Btrfs: change around extent-tree prealloc
[deliverable/linux.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7 *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9 *root, struct btrfs_key *ins_key,
10 struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12 *root, struct buffer_head *dst, struct buffer_head
13 *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15 btrfs_root *root, struct buffer_head *dst_buf,
16 struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18 struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22 memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27 struct btrfs_path *path;
28 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29 if (path)
30 btrfs_init_path(path);
31 return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36 btrfs_release_path(NULL, p);
37 kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42 int i;
43 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44 if (!p->nodes[i])
45 break;
46 btrfs_block_release(root, p->nodes[i]);
47 }
48 memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52 *root, struct buffer_head *buf, struct buffer_head
53 *parent, int parent_slot, struct buffer_head
54 **cow_ret)
55 {
56 struct buffer_head *cow;
57 struct btrfs_node *cow_node;
58
59 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60 trans->transid) {
61 *cow_ret = buf;
62 return 0;
63 }
64 cow = btrfs_alloc_free_block(trans, root);
65 cow_node = btrfs_buffer_node(cow);
66 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67 WARN_ON(1);
68 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
70 btrfs_set_header_generation(&cow_node->header, trans->transid);
71 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
72 btrfs_inc_ref(trans, root, buf);
73 if (buf == root->node) {
74 root->node = cow;
75 get_bh(cow);
76 if (buf != root->commit_root) {
77 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
78 }
79 btrfs_block_release(root, buf);
80 } else {
81 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
82 bh_blocknr(cow));
83 btrfs_mark_buffer_dirty(parent);
84 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
85 }
86 btrfs_block_release(root, buf);
87 mark_buffer_dirty(cow);
88 *cow_ret = cow;
89 return 0;
90 }
91
92 /*
93 * The leaf data grows from end-to-front in the node.
94 * this returns the address of the start of the last item,
95 * which is the stop of the leaf data stack
96 */
97 static inline unsigned int leaf_data_end(struct btrfs_root *root,
98 struct btrfs_leaf *leaf)
99 {
100 u32 nr = btrfs_header_nritems(&leaf->header);
101 if (nr == 0)
102 return BTRFS_LEAF_DATA_SIZE(root);
103 return btrfs_item_offset(leaf->items + nr - 1);
104 }
105
106 /*
107 * compare two keys in a memcmp fashion
108 */
109 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
110 {
111 struct btrfs_key k1;
112
113 btrfs_disk_key_to_cpu(&k1, disk);
114
115 if (k1.objectid > k2->objectid)
116 return 1;
117 if (k1.objectid < k2->objectid)
118 return -1;
119 if (k1.flags > k2->flags)
120 return 1;
121 if (k1.flags < k2->flags)
122 return -1;
123 if (k1.offset > k2->offset)
124 return 1;
125 if (k1.offset < k2->offset)
126 return -1;
127 return 0;
128 }
129
130 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
131 int level)
132 {
133 int i;
134 struct btrfs_node *parent = NULL;
135 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
136 int parent_slot;
137 u32 nritems = btrfs_header_nritems(&node->header);
138
139 if (path->nodes[level + 1])
140 parent = btrfs_buffer_node(path->nodes[level + 1]);
141 parent_slot = path->slots[level + 1];
142 BUG_ON(nritems == 0);
143 if (parent) {
144 struct btrfs_disk_key *parent_key;
145 parent_key = &parent->ptrs[parent_slot].key;
146 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
147 sizeof(struct btrfs_disk_key)));
148 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
149 btrfs_header_blocknr(&node->header));
150 }
151 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
152 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
153 struct btrfs_key cpukey;
154 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
155 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
156 }
157 return 0;
158 }
159
160 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
161 int level)
162 {
163 int i;
164 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
165 struct btrfs_node *parent = NULL;
166 int parent_slot;
167 u32 nritems = btrfs_header_nritems(&leaf->header);
168
169 if (path->nodes[level + 1])
170 parent = btrfs_buffer_node(path->nodes[level + 1]);
171 parent_slot = path->slots[level + 1];
172 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
173
174 if (nritems == 0)
175 return 0;
176
177 if (parent) {
178 struct btrfs_disk_key *parent_key;
179 parent_key = &parent->ptrs[parent_slot].key;
180 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
181 sizeof(struct btrfs_disk_key)));
182 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
183 btrfs_header_blocknr(&leaf->header));
184 }
185 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
186 struct btrfs_key cpukey;
187 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
188 BUG_ON(comp_keys(&leaf->items[i].key,
189 &cpukey) >= 0);
190 BUG_ON(btrfs_item_offset(leaf->items + i) !=
191 btrfs_item_end(leaf->items + i + 1));
192 if (i == 0) {
193 BUG_ON(btrfs_item_offset(leaf->items + i) +
194 btrfs_item_size(leaf->items + i) !=
195 BTRFS_LEAF_DATA_SIZE(root));
196 }
197 }
198 return 0;
199 }
200
201 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
202 int level)
203 {
204 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
205 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
206 sizeof(node->header.fsid)))
207 BUG();
208 if (level == 0)
209 return check_leaf(root, path, level);
210 return check_node(root, path, level);
211 }
212
213 /*
214 * search for key in the array p. items p are item_size apart
215 * and there are 'max' items in p
216 * the slot in the array is returned via slot, and it points to
217 * the place where you would insert key if it is not found in
218 * the array.
