
1479 return 0;
1480
1481 btrfs_set_lock_blocking(parent);
1482
1483 for (i = start_slot; i < end_slot; i++) {
1484 int close = 1;
1485
1486 btrfs_node_key(parent, &disk_key, i);
1487 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1488 continue;
1489
1490 progress_passed = 1;
1491 blocknr = btrfs_node_blockptr(parent, i);
1492 gen = btrfs_node_ptr_generation(parent, i);
1493 if (last_block == 0)
1494 last_block = blocknr;
1495
1496 if (i > 0) {
1497 other = btrfs_node_blockptr(parent, i - 1);
1498 close = close_blocks(blocknr, other, blocksize);
1499 }
1500 if (!close && i < end_slot - 2) {
1501 other = btrfs_node_blockptr(parent, i + 1);
1502 close = close_blocks(blocknr, other, blocksize);
1503 }
1504 if (close) {
1505 last_block = blocknr;
1506 continue;
1507 }
1508
1509 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1510 if (cur)
1511 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1512 else
1513 uptodate = 0;
1514 if (!cur || !uptodate) {
1515 if (!cur) {
1516 cur = read_tree_block(root, blocknr,
1517 blocksize, gen);
1518 if (!cur)
1519 return -EIO;
1520 } else if (!uptodate) {
1521 err = btrfs_read_buffer(cur, gen);
1522 if (err) {
1523 free_extent_buffer(cur);
1524 return err;
1525 }
1526 }
1527 }
1528 if (search_start == 0)
1529 search_start = last_block;
1530
1531 btrfs_tree_lock(cur);
1532 btrfs_set_lock_blocking(cur);
1533 err = __btrfs_cow_block(trans, root, cur, parent, i,
1534 &cur, search_start,
1535 min(16 * blocksize,
1536 (end_slot - i) * blocksize));
1537 if (err) {
1538 btrfs_tree_unlock(cur);
1539 free_extent_buffer(cur);
1540 break;
1541 }
1542 search_start = cur->start;
1543 last_block = cur->start;
1544 *last_ret = search_start;
1545 btrfs_tree_unlock(cur);
1546 free_extent_buffer(cur);
1547 }
1548 return err;
1549 }
1550
1551 /*
1552 * The leaf data grows from end-to-front in the node.
1553 * this returns the address of the start of the last item,
1554 * which is the stop of the leaf data stack
1555 */
1556 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1557 struct extent_buffer *leaf)
1558 {
1559 u32 nr = btrfs_header_nritems(leaf);
1560 if (nr == 0)
1561 return BTRFS_LEAF_DATA_SIZE(root);
1562 return btrfs_item_offset_nr(leaf, nr - 1);
1563 }
1564
1565
1566 /*
1567 * search for key in the extent_buffer. The items start at offset p,
1568 * and they are item_size apart. There are 'max' items in p.
1569 *
1570 * the slot in the array is returned via slot, and it points to
1571 * the place where you would insert key if it is not found in
1572 * the array.
1573 *
1574 * slot may point to max if the key is bigger than all of the keys
1575 */
1576 static noinline int generic_bin_search(struct extent_buffer *eb,
1577 unsigned long p,
1578 int item_size, struct btrfs_key *key,
1579 int max, int *slot)
1580 {
1581 int low = 0;
1582 int high = max;
1583 int mid;
1584 int ret;
1585 struct btrfs_disk_key *tmp = NULL;
1586 struct btrfs_disk_key unaligned;
1587 unsigned long offset;
1588 char *kaddr = NULL;
1589 unsigned long map_start = 0;
1590 unsigned long map_len = 0;
1591 int err;
1592
1593 while (low < high) {
1594 mid = (low + high) / 2;
1595 offset = p + mid * item_size;
1596
1597 if (!kaddr || offset < map_start ||
1598 (offset + sizeof(struct btrfs_disk_key)) >
1599 map_start + map_len) {
1600
1601 err = map_private_extent_buffer(eb, offset,
1602 sizeof(struct btrfs_disk_key),
1603 &kaddr, &map_start, &map_len);
1604
1605 if (!err) {
1606 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607 map_start);
1608 } else {
1609 read_extent_buffer(eb, &unaligned,
1610 offset, sizeof(unaligned));
1611 tmp = &unaligned;
1612 }
1613
1614 } else {
1615 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616 map_start);
1617 }
1618 ret = comp_keys(tmp, key);
1619
1620 if (ret < 0)
1621 low = mid + 1;
1622 else if (ret > 0)
1623 high = mid;
1624 else {
1625 *slot = mid;
1626 return 0;
1627 }
1628 }
1629 *slot = low;
1630 return 1;
1631 }
1632
1633 /*
1634 * simple bin_search frontend that does the right thing for
1635 * leaves vs nodes
1636 */
1637 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638 int level, int *slot)
1639 {
1640 if (level == 0)
1641 return generic_bin_search(eb,
1642 offsetof(struct btrfs_leaf, items),
1643 sizeof(struct btrfs_item),
1644 key, btrfs_header_nritems(eb),
1645 slot);
1646 else
1647 return generic_bin_search(eb,
1648 offsetof(struct btrfs_node, ptrs),
1649 sizeof(struct btrfs_key_ptr),
1650 key, btrfs_header_nritems(eb),
1651 slot);
1652 }
1653
1654 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655 int level, int *slot)
1656 {
1657 return bin_search(eb, key, level, slot);
1658 }
1659
1660 static void root_add_used(struct btrfs_root *root, u32 size)
1661 {
1662 spin_lock(&root->accounting_lock);
1663 btrfs_set_root_used(&root->root_item,
1664 btrfs_root_used(&root->root_item) + size);
1665 spin_unlock(&root->accounting_lock);
1666 }
1667
1668 static void root_sub_used(struct btrfs_root *root, u32 size)
1669 {
1670 spin_lock(&root->accounting_lock);
1671 btrfs_set_root_used(&root->root_item,
1672 btrfs_root_used(&root->root_item) - size);
1673 spin_unlock(&root->accounting_lock);
1674 }
1675
1676 /* given a node and slot number, this reads the blocks it points to. The
1677 * extent buffer is returned with a reference taken (but unlocked).
1678 * NULL is returned on error.
1679 */
1680 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1681 struct extent_buffer *parent, int slot)
1682 {
1683 int level = btrfs_header_level(parent);
1684 if (slot < 0)
1685 return NULL;
1686 if (slot >= btrfs_header_nritems(parent))
1687 return NULL;
1688
1689 BUG_ON(level == 0);
1690
1691 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1692 btrfs_level_size(root, level - 1),
1693 btrfs_node_ptr_generation(parent, slot));
1694 }
1695
1696 /*
1697 * node level balancing, used to make sure nodes are in proper order for
1698 * item deletion. We balance from the top down, so we have to make sure
1699 * that a deletion won't leave an node completely empty later on.
1700 */
1701 static noinline int balance_level(struct btrfs_trans_handle *trans,
1702 struct btrfs_root *root,
1703 struct btrfs_path *path, int level)
1704 {
1705 struct extent_buffer *right = NULL;
1706 struct extent_buffer *mid;
1707 struct extent_buffer *left = NULL;
1708 struct extent_buffer *parent = NULL;
1709 int ret = 0;
1710 int wret;
1711 int pslot;
1712 int orig_slot = path->slots[level];
1713 u64 orig_ptr;
1714
1715 if (level == 0)
1716 return 0;
1717
1718 mid = path->nodes[level];
1719
1720 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1722 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1724 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1725
1726 if (level < BTRFS_MAX_LEVEL - 1) {
1727 parent = path->nodes[level + 1];
1728 pslot = path->slots[level + 1];
1729 }
1730
1731 /*
1732 * deal with the case where there is only one pointer in the root
1733 * by promoting the node below to a root
1734 */
1735 if (!parent) {
1736 struct extent_buffer *child;
1737
1738 if (btrfs_header_nritems(mid) != 1)
1739 return 0;
1740
1741 /* promote the child to a root */
1742 child = read_node_slot(root, mid, 0);
1743 if (!child) {
1744 ret = -EROFS;
1745 btrfs_std_error(root->fs_info, ret);
1746 goto enospc;
1747 }
1748
1749 btrfs_tree_lock(child);
1750 btrfs_set_lock_blocking(child);
1751 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1752 if (ret) {
1753 btrfs_tree_unlock(child);
1754 free_extent_buffer(child);
1755 goto enospc;
1756 }
1757
1758 tree_mod_log_set_root_pointer(root, child);
1759 rcu_assign_pointer(root->node, child);
1760
1761 add_root_to_dirty_list(root);
1762 btrfs_tree_unlock(child);
1763
1764 path->locks[level] = 0;
1765 path->nodes[level] = NULL;
1766 clean_tree_block(trans, root, mid);
1767 btrfs_tree_unlock(mid);
1768 /* once for the path */
1769 free_extent_buffer(mid);
1770
1771 root_sub_used(root, mid->len);
1772 btrfs_free_tree_block(trans, root, mid, 0, 1);
1773 /* once for the root ptr */
1774 free_extent_buffer_stale(mid);
1775 return 0;
1776 }
1777 if (btrfs_header_nritems(mid) >
1778 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1779 return 0;
1780
1781 left = read_node_slot(root, parent, pslot - 1);
1782 if (left) {
1783 btrfs_tree_lock(left);
1784 btrfs_set_lock_blocking(left);
1785 wret = btrfs_cow_block(trans, root, left,
1786 parent, pslot - 1, &left);
1787 if (wret) {
1788 ret = wret;
1789 goto enospc;
1790 }
1791 }
1792 right = read_node_slot(root, parent, pslot + 1);
1793 if (right) {
1794 btrfs_tree_lock(right);
1795 btrfs_set_lock_blocking(right);
1796 wret = btrfs_cow_block(trans, root, right,
1797 parent, pslot + 1, &right);
1798 if (wret) {
1799 ret = wret;
1800 goto enospc;
1801 }
1802 }
1803
1804 /* first, try to make some room in the middle buffer */
1805 if (left) {
1806 orig_slot += btrfs_header_nritems(left);
1807 wret = push_node_left(trans, root, left, mid, 1);
1808 if (wret < 0)
1809 ret = wret;
1810 }
1811
1812 /*
1813 * then try to empty the right most buffer into the middle
1814 */
1815 if (right) {
1816 wret = push_node_left(trans, root, mid, right, 1);
1817 if (wret < 0 && wret != -ENOSPC)
1818 ret = wret;
1819 if (btrfs_header_nritems(right) == 0) {
1820 clean_tree_block(trans, root, right);
1821 btrfs_tree_unlock(right);
1822 del_ptr(trans, root, path, level + 1, pslot + 1);
1823 root_sub_used(root, right->len);
1824 btrfs_free_tree_block(trans, root, right, 0, 1);
1825 free_extent_buffer_stale(right);
1826 right = NULL;
1827 } else {
1828 struct btrfs_disk_key right_key;
1829 btrfs_node_key(right, &right_key, 0);
1830 tree_mod_log_set_node_key(root->fs_info, parent,
1831 pslot + 1, 0);
1832 btrfs_set_node_key(parent, &right_key, pslot + 1);
1833 btrfs_mark_buffer_dirty(parent);
1834 }
1835 }
1836 if (btrfs_header_nritems(mid) == 1) {
1837 /*
1838 * we're not allowed to leave a node with one item in the
1839 * tree during a delete. A deletion from lower in the tree
1840 * could try to delete the only pointer in this node.
1841 * So, pull some keys from the left.
1842 * There has to be a left pointer at this point because
1843 * otherwise we would have pulled some pointers from the
1844 * right
1845 */
1846 if (!left) {
1847 ret = -EROFS;
1848 btrfs_std_error(root->fs_info, ret);
1849 goto enospc;
1850 }
1851 wret = balance_node_right(trans, root, mid, left);
1852 if (wret < 0) {
1853 ret = wret;
1854 goto enospc;
1855 }
1856 if (wret == 1) {
1857 wret = push_node_left(trans, root, left, mid, 1);
1858 if (wret < 0)
1859 ret = wret;
1860 }
1861 BUG_ON(wret == 1);
1862 }
1863 if (btrfs_header_nritems(mid) == 0) {
1864 clean_tree_block(trans, root, mid);
1865 btrfs_tree_unlock(mid);
1866 del_ptr(trans, root, path, level + 1, pslot);
1867 root_sub_used(root, mid->len);
1868 btrfs_free_tree_block(trans, root, mid, 0, 1);
1869 free_extent_buffer_stale(mid);
1870 mid = NULL;
1871 } else {
1872 /* update the parent key to reflect our changes */
1873 struct btrfs_disk_key mid_key;
1874 btrfs_node_key(mid, &mid_key, 0);
1875 tree_mod_log_set_node_key(root->fs_info, parent,
1876 pslot, 0);
1877 btrfs_set_node_key(parent, &mid_key, pslot);
1878 btrfs_mark_buffer_dirty(parent);
1879 }
1880
1881 /* update the path */
1882 if (left) {
1883 if (btrfs_header_nritems(left) > orig_slot) {
1884 extent_buffer_get(left);
1885 /* left was locked after cow */
1886 path->nodes[level] = left;
1887 path->slots[level + 1] -= 1;
1888 path->slots[level] = orig_slot;
1889 if (mid) {
1890 btrfs_tree_unlock(mid);
1891 free_extent_buffer(mid);
1892 }
1893 } else {
1894 orig_slot -= btrfs_header_nritems(left);
1895 path->slots[level] = orig_slot;
1896 }
1897 }
1898 /* double check we haven't messed things up */
1899 if (orig_ptr !=
1900 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1901 BUG();
1902 enospc:
1903 if (right) {
1904 btrfs_tree_unlock(right);
1905 free_extent_buffer(right);
1906 }
1907 if (left) {
1908 if (path->nodes[level] != left)
1909 btrfs_tree_unlock(left);
1910 free_extent_buffer(left);
1911 }
1912 return ret;
1913 }
1914
1915 /* Node balancing for insertion. Here we only split or push nodes around
1916 * when they are completely full. This is also done top down, so we
1917 * have to be pessimistic.
1918 */
1919 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path, int level)
1922 {
1923 struct extent_buffer *right = NULL;
1924 struct extent_buffer *mid;
1925 struct extent_buffer *left = NULL;
1926 struct extent_buffer *parent = NULL;
1927 int ret = 0;
1928 int wret;
1929 int pslot;
1930 int orig_slot = path->slots[level];
1931
1932 if (level == 0)
1933 return 1;
1934
1935 mid = path->nodes[level];
1936 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1937
1938 if (level < BTRFS_MAX_LEVEL - 1) {
1939 parent = path->nodes[level + 1];
1940 pslot = path->slots[level + 1];
1941 }
1942
1943 if (!parent)
1944 return 1;
1945
1946 left = read_node_slot(root, parent, pslot - 1);
1947
1948 /* first, try to make some room in the middle buffer */
1949 if (left) {
1950 u32 left_nr;
1951
1952 btrfs_tree_lock(left);
1953 btrfs_set_lock_blocking(left);
1954
1955 left_nr = btrfs_header_nritems(left);
1956 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1957 wret = 1;
1958 } else {
1959 ret = btrfs_cow_block(trans, root, left, parent,
1960 pslot - 1, &left);
1961 if (ret)
1962 wret = 1;
1963 else {
1964 wret = push_node_left(trans, root,
1965 left, mid, 0);
1966 }
1967 }
1968 if (wret < 0)
1969 ret = wret;
1970 if (wret == 0) {
1971 struct btrfs_disk_key disk_key;
1972 orig_slot += left_nr;
1973 btrfs_node_key(mid, &disk_key, 0);
1974 tree_mod_log_set_node_key(root->fs_info, parent,
1975 pslot, 0);
1976 btrfs_set_node_key(parent, &disk_key, pslot);
1977 btrfs_mark_buffer_dirty(parent);
1978 if (btrfs_header_nritems(left) > orig_slot) {
1979 path->nodes[level] = left;
1980 path->slots[level + 1] -= 1;
1981 path->slots[level] = orig_slot;
1982 btrfs_tree_unlock(mid);
1983 free_extent_buffer(mid);
1984 } else {
1985 orig_slot -=
1986 btrfs_header_nritems(left);
1987 path->slots[level] = orig_slot;
1988 btrfs_tree_unlock(left);
1989 free_extent_buffer(left);
1990 }
1991 return 0;
1992 }
1993 btrfs_tree_unlock(left);
1994 free_extent_buffer(left);
1995 }
1996 right = read_node_slot(root, parent, pslot + 1);
1997
1998 /*
1999 * then try to empty the right most buffer into the middle
2000 */
2001 if (right) {
2002 u32 right_nr;
2003
2004 btrfs_tree_lock(right);
2005 btrfs_set_lock_blocking(right);
2006
2007 right_nr = btrfs_header_nritems(right);
2008 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2009 wret = 1;
2010 } else {
2011 ret = btrfs_cow_block(trans, root, right,
2012 parent, pslot + 1,
2013 &right);
2014 if (ret)
2015 wret = 1;
2016 else {
2017 wret = balance_node_right(trans, root,
2018 right, mid);
2019 }
2020 }
2021 if (wret < 0)
2022 ret = wret;
2023 if (wret == 0) {
2024 struct btrfs_disk_key disk_key;
2025
2026 btrfs_node_key(right, &disk_key, 0);
2027 tree_mod_log_set_node_key(root->fs_info, parent,
2028 pslot + 1, 0);
2029 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2030 btrfs_mark_buffer_dirty(parent);
2031
2032 if (btrfs_header_nritems(mid) <= orig_slot) {
2033 path->nodes[level] = right;
2034 path->slots[level + 1] += 1;
2035 path->slots[level] = orig_slot -
2036 btrfs_header_nritems(mid);
2037 btrfs_tree_unlock(mid);
2038 free_extent_buffer(mid);
2039 } else {
2040 btrfs_tree_unlock(right);
2041 free_extent_buffer(right);
2042 }
2043 return 0;
2044 }
2045 btrfs_tree_unlock(right);
2046 free_extent_buffer(right);
2047 }
2048 return 1;
2049 }
2050
2051 /*
2052 * readahead one full node of leaves, finding things that are close
2053 * to the block in 'slot', and triggering ra on them.
