e497fd963118d7f271fbbc6e99961032f51ecf05
[deliverable/linux.git] / fs / btrfs / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 int split_node(struct ctree_root *root, struct ctree_path *path, int level);
10 int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
11 int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
12 int push_node_right(struct ctree_root *root,
13 struct ctree_path *path, int level);
14 int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
15
16 inline void init_path(struct ctree_path *p)
17 {
18 memset(p, 0, sizeof(*p));
19 }
20
21 void release_path(struct ctree_root *root, struct ctree_path *p)
22 {
23 int i;
24 for (i = 0; i < MAX_LEVEL; i++) {
25 if (!p->nodes[i])
26 break;
27 tree_block_release(root, p->nodes[i]);
28 }
29 }
30
31 /*
32 * The leaf data grows from end-to-front in the node.
33 * this returns the address of the start of the last item,
34 * which is the stop of the leaf data stack
35 */
36 static inline unsigned int leaf_data_end(struct leaf *leaf)
37 {
38 unsigned int nr = leaf->header.nritems;
39 if (nr == 0)
40 return sizeof(leaf->data);
41 return leaf->items[nr-1].offset;
42 }
43
44 /*
45 * The space between the end of the leaf items and
46 * the start of the leaf data. IOW, how much room
47 * the leaf has left for both items and data
48 */
49 int leaf_free_space(struct leaf *leaf)
50 {
51 int data_end = leaf_data_end(leaf);
52 int nritems = leaf->header.nritems;
53 char *items_end = (char *)(leaf->items + nritems + 1);
54 return (char *)(leaf->data + data_end) - (char *)items_end;
55 }
56
57 /*
58 * compare two keys in a memcmp fashion
59 */
60 int comp_keys(struct key *k1, struct key *k2)
61 {
62 if (k1->objectid > k2->objectid)
63 return 1;
64 if (k1->objectid < k2->objectid)
65 return -1;
66 if (k1->flags > k2->flags)
67 return 1;
68 if (k1->flags < k2->flags)
69 return -1;
70 if (k1->offset > k2->offset)
71 return 1;
72 if (k1->offset < k2->offset)
73 return -1;
74 return 0;
75 }
76
77 /*
78 * search for key in the array p. items p are item_size apart
79 * and there are 'max' items in p
80 * the slot in the array is returned via slot, and it points to
81 * the place where you would insert key if it is not found in
82 * the array.
83 *
84 * slot may point to max if the key is bigger than all of the keys
85 */
86 int generic_bin_search(char *p, int item_size, struct key *key,
87 int max, int *slot)
88 {
89 int low = 0;
90 int high = max;
91 int mid;
92 int ret;
93 struct key *tmp;
94
95 while(low < high) {
96 mid = (low + high) / 2;
97 tmp = (struct key *)(p + mid * item_size);
98 ret = comp_keys(tmp, key);
99
100 if (ret < 0)
101 low = mid + 1;
102 else if (ret > 0)
103 high = mid;
104 else {
105 *slot = mid;
106 return 0;
107 }
108 }
109 *slot = low;
110 return 1;
111 }
112
113 int bin_search(struct node *c, struct key *key, int *slot)
114 {
115 if (is_leaf(c->header.flags)) {
116 struct leaf *l = (struct leaf *)c;
117 return generic_bin_search((void *)l->items, sizeof(struct item),
118 key, c->header.nritems, slot);
119 } else {
120 return generic_bin_search((void *)c->keys, sizeof(struct key),
121 key, c->header.nritems, slot);
122 }
123 return -1;
124 }
125
126 /*
127 * look for key in the tree. path is filled in with nodes along the way
128 * if key is found, we return zero and you can find the item in the leaf
129 * level of the path (level 0)
130 *
131 * If the key isn't found, the path points to the slot where it should
132 * be inserted.
133 */
134 int search_slot(struct ctree_root *root, struct key *key,
135 struct ctree_path *p, int ins_len)
136 {
137 struct tree_buffer *b = root->node;
138 struct node *c;
139 int slot;
140 int ret;
141 int level;
142
143 b->count++;
144 while (b) {
145 c = &b->node;
146 level = node_level(c->header.flags);
147 p->nodes[level] = b;
148 ret = bin_search(c, key, &slot);
149 if (!is_leaf(c->header.flags)) {
150 if (ret && slot > 0)
151 slot -= 1;
152 p->slots[level] = slot;
153 if (ins_len > 0 &&
154 c->header.nritems == NODEPTRS_PER_BLOCK) {
155 int sret = split_node(root, p, level);
156 BUG_ON(sret > 0);
157 if (sret)
158 return sret;
159 b = p->nodes[level];
160 c = &b->node;
161 slot = p->slots[level];
162 } else if (ins_len < 0 &&
163 c->header.nritems <= NODEPTRS_PER_BLOCK/4) {
164 u64 blocknr = b->blocknr;
165 slot = p->slots[level +1];
166 b->count++;
167 if (push_node_left(root, p, level))
168 push_node_right(root, p, level);
169 if (c->header.nritems == 0 &&
170 level < MAX_LEVEL - 1 &&
171 p->nodes[level + 1]) {
172 int tslot = p->slots[level + 1];
173
174 p->slots[level + 1] = slot;
175 del_ptr(root, p, level + 1);
176 p->slots[level + 1] = tslot;
177 tree_block_release(root, b);
178 free_extent(root, blocknr, 1);
179 } else {
180 tree_block_release(root, b);
181 }
182 b = p->nodes[level];
183 c = &b->node;
184 slot = p->slots[level];
185 }
186 b = read_tree_block(root, c->blockptrs[slot]);
187 continue;
188 } else {
189 struct leaf *l = (struct leaf *)c;
190 p->slots[level] = slot;
191 if (ins_len > 0 && leaf_free_space(l) <
192 sizeof(struct item) + ins_len) {
193 int sret = split_leaf(root, p, ins_len);
194 BUG_ON(sret > 0);
195 if (sret)
196 return sret;
197 }
198 return ret;
199 }
200 }
201 return -1;
202 }
203
204 /*
205 * adjust the pointers going up the tree, starting at level
206 * making sure the right key of each node is points to 'key'.