219 *
220 * slot may point to max if the key is bigger than all of the keys
221 */
222 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
223 int max, int *slot)
224 {
225 int low = 0;
226 int high = max;
227 int mid;
228 int ret;
229 struct btrfs_disk_key *tmp;
230
231 while(low < high) {
232 mid = (low + high) / 2;
233 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
234 ret = comp_keys(tmp, key);
235
236 if (ret < 0)
237 low = mid + 1;
238 else if (ret > 0)
239 high = mid;
240 else {
241 *slot = mid;
242 return 0;
243 }
244 }
245 *slot = low;
246 return 1;
247 }
248
249 /*
250 * simple bin_search frontend that does the right thing for
251 * leaves vs nodes
252 */
253 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
254 {
255 if (btrfs_is_leaf(c)) {
256 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
257 return generic_bin_search((void *)l->items,
258 sizeof(struct btrfs_item),
259 key, btrfs_header_nritems(&c->header),
260 slot);
261 } else {
262 return generic_bin_search((void *)c->ptrs,
263 sizeof(struct btrfs_key_ptr),
264 key, btrfs_header_nritems(&c->header),
265 slot);
266 }
267 return -1;
268 }
269
270 static struct buffer_head *read_node_slot(struct btrfs_root *root,
271 struct buffer_head *parent_buf,
272 int slot)
273 {
274 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
275 if (slot < 0)
276 return NULL;
277 if (slot >= btrfs_header_nritems(&node->header))
278 return NULL;
279 return read_tree_block(root, btrfs_node_blockptr(node, slot));
280 }
281
282 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
283 *root, struct btrfs_path *path, int level)
284 {
285 struct buffer_head *right_buf;
286 struct buffer_head *mid_buf;
287 struct buffer_head *left_buf;
288 struct buffer_head *parent_buf = NULL;
289 struct btrfs_node *right = NULL;
290 struct btrfs_node *mid;
291 struct btrfs_node *left = NULL;
292 struct btrfs_node *parent = NULL;
293 int ret = 0;
294 int wret;
295 int pslot;
296 int orig_slot = path->slots[level];
297 u64 orig_ptr;
298
299 if (level == 0)
300 return 0;
301
302 mid_buf = path->nodes[level];
303 mid = btrfs_buffer_node(mid_buf);
304 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
305
306 if (level < BTRFS_MAX_LEVEL - 1)
307 parent_buf = path->nodes[level + 1];
308 pslot = path->slots[level + 1];
309
310 /*
311 * deal with the case where there is only one pointer in the root
312 * by promoting the node below to a root
313 */
314 if (!parent_buf) {
315 struct buffer_head *child;
316 u64 blocknr = bh_blocknr(mid_buf);
317
318 if (btrfs_header_nritems(&mid->header) != 1)
319 return 0;
320
321 /* promote the child to a root */
322 child = read_node_slot(root, mid_buf, 0);
323 BUG_ON(!child);
324 root->node = child;
325 path->nodes[level] = NULL;
326 clean_tree_block(trans, root, mid_buf);
327 wait_on_buffer(mid_buf);
328 /* once for the path */
329 btrfs_block_release(root, mid_buf);
330 /* once for the root ptr */
331 btrfs_block_release(root, mid_buf);
332 return btrfs_free_extent(trans, root, blocknr, 1, 1);
333 }
334 parent = btrfs_buffer_node(parent_buf);
335
336 if (btrfs_header_nritems(&mid->header) >
337 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
338 return 0;
339
340 left_buf = read_node_slot(root, parent_buf, pslot - 1);
341 right_buf = read_node_slot(root, parent_buf, pslot + 1);
342
343 /* first, try to make some room in the middle buffer */
344 if (left_buf) {
345 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
346 &left_buf);
347 left = btrfs_buffer_node(left_buf);
348 orig_slot += btrfs_header_nritems(&left->header);
349 wret = push_node_left(trans, root, left_buf, mid_buf);
350 if (wret < 0)
351 ret = wret;
352 }
353
354 /*
355 * then try to empty the right most buffer into the middle
356 */
357 if (right_buf) {
358 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
359 &right_buf);
360 right = btrfs_buffer_node(right_buf);
361 wret = push_node_left(trans, root, mid_buf, right_buf);
362 if (wret < 0)
363 ret = wret;
364 if (btrfs_header_nritems(&right->header) == 0) {
365 u64 blocknr = bh_blocknr(right_buf);
366 clean_tree_block(trans, root, right_buf);
367 wait_on_buffer(right_buf);
368 btrfs_block_release(root, right_buf);
369 right_buf = NULL;
370 right = NULL;
371 wret = del_ptr(trans, root, path, level + 1, pslot +
372 1);
373 if (wret)
374 ret = wret;
375 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
376 if (wret)
377 ret = wret;
378 } else {
379 btrfs_memcpy(root, parent,
380 &parent->ptrs[pslot + 1].key,
381 &right->ptrs[0].key,
382 sizeof(struct btrfs_disk_key));
383 btrfs_mark_buffer_dirty(parent_buf);
384 }
385 }
386 if (btrfs_header_nritems(&mid->header) == 1) {
387 /*
388 * we're not allowed to leave a node with one item in the
389 * tree during a delete. A deletion from lower in the tree
390 * could try to delete the only pointer in this node.
391 * So, pull some keys from the left.
392 * There has to be a left pointer at this point because
393 * otherwise we would have pulled some pointers from the
394 * right
395 */
396 BUG_ON(!left_buf);
397 wret = balance_node_right(trans, root, mid_buf, left_buf);
398 if (wret < 0)
399 ret = wret;
400 BUG_ON(wret == 1);
401 }
402 if (btrfs_header_nritems(&mid->header) == 0) {
403 /* we've managed to empty the middle node, drop it */
404 u64 blocknr = bh_blocknr(mid_buf);
405 clean_tree_block(trans, root, mid_buf);
406 wait_on_buffer(mid_buf);
407 btrfs_block_release(root, mid_buf);
408 mid_buf = NULL;
409 mid = NULL;
410 wret = del_ptr(trans, root, path, level + 1, pslot);
411 if (wret)
412 ret = wret;
413 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
414 if (wret)
415 ret = wret;
416 } else {
417 /* update the parent key to reflect our changes */
418 btrfs_memcpy(root, parent,
419 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
420 sizeof(struct btrfs_disk_key));
421 btrfs_mark_buffer_dirty(parent_buf);
422 }
423
424 /* update the path */
425 if (left_buf) {
426 if (btrfs_header_nritems(&left->header) > orig_slot) {
427 get_bh(left_buf);
428 path->nodes[level] = left_buf;
429 path->slots[level + 1] -= 1;
430 path->slots[level] = orig_slot;
431 if (mid_buf)
432 btrfs_block_release(root, mid_buf);
433 } else {
434 orig_slot -= btrfs_header_nritems(&left->header);
435 path->slots[level] = orig_slot;
436 }
437 }
438 /* double check we haven't messed things up */
439 check_block(root, path, level);
440 if (orig_ptr !=
441 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
442 path->slots[level]))
443 BUG();
444
445 if (right_buf)
446 btrfs_block_release(root, right_buf);
447 if (left_buf)
448 btrfs_block_release(root, left_buf);
449 return ret;
450 }
451
452 /* returns zero if the push worked, non-zero otherwise */
453 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
454 struct btrfs_root *root,
455 struct btrfs_path *path, int level)
456 {
457 struct buffer_head *right_buf;
458 struct buffer_head *mid_buf;
459 struct buffer_head *left_buf;
460 struct buffer_head *parent_buf = NULL;
461 struct btrfs_node *right = NULL;
462 struct btrfs_node *mid;
463 struct btrfs_node *left = NULL;
464 struct btrfs_node *parent = NULL;
465 int ret = 0;
466 int wret;
467 int pslot;
468 int orig_slot = path->slots[level];
469 u64 orig_ptr;
470
471 if (level == 0)
472 return 1;
473
474 mid_buf = path->nodes[level];
475 mid = btrfs_buffer_node(mid_buf);
476 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
477
478 if (level < BTRFS_MAX_LEVEL - 1)
479 parent_buf = path->nodes[level + 1];
480 pslot = path->slots[level + 1];
481
482 if (!parent_buf)
483 return 1;
484 parent = btrfs_buffer_node(parent_buf);
485