2054 */
2055 static void reada_for_search(struct btrfs_root *root,
2056 struct btrfs_path *path,
2057 int level, int slot, u64 objectid)
2058 {
2059 struct extent_buffer *node;
2060 struct btrfs_disk_key disk_key;
2061 u32 nritems;
2062 u64 search;
2063 u64 target;
2064 u64 nread = 0;
2065 u64 gen;
2066 int direction = path->reada;
2067 struct extent_buffer *eb;
2068 u32 nr;
2069 u32 blocksize;
2070 u32 nscan = 0;
2071
2072 if (level != 1)
2073 return;
2074
2075 if (!path->nodes[level])
2076 return;
2077
2078 node = path->nodes[level];
2079
2080 search = btrfs_node_blockptr(node, slot);
2081 blocksize = btrfs_level_size(root, level - 1);
2082 eb = btrfs_find_tree_block(root, search, blocksize);
2083 if (eb) {
2084 free_extent_buffer(eb);
2085 return;
2086 }
2087
2088 target = search;
2089
2090 nritems = btrfs_header_nritems(node);
2091 nr = slot;
2092
2093 while (1) {
2094 if (direction < 0) {
2095 if (nr == 0)
2096 break;
2097 nr--;
2098 } else if (direction > 0) {
2099 nr++;
2100 if (nr >= nritems)
2101 break;
2102 }
2103 if (path->reada < 0 && objectid) {
2104 btrfs_node_key(node, &disk_key, nr);
2105 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2106 break;
2107 }
2108 search = btrfs_node_blockptr(node, nr);
2109 if ((search <= target && target - search <= 65536) ||
2110 (search > target && search - target <= 65536)) {
2111 gen = btrfs_node_ptr_generation(node, nr);
2112 readahead_tree_block(root, search, blocksize, gen);
2113 nread += blocksize;
2114 }
2115 nscan++;
2116 if ((nread > 65536 || nscan > 32))
2117 break;
2118 }
2119 }
2120
2121 /*
2122 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2123 * cache
2124 */
2125 static noinline int reada_for_balance(struct btrfs_root *root,
2126 struct btrfs_path *path, int level)
2127 {
2128 int slot;
2129 int nritems;
2130 struct extent_buffer *parent;
2131 struct extent_buffer *eb;
2132 u64 gen;
2133 u64 block1 = 0;
2134 u64 block2 = 0;
2135 int ret = 0;
2136 int blocksize;
2137
2138 parent = path->nodes[level + 1];
2139 if (!parent)
2140 return 0;
2141
2142 nritems = btrfs_header_nritems(parent);
2143 slot = path->slots[level + 1];
2144 blocksize = btrfs_level_size(root, level);
2145
2146 if (slot > 0) {
2147 block1 = btrfs_node_blockptr(parent, slot - 1);
2148 gen = btrfs_node_ptr_generation(parent, slot - 1);
2149 eb = btrfs_find_tree_block(root, block1, blocksize);
2150 /*
2151 * if we get -eagain from btrfs_buffer_uptodate, we
2152 * don't want to return eagain here. That will loop
2153 * forever
2154 */
2155 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2156 block1 = 0;
2157 free_extent_buffer(eb);
2158 }
2159 if (slot + 1 < nritems) {
2160 block2 = btrfs_node_blockptr(parent, slot + 1);
2161 gen = btrfs_node_ptr_generation(parent, slot + 1);
2162 eb = btrfs_find_tree_block(root, block2, blocksize);
2163 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2164 block2 = 0;
2165 free_extent_buffer(eb);
2166 }
2167 if (block1 || block2) {
2168 ret = -EAGAIN;
2169
2170 /* release the whole path */
2171 btrfs_release_path(path);
2172
2173 /* read the blocks */
2174 if (block1)
2175 readahead_tree_block(root, block1, blocksize, 0);
2176 if (block2)
2177 readahead_tree_block(root, block2, blocksize, 0);
2178
2179 if (block1) {
2180 eb = read_tree_block(root, block1, blocksize, 0);
2181 free_extent_buffer(eb);
2182 }
2183 if (block2) {
2184 eb = read_tree_block(root, block2, blocksize, 0);
2185 free_extent_buffer(eb);
2186 }
2187 }
2188 return ret;
2189 }
2190
2191
2192 /*
2193 * when we walk down the tree, it is usually safe to unlock the higher layers
2194 * in the tree. The exceptions are when our path goes through slot 0, because
2195 * operations on the tree might require changing key pointers higher up in the
2196 * tree.
2197 *
2198 * callers might also have set path->keep_locks, which tells this code to keep
2199 * the lock if the path points to the last slot in the block. This is part of
2200 * walking through the tree, and selecting the next slot in the higher block.
2201 *
2202 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2203 * if lowest_unlock is 1, level 0 won't be unlocked
2204 */
2205 static noinline void unlock_up(struct btrfs_path *path, int level,
2206 int lowest_unlock, int min_write_lock_level,
2207 int *write_lock_level)
2208 {
2209 int i;
2210 int skip_level = level;
2211 int no_skips = 0;
2212 struct extent_buffer *t;
2213
2214 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2215 if (!path->nodes[i])
2216 break;
2217 if (!path->locks[i])
2218 break;
2219 if (!no_skips && path->slots[i] == 0) {
2220 skip_level = i + 1;
2221 continue;
2222 }
2223 if (!no_skips && path->keep_locks) {
2224 u32 nritems;
2225 t = path->nodes[i];
2226 nritems = btrfs_header_nritems(t);
2227 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2228 skip_level = i + 1;
2229 continue;
2230 }
2231 }
2232 if (skip_level < i && i >= lowest_unlock)
2233 no_skips = 1;
2234
2235 t = path->nodes[i];
2236 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2237 btrfs_tree_unlock_rw(t, path->locks[i]);
2238 path->locks[i] = 0;
2239 if (write_lock_level &&
2240 i > min_write_lock_level &&
2241 i <= *write_lock_level) {
2242 *write_lock_level = i - 1;
2243 }
2244 }
2245 }
2246 }
2247
2248 /*
2249 * This releases any locks held in the path starting at level and
2250 * going all the way up to the root.
2251 *
2252 * btrfs_search_slot will keep the lock held on higher nodes in a few
2253 * corner cases, such as COW of the block at slot zero in the node. This
2254 * ignores those rules, and it should only be called when there are no
2255 * more updates to be done higher up in the tree.
2256 */
2257 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2258 {
2259 int i;
2260
2261 if (path->keep_locks)
2262 return;
2263
2264 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2265 if (!path->nodes[i])
2266 continue;
2267 if (!path->locks[i])
2268 continue;
2269 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2270 path->locks[i] = 0;
2271 }
2272 }
2273
2274 /*
2275 * helper function for btrfs_search_slot. The goal is to find a block
2276 * in cache without setting the path to blocking. If we find the block
2277 * we return zero and the path is unchanged.
2278 *
2279 * If we can't find the block, we set the path blocking and do some
2280 * reada. -EAGAIN is returned and the search must be repeated.
2281 */
2282 static int
2283 read_block_for_search(struct btrfs_trans_handle *trans,
2284 struct btrfs_root *root, struct btrfs_path *p,
2285 struct extent_buffer **eb_ret, int level, int slot,
2286 struct btrfs_key *key, u64 time_seq)
2287 {
2288 u64 blocknr;
2289 u64 gen;
2290 u32 blocksize;
2291 struct extent_buffer *b = *eb_ret;
2292 struct extent_buffer *tmp;
2293 int ret;
2294
2295 blocknr = btrfs_node_blockptr(b, slot);
2296 gen = btrfs_node_ptr_generation(b, slot);
2297 blocksize = btrfs_level_size(root, level - 1);
2298
2299 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2300 if (tmp) {
2301 /* first we do an atomic uptodate check */
2302 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2303 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2304 /*
2305 * we found an up to date block without
2306 * sleeping, return
2307 * right away
2308 */
2309 *eb_ret = tmp;
2310 return 0;
2311 }
2312 /* the pages were up to date, but we failed
2313 * the generation number check. Do a full
2314 * read for the generation number that is correct.
2315 * We must do this without dropping locks so
2316 * we can trust our generation number
2317 */
2318 free_extent_buffer(tmp);
2319 btrfs_set_path_blocking(p);
2320
2321 /* now we're allowed to do a blocking uptodate check */
2322 tmp = read_tree_block(root, blocknr, blocksize, gen);
2323 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2324 *eb_ret = tmp;
2325 return 0;
2326 }
2327 free_extent_buffer(tmp);
2328 btrfs_release_path(p);
2329 return -EIO;
2330 }
2331 }
2332
2333 /*
2334 * reduce lock contention at high levels
2335 * of the btree by dropping locks before
2336 * we read. Don't release the lock on the current
2337 * level because we need to walk this node to figure
2338 * out which blocks to read.
2339 */
2340 btrfs_unlock_up_safe(p, level + 1);
2341 btrfs_set_path_blocking(p);
2342
2343 free_extent_buffer(tmp);
2344 if (p->reada)
2345 reada_for_search(root, p, level, slot, key->objectid);
2346
2347 btrfs_release_path(p);
2348
2349 ret = -EAGAIN;
2350 tmp = read_tree_block(root, blocknr, blocksize, 0);
2351 if (tmp) {
2352 /*
2353 * If the read above didn't mark this buffer up to date,
2354 * it will never end up being up to date. Set ret to EIO now
2355 * and give up so that our caller doesn't loop forever
2356 * on our EAGAINs.
2357 */
2358 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2359 ret = -EIO;
2360 free_extent_buffer(tmp);
2361 }
2362 return ret;
2363 }
2364
2365 /*
2366 * helper function for btrfs_search_slot. This does all of the checks
2367 * for node-level blocks and does any balancing required based on
2368 * the ins_len.
2369 *
2370 * If no extra work was required, zero is returned. If we had to
2371 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2372 * start over
2373 */
2374 static int
2375 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root, struct btrfs_path *p,
2377 struct extent_buffer *b, int level, int ins_len,
2378 int *write_lock_level)
2379 {
2380 int ret;
2381 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2382 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2383 int sret;
2384
2385 if (*write_lock_level < level + 1) {
2386 *write_lock_level = level + 1;
2387 btrfs_release_path(p);
2388 goto again;
2389 }
2390
2391 sret = reada_for_balance(root, p, level);
2392 if (sret)
2393 goto again;
2394
2395 btrfs_set_path_blocking(p);
2396 sret = split_node(trans, root, p, level);
2397 btrfs_clear_path_blocking(p, NULL, 0);
2398
2399 BUG_ON(sret > 0);
2400 if (sret) {
2401 ret = sret;
2402 goto done;
2403 }
2404 b = p->nodes[level];
2405 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2406 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2407 int sret;
2408
2409 if (*write_lock_level < level + 1) {
2410 *write_lock_level = level + 1;
2411 btrfs_release_path(p);
2412 goto again;
2413 }
2414
2415 sret = reada_for_balance(root, p, level);
2416 if (sret)
2417 goto again;
2418
2419 btrfs_set_path_blocking(p);
2420 sret = balance_level(trans, root, p, level);
2421 btrfs_clear_path_blocking(p, NULL, 0);
2422
2423 if (sret) {
2424 ret = sret;
2425 goto done;
2426 }
2427 b = p->nodes[level];
2428 if (!b) {
2429 btrfs_release_path(p);
2430 goto again;
2431 }
2432 BUG_ON(btrfs_header_nritems(b) == 1);
2433 }
2434 return 0;
2435
2436 again:
2437 ret = -EAGAIN;
2438 done:
2439 return ret;
2440 }
2441
2442 /*
2443 * look for key in the tree. path is filled in with nodes along the way
2444 * if key is found, we return zero and you can find the item in the leaf
2445 * level of the path (level 0)
2446 *
2447 * If the key isn't found, the path points to the slot where it should
2448 * be inserted, and 1 is returned. If there are other errors during the
2449 * search a negative error number is returned.
2450 *
2451 * if ins_len > 0, nodes and leaves will be split as we walk down the
2452 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2453 * possible)
2454 */
2455 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2456 *root, struct btrfs_key *key, struct btrfs_path *p, int
2457 ins_len, int cow)
2458 {
2459 struct extent_buffer *b;
2460 int slot;
2461 int ret;
2462 int err;
2463 int level;
2464 int lowest_unlock = 1;
2465 int root_lock;
2466 /* everything at write_lock_level or lower must be write locked */
2467 int write_lock_level = 0;
2468 u8 lowest_level = 0;
2469 int min_write_lock_level;
2470
2471 lowest_level = p->lowest_level;
2472 WARN_ON(lowest_level && ins_len > 0);
2473 WARN_ON(p->nodes[0] != NULL);
2474
2475 if (ins_len < 0) {
2476 lowest_unlock = 2;
2477
2478 /* when we are removing items, we might have to go up to level
2479 * two as we update tree pointers Make sure we keep write
2480 * for those levels as well
2481 */
2482 write_lock_level = 2;
2483 } else if (ins_len > 0) {
2484 /*
2485 * for inserting items, make sure we have a write lock on
2486 * level 1 so we can update keys
2487 */
2488 write_lock_level = 1;
2489 }
2490
2491 if (!cow)
2492 write_lock_level = -1;
2493
2494 if (cow && (p->keep_locks || p->lowest_level))
2495 write_lock_level = BTRFS_MAX_LEVEL;
2496
2497 min_write_lock_level = write_lock_level;
2498
2499 again:
2500 /*
2501 * we try very hard to do read locks on the root
2502 */
2503 root_lock = BTRFS_READ_LOCK;
2504 level = 0;
2505 if (p->search_commit_root) {
2506 /*
2507 * the commit roots are read only
2508 * so we always do read locks
2509 */
2510 b = root->commit_root;
2511 extent_buffer_get(b);
2512 level = btrfs_header_level(b);
2513 if (!p->skip_locking)
2514 btrfs_tree_read_lock(b);
2515 } else {
2516 if (p->skip_locking) {
2517 b = btrfs_root_node(root);
2518 level = btrfs_header_level(b);
2519 } else {
2520 /* we don't know the level of the root node
2521 * until we actually have it read locked
2522 */
2523 b = btrfs_read_lock_root_node(root);
2524 level = btrfs_header_level(b);
2525 if (level <= write_lock_level) {
2526 /* whoops, must trade for write lock */
2527 btrfs_tree_read_unlock(b);
2528 free_extent_buffer(b);
2529 b = btrfs_lock_root_node(root);
2530 root_lock = BTRFS_WRITE_LOCK;
2531
2532 /* the level might have changed, check again */
2533 level = btrfs_header_level(b);
2534 }
2535 }
2536 }
2537 p->nodes[level] = b;
2538 if (!p->skip_locking)
2539 p->locks[level] = root_lock;
2540
2541 while (b) {
2542 level = btrfs_header_level(b);
2543
2544 /*
2545 * setup the path here so we can release it under lock
2546 * contention with the cow code
2547 */
2548 if (cow) {
2549 /*
2550 * if we don't really need to cow this block
2551 * then we don't want to set the path blocking,
2552 * so we test it here
2553 */
2554 if (!should_cow_block(trans, root, b))
2555 goto cow_done;
2556
2557 btrfs_set_path_blocking(p);
2558
2559 /*
2560 * must have write locks on this node and the
2561 * parent
2562 */
2563 if (level > write_lock_level ||
2564 (level + 1 > write_lock_level &&
2565 level + 1 < BTRFS_MAX_LEVEL &&
2566 p->nodes[level + 1])) {
2567 write_lock_level = level + 1;
2568 btrfs_release_path(p);
2569 goto again;
2570 }
2571
2572 err = btrfs_cow_block(trans, root, b,
2573 p->nodes[level + 1],
2574 p->slots[level + 1], &b);
2575 if (err) {
2576 ret = err;
2577 goto done;
2578 }
2579 }
2580 cow_done:
2581 BUG_ON(!cow && ins_len);
2582
2583 p->nodes[level] = b;
2584 btrfs_clear_path_blocking(p, NULL, 0);
2585
2586 /*
2587 * we have a lock on b and as long as we aren't changing
2588 * the tree, there is no way to for the items in b to change.