207 * This is used after shifting pointers to the left, so it stops
208 * fixing up pointers when a given leaf/node is not in slot 0 of the
209 * higher levels
210 */
211 static void fixup_low_keys(struct ctree_root *root,
212 struct ctree_path *path, struct key *key,
213 int level)
214 {
215 int i;
216 for (i = level; i < MAX_LEVEL; i++) {
217 struct node *t;
218 int tslot = path->slots[i];
219 if (!path->nodes[i])
220 break;
221 t = &path->nodes[i]->node;
222 memcpy(t->keys + tslot, key, sizeof(*key));
223 write_tree_block(root, path->nodes[i]);
224 if (tslot != 0)
225 break;
226 }
227 }
228
229 /*
230 * try to push data from one node into the next node left in the
231 * tree. The src node is found at specified level in the path.
232 * If some bytes were pushed, return 0, otherwise return 1.
233 *
234 * Lower nodes/leaves in the path are not touched, higher nodes may
235 * be modified to reflect the push.
236 *
237 * The path is altered to reflect the push.
238 */
239 int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
240 {
241 int slot;
242 struct node *left;
243 struct node *right;
244 int push_items = 0;
245 int left_nritems;
246 int right_nritems;
247 struct tree_buffer *t;
248 struct tree_buffer *right_buf;
249
250 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
251 return 1;
252 slot = path->slots[level + 1];
253 if (slot == 0)
254 return 1;
255
256 t = read_tree_block(root,
257 path->nodes[level + 1]->node.blockptrs[slot - 1]);
258 left = &t->node;
259 right_buf = path->nodes[level];
260 right = &right_buf->node;
261 left_nritems = left->header.nritems;
262 right_nritems = right->header.nritems;
263 push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
264 if (push_items <= 0) {
265 tree_block_release(root, t);
266 return 1;
267 }
268
269 if (right_nritems < push_items)
270 push_items = right_nritems;
271 memcpy(left->keys + left_nritems, right->keys,
272 push_items * sizeof(struct key));
273 memcpy(left->blockptrs + left_nritems, right->blockptrs,
274 push_items * sizeof(u64));
275 memmove(right->keys, right->keys + push_items,
276 (right_nritems - push_items) * sizeof(struct key));
277 memmove(right->blockptrs, right->blockptrs + push_items,
278 (right_nritems - push_items) * sizeof(u64));
279 right->header.nritems -= push_items;
280 left->header.nritems += push_items;
281
282 /* adjust the pointers going up the tree */
283 fixup_low_keys(root, path, right->keys, level + 1);
284
285 write_tree_block(root, t);
286 write_tree_block(root, right_buf);
287
288 /* then fixup the leaf pointer in the path */
289 if (path->slots[level] < push_items) {
290 path->slots[level] += left_nritems;
291 tree_block_release(root, path->nodes[level]);
292 path->nodes[level] = t;
293 path->slots[level + 1] -= 1;
294 } else {
295 path->slots[level] -= push_items;
296 tree_block_release(root, t);
297 }
298 return 0;
299 }
300
301 /*
302 * try to push data from one node into the next node right in the
303 * tree. The src node is found at specified level in the path.
304 * If some bytes were pushed, return 0, otherwise return 1.
305 *
306 * Lower nodes/leaves in the path are not touched, higher nodes may
307 * be modified to reflect the push.
308 *
309 * The path is altered to reflect the push.