486 left_buf = read_node_slot(root, parent_buf, pslot - 1);
487
488 /* first, try to make some room in the middle buffer */
489 if (left_buf) {
490 u32 left_nr;
491 left = btrfs_buffer_node(left_buf);
492 left_nr = btrfs_header_nritems(&left->header);
493 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
494 wret = 1;
495 } else {
496 btrfs_cow_block(trans, root, left_buf, parent_buf,
497 pslot - 1, &left_buf);
498 left = btrfs_buffer_node(left_buf);
499 wret = push_node_left(trans, root, left_buf, mid_buf);
500 }
501 if (wret < 0)
502 ret = wret;
503 if (wret == 0) {
504 orig_slot += left_nr;
505 btrfs_memcpy(root, parent,
506 &parent->ptrs[pslot].key,
507 &mid->ptrs[0].key,
508 sizeof(struct btrfs_disk_key));
509 btrfs_mark_buffer_dirty(parent_buf);
510 if (btrfs_header_nritems(&left->header) > orig_slot) {
511 path->nodes[level] = left_buf;
512 path->slots[level + 1] -= 1;
513 path->slots[level] = orig_slot;
514 btrfs_block_release(root, mid_buf);
515 } else {
516 orig_slot -=
517 btrfs_header_nritems(&left->header);
518 path->slots[level] = orig_slot;
519 btrfs_block_release(root, left_buf);
520 }
521 check_node(root, path, level);
522 return 0;
523 }
524 btrfs_block_release(root, left_buf);
525 }
526 right_buf = read_node_slot(root, parent_buf, pslot + 1);
527
528 /*
529 * then try to empty the right most buffer into the middle
530 */
531 if (right_buf) {
532 u32 right_nr;
533 right = btrfs_buffer_node(right_buf);
534 right_nr = btrfs_header_nritems(&right->header);
535 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
536 wret = 1;
537 } else {
538 btrfs_cow_block(trans, root, right_buf,
539 parent_buf, pslot + 1, &right_buf);
540 right = btrfs_buffer_node(right_buf);
541 wret = balance_node_right(trans, root,
542 right_buf, mid_buf);
543 }
544 if (wret < 0)
545 ret = wret;
546 if (wret == 0) {
547 btrfs_memcpy(root, parent,
548 &parent->ptrs[pslot + 1].key,
549 &right->ptrs[0].key,
550 sizeof(struct btrfs_disk_key));
551 btrfs_mark_buffer_dirty(parent_buf);
552 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
553 path->nodes[level] = right_buf;
554 path->slots[level + 1] += 1;
555 path->slots[level] = orig_slot -
556 btrfs_header_nritems(&mid->header);
557 btrfs_block_release(root, mid_buf);
558 } else {
559 btrfs_block_release(root, right_buf);
560 }
561 check_node(root, path, level);
562 return 0;
563 }
564 btrfs_block_release(root, right_buf);
565 }
566 check_node(root, path, level);
567 return 1;
568 }
569
570 /*
571 * look for key in the tree. path is filled in with nodes along the way
572 * if key is found, we return zero and you can find the item in the leaf
573 * level of the path (level 0)
574 *
575 * If the key isn't found, the path points to the slot where it should
576 * be inserted, and 1 is returned. If there are other errors during the
577 * search a negative error number is returned.
578 *
579 * if ins_len > 0, nodes and leaves will be split as we walk down the
580 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
581 * possible)
582 */
583 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
584 *root, struct btrfs_key *key, struct btrfs_path *p, int
585 ins_len, int cow)
586 {
587 struct buffer_head *b;
588 struct buffer_head *cow_buf;
589 struct btrfs_node *c;
590 int slot;
591 int ret;
592 int level;
593
594 WARN_ON(p->nodes[0] != NULL);
595 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
596 again:
597 b = root->node;
598 get_bh(b);
599 while (b) {
600 c = btrfs_buffer_node(b);
601 level = btrfs_header_level(&c->header);
602 if (cow) {
603 int wret;
604 wret = btrfs_cow_block(trans, root, b,
605 p->nodes[level + 1],
606 p->slots[level + 1],
607 &cow_buf);
608 b = cow_buf;
609 c = btrfs_buffer_node(b);
610 }
611 BUG_ON(!cow && ins_len);
612 if (level != btrfs_header_level(&c->header))
613 WARN_ON(1);
614 level = btrfs_header_level(&c->header);
615 p->nodes[level] = b;
616 ret = check_block(root, p, level);
617 if (ret)
618 return -1;
619 ret = bin_search(c, key, &slot);
620 if (!btrfs_is_leaf(c)) {
621 if (ret && slot > 0)
622 slot -= 1;
623 p->slots[level] = slot;
624 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
625 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
626 int sret = split_node(trans, root, p, level);
627 BUG_ON(sret > 0);
628 if (sret)
629 return sret;
630 b = p->nodes[level];
631 c = btrfs_buffer_node(b);
632 slot = p->slots[level];
633 } else if (ins_len < 0) {
634 int sret = balance_level(trans, root, p,
635 level);
636 if (sret)
637 return sret;
638 b = p->nodes[level];
639 if (!b)
640 goto again;
641 c = btrfs_buffer_node(b);
642 slot = p->slots[level];
643 BUG_ON(btrfs_header_nritems(&c->header) == 1);
644 }
645 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
646 } else {
647 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
648 p->slots[level] = slot;
649 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
650 sizeof(struct btrfs_item) + ins_len) {
651 int sret = split_leaf(trans, root, key,
652 p, ins_len);
653 BUG_ON(sret > 0);
654 if (sret)
655 return sret;
656 }
657 return ret;
658 }
659 }
660 return 1;
661 }
662
663 /*
664 * adjust the pointers going up the tree, starting at level
665 * making sure the right key of each node is points to 'key'.
666 * This is used after shifting pointers to the left, so it stops
667 * fixing up pointers when a given leaf/node is not in slot 0 of the
668 * higher levels
669 *
670 * If this fails to write a tree block, it returns -1, but continues
671 * fixing up the blocks in ram so the tree is consistent.
672 */
673 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
674 *root, struct btrfs_path *path, struct btrfs_disk_key
675 *key, int level)
676 {
677 int i;
678 int ret = 0;
679 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
680 struct btrfs_node *t;
681 int tslot = path->slots[i];
682 if (!path->nodes[i])
683 break;
684 t = btrfs_buffer_node(path->nodes[i]);
685 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
686 btrfs_mark_buffer_dirty(path->nodes[i]);
687 if (tslot != 0)
688 break;
689 }
690 return ret;
691 }
692
693 /*
694 * try to push data from one node into the next node left in the
695 * tree.
696 *
697 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
698 * error, and > 0 if there was no room in the left hand block.
699 */
700 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
701 *root, struct buffer_head *dst_buf, struct
702 buffer_head *src_buf)
703 {
704 struct btrfs_node *src = btrfs_buffer_node(src_buf);
705 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
706 int push_items = 0;
707 int src_nritems;
708 int dst_nritems;
709 int ret = 0;
710
711 src_nritems = btrfs_header_nritems(&src->header);
712 dst_nritems = btrfs_header_nritems(&dst->header);
713 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
714 if (push_items <= 0) {
715 return 1;
716 }
717
718 if (src_nritems < push_items)
719 push_items = src_nritems;
720
721 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
722 push_items * sizeof(struct btrfs_key_ptr));
723 if (push_items < src_nritems) {
724 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
725 (src_nritems - push_items) *
726 sizeof(struct btrfs_key_ptr));
727 }
728 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
729 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
730 btrfs_mark_buffer_dirty(src_buf);
731 btrfs_mark_buffer_dirty(dst_buf);
732 return ret;
733 }
734
735 /*
736 * try to push data from one node into the next node right in the
737 * tree.
738 *
739 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
740 * error, and > 0 if there was no room in the right hand block.