2589 * It is safe to drop the lock on our parent before we
2590 * go through the expensive btree search on b.
2591 *
2592 * If cow is true, then we might be changing slot zero,
2593 * which may require changing the parent. So, we can't
2594 * drop the lock until after we know which slot we're
2595 * operating on.
2596 */
2597 if (!cow)
2598 btrfs_unlock_up_safe(p, level + 1);
2599
2600 ret = bin_search(b, key, level, &slot);
2601
2602 if (level != 0) {
2603 int dec = 0;
2604 if (ret && slot > 0) {
2605 dec = 1;
2606 slot -= 1;
2607 }
2608 p->slots[level] = slot;
2609 err = setup_nodes_for_search(trans, root, p, b, level,
2610 ins_len, &write_lock_level);
2611 if (err == -EAGAIN)
2612 goto again;
2613 if (err) {
2614 ret = err;
2615 goto done;
2616 }
2617 b = p->nodes[level];
2618 slot = p->slots[level];
2619
2620 /*
2621 * slot 0 is special, if we change the key
2622 * we have to update the parent pointer
2623 * which means we must have a write lock
2624 * on the parent
2625 */
2626 if (slot == 0 && cow &&
2627 write_lock_level < level + 1) {
2628 write_lock_level = level + 1;
2629 btrfs_release_path(p);
2630 goto again;
2631 }
2632
2633 unlock_up(p, level, lowest_unlock,
2634 min_write_lock_level, &write_lock_level);
2635
2636 if (level == lowest_level) {
2637 if (dec)
2638 p->slots[level]++;
2639 goto done;
2640 }
2641
2642 err = read_block_for_search(trans, root, p,
2643 &b, level, slot, key, 0);
2644 if (err == -EAGAIN)
2645 goto again;
2646 if (err) {
2647 ret = err;
2648 goto done;
2649 }
2650
2651 if (!p->skip_locking) {
2652 level = btrfs_header_level(b);
2653 if (level <= write_lock_level) {
2654 err = btrfs_try_tree_write_lock(b);
2655 if (!err) {
2656 btrfs_set_path_blocking(p);
2657 btrfs_tree_lock(b);
2658 btrfs_clear_path_blocking(p, b,
2659 BTRFS_WRITE_LOCK);
2660 }
2661 p->locks[level] = BTRFS_WRITE_LOCK;
2662 } else {
2663 err = btrfs_try_tree_read_lock(b);
2664 if (!err) {
2665 btrfs_set_path_blocking(p);
2666 btrfs_tree_read_lock(b);
2667 btrfs_clear_path_blocking(p, b,
2668 BTRFS_READ_LOCK);
2669 }
2670 p->locks[level] = BTRFS_READ_LOCK;
2671 }
2672 p->nodes[level] = b;
2673 }
2674 } else {
2675 p->slots[level] = slot;
2676 if (ins_len > 0 &&
2677 btrfs_leaf_free_space(root, b) < ins_len) {
2678 if (write_lock_level < 1) {
2679 write_lock_level = 1;
2680 btrfs_release_path(p);
2681 goto again;
2682 }
2683
2684 btrfs_set_path_blocking(p);
2685 err = split_leaf(trans, root, key,
2686 p, ins_len, ret == 0);
2687 btrfs_clear_path_blocking(p, NULL, 0);
2688
2689 BUG_ON(err > 0);
2690 if (err) {
2691 ret = err;
2692 goto done;
2693 }
2694 }
2695 if (!p->search_for_split)
2696 unlock_up(p, level, lowest_unlock,
2697 min_write_lock_level, &write_lock_level);
2698 goto done;
2699 }
2700 }
2701 ret = 1;
2702 done:
2703 /*
2704 * we don't really know what they plan on doing with the path
2705 * from here on, so for now just mark it as blocking
2706 */
2707 if (!p->leave_spinning)
2708 btrfs_set_path_blocking(p);
2709 if (ret < 0)
2710 btrfs_release_path(p);
2711 return ret;
2712 }
2713
2714 /*
2715 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2716 * current state of the tree together with the operations recorded in the tree
2717 * modification log to search for the key in a previous version of this tree, as
2718 * denoted by the time_seq parameter.
2719 *
2720 * Naturally, there is no support for insert, delete or cow operations.
2721 *
2722 * The resulting path and return value will be set up as if we called
2723 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2724 */
2725 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2726 struct btrfs_path *p, u64 time_seq)
2727 {
2728 struct extent_buffer *b;
2729 int slot;
2730 int ret;
2731 int err;
2732 int level;
2733 int lowest_unlock = 1;
2734 u8 lowest_level = 0;
2735
2736 lowest_level = p->lowest_level;
2737 WARN_ON(p->nodes[0] != NULL);
2738
2739 if (p->search_commit_root) {
2740 BUG_ON(time_seq);
2741 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2742 }
2743
2744 again:
2745 b = get_old_root(root, time_seq);
2746 level = btrfs_header_level(b);
2747 p->locks[level] = BTRFS_READ_LOCK;
2748
2749 while (b) {
2750 level = btrfs_header_level(b);
2751 p->nodes[level] = b;
2752 btrfs_clear_path_blocking(p, NULL, 0);
2753
2754 /*
2755 * we have a lock on b and as long as we aren't changing
2756 * the tree, there is no way to for the items in b to change.
2757 * It is safe to drop the lock on our parent before we
2758 * go through the expensive btree search on b.
2759 */
2760 btrfs_unlock_up_safe(p, level + 1);
2761
2762 ret = bin_search(b, key, level, &slot);
2763
2764 if (level != 0) {
2765 int dec = 0;
2766 if (ret && slot > 0) {
2767 dec = 1;
2768 slot -= 1;
2769 }
2770 p->slots[level] = slot;
2771 unlock_up(p, level, lowest_unlock, 0, NULL);
2772
2773 if (level == lowest_level) {
2774 if (dec)
2775 p->slots[level]++;
2776 goto done;
2777 }
2778
2779 err = read_block_for_search(NULL, root, p, &b, level,
2780 slot, key, time_seq);
2781 if (err == -EAGAIN)
2782 goto again;
2783 if (err) {
2784 ret = err;
2785 goto done;
2786 }
2787
2788 level = btrfs_header_level(b);
2789 err = btrfs_try_tree_read_lock(b);
2790 if (!err) {
2791 btrfs_set_path_blocking(p);
2792 btrfs_tree_read_lock(b);
2793 btrfs_clear_path_blocking(p, b,
2794 BTRFS_READ_LOCK);
2795 }
2796 p->locks[level] = BTRFS_READ_LOCK;
2797 p->nodes[level] = b;
2798 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2799 if (b != p->nodes[level]) {
2800 btrfs_tree_unlock_rw(p->nodes[level],
2801 p->locks[level]);
2802 p->locks[level] = 0;
2803 p->nodes[level] = b;
2804 }
2805 } else {
2806 p->slots[level] = slot;
2807 unlock_up(p, level, lowest_unlock, 0, NULL);
2808 goto done;
2809 }
2810 }
2811 ret = 1;
2812 done:
2813 if (!p->leave_spinning)
2814 btrfs_set_path_blocking(p);
2815 if (ret < 0)
2816 btrfs_release_path(p);
2817
2818 return ret;
2819 }
2820
2821 /*
2822 * helper to use instead of search slot if no exact match is needed but
2823 * instead the next or previous item should be returned.
2824 * When find_higher is true, the next higher item is returned, the next lower
2825 * otherwise.
2826 * When return_any and find_higher are both true, and no higher item is found,
2827 * return the next lower instead.
2828 * When return_any is true and find_higher is false, and no lower item is found,
2829 * return the next higher instead.
2830 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2831 * < 0 on error
2832 */
2833 int btrfs_search_slot_for_read(struct btrfs_root *root,
2834 struct btrfs_key *key, struct btrfs_path *p,
2835 int find_higher, int return_any)
2836 {
2837 int ret;
2838 struct extent_buffer *leaf;
2839
2840 again:
2841 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2842 if (ret <= 0)
2843 return ret;
2844 /*
2845 * a return value of 1 means the path is at the position where the
2846 * item should be inserted. Normally this is the next bigger item,
2847 * but in case the previous item is the last in a leaf, path points
2848 * to the first free slot in the previous leaf, i.e. at an invalid
2849 * item.
2850 */
2851 leaf = p->nodes[0];
2852
2853 if (find_higher) {
2854 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2855 ret = btrfs_next_leaf(root, p);
2856 if (ret <= 0)
2857 return ret;
2858 if (!return_any)
2859 return 1;
2860 /*
2861 * no higher item found, return the next
2862 * lower instead
2863 */
2864 return_any = 0;
2865 find_higher = 0;
2866 btrfs_release_path(p);
2867 goto again;
2868 }
2869 } else {
2870 if (p->slots[0] == 0) {
2871 ret = btrfs_prev_leaf(root, p);
2872 if (ret < 0)
2873 return ret;
2874 if (!ret) {
2875 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2876 return 0;
2877 }
2878 if (!return_any)
2879 return 1;
2880 /*
2881 * no lower item found, return the next
2882 * higher instead
2883 */
2884 return_any = 0;
2885 find_higher = 1;
2886 btrfs_release_path(p);
2887 goto again;
2888 } else {
2889 --p->slots[0];
2890 }
2891 }
2892 return 0;
2893 }
2894
2895 /*
2896 * adjust the pointers going up the tree, starting at level
2897 * making sure the right key of each node is points to 'key'.
2898 * This is used after shifting pointers to the left, so it stops
2899 * fixing up pointers when a given leaf/node is not in slot 0 of the
2900 * higher levels
2901 *
2902 */
2903 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2904 struct btrfs_root *root, struct btrfs_path *path,
2905 struct btrfs_disk_key *key, int level)
2906 {
2907 int i;
2908 struct extent_buffer *t;
2909
2910 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2911 int tslot = path->slots[i];
2912 if (!path->nodes[i])
2913 break;
2914 t = path->nodes[i];
2915 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2916 btrfs_set_node_key(t, key, tslot);
2917 btrfs_mark_buffer_dirty(path->nodes[i]);
2918 if (tslot != 0)
2919 break;
2920 }
2921 }
2922
2923 /*
2924 * update item key.
2925 *
2926 * This function isn't completely safe. It's the caller's responsibility
2927 * that the new key won't break the order
2928 */
2929 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2930 struct btrfs_root *root, struct btrfs_path *path,
2931 struct btrfs_key *new_key)
2932 {
2933 struct btrfs_disk_key disk_key;
2934 struct extent_buffer *eb;
2935 int slot;
2936
2937 eb = path->nodes[0];
2938 slot = path->slots[0];
2939 if (slot > 0) {
2940 btrfs_item_key(eb, &disk_key, slot - 1);
2941 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2942 }
2943 if (slot < btrfs_header_nritems(eb) - 1) {
2944 btrfs_item_key(eb, &disk_key, slot + 1);
2945 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2946 }
2947
2948 btrfs_cpu_key_to_disk(&disk_key, new_key);
2949 btrfs_set_item_key(eb, &disk_key, slot);
2950 btrfs_mark_buffer_dirty(eb);
2951 if (slot == 0)
2952 fixup_low_keys(trans, root, path, &disk_key, 1);
2953 }
2954
2955 /*
2956 * try to push data from one node into the next node left in the
2957 * tree.
2958 *
2959 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2960 * error, and > 0 if there was no room in the left hand block.
2961 */
2962 static int push_node_left(struct btrfs_trans_handle *trans,
2963 struct btrfs_root *root, struct extent_buffer *dst,
2964 struct extent_buffer *src, int empty)
2965 {
2966 int push_items = 0;
2967 int src_nritems;
2968 int dst_nritems;
2969 int ret = 0;
2970
2971 src_nritems = btrfs_header_nritems(src);
2972 dst_nritems = btrfs_header_nritems(dst);
2973 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2974 WARN_ON(btrfs_header_generation(src) != trans->transid);
2975 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2976
2977 if (!empty && src_nritems <= 8)
2978 return 1;
2979
2980 if (push_items <= 0)
2981 return 1;
2982
2983 if (empty) {
2984 push_items = min(src_nritems, push_items);
2985 if (push_items < src_nritems) {
2986 /* leave at least 8 pointers in the node if
2987 * we aren't going to empty it
2988 */
2989 if (src_nritems - push_items < 8) {
2990 if (push_items <= 8)
2991 return 1;
2992 push_items -= 8;
2993 }
2994 }
2995 } else
2996 push_items = min(src_nritems - 8, push_items);
2997
2998 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2999 push_items, 1);
3000 copy_extent_buffer(dst, src,
3001 btrfs_node_key_ptr_offset(dst_nritems),
3002 btrfs_node_key_ptr_offset(0),
3003 push_items * sizeof(struct btrfs_key_ptr));
3004
3005 if (push_items < src_nritems) {
3006 /*
3007 * don't call tree_mod_log_eb_move here, key removal was already
3008 * fully logged by tree_mod_log_eb_copy above.
3009 */
3010 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3011 btrfs_node_key_ptr_offset(push_items),
3012 (src_nritems - push_items) *
3013 sizeof(struct btrfs_key_ptr));
3014 }
3015 btrfs_set_header_nritems(src, src_nritems - push_items);
3016 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3017 btrfs_mark_buffer_dirty(src);
3018 btrfs_mark_buffer_dirty(dst);
3019
3020 return ret;
3021 }
3022
3023 /*
3024 * try to push data from one node into the next node right in the
3025 * tree.
3026 *
3027 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3028 * error, and > 0 if there was no room in the right hand block.
3029 *
3030 * this will only push up to 1/2 the contents of the left node over
3031 */
3032 static int balance_node_right(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root,
3034 struct extent_buffer *dst,
3035 struct extent_buffer *src)
3036 {
3037 int push_items = 0;
3038 int max_push;
3039 int src_nritems;
3040 int dst_nritems;
3041 int ret = 0;
3042
3043 WARN_ON(btrfs_header_generation(src) != trans->transid);
3044 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3045
3046 src_nritems = btrfs_header_nritems(src);
3047 dst_nritems = btrfs_header_nritems(dst);
3048 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3049 if (push_items <= 0)
3050 return 1;
3051
3052 if (src_nritems < 4)
3053 return 1;
3054
3055 max_push = src_nritems / 2 + 1;
3056 /* don't try to empty the node */
3057 if (max_push >= src_nritems)
3058 return 1;
3059
3060 if (max_push < push_items)
3061 push_items = max_push;
3062
3063 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3064 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3065 btrfs_node_key_ptr_offset(0),
3066 (dst_nritems) *
3067 sizeof(struct btrfs_key_ptr));
3068
3069 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3070 src_nritems - push_items, push_items, 1);
3071 copy_extent_buffer(dst, src,
3072 btrfs_node_key_ptr_offset(0),
3073 btrfs_node_key_ptr_offset(src_nritems - push_items),
3074 push_items * sizeof(struct btrfs_key_ptr));
3075
3076 btrfs_set_header_nritems(src, src_nritems - push_items);
3077 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3078
3079 btrfs_mark_buffer_dirty(src);
3080 btrfs_mark_buffer_dirty(dst);
3081
3082 return ret;
3083 }
3084
3085 /*
3086 * helper function to insert a new root level in the tree.