741 *
742 * this will only push up to 1/2 the contents of the left node over
743 */
744 static int balance_node_right(struct btrfs_trans_handle *trans, struct
745 btrfs_root *root, struct buffer_head *dst_buf,
746 struct buffer_head *src_buf)
747 {
748 struct btrfs_node *src = btrfs_buffer_node(src_buf);
749 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
750 int push_items = 0;
751 int max_push;
752 int src_nritems;
753 int dst_nritems;
754 int ret = 0;
755
756 src_nritems = btrfs_header_nritems(&src->header);
757 dst_nritems = btrfs_header_nritems(&dst->header);
758 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
759 if (push_items <= 0) {
760 return 1;
761 }
762
763 max_push = src_nritems / 2 + 1;
764 /* don't try to empty the node */
765 if (max_push > src_nritems)
766 return 1;
767 if (max_push < push_items)
768 push_items = max_push;
769
770 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
771 dst_nritems * sizeof(struct btrfs_key_ptr));
772
773 btrfs_memcpy(root, dst, dst->ptrs,
774 src->ptrs + src_nritems - push_items,
775 push_items * sizeof(struct btrfs_key_ptr));
776
777 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
778 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
779
780 btrfs_mark_buffer_dirty(src_buf);
781 btrfs_mark_buffer_dirty(dst_buf);
782 return ret;
783 }
784
785 /*
786 * helper function to insert a new root level in the tree.
787 * A new node is allocated, and a single item is inserted to
788 * point to the existing root
789 *
790 * returns zero on success or < 0 on failure.
791 */
792 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
793 *root, struct btrfs_path *path, int level)
794 {
795 struct buffer_head *t;
796 struct btrfs_node *lower;
797 struct btrfs_node *c;
798 struct btrfs_disk_key *lower_key;
799
800 BUG_ON(path->nodes[level]);
801 BUG_ON(path->nodes[level-1] != root->node);
802
803 t = btrfs_alloc_free_block(trans, root);
804 c = btrfs_buffer_node(t);
805 memset(c, 0, root->blocksize);
806 btrfs_set_header_nritems(&c->header, 1);
807 btrfs_set_header_level(&c->header, level);
808 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
809 btrfs_set_header_generation(&c->header, trans->transid);
810 btrfs_set_header_owner(&c->header, root->root_key.objectid);
811 lower = btrfs_buffer_node(path->nodes[level-1]);
812 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
813 sizeof(c->header.fsid));
814 if (btrfs_is_leaf(lower))
815 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
816 else
817 lower_key = &lower->ptrs[0].key;
818 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
819 sizeof(struct btrfs_disk_key));
820 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
821
822 btrfs_mark_buffer_dirty(t);
823
824 /* the super has an extra ref to root->node */
825 btrfs_block_release(root, root->node);
826 root->node = t;
827 get_bh(t);
828 path->nodes[level] = t;
829 path->slots[level] = 0;
830 return 0;
831 }
832
833 /*
834 * worker function to insert a single pointer in a node.
835 * the node should have enough room for the pointer already
836 *
837 * slot and level indicate where you want the key to go, and
838 * blocknr is the block the key points to.
839 *
840 * returns zero on success and < 0 on any error
841 */
842 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
843 *root, struct btrfs_path *path, struct btrfs_disk_key
844 *key, u64 blocknr, int slot, int level)
845 {
846 struct btrfs_node *lower;
847 int nritems;
848
849 BUG_ON(!path->nodes[level]);
850 lower = btrfs_buffer_node(path->nodes[level]);
851 nritems = btrfs_header_nritems(&lower->header);
852 if (slot > nritems)
853 BUG();
854 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
855 BUG();
856 if (slot != nritems) {
857 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
858 lower->ptrs + slot,
859 (nritems - slot) * sizeof(struct btrfs_key_ptr));
860 }
861 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
862 key, sizeof(struct btrfs_disk_key));
863 btrfs_set_node_blockptr(lower, slot, blocknr);
864 btrfs_set_header_nritems(&lower->header, nritems + 1);
865 btrfs_mark_buffer_dirty(path->nodes[level]);
866 return 0;
867 }
868
869 /*
870 * split the node at the specified level in path in two.
871 * The path is corrected to point to the appropriate node after the split
872 *
873 * Before splitting this tries to make some room in the node by pushing
874 * left and right, if either one works, it returns right away.
875 *
876 * returns 0 on success and < 0 on failure
877 */
878 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
879 *root, struct btrfs_path *path, int level)
880 {
881 struct buffer_head *t;
882 struct btrfs_node *c;
883 struct buffer_head *split_buffer;
884 struct btrfs_node *split;
885 int mid;
886 int ret;
887 int wret;
888 u32 c_nritems;
889
890 t = path->nodes[level];
891 c = btrfs_buffer_node(t);
892 if (t == root->node) {
893 /* trying to split the root, lets make a new one */
894 ret = insert_new_root(trans, root, path, level + 1);
895 if (ret)
896 return ret;
897 } else {
898 ret = push_nodes_for_insert(trans, root, path, level);
899 t = path->nodes[level];
900 c = btrfs_buffer_node(t);
901 if (!ret &&
902 btrfs_header_nritems(&c->header) <
903 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
904 return 0;
905 }
906
907 c_nritems = btrfs_header_nritems(&c->header);
908 split_buffer = btrfs_alloc_free_block(trans, root);
909 split = btrfs_buffer_node(split_buffer);
910 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
911 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
912 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
913 btrfs_set_header_generation(&split->header, trans->transid);
914 btrfs_set_header_owner(&split->header, root->root_key.objectid);
915 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
916 sizeof(split->header.fsid));
917 mid = (c_nritems + 1) / 2;
918 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
919 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
920 btrfs_set_header_nritems(&split->header, c_nritems - mid);
921 btrfs_set_header_nritems(&c->header, mid);
922 ret = 0;
923
924 btrfs_mark_buffer_dirty(t);
925 btrfs_mark_buffer_dirty(split_buffer);
926 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
927 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
928 level + 1);
929 if (wret)
930 ret = wret;
931
932 if (path->slots[level] >= mid) {
933 path->slots[level] -= mid;
934 btrfs_block_release(root, t);
935 path->nodes[level] = split_buffer;
936 path->slots[level + 1] += 1;
937 } else {
938 btrfs_block_release(root, split_buffer);
939 }
940 return ret;
941 }
942
943 /*
944 * how many bytes are required to store the items in a leaf. start
945 * and nr indicate which items in the leaf to check. This totals up the
946 * space used both by the item structs and the item data
947 */
948 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
949 {
950 int data_len;
951 int nritems = btrfs_header_nritems(&l->header);
952 int end = min(nritems, start + nr) - 1;
953
954 if (!nr)
955 return 0;
956 data_len = btrfs_item_end(l->items + start);
957 data_len = data_len - btrfs_item_offset(l->items + end);
958 data_len += sizeof(struct btrfs_item) * nr;
959 WARN_ON(data_len < 0);
960 return data_len;
961 }
962
963 /*
964 * The space between the end of the leaf items and
965 * the start of the leaf data. IOW, how much room
966 * the leaf has left for both items and data
967 */
968 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
969 {
970 int nritems = btrfs_header_nritems(&leaf->header);
971 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
972 }
973
974 /*
975 * push some data in the path leaf to the right, trying to free up at
976 * least data_size bytes. returns zero if the push worked, nonzero otherwise
977 *
978 * returns 1 if the push failed because the other node didn't have enough
979 * room, 0 if everything worked out and < 0 if there were major errors.
980 */
981 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
982 *root, struct btrfs_path *path, int data_size)
983 {
984 struct buffer_head *left_buf = path->nodes[0];
985 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
986 struct btrfs_leaf *right;
987 struct buffer_head *right_buf;
988 struct buffer_head *upper;
989 struct btrfs_node *upper_node;
990 int slot;
991 int i;
992 int free_space;
993 int push_space = 0;
994 int push_items = 0;
995 struct btrfs_item *item;
996 u32 left_nritems;
997 u32 right_nritems;
998
999 slot = path->slots[1];
1000 if (!path->nodes[1]) {
1001 return 1;
1002 }
1003 upper = path->nodes[1];
1004 upper_node = btrfs_buffer_node(upper);
1005 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1006 return 1;
1007 }
1008 right_buf = read_tree_block(root,
1009 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1010 right = btrfs_buffer_leaf(right_buf);
1011 free_space = btrfs_leaf_free_space(root, right);
1012 if (free_space < data_size + sizeof(struct btrfs_item)) {
1013 btrfs_block_release(root, right_buf);
1014 return 1;
1015 }
1016 /* cow and double check */
1017 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
1018 right = btrfs_buffer_leaf(right_buf);
1019 free_space = btrfs_leaf_free_space(root, right);
1020 if (free_space < data_size + sizeof(struct btrfs_item)) {
1021 btrfs_block_release(root, right_buf);
1022 return 1;
1023 }
1024
1025 left_nritems = btrfs_header_nritems(&left->header);
1026 if (left_nritems == 0) {
1027 btrfs_block_release(root, right_buf);
1028 return 1;
1029 }
1030 for (i = left_nritems - 1; i >= 1; i--) {
1031 item = left->items + i;
1032 if (path->slots[0] == i)
1033 push_space += data_size + sizeof(*item);
1034 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1035 free_space)
1036 break;
1037 push_items++;
1038 push_space += btrfs_item_size(item) + sizeof(*item);
1039 }
1040 if (push_items == 0) {
1041 btrfs_block_release(root, right_buf);
1042 return 1;
1043 }
1044 if (push_items == left_nritems)
1045 WARN_ON(1);
1046 right_nritems = btrfs_header_nritems(&right->header);
1047 /* push left to right */
1048 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1049 push_space -= leaf_data_end(root, left);
1050 /* make room in the right data area */
1051 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1052 leaf_data_end(root, right) - push_space,
1053 btrfs_leaf_data(right) +
1054 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1055 leaf_data_end(root, right));
1056 /* copy from the left data area */
1057 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1058 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1059 btrfs_leaf_data(left) + leaf_data_end(root, left),
1060 push_space);
1061 btrfs_memmove(root, right, right->items + push_items, right->items,
1062 right_nritems * sizeof(struct btrfs_item));
1063 /* copy the items from left to right */
1064 btrfs_memcpy(root, right, right->items, left->items +
1065 left_nritems - push_items,
1066 push_items * sizeof(struct btrfs_item));
1067
1068 /* update the item pointers */
1069 right_nritems += push_items;
1070 btrfs_set_header_nritems(&right->header, right_nritems);
1071 push_space = BTRFS_LEAF_DATA_SIZE(root);
1072 for (i = 0; i < right_nritems; i++) {
1073 btrfs_set_item_offset(right->items + i, push_space -
1074 btrfs_item_size(right->items + i));
1075 push_space = btrfs_item_offset(right->items + i);
1076 }
1077 left_nritems -= push_items;
1078 btrfs_set_header_nritems(&left->header, left_nritems);
1079
1080 btrfs_mark_buffer_dirty(left_buf);
1081 btrfs_mark_buffer_dirty(right_buf);
1082
1083 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1084 &right->items[0].key, sizeof(struct btrfs_disk_key));
1085 btrfs_mark_buffer_dirty(upper);
1086
1087 /* then fixup the leaf pointer in the path */
1088 if (path->slots[0] >= left_nritems) {
1089 path->slots[0] -= left_nritems;
1090 btrfs_block_release(root, path->nodes[0]);
1091 path->nodes[0] = right_buf;
1092 path->slots[1] += 1;
1093 } else {
1094 btrfs_block_release(root, right_buf);
1095 }
1096 return 0;
1097 }
1098 /*
1099 * push some data in the path leaf to the left, trying to free up at
1100 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1101 */
1102 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1103 *root, struct btrfs_path *path, int data_size)
1104 {
1105 struct buffer_head *right_buf = path->nodes[0];
1106 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1107 struct buffer_head *t;
1108 struct btrfs_leaf *left;
1109 int slot;
1110 int i;
1111 int free_space;
1112 int push_space = 0;
1113 int push_items = 0;
1114 struct btrfs_item *item;
1115 u32 old_left_nritems;
1116 int ret = 0;
1117 int wret;
1118
1119 slot = path->slots[1];
1120 if (slot == 0) {
1121 return 1;
1122 }
1123 if (!path->nodes[1]) {
1124 return 1;
1125 }
1126 t = read_tree_block(root,
1127 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1128 left = btrfs_buffer_leaf(t);
1129 free_space = btrfs_leaf_free_space(root, left);
1130 if (free_space < data_size + sizeof(struct btrfs_item)) {
1131 btrfs_block_release(root, t);
1132 return 1;
1133 }
1134
1135 /* cow and double check */
1136 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1137 left = btrfs_buffer_leaf(t);
1138 free_space = btrfs_leaf_free_space(root, left);
1139 if (free_space < data_size + sizeof(struct btrfs_item)) {
1140 btrfs_block_release(root, t);
1141 return 1;
1142 }
1143
1144 if (btrfs_header_nritems(&right->header) == 0) {
1145 btrfs_block_release(root, t);
1146 return 1;
1147 }
1148
1149 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1150 item = right->items + i;
1151 if (path->slots[0] == i)
1152 push_space += data_size + sizeof(*item);
1153 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1154 free_space)
1155 break;
1156 push_items++;
1157 push_space += btrfs_item_size(item) + sizeof(*item);
1158 }
1159 if (push_items == 0) {
1160 btrfs_block_release(root, t);
1161 return 1;
1162 }
1163 if (push_items == btrfs_header_nritems(&right->header))
1164 WARN_ON(1);
1165 /* push data from right to left */
1166 btrfs_memcpy(root, left, left->items +
1167 btrfs_header_nritems(&left->header),
1168 right->items, push_items * sizeof(struct btrfs_item));
1169 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1170 btrfs_item_offset(right->items + push_items -1);
1171 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1172 leaf_data_end(root, left) - push_space,
1173 btrfs_leaf_data(right) +
1174 btrfs_item_offset(right->items + push_items - 1),
1175 push_space);
1176 old_left_nritems = btrfs_header_nritems(&left->header);
1177 BUG_ON(old_left_nritems < 0);
1178
1179 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1180 u32 ioff = btrfs_item_offset(left->items + i);
1181 btrfs_set_item_offset(left->items + i, ioff -
1182 (BTRFS_LEAF_DATA_SIZE(root) -
1183 btrfs_item_offset(left->items +
1184 old_left_nritems - 1)));
1185 }
1186 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1187
1188 /* fixup right node */
1189 push_space = btrfs_item_offset(right->items + push_items - 1) -
1190 leaf_data_end(root, right);
1191 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1192 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1193 btrfs_leaf_data(right) +
1194 leaf_data_end(root, right), push_space);
1195 btrfs_memmove(root, right, right->items, right->items + push_items,
1196 (btrfs_header_nritems(&right->header) - push_items) *
1197 sizeof(struct btrfs_item));
1198 btrfs_set_header_nritems(&right->header,
1199 btrfs_header_nritems(&right->header) -
1200 push_items);
1201 push_space = BTRFS_LEAF_DATA_SIZE(root);
1202
1203 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1204 btrfs_set_item_offset(right->items + i, push_space -
1205 btrfs_item_size(right->items + i));
1206 push_space = btrfs_item_offset(right->items + i);
1207 }
1208
1209 btrfs_mark_buffer_dirty(t);
1210 btrfs_mark_buffer_dirty(right_buf);
1211 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1212 if (wret)
1213 ret = wret;
1214
1215 /* then fixup the leaf pointer in the path */
1216 if (path->slots[0] < push_items) {
1217 path->slots[0] += old_left_nritems;
1218 btrfs_block_release(root, path->nodes[0]);
1219 path->nodes[0] = t;
1220 path->slots[1] -= 1;
1221 } else {
1222 btrfs_block_release(root, t);
1223 path->slots[0] -= push_items;
1224 }
1225 BUG_ON(path->slots[0] < 0);
1226 return ret;
1227 }
1228
1229 /*
1230 * split the path's leaf in two, making sure there is at least data_size
1231 * available for the resulting leaf level of the path.