3087 * A new node is allocated, and a single item is inserted to
3088 * point to the existing root
3089 *
3090 * returns zero on success or < 0 on failure.
3091 */
3092 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3093 struct btrfs_root *root,
3094 struct btrfs_path *path, int level)
3095 {
3096 u64 lower_gen;
3097 struct extent_buffer *lower;
3098 struct extent_buffer *c;
3099 struct extent_buffer *old;
3100 struct btrfs_disk_key lower_key;
3101
3102 BUG_ON(path->nodes[level]);
3103 BUG_ON(path->nodes[level-1] != root->node);
3104
3105 lower = path->nodes[level-1];
3106 if (level == 1)
3107 btrfs_item_key(lower, &lower_key, 0);
3108 else
3109 btrfs_node_key(lower, &lower_key, 0);
3110
3111 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3112 root->root_key.objectid, &lower_key,
3113 level, root->node->start, 0);
3114 if (IS_ERR(c))
3115 return PTR_ERR(c);
3116
3117 root_add_used(root, root->nodesize);
3118
3119 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3120 btrfs_set_header_nritems(c, 1);
3121 btrfs_set_header_level(c, level);
3122 btrfs_set_header_bytenr(c, c->start);
3123 btrfs_set_header_generation(c, trans->transid);
3124 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3125 btrfs_set_header_owner(c, root->root_key.objectid);
3126
3127 write_extent_buffer(c, root->fs_info->fsid,
3128 (unsigned long)btrfs_header_fsid(c),
3129 BTRFS_FSID_SIZE);
3130
3131 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3132 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3133 BTRFS_UUID_SIZE);
3134
3135 btrfs_set_node_key(c, &lower_key, 0);
3136 btrfs_set_node_blockptr(c, 0, lower->start);
3137 lower_gen = btrfs_header_generation(lower);
3138 WARN_ON(lower_gen != trans->transid);
3139
3140 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3141
3142 btrfs_mark_buffer_dirty(c);
3143
3144 old = root->node;
3145 tree_mod_log_set_root_pointer(root, c);
3146 rcu_assign_pointer(root->node, c);
3147
3148 /* the super has an extra ref to root->node */
3149 free_extent_buffer(old);
3150
3151 add_root_to_dirty_list(root);
3152 extent_buffer_get(c);
3153 path->nodes[level] = c;
3154 path->locks[level] = BTRFS_WRITE_LOCK;
3155 path->slots[level] = 0;
3156 return 0;
3157 }
3158
3159 /*
3160 * worker function to insert a single pointer in a node.
3161 * the node should have enough room for the pointer already
3162 *
3163 * slot and level indicate where you want the key to go, and
3164 * blocknr is the block the key points to.
3165 */
3166 static void insert_ptr(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *root, struct btrfs_path *path,
3168 struct btrfs_disk_key *key, u64 bytenr,
3169 int slot, int level)
3170 {
3171 struct extent_buffer *lower;
3172 int nritems;
3173 int ret;
3174
3175 BUG_ON(!path->nodes[level]);
3176 btrfs_assert_tree_locked(path->nodes[level]);
3177 lower = path->nodes[level];
3178 nritems = btrfs_header_nritems(lower);
3179 BUG_ON(slot > nritems);
3180 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3181 if (slot != nritems) {
3182 if (level)
3183 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3184 slot, nritems - slot);
3185 memmove_extent_buffer(lower,
3186 btrfs_node_key_ptr_offset(slot + 1),
3187 btrfs_node_key_ptr_offset(slot),
3188 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3189 }
3190 if (level) {
3191 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3192 MOD_LOG_KEY_ADD);
3193 BUG_ON(ret < 0);
3194 }
3195 btrfs_set_node_key(lower, key, slot);
3196 btrfs_set_node_blockptr(lower, slot, bytenr);
3197 WARN_ON(trans->transid == 0);
3198 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3199 btrfs_set_header_nritems(lower, nritems + 1);
3200 btrfs_mark_buffer_dirty(lower);
3201 }
3202
3203 /*
3204 * split the node at the specified level in path in two.
3205 * The path is corrected to point to the appropriate node after the split
3206 *
3207 * Before splitting this tries to make some room in the node by pushing
3208 * left and right, if either one works, it returns right away.
3209 *
3210 * returns 0 on success and < 0 on failure
3211 */
3212 static noinline int split_node(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *root,
3214 struct btrfs_path *path, int level)
3215 {
3216 struct extent_buffer *c;
3217 struct extent_buffer *split;
3218 struct btrfs_disk_key disk_key;
3219 int mid;
3220 int ret;
3221 u32 c_nritems;
3222 int tree_mod_log_removal = 1;
3223
3224 c = path->nodes[level];
3225 WARN_ON(btrfs_header_generation(c) != trans->transid);
3226 if (c == root->node) {
3227 /* trying to split the root, lets make a new one */
3228 ret = insert_new_root(trans, root, path, level + 1);
3229 /*
3230 * removal of root nodes has been logged by
3231 * tree_mod_log_set_root_pointer due to locking
3232 */
3233 tree_mod_log_removal = 0;
3234 if (ret)
3235 return ret;
3236 } else {
3237 ret = push_nodes_for_insert(trans, root, path, level);
3238 c = path->nodes[level];
3239 if (!ret && btrfs_header_nritems(c) <
3240 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3241 return 0;
3242 if (ret < 0)
3243 return ret;
3244 }
3245
3246 c_nritems = btrfs_header_nritems(c);
3247 mid = (c_nritems + 1) / 2;
3248 btrfs_node_key(c, &disk_key, mid);
3249
3250 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3251 root->root_key.objectid,
3252 &disk_key, level, c->start, 0);
3253 if (IS_ERR(split))
3254 return PTR_ERR(split);
3255
3256 root_add_used(root, root->nodesize);
3257
3258 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3259 btrfs_set_header_level(split, btrfs_header_level(c));
3260 btrfs_set_header_bytenr(split, split->start);
3261 btrfs_set_header_generation(split, trans->transid);
3262 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3263 btrfs_set_header_owner(split, root->root_key.objectid);
3264 write_extent_buffer(split, root->fs_info->fsid,
3265 (unsigned long)btrfs_header_fsid(split),
3266 BTRFS_FSID_SIZE);
3267 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3268 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3269 BTRFS_UUID_SIZE);
3270
3271 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid,
3272 tree_mod_log_removal);
3273 copy_extent_buffer(split, c,
3274 btrfs_node_key_ptr_offset(0),
3275 btrfs_node_key_ptr_offset(mid),
3276 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3277 btrfs_set_header_nritems(split, c_nritems - mid);
3278 btrfs_set_header_nritems(c, mid);
3279 ret = 0;
3280
3281 btrfs_mark_buffer_dirty(c);
3282 btrfs_mark_buffer_dirty(split);
3283
3284 insert_ptr(trans, root, path, &disk_key, split->start,
3285 path->slots[level + 1] + 1, level + 1);
3286
3287 if (path->slots[level] >= mid) {
3288 path->slots[level] -= mid;
3289 btrfs_tree_unlock(c);
3290 free_extent_buffer(c);
3291 path->nodes[level] = split;
3292 path->slots[level + 1] += 1;
3293 } else {
3294 btrfs_tree_unlock(split);
3295 free_extent_buffer(split);
3296 }
3297 return ret;
3298 }
3299
3300 /*
3301 * how many bytes are required to store the items in a leaf. start
3302 * and nr indicate which items in the leaf to check. This totals up the
3303 * space used both by the item structs and the item data
3304 */
3305 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3306 {
3307 struct btrfs_item *start_item;
3308 struct btrfs_item *end_item;
3309 struct btrfs_map_token token;
3310 int data_len;
3311 int nritems = btrfs_header_nritems(l);
3312 int end = min(nritems, start + nr) - 1;
3313
3314 if (!nr)
3315 return 0;
3316 btrfs_init_map_token(&token);
3317 start_item = btrfs_item_nr(l, start);
3318 end_item = btrfs_item_nr(l, end);
3319 data_len = btrfs_token_item_offset(l, start_item, &token) +
3320 btrfs_token_item_size(l, start_item, &token);
3321 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3322 data_len += sizeof(struct btrfs_item) * nr;
3323 WARN_ON(data_len < 0);
3324 return data_len;
3325 }
3326
3327 /*
3328 * The space between the end of the leaf items and
3329 * the start of the leaf data. IOW, how much room
3330 * the leaf has left for both items and data
3331 */
3332 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3333 struct extent_buffer *leaf)
3334 {
3335 int nritems = btrfs_header_nritems(leaf);
3336 int ret;
3337 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3338 if (ret < 0) {
3339 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3340 "used %d nritems %d\n",
3341 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3342 leaf_space_used(leaf, 0, nritems), nritems);
3343 }
3344 return ret;
3345 }
3346
3347 /*
3348 * min slot controls the lowest index we're willing to push to the
3349 * right. We'll push up to and including min_slot, but no lower
3350 */
3351 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3352 struct btrfs_root *root,
3353 struct btrfs_path *path,
3354 int data_size, int empty,
3355 struct extent_buffer *right,
3356 int free_space, u32 left_nritems,
3357 u32 min_slot)
3358 {
3359 struct extent_buffer *left = path->nodes[0];
3360 struct extent_buffer *upper = path->nodes[1];
3361 struct btrfs_map_token token;
3362 struct btrfs_disk_key disk_key;
3363 int slot;
3364 u32 i;
3365 int push_space = 0;
3366 int push_items = 0;
3367 struct btrfs_item *item;
3368 u32 nr;
3369 u32 right_nritems;
3370 u32 data_end;
3371 u32 this_item_size;
3372
3373 btrfs_init_map_token(&token);
3374
3375 if (empty)
3376 nr = 0;
3377 else
3378 nr = max_t(u32, 1, min_slot);
3379
3380 if (path->slots[0] >= left_nritems)
3381 push_space += data_size;
3382
3383 slot = path->slots[1];
3384 i = left_nritems - 1;
3385 while (i >= nr) {
3386 item = btrfs_item_nr(left, i);
3387
3388 if (!empty && push_items > 0) {
3389 if (path->slots[0] > i)
3390 break;
3391 if (path->slots[0] == i) {
3392 int space = btrfs_leaf_free_space(root, left);
3393 if (space + push_space * 2 > free_space)
3394 break;
3395 }
3396 }
3397
3398 if (path->slots[0] == i)
3399 push_space += data_size;
3400
3401 this_item_size = btrfs_item_size(left, item);
3402 if (this_item_size + sizeof(*item) + push_space > free_space)
3403 break;
3404
3405 push_items++;
3406 push_space += this_item_size + sizeof(*item);
3407 if (i == 0)
3408 break;
3409 i--;
3410 }
3411
3412 if (push_items == 0)
3413 goto out_unlock;
3414
3415 WARN_ON(!empty && push_items == left_nritems);
3416
3417 /* push left to right */
3418 right_nritems = btrfs_header_nritems(right);
3419
3420 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3421 push_space -= leaf_data_end(root, left);
3422
3423 /* make room in the right data area */
3424 data_end = leaf_data_end(root, right);
3425 memmove_extent_buffer(right,
3426 btrfs_leaf_data(right) + data_end - push_space,
3427 btrfs_leaf_data(right) + data_end,
3428 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3429
3430 /* copy from the left data area */
3431 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3432 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3433 btrfs_leaf_data(left) + leaf_data_end(root, left),
3434 push_space);
3435
3436 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3437 btrfs_item_nr_offset(0),
3438 right_nritems * sizeof(struct btrfs_item));
3439
3440 /* copy the items from left to right */
3441 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3442 btrfs_item_nr_offset(left_nritems - push_items),
3443 push_items * sizeof(struct btrfs_item));
3444
3445 /* update the item pointers */
3446 right_nritems += push_items;
3447 btrfs_set_header_nritems(right, right_nritems);
3448 push_space = BTRFS_LEAF_DATA_SIZE(root);
3449 for (i = 0; i < right_nritems; i++) {
3450 item = btrfs_item_nr(right, i);
3451 push_space -= btrfs_token_item_size(right, item, &token);
3452 btrfs_set_token_item_offset(right, item, push_space, &token);
3453 }
3454
3455 left_nritems -= push_items;
3456 btrfs_set_header_nritems(left, left_nritems);
3457
3458 if (left_nritems)
3459 btrfs_mark_buffer_dirty(left);
3460 else
3461 clean_tree_block(trans, root, left);
3462
3463 btrfs_mark_buffer_dirty(right);
3464
3465 btrfs_item_key(right, &disk_key, 0);
3466 btrfs_set_node_key(upper, &disk_key, slot + 1);
3467 btrfs_mark_buffer_dirty(upper);
3468
3469 /* then fixup the leaf pointer in the path */
3470 if (path->slots[0] >= left_nritems) {
3471 path->slots[0] -= left_nritems;
3472 if (btrfs_header_nritems(path->nodes[0]) == 0)
3473 clean_tree_block(trans, root, path->nodes[0]);
3474 btrfs_tree_unlock(path->nodes[0]);
3475 free_extent_buffer(path->nodes[0]);
3476 path->nodes[0] = right;
3477 path->slots[1] += 1;
3478 } else {
3479 btrfs_tree_unlock(right);
3480 free_extent_buffer(right);
3481 }
3482 return 0;
3483
3484 out_unlock:
3485 btrfs_tree_unlock(right);
3486 free_extent_buffer(right);
3487 return 1;
3488 }
3489
3490 /*
3491 * push some data in the path leaf to the right, trying to free up at
3492 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3493 *
3494 * returns 1 if the push failed because the other node didn't have enough
3495 * room, 0 if everything worked out and < 0 if there were major errors.