1232 *
1233 * returns 0 if all went well and < 0 on failure.
1234 */
1235 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1236 *root, struct btrfs_key *ins_key,
1237 struct btrfs_path *path, int data_size)
1238 {
1239 struct buffer_head *l_buf;
1240 struct btrfs_leaf *l;
1241 u32 nritems;
1242 int mid;
1243 int slot;
1244 struct btrfs_leaf *right;
1245 struct buffer_head *right_buffer;
1246 int space_needed = data_size + sizeof(struct btrfs_item);
1247 int data_copy_size;
1248 int rt_data_off;
1249 int i;
1250 int ret = 0;
1251 int wret;
1252 int double_split = 0;
1253 struct btrfs_disk_key disk_key;
1254
1255 /* first try to make some room by pushing left and right */
1256 wret = push_leaf_left(trans, root, path, data_size);
1257 if (wret < 0)
1258 return wret;
1259 if (wret) {
1260 wret = push_leaf_right(trans, root, path, data_size);
1261 if (wret < 0)
1262 return wret;
1263 }
1264 l_buf = path->nodes[0];
1265 l = btrfs_buffer_leaf(l_buf);
1266
1267 /* did the pushes work? */
1268 if (btrfs_leaf_free_space(root, l) >=
1269 sizeof(struct btrfs_item) + data_size)
1270 return 0;
1271
1272 if (!path->nodes[1]) {
1273 ret = insert_new_root(trans, root, path, 1);
1274 if (ret)
1275 return ret;
1276 }
1277 slot = path->slots[0];
1278 nritems = btrfs_header_nritems(&l->header);
1279 mid = (nritems + 1)/ 2;
1280 right_buffer = btrfs_alloc_free_block(trans, root);
1281 BUG_ON(!right_buffer);
1282 right = btrfs_buffer_leaf(right_buffer);
1283 memset(&right->header, 0, sizeof(right->header));
1284 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1285 btrfs_set_header_generation(&right->header, trans->transid);
1286 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1287 btrfs_set_header_level(&right->header, 0);
1288 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1289 sizeof(right->header.fsid));
1290 if (mid <= slot) {
1291 if (nritems == 1 ||
1292 leaf_space_used(l, mid, nritems - mid) + space_needed >
1293 BTRFS_LEAF_DATA_SIZE(root)) {
1294 if (slot >= nritems) {
1295 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1296 btrfs_set_header_nritems(&right->header, 0);
1297 wret = insert_ptr(trans, root, path,
1298 &disk_key,
1299 bh_blocknr(right_buffer),
1300 path->slots[1] + 1, 1);
1301 if (wret)
1302 ret = wret;
1303 btrfs_block_release(root, path->nodes[0]);
1304 path->nodes[0] = right_buffer;
1305 path->slots[0] = 0;
1306 path->slots[1] += 1;
1307 return ret;
1308 }
1309 mid = slot;
1310 double_split = 1;
1311 }
1312 } else {
1313 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1314 BTRFS_LEAF_DATA_SIZE(root)) {
1315 if (slot == 0) {
1316 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1317 btrfs_set_header_nritems(&right->header, 0);
1318 wret = insert_ptr(trans, root, path,
1319 &disk_key,
1320 bh_blocknr(right_buffer),
1321 path->slots[1] - 1, 1);
1322 if (wret)
1323 ret = wret;
1324 btrfs_block_release(root, path->nodes[0]);
1325 path->nodes[0] = right_buffer;
1326 path->slots[0] = 0;
1327 path->slots[1] -= 1;
1328 if (path->slots[1] == 0) {
1329 wret = fixup_low_keys(trans, root,
1330 path, &disk_key, 1);
1331 if (wret)
1332 ret = wret;
1333 }
1334 return ret;
1335 }
1336 mid = slot;
1337 double_split = 1;
1338 }
1339 }
1340 btrfs_set_header_nritems(&right->header, nritems - mid);
1341 data_copy_size = btrfs_item_end(l->items + mid) -
1342 leaf_data_end(root, l);
1343 btrfs_memcpy(root, right, right->items, l->items + mid,
1344 (nritems - mid) * sizeof(struct btrfs_item));
1345 btrfs_memcpy(root, right,
1346 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1347 data_copy_size, btrfs_leaf_data(l) +
1348 leaf_data_end(root, l), data_copy_size);
1349 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1350 btrfs_item_end(l->items + mid);
1351
1352 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1353 u32 ioff = btrfs_item_offset(right->items + i);
1354 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1355 }
1356
1357 btrfs_set_header_nritems(&l->header, mid);
1358 ret = 0;
1359 wret = insert_ptr(trans, root, path, &right->items[0].key,
1360 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1361 if (wret)
1362 ret = wret;
1363 btrfs_mark_buffer_dirty(right_buffer);
1364 btrfs_mark_buffer_dirty(l_buf);
1365 BUG_ON(path->slots[0] != slot);
1366 if (mid <= slot) {
1367 btrfs_block_release(root, path->nodes[0]);
1368 path->nodes[0] = right_buffer;
1369 path->slots[0] -= mid;
1370 path->slots[1] += 1;
1371 } else
1372 btrfs_block_release(root, right_buffer);
1373 BUG_ON(path->slots[0] < 0);
1374
1375 if (!double_split)
1376 return ret;
1377 right_buffer = btrfs_alloc_free_block(trans, root);
1378 BUG_ON(!right_buffer);
1379 right = btrfs_buffer_leaf(right_buffer);
1380 memset(&right->header, 0, sizeof(right->header));
1381 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1382 btrfs_set_header_generation(&right->header, trans->transid);
1383 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1384 btrfs_set_header_level(&right->header, 0);
1385 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1386 sizeof(right->header.fsid));
1387 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1388 btrfs_set_header_nritems(&right->header, 0);
1389 wret = insert_ptr(trans, root, path,
1390 &disk_key,
1391 bh_blocknr(right_buffer),
1392 path->slots[1], 1);
1393 if (wret)
1394 ret = wret;
1395 if (path->slots[1] == 0) {
1396 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1397 if (wret)
1398 ret = wret;
1399 }
1400 btrfs_block_release(root, path->nodes[0]);
1401 path->nodes[0] = right_buffer;
1402 path->slots[0] = 0;
1403 check_node(root, path, 1);
1404 check_leaf(root, path, 0);
1405 return ret;
1406 }
1407
1408 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_path *path,