3496 *
3497 * this will push starting from min_slot to the end of the leaf. It won't
3498 * push any slot lower than min_slot
3499 */
3500 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3501 *root, struct btrfs_path *path,
3502 int min_data_size, int data_size,
3503 int empty, u32 min_slot)
3504 {
3505 struct extent_buffer *left = path->nodes[0];
3506 struct extent_buffer *right;
3507 struct extent_buffer *upper;
3508 int slot;
3509 int free_space;
3510 u32 left_nritems;
3511 int ret;
3512
3513 if (!path->nodes[1])
3514 return 1;
3515
3516 slot = path->slots[1];
3517 upper = path->nodes[1];
3518 if (slot >= btrfs_header_nritems(upper) - 1)
3519 return 1;
3520
3521 btrfs_assert_tree_locked(path->nodes[1]);
3522
3523 right = read_node_slot(root, upper, slot + 1);
3524 if (right == NULL)
3525 return 1;
3526
3527 btrfs_tree_lock(right);
3528 btrfs_set_lock_blocking(right);
3529
3530 free_space = btrfs_leaf_free_space(root, right);
3531 if (free_space < data_size)
3532 goto out_unlock;
3533
3534 /* cow and double check */
3535 ret = btrfs_cow_block(trans, root, right, upper,
3536 slot + 1, &right);
3537 if (ret)
3538 goto out_unlock;
3539
3540 free_space = btrfs_leaf_free_space(root, right);
3541 if (free_space < data_size)
3542 goto out_unlock;
3543
3544 left_nritems = btrfs_header_nritems(left);
3545 if (left_nritems == 0)
3546 goto out_unlock;
3547
3548 return __push_leaf_right(trans, root, path, min_data_size, empty,
3549 right, free_space, left_nritems, min_slot);
3550 out_unlock:
3551 btrfs_tree_unlock(right);
3552 free_extent_buffer(right);
3553 return 1;
3554 }
3555
3556 /*
3557 * push some data in the path leaf to the left, trying to free up at
3558 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3559 *
3560 * max_slot can put a limit on how far into the leaf we'll push items. The
3561 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3562 * items
3563 */
3564 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3565 struct btrfs_root *root,
3566 struct btrfs_path *path, int data_size,
3567 int empty, struct extent_buffer *left,
3568 int free_space, u32 right_nritems,
3569 u32 max_slot)
3570 {
3571 struct btrfs_disk_key disk_key;
3572 struct extent_buffer *right = path->nodes[0];
3573 int i;
3574 int push_space = 0;
3575 int push_items = 0;
3576 struct btrfs_item *item;
3577 u32 old_left_nritems;
3578 u32 nr;
3579 int ret = 0;
3580 u32 this_item_size;
3581 u32 old_left_item_size;
3582 struct btrfs_map_token token;
3583
3584 btrfs_init_map_token(&token);
3585
3586 if (empty)
3587 nr = min(right_nritems, max_slot);
3588 else
3589 nr = min(right_nritems - 1, max_slot);
3590
3591 for (i = 0; i < nr; i++) {
3592 item = btrfs_item_nr(right, i);
3593
3594 if (!empty && push_items > 0) {
3595 if (path->slots[0] < i)
3596 break;
3597 if (path->slots[0] == i) {
3598 int space = btrfs_leaf_free_space(root, right);
3599 if (space + push_space * 2 > free_space)
3600 break;
3601 }
3602 }
3603
3604 if (path->slots[0] == i)
3605 push_space += data_size;
3606
3607 this_item_size = btrfs_item_size(right, item);
3608 if (this_item_size + sizeof(*item) + push_space > free_space)
3609 break;
3610
3611 push_items++;
3612 push_space += this_item_size + sizeof(*item);
3613 }
3614
3615 if (push_items == 0) {
3616 ret = 1;
3617 goto out;
3618 }
3619 if (!empty && push_items == btrfs_header_nritems(right))
3620 WARN_ON(1);
3621
3622 /* push data from right to left */
3623 copy_extent_buffer(left, right,
3624 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3625 btrfs_item_nr_offset(0),
3626 push_items * sizeof(struct btrfs_item));
3627
3628 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3629 btrfs_item_offset_nr(right, push_items - 1);
3630
3631 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3632 leaf_data_end(root, left) - push_space,
3633 btrfs_leaf_data(right) +
3634 btrfs_item_offset_nr(right, push_items - 1),
3635 push_space);
3636 old_left_nritems = btrfs_header_nritems(left);
3637 BUG_ON(old_left_nritems <= 0);
3638
3639 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3640 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3641 u32 ioff;
3642
3643 item = btrfs_item_nr(left, i);
3644
3645 ioff = btrfs_token_item_offset(left, item, &token);
3646 btrfs_set_token_item_offset(left, item,
3647 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3648 &token);
3649 }
3650 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3651
3652 /* fixup right node */
3653 if (push_items > right_nritems)
3654 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3655 right_nritems);
3656
3657 if (push_items < right_nritems) {
3658 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3659 leaf_data_end(root, right);
3660 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3661 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3662 btrfs_leaf_data(right) +
3663 leaf_data_end(root, right), push_space);
3664
3665 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3666 btrfs_item_nr_offset(push_items),
3667 (btrfs_header_nritems(right) - push_items) *
3668 sizeof(struct btrfs_item));
3669 }
3670 right_nritems -= push_items;
3671 btrfs_set_header_nritems(right, right_nritems);
3672 push_space = BTRFS_LEAF_DATA_SIZE(root);
3673 for (i = 0; i < right_nritems; i++) {
3674 item = btrfs_item_nr(right, i);
3675
3676 push_space = push_space - btrfs_token_item_size(right,
3677 item, &token);
3678 btrfs_set_token_item_offset(right, item, push_space, &token);
3679 }
3680
3681 btrfs_mark_buffer_dirty(left);
3682 if (right_nritems)
3683 btrfs_mark_buffer_dirty(right);
3684 else
3685 clean_tree_block(trans, root, right);
3686
3687 btrfs_item_key(right, &disk_key, 0);
3688 fixup_low_keys(trans, root, path, &disk_key, 1);
3689
3690 /* then fixup the leaf pointer in the path */
3691 if (path->slots[0] < push_items) {
3692 path->slots[0] += old_left_nritems;
3693 btrfs_tree_unlock(path->nodes[0]);
3694 free_extent_buffer(path->nodes[0]);
3695 path->nodes[0] = left;
3696 path->slots[1] -= 1;
3697 } else {
3698 btrfs_tree_unlock(left);
3699 free_extent_buffer(left);
3700 path->slots[0] -= push_items;
3701 }
3702 BUG_ON(path->slots[0] < 0);
3703 return ret;
3704 out:
3705 btrfs_tree_unlock(left);
3706 free_extent_buffer(left);
3707 return ret;
3708 }
3709
3710 /*
3711 * push some data in the path leaf to the left, trying to free up at
3712 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3713 *
3714 * max_slot can put a limit on how far into the leaf we'll push items. The
3715 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3716 * items
3717 */
3718 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3719 *root, struct btrfs_path *path, int min_data_size,
3720 int data_size, int empty, u32 max_slot)
3721 {
3722 struct extent_buffer *right = path->nodes[0];
3723 struct extent_buffer *left;
3724 int slot;
3725 int free_space;
3726 u32 right_nritems;
3727 int ret = 0;
3728
3729 slot = path->slots[1];
3730 if (slot == 0)
3731 return 1;
3732 if (!path->nodes[1])
3733 return 1;
3734
3735 right_nritems = btrfs_header_nritems(right);
3736 if (right_nritems == 0)
3737 return 1;
3738
3739 btrfs_assert_tree_locked(path->nodes[1]);
3740
3741 left = read_node_slot(root, path->nodes[1], slot - 1);
3742 if (left == NULL)
3743 return 1;
3744
3745 btrfs_tree_lock(left);
3746 btrfs_set_lock_blocking(left);
3747
3748 free_space = btrfs_leaf_free_space(root, left);
3749 if (free_space < data_size) {
3750 ret = 1;
3751 goto out;
3752 }
3753
3754 /* cow and double check */
3755 ret = btrfs_cow_block(trans, root, left,
3756 path->nodes[1], slot - 1, &left);
3757 if (ret) {
3758 /* we hit -ENOSPC, but it isn't fatal here */
3759 if (ret == -ENOSPC)
3760 ret = 1;
3761 goto out;
3762 }
3763
3764 free_space = btrfs_leaf_free_space(root, left);
3765 if (free_space < data_size) {
3766 ret = 1;
3767 goto out;
3768 }
3769
3770 return __push_leaf_left(trans, root, path, min_data_size,
3771 empty, left, free_space, right_nritems,
3772 max_slot);
3773 out:
3774 btrfs_tree_unlock(left);
3775 free_extent_buffer(left);
3776 return ret;
3777 }
3778
3779 /*
3780 * split the path's leaf in two, making sure there is at least data_size
3781 * available for the resulting leaf level of the path.
3782 */
3783 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3784 struct btrfs_root *root,
3785 struct btrfs_path *path,
3786 struct extent_buffer *l,
3787 struct extent_buffer *right,
3788 int slot, int mid, int nritems)
3789 {
3790 int data_copy_size;
3791 int rt_data_off;
3792 int i;
3793 struct btrfs_disk_key disk_key;
3794 struct btrfs_map_token token;
3795
3796 btrfs_init_map_token(&token);
3797
3798 nritems = nritems - mid;
3799 btrfs_set_header_nritems(right, nritems);
3800 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3801
3802 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3803 btrfs_item_nr_offset(mid),
3804 nritems * sizeof(struct btrfs_item));
3805
3806 copy_extent_buffer(right, l,
3807 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3808 data_copy_size, btrfs_leaf_data(l) +
3809 leaf_data_end(root, l), data_copy_size);
3810
3811 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3812 btrfs_item_end_nr(l, mid);
3813
3814 for (i = 0; i < nritems; i++) {
3815 struct btrfs_item *item = btrfs_item_nr(right, i);
3816 u32 ioff;
3817
3818 ioff = btrfs_token_item_offset(right, item, &token);
3819 btrfs_set_token_item_offset(right, item,
3820 ioff + rt_data_off, &token);
3821 }
3822
3823 btrfs_set_header_nritems(l, mid);
3824 btrfs_item_key(right, &disk_key, 0);
3825 insert_ptr(trans, root, path, &disk_key, right->start,
3826 path->slots[1] + 1, 1);
3827
3828 btrfs_mark_buffer_dirty(right);
3829 btrfs_mark_buffer_dirty(l);
3830 BUG_ON(path->slots[0] != slot);
3831
3832 if (mid <= slot) {
3833 btrfs_tree_unlock(path->nodes[0]);
3834 free_extent_buffer(path->nodes[0]);
3835 path->nodes[0] = right;
3836 path->slots[0] -= mid;
3837 path->slots[1] += 1;
3838 } else {
3839 btrfs_tree_unlock(right);
3840 free_extent_buffer(right);
3841 }
3842
3843 BUG_ON(path->slots[0] < 0);
3844 }
3845
3846 /*
3847 * double splits happen when we need to insert a big item in the middle
3848 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3849 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3850 * A B C
3851 *
3852 * We avoid this by trying to push the items on either side of our target
3853 * into the adjacent leaves. If all goes well we can avoid the double split
3854 * completely.
3855 */
3856 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3857 struct btrfs_root *root,
3858 struct btrfs_path *path,
3859 int data_size)
3860 {
3861 int ret;
3862 int progress = 0;
3863 int slot;
3864 u32 nritems;
3865
3866 slot = path->slots[0];
3867
3868 /*
3869 * try to push all the items after our slot into the
3870 * right leaf
3871 */
3872 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3873 if (ret < 0)
3874 return ret;
3875
3876 if (ret == 0)
3877 progress++;
3878
3879 nritems = btrfs_header_nritems(path->nodes[0]);
3880 /*
3881 * our goal is to get our slot at the start or end of a leaf. If
3882 * we've done so we're done
3883 */
3884 if (path->slots[0] == 0 || path->slots[0] == nritems)
3885 return 0;
3886
3887 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3888 return 0;
3889
3890 /* try to push all the items before our slot into the next leaf */
3891 slot = path->slots[0];
3892 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3893 if (ret < 0)
3894 return ret;
3895
3896 if (ret == 0)
3897 progress++;
3898
3899 if (progress)
3900 return 0;
3901 return 1;
3902 }
3903
3904 /*
3905 * split the path's leaf in two, making sure there is at least data_size
3906 * available for the resulting leaf level of the path.
3907 *
3908 * returns 0 if all went well and < 0 on failure.
3909 */
3910 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root,
3912 struct btrfs_key *ins_key,
3913 struct btrfs_path *path, int data_size,
3914 int extend)
3915 {
3916 struct btrfs_disk_key disk_key;
3917 struct extent_buffer *l;
3918 u32 nritems;
3919 int mid;
3920 int slot;
3921 struct extent_buffer *right;
3922 int ret = 0;
3923 int wret;
3924 int split;
3925 int num_doubles = 0;
3926 int tried_avoid_double = 0;
3927
3928 l = path->nodes[0];
3929 slot = path->slots[0];
3930 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3931 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3932 return -EOVERFLOW;
3933
3934 /* first try to make some room by pushing left and right */
3935 if (data_size) {
3936 wret = push_leaf_right(trans, root, path, data_size,
3937 data_size, 0, 0);
3938 if (wret < 0)
3939 return wret;
3940 if (wret) {
3941 wret = push_leaf_left(trans, root, path, data_size,
3942 data_size, 0, (u32)-1);
3943 if (wret < 0)
3944 return wret;
3945 }
3946 l = path->nodes[0];
3947
3948 /* did the pushes work? */
3949 if (btrfs_leaf_free_space(root, l) >= data_size)
3950 return 0;
3951 }
3952
3953 if (!path->nodes[1]) {
3954 ret = insert_new_root(trans, root, path, 1);
3955 if (ret)
3956 return ret;
3957 }
3958 again:
3959 split = 1;
3960 l = path->nodes[0];
3961 slot = path->slots[0];
3962 nritems = btrfs_header_nritems(l);
3963 mid = (nritems + 1) / 2;
3964
3965 if (mid <= slot) {
3966 if (nritems == 1 ||
3967 leaf_space_used(l, mid, nritems - mid) + data_size >
3968 BTRFS_LEAF_DATA_SIZE(root)) {
3969 if (slot >= nritems) {
3970 split = 0;
3971 } else {
3972 mid = slot;
3973 if (mid != nritems &&
3974 leaf_space_used(l, mid, nritems - mid) +
3975 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3976 if (data_size && !tried_avoid_double)
3977 goto push_for_double;
3978 split = 2;
3979 }
3980 }
3981 }
3982 } else {
3983 if (leaf_space_used(l, 0, mid) + data_size >
3984 BTRFS_LEAF_DATA_SIZE(root)) {
3985 if (!extend && data_size && slot == 0) {
3986 split = 0;
3987 } else if ((extend || !data_size) && slot == 0) {
3988 mid = 1;
3989 } else {
3990 mid = slot;
3991 if (mid != nritems &&
3992 leaf_space_used(l, mid, nritems - mid) +
3993 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3994 if (data_size && !tried_avoid_double)
3995 goto push_for_double;
3996 split = 2 ;
3997 }
3998 }
3999 }
4000 }
4001
4002 if (split == 0)
4003 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4004 else
4005 btrfs_item_key(l, &disk_key, mid);
4006
4007 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4008 root->root_key.objectid,
4009 &disk_key, 0, l->start, 0);
4010 if (IS_ERR(right))
4011 return PTR_ERR(right);
4012
4013 root_add_used(root, root->leafsize);
4014
4015 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4016 btrfs_set_header_bytenr(right, right->start);
4017 btrfs_set_header_generation(right, trans->transid);
4018 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4019 btrfs_set_header_owner(right, root->root_key.objectid);
4020 btrfs_set_header_level(right, 0);
4021 write_extent_buffer(right, root->fs_info->fsid,
4022 (unsigned long)btrfs_header_fsid(right),
4023 BTRFS_FSID_SIZE);
4024
4025 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4026 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4027 BTRFS_UUID_SIZE);
4028
4029 if (split == 0) {
4030 if (mid <= slot) {
4031 btrfs_set_header_nritems(right, 0);
4032 insert_ptr(trans, root, path, &disk_key, right->start,
4033 path->slots[1] + 1, 1);
4034 btrfs_tree_unlock(path->nodes[0]);
4035 free_extent_buffer(path->nodes[0]);
4036 path->nodes[0] = right;
4037 path->slots[0] = 0;
4038 path->slots[1] += 1;
4039 } else {
4040 btrfs_set_header_nritems(right, 0);
4041 insert_ptr(trans, root, path, &disk_key, right->start,
4042 path->slots[1], 1);
4043 btrfs_tree_unlock(path->nodes[0]);
4044 free_extent_buffer(path->nodes[0]);
4045 path->nodes[0] = right;
4046 path->slots[0] = 0;
4047 if (path->slots[1] == 0)
4048 fixup_low_keys(trans, root, path,
4049 &disk_key, 1);
4050 }
4051 btrfs_mark_buffer_dirty(right);
4052 return ret;
4053 }
4054
4055 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4056
4057 if (split == 2) {
4058 BUG_ON(num_doubles != 0);
4059 num_doubles++;
4060 goto again;
4061 }
4062
4063 return 0;
4064
4065 push_for_double:
4066 push_for_double_split(trans, root, path, data_size);
4067 tried_avoid_double = 1;
4068 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4069 return 0;
4070 goto again;
4071 }
4072
4073 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root,
4075 struct btrfs_path *path, int ins_len)
4076 {
4077 struct btrfs_key key;
4078 struct extent_buffer *leaf;
4079 struct btrfs_file_extent_item *fi;
4080 u64 extent_len = 0;
4081 u32 item_size;
4082 int ret;
4083
4084 leaf = path->nodes[0];
4085 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4086
4087 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4088 key.type != BTRFS_EXTENT_CSUM_KEY);
4089
4090 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4091 return 0;
4092
4093 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4094 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4095 fi = btrfs_item_ptr(leaf, path->slots[0],
4096 struct btrfs_file_extent_item);
4097 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4098 }
4099 btrfs_release_path(path);
4100
4101 path->keep_locks = 1;
4102 path->search_for_split = 1;
4103 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4104 path->search_for_split = 0;
4105 if (ret < 0)
4106 goto err;
4107
4108 ret = -EAGAIN;
4109 leaf = path->nodes[0];
4110 /* if our item isn't there or got smaller, return now */
4111 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4112 goto err;
4113
4114 /* the leaf has changed, it now has room. return now */
4115 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4116 goto err;
4117
4118 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4119 fi = btrfs_item_ptr(leaf, path->slots[0],
4120 struct btrfs_file_extent_item);
4121 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4122 goto err;
4123 }
4124
4125 btrfs_set_path_blocking(path);
4126 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4127 if (ret)
4128 goto err;
4129
4130 path->keep_locks = 0;
4131 btrfs_unlock_up_safe(path, 1);
4132 return 0;
4133 err:
4134 path->keep_locks = 0;
4135 return ret;
4136 }
4137
4138 static noinline int split_item(struct btrfs_trans_handle *trans,
4139 struct btrfs_root *root,
4140 struct btrfs_path *path,
4141 struct btrfs_key *new_key,
4142 unsigned long split_offset)
4143 {
4144 struct extent_buffer *leaf;
4145 struct btrfs_item *item;
4146 struct btrfs_item *new_item;
4147 int slot;
4148 char *buf;
4149 u32 nritems;
4150 u32 item_size;
4151 u32 orig_offset;
4152 struct btrfs_disk_key disk_key;
4153
4154 leaf = path->nodes[0];
4155 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4156
4157 btrfs_set_path_blocking(path);
4158
4159 item = btrfs_item_nr(leaf, path->slots[0]);
4160 orig_offset = btrfs_item_offset(leaf, item);
4161 item_size = btrfs_item_size(leaf, item);
4162
4163 buf = kmalloc(item_size, GFP_NOFS);
4164 if (!buf)
4165 return -ENOMEM;
4166
4167 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4168 path->slots[0]), item_size);
4169
4170 slot = path->slots[0] + 1;
4171 nritems = btrfs_header_nritems(leaf);
4172 if (slot != nritems) {
4173 /* shift the items */
4174 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4175 btrfs_item_nr_offset(slot),
4176 (nritems - slot) * sizeof(struct btrfs_item));
4177 }
4178
4179 btrfs_cpu_key_to_disk(&disk_key, new_key);
4180 btrfs_set_item_key(leaf, &disk_key, slot);
4181
4182 new_item = btrfs_item_nr(leaf, slot);
4183
4184 btrfs_set_item_offset(leaf, new_item, orig_offset);
4185 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4186
4187 btrfs_set_item_offset(leaf, item,
4188 orig_offset + item_size - split_offset);
4189 btrfs_set_item_size(leaf, item, split_offset);
4190
4191 btrfs_set_header_nritems(leaf, nritems + 1);
4192
4193 /* write the data for the start of the original item */
4194 write_extent_buffer(leaf, buf,
4195 btrfs_item_ptr_offset(leaf, path->slots[0]),
4196 split_offset);
4197
4198 /* write the data for the new item */
4199 write_extent_buffer(leaf, buf + split_offset,
4200 btrfs_item_ptr_offset(leaf, slot),
4201 item_size - split_offset);
4202 btrfs_mark_buffer_dirty(leaf);
4203
4204 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4205 kfree(buf);
4206 return 0;
4207 }
4208
4209 /*
4210 * This function splits a single item into two items,
4211 * giving 'new_key' to the new item and splitting the
4212 * old one at split_offset (from the start of the item).
4213 *
4214 * The path may be released by this operation. After
4215 * the split, the path is pointing to the old item. The
4216 * new item is going to be in the same node as the old one.
4217 *
4218 * Note, the item being split must be smaller enough to live alone on
4219 * a tree block with room for one extra struct btrfs_item
4220 *
4221 * This allows us to split the item in place, keeping a lock on the
4222 * leaf the entire time.
4223 */
4224 int btrfs_split_item(struct btrfs_trans_handle *trans,
4225 struct btrfs_root *root,
4226 struct btrfs_path *path,
4227 struct btrfs_key *new_key,
4228 unsigned long split_offset)
4229 {
4230 int ret;
4231 ret = setup_leaf_for_split(trans, root, path,
4232 sizeof(struct btrfs_item));
4233 if (ret)
4234 return ret;
4235
4236 ret = split_item(trans, root, path, new_key, split_offset);
4237 return ret;
4238 }
4239
4240 /*
4241 * This function duplicate a item, giving 'new_key' to the new item.
4242 * It guarantees both items live in the same tree leaf and the new item
4243 * is contiguous with the original item.
4244 *
4245 * This allows us to split file extent in place, keeping a lock on the
4246 * leaf the entire time.
4247 */
4248 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4249 struct btrfs_root *root,
4250 struct btrfs_path *path,
4251 struct btrfs_key *new_key)
4252 {
4253 struct extent_buffer *leaf;
4254 int ret;
4255 u32 item_size;
4256
4257 leaf = path->nodes[0];
4258 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4259 ret = setup_leaf_for_split(trans, root, path,
4260 item_size + sizeof(struct btrfs_item));
4261 if (ret)
4262 return ret;
4263
4264 path->slots[0]++;
4265 setup_items_for_insert(trans, root, path, new_key, &item_size,
4266 item_size, item_size +
4267 sizeof(struct btrfs_item), 1);
4268 leaf = path->nodes[0];
4269 memcpy_extent_buffer(leaf,
4270 btrfs_item_ptr_offset(leaf, path->slots[0]),
4271 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4272 item_size);
4273 return 0;
4274 }
4275
4276 /*
4277 * make the item pointed to by the path smaller. new_size indicates
4278 * how small to make it, and from_end tells us if we just chop bytes
4279 * off the end of the item or if we shift the item to chop bytes off
4280 * the front.
4281 */
4282 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4283 struct btrfs_root *root,
4284 struct btrfs_path *path,
4285 u32 new_size, int from_end)
4286 {
4287 int slot;
4288 struct extent_buffer *leaf;
4289 struct btrfs_item *item;
4290 u32 nritems;
4291 unsigned int data_end;
4292 unsigned int old_data_start;
4293 unsigned int old_size;
4294 unsigned int size_diff;
4295 int i;
4296 struct btrfs_map_token token;
4297
4298 btrfs_init_map_token(&token);
4299
4300 leaf = path->nodes[0];
4301 slot = path->slots[0];
4302
4303 old_size = btrfs_item_size_nr(leaf, slot);
4304 if (old_size == new_size)
4305 return;
4306
4307 nritems = btrfs_header_nritems(leaf);
4308 data_end = leaf_data_end(root, leaf);
4309
4310 old_data_start = btrfs_item_offset_nr(leaf, slot);
4311
4312 size_diff = old_size - new_size;
4313
4314 BUG_ON(slot < 0);
4315 BUG_ON(slot >= nritems);
4316
4317 /*
4318 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4319 */
4320 /* first correct the data pointers */
4321 for (i = slot; i < nritems; i++) {
4322 u32 ioff;
4323 item = btrfs_item_nr(leaf, i);
4324
4325 ioff = btrfs_token_item_offset(leaf, item, &token);
4326 btrfs_set_token_item_offset(leaf, item,
4327 ioff + size_diff, &token);
4328 }
4329
4330 /* shift the data */
4331 if (from_end) {
4332 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4333 data_end + size_diff, btrfs_leaf_data(leaf) +
4334 data_end, old_data_start + new_size - data_end);
4335 } else {
4336 struct btrfs_disk_key disk_key;
4337 u64 offset;
4338
4339 btrfs_item_key(leaf, &disk_key, slot);
4340
4341 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4342 unsigned long ptr;
4343 struct btrfs_file_extent_item *fi;
4344
4345 fi = btrfs_item_ptr(leaf, slot,
4346 struct btrfs_file_extent_item);
4347 fi = (struct btrfs_file_extent_item *)(
4348 (unsigned long)fi - size_diff);
4349
4350 if (btrfs_file_extent_type(leaf, fi) ==
4351 BTRFS_FILE_EXTENT_INLINE) {
4352 ptr = btrfs_item_ptr_offset(leaf, slot);
4353 memmove_extent_buffer(leaf, ptr,
4354 (unsigned long)fi,
4355 offsetof(struct btrfs_file_extent_item,
4356 disk_bytenr));
4357 }
4358 }
4359
4360 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4361 data_end + size_diff, btrfs_leaf_data(leaf) +
4362 data_end, old_data_start - data_end);
4363
4364 offset = btrfs_disk_key_offset(&disk_key);
4365 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4366 btrfs_set_item_key(leaf, &disk_key, slot);
4367 if (slot == 0)
4368 fixup_low_keys(trans, root, path, &disk_key, 1);
4369 }
4370
4371 item = btrfs_item_nr(leaf, slot);
4372 btrfs_set_item_size(leaf, item, new_size);
4373 btrfs_mark_buffer_dirty(leaf);
4374
4375 if (btrfs_leaf_free_space(root, leaf) < 0) {
4376 btrfs_print_leaf(root, leaf);
4377 BUG();
4378 }
4379 }
4380
4381 /*
4382 * make the item pointed to by the path bigger, data_size is the new size.
4383 */
4384 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4385 struct btrfs_root *root, struct btrfs_path *path,
4386 u32 data_size)
4387 {
4388 int slot;
4389 struct extent_buffer *leaf;
4390 struct btrfs_item *item;
4391 u32 nritems;
4392 unsigned int data_end;
4393 unsigned int old_data;
4394 unsigned int old_size;
4395 int i;
4396 struct btrfs_map_token token;
4397
4398 btrfs_init_map_token(&token);
4399
4400 leaf = path->nodes[0];
4401
4402 nritems = btrfs_header_nritems(leaf);
4403 data_end = leaf_data_end(root, leaf);
4404
4405 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4406 btrfs_print_leaf(root, leaf);
4407 BUG();
4408 }
4409 slot = path->slots[0];
4410 old_data = btrfs_item_end_nr(leaf, slot);
4411
4412 BUG_ON(slot < 0);
4413 if (slot >= nritems) {
4414 btrfs_print_leaf(root, leaf);
4415 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4416 slot, nritems);
4417 BUG_ON(1);
4418 }
4419
4420 /*
4421 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4422 */
4423 /* first correct the data pointers */
4424 for (i = slot; i < nritems; i++) {
4425 u32 ioff;
4426 item = btrfs_item_nr(leaf, i);
4427
4428 ioff = btrfs_token_item_offset(leaf, item, &token);
4429 btrfs_set_token_item_offset(leaf, item,
4430 ioff - data_size, &token);
4431 }
4432
4433 /* shift the data */
4434 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4435 data_end - data_size, btrfs_leaf_data(leaf) +
4436 data_end, old_data - data_end);
4437
4438 data_end = old_data;
4439 old_size = btrfs_item_size_nr(leaf, slot);
4440 item = btrfs_item_nr(leaf, slot);
4441 btrfs_set_item_size(leaf, item, old_size + data_size);
4442 btrfs_mark_buffer_dirty(leaf);
4443
4444 if (btrfs_leaf_free_space(root, leaf) < 0) {
4445 btrfs_print_leaf(root, leaf);
4446 BUG();
4447 }
4448 }
4449
4450 /*
4451 * this is a helper for btrfs_insert_empty_items, the main goal here is
4452 * to save stack depth by doing the bulk of the work in a function
4453 * that doesn't call btrfs_search_slot
4454 */
4455 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4456 struct btrfs_root *root, struct btrfs_path *path,
4457 struct btrfs_key *cpu_key, u32 *data_size,
4458 u32 total_data, u32 total_size, int nr)
4459 {
4460 struct btrfs_item *item;
4461 int i;
4462 u32 nritems;
4463 unsigned int data_end;
4464 struct btrfs_disk_key disk_key;
4465 struct extent_buffer *leaf;
4466 int slot;
4467 struct btrfs_map_token token;
4468
4469 btrfs_init_map_token(&token);
4470
4471 leaf = path->nodes[0];
4472 slot = path->slots[0];
4473
4474 nritems = btrfs_header_nritems(leaf);
4475 data_end = leaf_data_end(root, leaf);
4476
4477 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4478 btrfs_print_leaf(root, leaf);
4479 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4480 total_size, btrfs_leaf_free_space(root, leaf));
4481 BUG();
4482 }
4483
4484 if (slot != nritems) {
4485 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4486
4487 if (old_data < data_end) {
4488 btrfs_print_leaf(root, leaf);
4489 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4490 slot, old_data, data_end);
4491 BUG_ON(1);
4492 }
4493 /*
4494 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4495 */
4496 /* first correct the data pointers */
4497 for (i = slot; i < nritems; i++) {
4498 u32 ioff;
4499
4500 item = btrfs_item_nr(leaf, i);
4501 ioff = btrfs_token_item_offset(leaf, item, &token);
4502 btrfs_set_token_item_offset(leaf, item,
4503 ioff - total_data, &token);
4504 }
4505 /* shift the items */
4506 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4507 btrfs_item_nr_offset(slot),
4508 (nritems - slot) * sizeof(struct btrfs_item));
4509
4510 /* shift the data */
4511 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4512 data_end - total_data, btrfs_leaf_data(leaf) +
4513 data_end, old_data - data_end);
4514 data_end = old_data;
4515 }
4516
4517 /* setup the item for the new data */
4518 for (i = 0; i < nr; i++) {
4519 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4520 btrfs_set_item_key(leaf, &disk_key, slot + i);
4521 item = btrfs_item_nr(leaf, slot + i);
4522 btrfs_set_token_item_offset(leaf, item,
4523 data_end - data_size[i], &token);
4524 data_end -= data_size[i];
4525 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4526 }
4527
4528 btrfs_set_header_nritems(leaf, nritems + nr);
4529
4530 if (slot == 0) {
4531 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4532 fixup_low_keys(trans, root, path, &disk_key, 1);
4533 }
4534 btrfs_unlock_up_safe(path, 1);
4535 btrfs_mark_buffer_dirty(leaf);
4536
4537 if (btrfs_leaf_free_space(root, leaf) < 0) {
4538 btrfs_print_leaf(root, leaf);
4539 BUG();
4540 }
4541 }
4542
4543 /*
4544 * Given a key and some data, insert items into the tree.
4545 * This does all the path init required, making room in the tree if needed.
4546 */
4547 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4548 struct btrfs_root *root,
4549 struct btrfs_path *path,
4550 struct btrfs_key *cpu_key, u32 *data_size,
4551 int nr)
4552 {
4553 int ret = 0;
4554 int slot;
4555 int i;
4556 u32 total_size = 0;
4557 u32 total_data = 0;
4558
4559 for (i = 0; i < nr; i++)
4560 total_data += data_size[i];
4561
4562 total_size = total_data + (nr * sizeof(struct btrfs_item));
4563 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4564 if (ret == 0)
4565 return -EEXIST;
4566 if (ret < 0)
4567 return ret;
4568
4569 slot = path->slots[0];
4570 BUG_ON(slot < 0);
4571
4572 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4573 total_data, total_size, nr);
4574 return 0;
4575 }
4576
4577 /*
4578 * Given a key and some data, insert an item into the tree.
4579 * This does all the path init required, making room in the tree if needed.
4580 */
4581 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4582 *root, struct btrfs_key *cpu_key, void *data, u32
4583 data_size)
4584 {
4585 int ret = 0;
4586 struct btrfs_path *path;
4587 struct extent_buffer *leaf;
4588 unsigned long ptr;
4589
4590 path = btrfs_alloc_path();
4591 if (!path)
4592 return -ENOMEM;
4593 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4594 if (!ret) {
4595 leaf = path->nodes[0];
4596 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4597 write_extent_buffer(leaf, data, ptr, data_size);
4598 btrfs_mark_buffer_dirty(leaf);
4599 }
4600 btrfs_free_path(path);
4601 return ret;
4602 }
4603
4604 /*
4605 * delete the pointer from a given node.
4606 *
4607 * the tree should have been previously balanced so the deletion does not
4608 * empty a node.