1411 u32 new_size)
1412 {
1413 int ret = 0;
1414 int slot;
1415 int slot_orig;
1416 struct btrfs_leaf *leaf;
1417 struct buffer_head *leaf_buf;
1418 u32 nritems;
1419 unsigned int data_end;
1420 unsigned int old_data_start;
1421 unsigned int old_size;
1422 unsigned int size_diff;
1423 int i;
1424
1425 slot_orig = path->slots[0];
1426 leaf_buf = path->nodes[0];
1427 leaf = btrfs_buffer_leaf(leaf_buf);
1428
1429 nritems = btrfs_header_nritems(&leaf->header);
1430 data_end = leaf_data_end(root, leaf);
1431
1432 slot = path->slots[0];
1433 old_data_start = btrfs_item_offset(leaf->items + slot);
1434 old_size = btrfs_item_size(leaf->items + slot);
1435 BUG_ON(old_size <= new_size);
1436 size_diff = old_size - new_size;
1437
1438 BUG_ON(slot < 0);
1439 BUG_ON(slot >= nritems);
1440
1441 /*
1442 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1443 */
1444 /* first correct the data pointers */
1445 for (i = slot; i < nritems; i++) {
1446 u32 ioff = btrfs_item_offset(leaf->items + i);
1447 btrfs_set_item_offset(leaf->items + i,
1448 ioff + size_diff);
1449 }
1450 /* shift the data */
1451 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1452 data_end + size_diff, btrfs_leaf_data(leaf) +
1453 data_end, old_data_start + new_size - data_end);
1454 btrfs_set_item_size(leaf->items + slot, new_size);
1455 btrfs_mark_buffer_dirty(leaf_buf);
1456
1457 ret = 0;
1458 if (btrfs_leaf_free_space(root, leaf) < 0)
1459 BUG();
1460 check_leaf(root, path, 0);
1461 return ret;
1462 }
1463
1464 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1465 *root, struct btrfs_path *path, u32 data_size)
1466 {
1467 int ret = 0;
1468 int slot;
1469 int slot_orig;
1470 struct btrfs_leaf *leaf;
1471 struct buffer_head *leaf_buf;
1472 u32 nritems;
1473 unsigned int data_end;
1474 unsigned int old_data;
1475 unsigned int old_size;
1476 int i;
1477
1478 slot_orig = path->slots[0];
1479 leaf_buf = path->nodes[0];
1480 leaf = btrfs_buffer_leaf(leaf_buf);
1481
1482 nritems = btrfs_header_nritems(&leaf->header);
1483 data_end = leaf_data_end(root, leaf);
1484
1485 if (btrfs_leaf_free_space(root, leaf) < data_size)
1486 BUG();
1487 slot = path->slots[0];
1488 old_data = btrfs_item_end(leaf->items + slot);
1489
1490 BUG_ON(slot < 0);
1491 BUG_ON(slot >= nritems);
1492
1493 /*
1494 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1495 */
1496 /* first correct the data pointers */
1497 for (i = slot; i < nritems; i++) {
1498 u32 ioff = btrfs_item_offset(leaf->items + i);
1499 btrfs_set_item_offset(leaf->items + i,
1500 ioff - data_size);
1501 }
1502 /* shift the data */
1503 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1504 data_end - data_size, btrfs_leaf_data(leaf) +
1505 data_end, old_data - data_end);
1506 data_end = old_data;
1507 old_size = btrfs_item_size(leaf->items + slot);
1508 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1509 btrfs_mark_buffer_dirty(leaf_buf);
1510
1511 ret = 0;
1512 if (btrfs_leaf_free_space(root, leaf) < 0)
1513 BUG();
1514 check_leaf(root, path, 0);
1515 return ret;
1516 }
1517
1518 /*
1519 * Given a key and some data, insert an item into the tree.
1520 * This does all the path init required, making room in the tree if needed.
1521 */
1522 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1523 *root, struct btrfs_path *path, struct btrfs_key
1524 *cpu_key, u32 data_size)
1525 {
1526 int ret = 0;
1527 int slot;
1528 int slot_orig;
1529 struct btrfs_leaf *leaf;
1530 struct buffer_head *leaf_buf;
1531 u32 nritems;
1532 unsigned int data_end;
1533 struct btrfs_disk_key disk_key;
1534
1535 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1536
1537 /* create a root if there isn't one */
1538 if (!root->node)
1539 BUG();
1540 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1541 if (ret == 0) {
1542 return -EEXIST;
1543 }
1544 if (ret < 0)
1545 goto out;
1546
1547 slot_orig = path->slots[0];
1548 leaf_buf = path->nodes[0];
1549 leaf = btrfs_buffer_leaf(leaf_buf);
1550
1551 nritems = btrfs_header_nritems(&leaf->header);
1552 data_end = leaf_data_end(root, leaf);
1553
1554 if (btrfs_leaf_free_space(root, leaf) <
1555 sizeof(struct btrfs_item) + data_size) {
1556 BUG();
1557 }
1558 slot = path->slots[0];
1559 BUG_ON(slot < 0);
1560 if (slot != nritems) {
1561 int i;
1562 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1563
1564 /*
1565 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1566 */
1567 /* first correct the data pointers */
1568 for (i = slot; i < nritems; i++) {
1569 u32 ioff = btrfs_item_offset(leaf->items + i);
1570 btrfs_set_item_offset(leaf->items + i,
1571 ioff - data_size);
1572 }
1573
1574 /* shift the items */
1575 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1576 leaf->items + slot,
1577 (nritems - slot) * sizeof(struct btrfs_item));
1578
1579 /* shift the data */
1580 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1581 data_end - data_size, btrfs_leaf_data(leaf) +
1582 data_end, old_data - data_end);
1583 data_end = old_data;
1584 }
1585 /* setup the item for the new data */
1586 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1587 sizeof(struct btrfs_disk_key));
1588 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1589 btrfs_set_item_size(leaf->items + slot, data_size);
1590 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1591 btrfs_mark_buffer_dirty(leaf_buf);
1592
1593 ret = 0;
1594 if (slot == 0)
1595 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1596
1597 if (btrfs_leaf_free_space(root, leaf) < 0)
1598 BUG();
1599 check_leaf(root, path, 0);
1600 out:
1601 return ret;
1602 }
1603
1604 /*
1605 * Given a key and some data, insert an item into the tree.
1606 * This does all the path init required, making room in the tree if needed.