4609 */
4610 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4611 struct btrfs_path *path, int level, int slot)
4612 {
4613 struct extent_buffer *parent = path->nodes[level];
4614 u32 nritems;
4615 int ret;
4616
4617 nritems = btrfs_header_nritems(parent);
4618 if (slot != nritems - 1) {
4619 if (level)
4620 tree_mod_log_eb_move(root->fs_info, parent, slot,
4621 slot + 1, nritems - slot - 1);
4622 memmove_extent_buffer(parent,
4623 btrfs_node_key_ptr_offset(slot),
4624 btrfs_node_key_ptr_offset(slot + 1),
4625 sizeof(struct btrfs_key_ptr) *
4626 (nritems - slot - 1));
4627 } else if (level) {
4628 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4629 MOD_LOG_KEY_REMOVE);
4630 BUG_ON(ret < 0);
4631 }
4632
4633 nritems--;
4634 btrfs_set_header_nritems(parent, nritems);
4635 if (nritems == 0 && parent == root->node) {
4636 BUG_ON(btrfs_header_level(root->node) != 1);
4637 /* just turn the root into a leaf and break */
4638 btrfs_set_header_level(root->node, 0);
4639 } else if (slot == 0) {
4640 struct btrfs_disk_key disk_key;
4641
4642 btrfs_node_key(parent, &disk_key, 0);
4643 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4644 }
4645 btrfs_mark_buffer_dirty(parent);
4646 }
4647
4648 /*
4649 * a helper function to delete the leaf pointed to by path->slots[1] and
4650 * path->nodes[1].
4651 *
4652 * This deletes the pointer in path->nodes[1] and frees the leaf
4653 * block extent. zero is returned if it all worked out, < 0 otherwise.
4654 *
4655 * The path must have already been setup for deleting the leaf, including
4656 * all the proper balancing. path->nodes[1] must be locked.
4657 */
4658 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4659 struct btrfs_root *root,
4660 struct btrfs_path *path,
4661 struct extent_buffer *leaf)
4662 {
4663 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4664 del_ptr(trans, root, path, 1, path->slots[1]);
4665
4666 /*
4667 * btrfs_free_extent is expensive, we want to make sure we
4668 * aren't holding any locks when we call it
4669 */
4670 btrfs_unlock_up_safe(path, 0);
4671
4672 root_sub_used(root, leaf->len);
4673
4674 extent_buffer_get(leaf);
4675 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4676 free_extent_buffer_stale(leaf);
4677 }
4678 /*
4679 * delete the item at the leaf level in path. If that empties
4680 * the leaf, remove it from the tree
4681 */
4682 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4683 struct btrfs_path *path, int slot, int nr)
4684 {
4685 struct extent_buffer *leaf;
4686 struct btrfs_item *item;
4687 int last_off;
4688 int dsize = 0;
4689 int ret = 0;
4690 int wret;
4691 int i;
4692 u32 nritems;
4693 struct btrfs_map_token token;
4694
4695 btrfs_init_map_token(&token);
4696
4697 leaf = path->nodes[0];
4698 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4699
4700 for (i = 0; i < nr; i++)
4701 dsize += btrfs_item_size_nr(leaf, slot + i);
4702
4703 nritems = btrfs_header_nritems(leaf);
4704
4705 if (slot + nr != nritems) {
4706 int data_end = leaf_data_end(root, leaf);
4707
4708 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4709 data_end + dsize,
4710 btrfs_leaf_data(leaf) + data_end,
4711 last_off - data_end);
4712
4713 for (i = slot + nr; i < nritems; i++) {
4714 u32 ioff;
4715
4716 item = btrfs_item_nr(leaf, i);
4717 ioff = btrfs_token_item_offset(leaf, item, &token);
4718 btrfs_set_token_item_offset(leaf, item,
4719 ioff + dsize, &token);
4720 }
4721
4722 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4723 btrfs_item_nr_offset(slot + nr),
4724 sizeof(struct btrfs_item) *
4725 (nritems - slot - nr));
4726 }
4727 btrfs_set_header_nritems(leaf, nritems - nr);
4728 nritems -= nr;
4729
4730 /* delete the leaf if we've emptied it */
4731 if (nritems == 0) {
4732 if (leaf == root->node) {
4733 btrfs_set_header_level(leaf, 0);
4734 } else {
4735 btrfs_set_path_blocking(path);
4736 clean_tree_block(trans, root, leaf);
4737 btrfs_del_leaf(trans, root, path, leaf);
4738 }
4739 } else {
4740 int used = leaf_space_used(leaf, 0, nritems);
4741 if (slot == 0) {
4742 struct btrfs_disk_key disk_key;
4743
4744 btrfs_item_key(leaf, &disk_key, 0);
4745 fixup_low_keys(trans, root, path, &disk_key, 1);
4746 }
4747
4748 /* delete the leaf if it is mostly empty */
4749 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4750 /* push_leaf_left fixes the path.
4751 * make sure the path still points to our leaf
4752 * for possible call to del_ptr below
4753 */
4754 slot = path->slots[1];
4755 extent_buffer_get(leaf);
4756
4757 btrfs_set_path_blocking(path);
4758 wret = push_leaf_left(trans, root, path, 1, 1,
4759 1, (u32)-1);
4760 if (wret < 0 && wret != -ENOSPC)
4761 ret = wret;
4762
4763 if (path->nodes[0] == leaf &&
4764 btrfs_header_nritems(leaf)) {
4765 wret = push_leaf_right(trans, root, path, 1,
4766 1, 1, 0);
4767 if (wret < 0 && wret != -ENOSPC)
4768 ret = wret;
4769 }
4770
4771 if (btrfs_header_nritems(leaf) == 0) {
4772 path->slots[1] = slot;
4773 btrfs_del_leaf(trans, root, path, leaf);
4774 free_extent_buffer(leaf);
4775 ret = 0;
4776 } else {
4777 /* if we're still in the path, make sure
4778 * we're dirty. Otherwise, one of the
4779 * push_leaf functions must have already
4780 * dirtied this buffer
4781 */
4782 if (path->nodes[0] == leaf)
4783 btrfs_mark_buffer_dirty(leaf);
4784 free_extent_buffer(leaf);
4785 }
4786 } else {
4787 btrfs_mark_buffer_dirty(leaf);
4788 }
4789 }
4790 return ret;
4791 }
4792
4793 /*
4794 * search the tree again to find a leaf with lesser keys
4795 * returns 0 if it found something or 1 if there are no lesser leaves.
4796 * returns < 0 on io errors.
4797 *
4798 * This may release the path, and so you may lose any locks held at the
4799 * time you call it.
4800 */
4801 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4802 {
4803 struct btrfs_key key;
4804 struct btrfs_disk_key found_key;
4805 int ret;
4806
4807 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4808
4809 if (key.offset > 0)
4810 key.offset--;
4811 else if (key.type > 0)
4812 key.type--;
4813 else if (key.objectid > 0)
4814 key.objectid--;
4815 else
4816 return 1;
4817
4818 btrfs_release_path(path);
4819 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4820 if (ret < 0)
4821 return ret;
4822 btrfs_item_key(path->nodes[0], &found_key, 0);
4823 ret = comp_keys(&found_key, &key);
4824 if (ret < 0)
4825 return 0;
4826 return 1;
4827 }
4828
4829 /*
4830 * A helper function to walk down the tree starting at min_key, and looking
4831 * for nodes or leaves that are have a minimum transaction id.
4832 * This is used by the btree defrag code, and tree logging
4833 *
4834 * This does not cow, but it does stuff the starting key it finds back
4835 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4836 * key and get a writable path.
4837 *
4838 * This does lock as it descends, and path->keep_locks should be set
4839 * to 1 by the caller.
4840 *
4841 * This honors path->lowest_level to prevent descent past a given level
4842 * of the tree.
4843 *
4844 * min_trans indicates the oldest transaction that you are interested
4845 * in walking through. Any nodes or leaves older than min_trans are
4846 * skipped over (without reading them).
4847 *
4848 * returns zero if something useful was found, < 0 on error and 1 if there
4849 * was nothing in the tree that matched the search criteria.
4850 */
4851 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4852 struct btrfs_key *max_key,
4853 struct btrfs_path *path,
4854 u64 min_trans)
4855 {
4856 struct extent_buffer *cur;
4857 struct btrfs_key found_key;
4858 int slot;
4859 int sret;
4860 u32 nritems;
4861 int level;
4862 int ret = 1;
4863
4864 WARN_ON(!path->keep_locks);
4865 again:
4866 cur = btrfs_read_lock_root_node(root);
4867 level = btrfs_header_level(cur);
4868 WARN_ON(path->nodes[level]);
4869 path->nodes[level] = cur;
4870 path->locks[level] = BTRFS_READ_LOCK;
4871
4872 if (btrfs_header_generation(cur) < min_trans) {
4873 ret = 1;
4874 goto out;
4875 }
4876 while (1) {
4877 nritems = btrfs_header_nritems(cur);
4878 level = btrfs_header_level(cur);
4879 sret = bin_search(cur, min_key, level, &slot);
4880
4881 /* at the lowest level, we're done, setup the path and exit */
4882 if (level == path->lowest_level) {
4883 if (slot >= nritems)
4884 goto find_next_key;
4885 ret = 0;
4886 path->slots[level] = slot;
4887 btrfs_item_key_to_cpu(cur, &found_key, slot);
4888 goto out;
4889 }
4890 if (sret && slot > 0)
4891 slot--;
4892 /*
4893 * check this node pointer against the min_trans parameters.
4894 * If it is too old, old, skip to the next one.
4895 */
4896 while (slot < nritems) {
4897 u64 blockptr;
4898 u64 gen;
4899
4900 blockptr = btrfs_node_blockptr(cur, slot);
4901 gen = btrfs_node_ptr_generation(cur, slot);
4902 if (gen < min_trans) {
4903 slot++;
4904 continue;
4905 }
4906 break;
4907 }
4908 find_next_key:
4909 /*
4910 * we didn't find a candidate key in this node, walk forward
4911 * and find another one
4912 */
4913 if (slot >= nritems) {
4914 path->slots[level] = slot;
4915 btrfs_set_path_blocking(path);
4916 sret = btrfs_find_next_key(root, path, min_key, level,
4917 min_trans);
4918 if (sret == 0) {
4919 btrfs_release_path(path);
4920 goto again;
4921 } else {
4922 goto out;
4923 }
4924 }
4925 /* save our key for returning back */
4926 btrfs_node_key_to_cpu(cur, &found_key, slot);
4927 path->slots[level] = slot;
4928 if (level == path->lowest_level) {
4929 ret = 0;
4930 unlock_up(path, level, 1, 0, NULL);
4931 goto out;
4932 }
4933 btrfs_set_path_blocking(path);
4934 cur = read_node_slot(root, cur, slot);
4935 BUG_ON(!cur); /* -ENOMEM */
4936
4937 btrfs_tree_read_lock(cur);
4938
4939 path->locks[level - 1] = BTRFS_READ_LOCK;
4940 path->nodes[level - 1] = cur;
4941 unlock_up(path, level, 1, 0, NULL);
4942 btrfs_clear_path_blocking(path, NULL, 0);
4943 }
4944 out:
4945 if (ret == 0)
4946 memcpy(min_key, &found_key, sizeof(found_key));
4947 btrfs_set_path_blocking(path);
4948 return ret;
4949 }
4950
4951 static void tree_move_down(struct btrfs_root *root,
4952 struct btrfs_path *path,
4953 int *level, int root_level)
4954 {
4955 BUG_ON(*level == 0);
4956 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4957 path->slots[*level]);
4958 path->slots[*level - 1] = 0;
4959 (*level)--;
4960 }
4961
4962 static int tree_move_next_or_upnext(struct btrfs_root *root,
4963 struct btrfs_path *path,
4964 int *level, int root_level)
4965 {
4966 int ret = 0;
4967 int nritems;
4968 nritems = btrfs_header_nritems(path->nodes[*level]);
4969
4970 path->slots[*level]++;
4971
4972 while (path->slots[*level] >= nritems) {
4973 if (*level == root_level)
4974 return -1;
4975
4976 /* move upnext */
4977 path->slots[*level] = 0;
4978 free_extent_buffer(path->nodes[*level]);
4979 path->nodes[*level] = NULL;
4980 (*level)++;
4981 path->slots[*level]++;
4982
4983 nritems = btrfs_header_nritems(path->nodes[*level]);
4984 ret = 1;
4985 }
4986 return ret;
4987 }
4988
4989 /*
4990 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4991 * or down.
4992 */
4993 static int tree_advance(struct btrfs_root *root,
4994 struct btrfs_path *path,
4995 int *level, int root_level,
4996 int allow_down,
4997 struct btrfs_key *key)
4998 {
4999 int ret;
5000
5001 if (*level == 0 || !allow_down) {
5002 ret = tree_move_next_or_upnext(root, path, level, root_level);
5003 } else {
5004 tree_move_down(root, path, level, root_level);
5005 ret = 0;
5006 }
5007 if (ret >= 0) {
5008 if (*level == 0)
5009 btrfs_item_key_to_cpu(path->nodes[*level], key,
5010 path->slots[*level]);
5011 else
5012 btrfs_node_key_to_cpu(path->nodes[*level], key,
5013 path->slots[*level]);
5014 }
5015 return ret;
5016 }
5017
5018 static int tree_compare_item(struct btrfs_root *left_root,
5019 struct btrfs_path *left_path,
5020 struct btrfs_path *right_path,
5021 char *tmp_buf)
5022 {
5023 int cmp;
5024 int len1, len2;
5025 unsigned long off1, off2;
5026
5027 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5028 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5029 if (len1 != len2)
5030 return 1;
5031
5032 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5033 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5034 right_path->slots[0]);
5035
5036 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5037
5038 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5039 if (cmp)
5040 return 1;
5041 return 0;
5042 }
5043
5044 #define ADVANCE 1
5045 #define ADVANCE_ONLY_NEXT -1
5046
5047 /*
5048 * This function compares two trees and calls the provided callback for
5049 * every changed/new/deleted item it finds.
5050 * If shared tree blocks are encountered, whole subtrees are skipped, making
5051 * the compare pretty fast on snapshotted subvolumes.
5052 *
5053 * This currently works on commit roots only. As commit roots are read only,
5054 * we don't do any locking. The commit roots are protected with transactions.
5055 * Transactions are ended and rejoined when a commit is tried in between.
5056 *
5057 * This function checks for modifications done to the trees while comparing.
5058 * If it detects a change, it aborts immediately.
5059 */
5060 int btrfs_compare_trees(struct btrfs_root *left_root,
5061 struct btrfs_root *right_root,
5062 btrfs_changed_cb_t changed_cb, void *ctx)
5063 {
5064 int ret;
5065 int cmp;
5066 struct btrfs_trans_handle *trans = NULL;
5067 struct btrfs_path *left_path = NULL;
5068 struct btrfs_path *right_path = NULL;
5069 struct btrfs_key left_key;
5070 struct btrfs_key right_key;
5071 char *tmp_buf = NULL;
5072 int left_root_level;
5073 int right_root_level;
5074 int left_level;
5075 int right_level;
5076 int left_end_reached;
5077 int right_end_reached;
5078 int advance_left;
5079 int advance_right;
5080 u64 left_blockptr;
5081 u64 right_blockptr;
5082 u64 left_start_ctransid;
5083 u64 right_start_ctransid;
5084 u64 ctransid;
5085
5086 left_path = btrfs_alloc_path();
5087 if (!left_path) {
5088 ret = -ENOMEM;
5089 goto out;
5090 }
5091 right_path = btrfs_alloc_path();
5092 if (!right_path) {
5093 ret = -ENOMEM;
5094 goto out;
5095 }
5096
5097 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5098 if (!tmp_buf) {
5099 ret = -ENOMEM;
5100 goto out;
5101 }
5102
5103 left_path->search_commit_root = 1;
5104 left_path->skip_locking = 1;
5105 right_path->search_commit_root = 1;
5106 right_path->skip_locking = 1;
5107
5108 spin_lock(&left_root->root_item_lock);
5109 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5110 spin_unlock(&left_root->root_item_lock);
5111
5112 spin_lock(&right_root->root_item_lock);
5113 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5114 spin_unlock(&right_root->root_item_lock);
5115
5116 trans = btrfs_join_transaction(left_root);
5117 if (IS_ERR(trans)) {
5118 ret = PTR_ERR(trans);
5119 trans = NULL;
5120 goto out;
5121 }
5122
5123 /*
5124 * Strategy: Go to the first items of both trees. Then do
5125 *
5126 * If both trees are at level 0
5127 * Compare keys of current items
5128 * If left < right treat left item as new, advance left tree
5129 * and repeat
5130 * If left > right treat right item as deleted, advance right tree
5131 * and repeat
5132 * If left == right do deep compare of items, treat as changed if
5133 * needed, advance both trees and repeat
5134 * If both trees are at the same level but not at level 0
5135 * Compare keys of current nodes/leafs
5136 * If left < right advance left tree and repeat
5137 * If left > right advance right tree and repeat
5138 * If left == right compare blockptrs of the next nodes/leafs
5139 * If they match advance both trees but stay at the same level
5140 * and repeat
5141 * If they don't match advance both trees while allowing to go
5142 * deeper and repeat
5143 * If tree levels are different
5144 * Advance the tree that needs it and repeat
5145 *
5146 * Advancing a tree means:
5147 * If we are at level 0, try to go to the next slot. If that's not
5148 * possible, go one level up and repeat. Stop when we found a level
5149 * where we could go to the next slot. We may at this point be on a
5150 * node or a leaf.
5151 *
5152 * If we are not at level 0 and not on shared tree blocks, go one
5153 * level deeper.
5154 *
5155 * If we are not at level 0 and on shared tree blocks, go one slot to
5156 * the right if possible or go up and right.
5157 */
5158
5159 left_level = btrfs_header_level(left_root->commit_root);
5160 left_root_level = left_level;
5161 left_path->nodes[left_level] = left_root->commit_root;
5162 extent_buffer_get(left_path->nodes[left_level]);
5163
5164 right_level = btrfs_header_level(right_root->commit_root);
5165 right_root_level = right_level;
5166 right_path->nodes[right_level] = right_root->commit_root;
5167 extent_buffer_get(right_path->nodes[right_level]);
5168
5169 if (left_level == 0)
5170 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5171 &left_key, left_path->slots[left_level]);
5172 else
5173 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5174 &left_key, left_path->slots[left_level]);
5175 if (right_level == 0)
5176 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5177 &right_key, right_path->slots[right_level]);
5178 else
5179 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5180 &right_key, right_path->slots[right_level]);
5181
5182 left_end_reached = right_end_reached = 0;
5183 advance_left = advance_right = 0;
5184
5185 while (1) {
5186 /*
5187 * We need to make sure the transaction does not get committed
5188 * while we do anything on commit roots. This means, we need to
5189 * join and leave transactions for every item that we process.
5190 */
5191 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5192 btrfs_release_path(left_path);
5193 btrfs_release_path(right_path);
5194
5195 ret = btrfs_end_transaction(trans, left_root);
5196 trans = NULL;
5197 if (ret < 0)
5198 goto out;
5199 }
5200 /* now rejoin the transaction */
5201 if (!trans) {
5202 trans = btrfs_join_transaction(left_root);
5203 if (IS_ERR(trans)) {
5204 ret = PTR_ERR(trans);
5205 trans = NULL;
5206 goto out;
5207 }
5208
5209 spin_lock(&left_root->root_item_lock);
5210 ctransid = btrfs_root_ctransid(&left_root->root_item);
5211 spin_unlock(&left_root->root_item_lock);
5212 if (ctransid != left_start_ctransid)
5213 left_start_ctransid = 0;
5214
5215 spin_lock(&right_root->root_item_lock);
5216 ctransid = btrfs_root_ctransid(&right_root->root_item);
5217 spin_unlock(&right_root->root_item_lock);
5218 if (ctransid != right_start_ctransid)
5219 right_start_ctransid = 0;
5220
5221 if (!left_start_ctransid || !right_start_ctransid) {
5222 WARN(1, KERN_WARNING
5223 "btrfs: btrfs_compare_tree detected "
5224 "a change in one of the trees while "
5225 "iterating. This is probably a "
5226 "bug.\n");
5227 ret = -EIO;
5228 goto out;
5229 }
5230
5231 /*
5232 * the commit root may have changed, so start again
5233 * where we stopped
5234 */
5235 left_path->lowest_level = left_level;
5236 right_path->lowest_level = right_level;
5237 ret = btrfs_search_slot(NULL, left_root,
5238 &left_key, left_path, 0, 0);
5239 if (ret < 0)
5240 goto out;
5241 ret = btrfs_search_slot(NULL, right_root,
5242 &right_key, right_path, 0, 0);
5243 if (ret < 0)
5244 goto out;
5245 }
5246
5247 if (advance_left && !left_end_reached) {
5248 ret = tree_advance(left_root, left_path, &left_level,
5249 left_root_level,
5250 advance_left != ADVANCE_ONLY_NEXT,
5251 &left_key);
5252 if (ret < 0)
5253 left_end_reached = ADVANCE;
5254 advance_left = 0;
5255 }
5256 if (advance_right && !right_end_reached) {
5257 ret = tree_advance(right_root, right_path, &right_level,
5258 right_root_level,
5259 advance_right != ADVANCE_ONLY_NEXT,
5260 &right_key);
5261 if (ret < 0)
5262 right_end_reached = ADVANCE;
5263 advance_right = 0;
5264 }
5265
5266 if (left_end_reached && right_end_reached) {
5267 ret = 0;
5268 goto out;
5269 } else if (left_end_reached) {
5270 if (right_level == 0) {
5271 ret = changed_cb(left_root, right_root,
5272 left_path, right_path,
5273 &right_key,
5274 BTRFS_COMPARE_TREE_DELETED,
5275 ctx);
5276 if (ret < 0)
5277 goto out;
5278 }
5279 advance_right = ADVANCE;
5280 continue;
5281 } else if (right_end_reached) {
5282 if (left_level == 0) {
5283 ret = changed_cb(left_root, right_root,
5284 left_path, right_path,
5285 &left_key,
5286 BTRFS_COMPARE_TREE_NEW,
5287 ctx);
5288 if (ret < 0)
5289 goto out;
5290 }
5291 advance_left = ADVANCE;
5292 continue;
5293 }
5294
5295 if (left_level == 0 && right_level == 0) {
5296 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5297 if (cmp < 0) {
5298 ret = changed_cb(left_root, right_root,
5299 left_path, right_path,
5300 &left_key,
5301 BTRFS_COMPARE_TREE_NEW,
5302 ctx);
5303 if (ret < 0)
5304 goto out;
5305 advance_left = ADVANCE;
5306 } else if (cmp > 0) {
5307 ret = changed_cb(left_root, right_root,
5308 left_path, right_path,
5309 &right_key,
5310 BTRFS_COMPARE_TREE_DELETED,
5311 ctx);
5312 if (ret < 0)
5313 goto out;
5314 advance_right = ADVANCE;
5315 } else {
5316 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5317 ret = tree_compare_item(left_root, left_path,
5318 right_path, tmp_buf);
5319 if (ret) {
5320 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5321 ret = changed_cb(left_root, right_root,
5322 left_path, right_path,
5323 &left_key,
5324 BTRFS_COMPARE_TREE_CHANGED,
5325 ctx);
5326 if (ret < 0)
5327 goto out;
5328 }
5329 advance_left = ADVANCE;
5330 advance_right = ADVANCE;
5331 }
5332 } else if (left_level == right_level) {
5333 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5334 if (cmp < 0) {
5335 advance_left = ADVANCE;
5336 } else if (cmp > 0) {
5337 advance_right = ADVANCE;
5338 } else {
5339 left_blockptr = btrfs_node_blockptr(
5340 left_path->nodes[left_level],
5341 left_path->slots[left_level]);
5342 right_blockptr = btrfs_node_blockptr(
5343 right_path->nodes[right_level],
5344 right_path->slots[right_level]);
5345 if (left_blockptr == right_blockptr) {
5346 /*
5347 * As we're on a shared block, don't
5348 * allow to go deeper.
5349 */
5350 advance_left = ADVANCE_ONLY_NEXT;
5351 advance_right = ADVANCE_ONLY_NEXT;
5352 } else {
5353 advance_left = ADVANCE;
5354 advance_right = ADVANCE;
5355 }
5356 }
5357 } else if (left_level < right_level) {
5358 advance_right = ADVANCE;
5359 } else {
5360 advance_left = ADVANCE;
5361 }
5362 }
5363
5364 out:
5365 btrfs_free_path(left_path);
5366 btrfs_free_path(right_path);
5367 kfree(tmp_buf);
5368
5369 if (trans) {
5370 if (!ret)
5371 ret = btrfs_end_transaction(trans, left_root);
5372 else
5373 btrfs_end_transaction(trans, left_root);
5374 }
5375
5376 return ret;
5377 }
5378
5379 /*
5380 * this is similar to btrfs_next_leaf, but does not try to preserve
5381 * and fixup the path. It looks for and returns the next key in the
5382 * tree based on the current path and the min_trans parameters.
5383 *
5384 * 0 is returned if another key is found, < 0 if there are any errors
5385 * and 1 is returned if there are no higher keys in the tree
5386 *
5387 * path->keep_locks should be set to 1 on the search made before
5388 * calling this function.
5389 */
5390 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5391 struct btrfs_key *key, int level, u64 min_trans)
5392 {
5393 int slot;
5394 struct extent_buffer *c;
5395
5396 WARN_ON(!path->keep_locks);
5397 while (level < BTRFS_MAX_LEVEL) {
5398 if (!path->nodes[level])
5399 return 1;
5400
5401 slot = path->slots[level] + 1;
5402 c = path->nodes[level];
5403 next:
5404 if (slot >= btrfs_header_nritems(c)) {
5405 int ret;
5406 int orig_lowest;
5407 struct btrfs_key cur_key;
5408 if (level + 1 >= BTRFS_MAX_LEVEL ||
5409 !path->nodes[level + 1])
5410 return 1;
5411
5412 if (path->locks[level + 1]) {
5413 level++;
5414 continue;
5415 }
5416
5417 slot = btrfs_header_nritems(c) - 1;
5418 if (level == 0)
5419 btrfs_item_key_to_cpu(c, &cur_key, slot);
5420 else
5421 btrfs_node_key_to_cpu(c, &cur_key, slot);
5422
5423 orig_lowest = path->lowest_level;
5424 btrfs_release_path(path);
5425 path->lowest_level = level;
5426 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5427 0, 0);
5428 path->lowest_level = orig_lowest;
5429 if (ret < 0)
5430 return ret;
5431
5432 c = path->nodes[level];
5433 slot = path->slots[level];
5434 if (ret == 0)
5435 slot++;
5436 goto next;
5437 }
5438
5439 if (level == 0)
5440 btrfs_item_key_to_cpu(c, key, slot);
5441 else {
5442 u64 gen = btrfs_node_ptr_generation(c, slot);
5443
5444 if (gen < min_trans) {
5445 slot++;
5446 goto next;
5447 }
5448 btrfs_node_key_to_cpu(c, key, slot);
5449 }
5450 return 0;
5451 }
5452 return 1;
5453 }
5454
5455 /*
5456 * search the tree again to find a leaf with greater keys
5457 * returns 0 if it found something or 1 if there are no greater leaves.
5458 * returns < 0 on io errors.
5459 */
5460 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5461 {
5462 return btrfs_next_old_leaf(root, path, 0);
5463 }
5464
5465 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5466 u64 time_seq)
5467 {
5468 int slot;
5469 int level;
5470 struct extent_buffer *c;
5471 struct extent_buffer *next;
5472 struct btrfs_key key;
5473 u32 nritems;
5474 int ret;
5475 int old_spinning = path->leave_spinning;
5476 int next_rw_lock = 0;
5477
5478 nritems = btrfs_header_nritems(path->nodes[0]);
5479 if (nritems == 0)
5480 return 1;
5481
5482 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5483 again:
5484 level = 1;
5485 next = NULL;
5486 next_rw_lock = 0;
5487 btrfs_release_path(path);
5488
5489 path->keep_locks = 1;
5490 path->leave_spinning = 1;
5491
5492 if (time_seq)
5493 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5494 else
5495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5496 path->keep_locks = 0;
5497
5498 if (ret < 0)
5499 return ret;
5500
5501 nritems = btrfs_header_nritems(path->nodes[0]);
5502 /*
5503 * by releasing the path above we dropped all our locks. A balance
5504 * could have added more items next to the key that used to be
5505 * at the very end of the block. So, check again here and
5506 * advance the path if there are now more items available.
5507 */
5508 if (nritems > 0 && path->slots[0] < nritems - 1) {
5509 if (ret == 0)
5510 path->slots[0]++;
5511 ret = 0;
5512 goto done;
5513 }
5514
5515 while (level < BTRFS_MAX_LEVEL) {
5516 if (!path->nodes[level]) {
5517 ret = 1;
5518 goto done;
5519 }
5520
5521 slot = path->slots[level] + 1;
5522 c = path->nodes[level];
5523 if (slot >= btrfs_header_nritems(c)) {
5524 level++;
5525 if (level == BTRFS_MAX_LEVEL) {
5526 ret = 1;
5527 goto done;
5528 }
5529 continue;
5530 }
5531
5532 if (next) {
5533 btrfs_tree_unlock_rw(next, next_rw_lock);
5534 free_extent_buffer(next);
5535 }
5536
5537 next = c;
5538 next_rw_lock = path->locks[level];
5539 ret = read_block_for_search(NULL, root, path, &next, level,
5540 slot, &key, 0);
5541 if (ret == -EAGAIN)
5542 goto again;
5543
5544 if (ret < 0) {
5545 btrfs_release_path(path);
5546 goto done;
5547 }
5548
5549 if (!path->skip_locking) {
5550 ret = btrfs_try_tree_read_lock(next);
5551 if (!ret && time_seq) {
5552 /*
5553 * If we don't get the lock, we may be racing
5554 * with push_leaf_left, holding that lock while
5555 * itself waiting for the leaf we've currently
5556 * locked. To solve this situation, we give up
5557 * on our lock and cycle.
5558 */
5559 free_extent_buffer(next);
5560 btrfs_release_path(path);
5561 cond_resched();
5562 goto again;
5563 }
5564 if (!ret) {
5565 btrfs_set_path_blocking(path);
5566 btrfs_tree_read_lock(next);
5567 btrfs_clear_path_blocking(path, next,
5568 BTRFS_READ_LOCK);
5569 }
5570 next_rw_lock = BTRFS_READ_LOCK;
5571 }
5572 break;
5573 }
5574 path->slots[level] = slot;
5575 while (1) {
5576 level--;
5577 c = path->nodes[level];
5578 if (path->locks[level])
5579 btrfs_tree_unlock_rw(c, path->locks[level]);
5580
5581 free_extent_buffer(c);
5582 path->nodes[level] = next;
5583 path->slots[level] = 0;
5584 if (!path->skip_locking)
5585 path->locks[level] = next_rw_lock;
5586 if (!level)
5587 break;
5588
5589 ret = read_block_for_search(NULL, root, path, &next, level,
5590 0, &key, 0);
5591 if (ret == -EAGAIN)
5592 goto again;
5593
5594 if (ret < 0) {
5595 btrfs_release_path(path);
5596 goto done;
5597 }
5598
5599 if (!path->skip_locking) {
5600 ret = btrfs_try_tree_read_lock(next);
5601 if (!ret) {
5602 btrfs_set_path_blocking(path);
5603 btrfs_tree_read_lock(next);
5604 btrfs_clear_path_blocking(path, next,
5605 BTRFS_READ_LOCK);
5606 }
5607 next_rw_lock = BTRFS_READ_LOCK;
5608 }
5609 }
5610 ret = 0;
5611 done:
5612 unlock_up(path, 0, 1, 0, NULL);
5613 path->leave_spinning = old_spinning;
5614 if (!old_spinning)
5615 btrfs_set_path_blocking(path);
5616
5617 return ret;
5618 }
5619
5620 /*
5621 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5622 * searching until it gets past min_objectid or finds an item of 'type'
5623 *
5624 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5625 */
5626 int btrfs_previous_item(struct btrfs_root *root,
5627 struct btrfs_path *path, u64 min_objectid,
5628 int type)
5629 {
5630 struct btrfs_key found_key;
5631 struct extent_buffer *leaf;
5632 u32 nritems;
5633 int ret;
5634
5635 while (1) {
5636 if (path->slots[0] == 0) {
5637 btrfs_set_path_blocking(path);
5638 ret = btrfs_prev_leaf(root, path);
5639 if (ret != 0)
5640 return ret;
5641 } else {
5642 path->slots[0]--;
5643 }
5644 leaf = path->nodes[0];
5645 nritems = btrfs_header_nritems(leaf);
5646 if (nritems == 0)
5647 return 1;
5648 if (path->slots[0] == nritems)
5649 path->slots[0]--;
5650
5651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5652 if (found_key.objectid < min_objectid)
5653 break;
5654 if (found_key.type == type)
5655 return 0;
5656 if (found_key.objectid == min_objectid &&
5657 found_key.type < type)
5658 break;
5659 }
5660 return 1;
5661 }
This page took 0.16855 seconds and 5 git commands to generate.