1607 */
1608 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1609 *root, struct btrfs_key *cpu_key, void *data, u32
1610 data_size)
1611 {
1612 int ret = 0;
1613 struct btrfs_path *path;
1614 u8 *ptr;
1615
1616 path = btrfs_alloc_path();
1617 BUG_ON(!path);
1618 btrfs_init_path(path);
1619 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1620 if (!ret) {
1621 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1622 path->slots[0], u8);
1623 btrfs_memcpy(root, path->nodes[0]->b_data,
1624 ptr, data, data_size);
1625 btrfs_mark_buffer_dirty(path->nodes[0]);
1626 }
1627 btrfs_release_path(root, path);
1628 btrfs_free_path(path);
1629 return ret;
1630 }
1631
1632 /*
1633 * delete the pointer from a given node.
1634 *
1635 * If the delete empties a node, the node is removed from the tree,
1636 * continuing all the way the root if required. The root is converted into
1637 * a leaf if all the nodes are emptied.
1638 */
1639 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1640 struct btrfs_path *path, int level, int slot)
1641 {
1642 struct btrfs_node *node;
1643 struct buffer_head *parent = path->nodes[level];
1644 u32 nritems;
1645 int ret = 0;
1646 int wret;
1647
1648 node = btrfs_buffer_node(parent);
1649 nritems = btrfs_header_nritems(&node->header);
1650 if (slot != nritems -1) {
1651 btrfs_memmove(root, node, node->ptrs + slot,
1652 node->ptrs + slot + 1,
1653 sizeof(struct btrfs_key_ptr) *
1654 (nritems - slot - 1));
1655 }
1656 nritems--;
1657 btrfs_set_header_nritems(&node->header, nritems);
1658 if (nritems == 0 && parent == root->node) {
1659 struct btrfs_header *header = btrfs_buffer_header(root->node);
1660 BUG_ON(btrfs_header_level(header) != 1);
1661 /* just turn the root into a leaf and break */
1662 btrfs_set_header_level(header, 0);
1663 } else if (slot == 0) {
1664 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1665 level + 1);
1666 if (wret)
1667 ret = wret;
1668 }
1669 btrfs_mark_buffer_dirty(parent);
1670 return ret;
1671 }
1672
1673 /*
1674 * delete the item at the leaf level in path. If that empties
1675 * the leaf, remove it from the tree
1676 */
1677 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1678 struct btrfs_path *path)
1679 {
1680 int slot;
1681 struct btrfs_leaf *leaf;
1682 struct buffer_head *leaf_buf;
1683 int doff;
1684 int dsize;
1685 int ret = 0;
1686 int wret;
1687 u32 nritems;
1688
1689 leaf_buf = path->nodes[0];
1690 leaf = btrfs_buffer_leaf(leaf_buf);
1691 slot = path->slots[0];
1692 doff = btrfs_item_offset(leaf->items + slot);
1693 dsize = btrfs_item_size(leaf->items + slot);
1694 nritems = btrfs_header_nritems(&leaf->header);
1695
1696 if (slot != nritems - 1) {
1697 int i;
1698 int data_end = leaf_data_end(root, leaf);
1699 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1700 data_end + dsize,
1701 btrfs_leaf_data(leaf) + data_end,
1702 doff - data_end);
1703 for (i = slot + 1; i < nritems; i++) {
1704 u32 ioff = btrfs_item_offset(leaf->items + i);
1705 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1706 }
1707 btrfs_memmove(root, leaf, leaf->items + slot,
1708 leaf->items + slot + 1,
1709 sizeof(struct btrfs_item) *
1710 (nritems - slot - 1));
1711 }
1712 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1713 nritems--;
1714 /* delete the leaf if we've emptied it */
1715 if (nritems == 0) {
1716 if (leaf_buf == root->node) {
1717 btrfs_set_header_level(&leaf->header, 0);
1718 } else {
1719 clean_tree_block(trans, root, leaf_buf);
1720 wait_on_buffer(leaf_buf);
1721 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1722 if (wret)
1723 ret = wret;
1724 wret = btrfs_free_extent(trans, root,
1725 bh_blocknr(leaf_buf), 1, 1);
1726 if (wret)
1727 ret = wret;
1728 }
1729 } else {
1730 int used = leaf_space_used(leaf, 0, nritems);
1731 if (slot == 0) {
1732 wret = fixup_low_keys(trans, root, path,
1733 &leaf->items[0].key, 1);
1734 if (wret)
1735 ret = wret;
1736 }
1737
1738 /* delete the leaf if it is mostly empty */
1739 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1740 /* push_leaf_left fixes the path.
1741 * make sure the path still points to our leaf
1742 * for possible call to del_ptr below
1743 */
1744 slot = path->slots[1];
1745 get_bh(leaf_buf);
1746 wret = push_leaf_left(trans, root, path, 1);
1747 if (wret < 0)
1748 ret = wret;
1749 if (path->nodes[0] == leaf_buf &&
1750 btrfs_header_nritems(&leaf->header)) {
1751 wret = push_leaf_right(trans, root, path, 1);
1752 if (wret < 0)
1753 ret = wret;
1754 }
1755 if (btrfs_header_nritems(&leaf->header) == 0) {
1756 u64 blocknr = bh_blocknr(leaf_buf);
1757 clean_tree_block(trans, root, leaf_buf);
1758 wait_on_buffer(leaf_buf);
1759 wret = del_ptr(trans, root, path, 1, slot);
1760 if (wret)
1761 ret = wret;
1762 btrfs_block_release(root, leaf_buf);
1763 wret = btrfs_free_extent(trans, root, blocknr,
1764 1, 1);
1765 if (wret)
1766 ret = wret;
1767 } else {
1768 btrfs_mark_buffer_dirty(leaf_buf);
1769 btrfs_block_release(root, leaf_buf);
1770 }
1771 } else {
1772 btrfs_mark_buffer_dirty(leaf_buf);
1773 }
1774 }
1775 return ret;
1776 }
1777
1778 /*
1779 * walk up the tree as far as required to find the next leaf.
1780 * returns 0 if it found something or 1 if there are no greater leaves.
1781 * returns < 0 on io errors.
1782 */
1783 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1784 {
1785 int slot;
1786 int level = 1;
1787 u64 blocknr;
1788 struct buffer_head *c;
1789 struct btrfs_node *c_node;
1790 struct buffer_head *next = NULL;
1791
1792 while(level < BTRFS_MAX_LEVEL) {
1793 if (!path->nodes[level])
1794 return 1;
1795 slot = path->slots[level] + 1;
1796 c = path->nodes[level];
1797 c_node = btrfs_buffer_node(c);
1798 if (slot >= btrfs_header_nritems(&c_node->header)) {
1799 level++;
1800 continue;
1801 }
1802 blocknr = btrfs_node_blockptr(c_node, slot);
1803 if (next)
1804 btrfs_block_release(root, next);
1805 next = read_tree_block(root, blocknr);
1806 break;
1807 }
1808 path->slots[level] = slot;
1809 while(1) {
1810 level--;
1811 c = path->nodes[level];
1812 btrfs_block_release(root, c);
1813 path->nodes[level] = next;
1814 path->slots[level] = 0;
1815 if (!level)
1816 break;
1817 next = read_tree_block(root,
1818 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1819 }
1820 return 0;
1821 }
This page took 0.069575 seconds and 5 git commands to generate.