310 */
311 int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
312 {
313 int slot;
314 struct tree_buffer *t;
315 struct tree_buffer *src_buffer;
316 struct node *dst;
317 struct node *src;
318 int push_items = 0;
319 int dst_nritems;
320 int src_nritems;
321
322 /* can't push from the root */
323 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
324 return 1;
325
326 /* only try to push inside the node higher up */
327 slot = path->slots[level + 1];
328 if (slot == NODEPTRS_PER_BLOCK - 1)
329 return 1;
330
331 if (slot >= path->nodes[level + 1]->node.header.nritems -1)
332 return 1;
333
334 t = read_tree_block(root,
335 path->nodes[level + 1]->node.blockptrs[slot + 1]);
336 dst = &t->node;
337 src_buffer = path->nodes[level];
338 src = &src_buffer->node;
339 dst_nritems = dst->header.nritems;
340 src_nritems = src->header.nritems;
341 push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
342 if (push_items <= 0) {
343 tree_block_release(root, t);
344 return 1;
345 }
346
347 if (src_nritems < push_items)
348 push_items = src_nritems;
349 memmove(dst->keys + push_items, dst->keys,
350 dst_nritems * sizeof(struct key));
351 memcpy(dst->keys, src->keys + src_nritems - push_items,
352 push_items * sizeof(struct key));
353
354 memmove(dst->blockptrs + push_items, dst->blockptrs,
355 dst_nritems * sizeof(u64));
356 memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
357 push_items * sizeof(u64));
358
359 src->header.nritems -= push_items;
360 dst->header.nritems += push_items;
361
362 /* adjust the pointers going up the tree */
363 memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
364 dst->keys, sizeof(struct key));
365
366 write_tree_block(root, path->nodes[level + 1]);
367 write_tree_block(root, t);
368 write_tree_block(root, src_buffer);
369
370 /* then fixup the pointers in the path */
371 if (path->slots[level] >= src->header.nritems) {
372 path->slots[level] -= src->header.nritems;
373 tree_block_release(root, path->nodes[level]);
374 path->nodes[level] = t;
375 path->slots[level + 1] += 1;
376 } else {
377 tree_block_release(root, t);
378 }
379 return 0;
380 }
381
382 static int insert_new_root(struct ctree_root *root,
383 struct ctree_path *path, int level)
384 {
385 struct tree_buffer *t;
386 struct node *lower;
387 struct node *c;
388 struct key *lower_key;
389
390 BUG_ON(path->nodes[level]);
391 BUG_ON(path->nodes[level-1] != root->node);
392
393 t = alloc_free_block(root);
394 c = &t->node;
395 memset(c, 0, sizeof(c));
396 c->header.nritems = 1;
397 c->header.flags = node_level(level);
398 c->header.blocknr = t->blocknr;
399 c->header.parentid = root->node->node.header.parentid;
400 lower = &path->nodes[level-1]->node;
401 if (is_leaf(lower->header.flags))
402 lower_key = &((struct leaf *)lower)->items[0].key;
403 else
404 lower_key = lower->keys;
405 memcpy(c->keys, lower_key, sizeof(struct key));
406 c->blockptrs[0] = path->nodes[level-1]->blocknr;
407 /* the super has an extra ref to root->node */
408 tree_block_release(root, root->node);
409 root->node = t;
410 t->count++;
411 write_tree_block(root, t);
412 path->nodes[level] = t;
413 path->slots[level] = 0;
414 return 0;
415 }
416
417 /*
418 * worker function to insert a single pointer in a node.
419 * the node should have enough room for the pointer already
420 * slot and level indicate where you want the key to go, and
421 * blocknr is the block the key points to.
422 */
423 int insert_ptr(struct ctree_root *root,
424 struct ctree_path *path, struct key *key,
425 u64 blocknr, int slot, int level)
426 {
427 struct node *lower;
428 int nritems;
429
430 BUG_ON(!path->nodes[level]);
431 lower = &path->nodes[level]->node;
432 nritems = lower->header.nritems;
433 if (slot > nritems)
434 BUG();
435 if (nritems == NODEPTRS_PER_BLOCK)
436 BUG();
437 if (slot != nritems) {
438 memmove(lower->keys + slot + 1, lower->keys + slot,
439 (nritems - slot) * sizeof(struct key));
440 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
441 (nritems - slot) * sizeof(u64));
442 }
443 memcpy(lower->keys + slot, key, sizeof(struct key));
444 lower->blockptrs[slot] = blocknr;
445 lower->header.nritems++;
446 if (lower->keys[1].objectid == 0)
447 BUG();
448 write_tree_block(root, path->nodes[level]);
449 return 0;
450 }
451
452 int split_node(struct ctree_root *root, struct ctree_path *path, int level)
453 {
454 struct tree_buffer *t;
455 struct node *c;
456 struct tree_buffer *split_buffer;
457 struct node *split;
458 int mid;
459 int ret;
460
461 ret = push_node_left(root, path, level);
462 if (!ret)
463 return 0;
464 ret = push_node_right(root, path, level);
465 if (!ret)
466 return 0;
467 t = path->nodes[level];
468 c = &t->node;
469 if (t == root->node) {
470 /* trying to split the root, lets make a new one */
471 ret = insert_new_root(root, path, level + 1);
472 if (ret)
473 return ret;
474 }
475 split_buffer = alloc_free_block(root);
476 split = &split_buffer->node;
477 split->header.flags = c->header.flags;
478 split->header.blocknr = split_buffer->blocknr;
479 split->header.parentid = root->node->node.header.parentid;
480 mid = (c->header.nritems + 1) / 2;
481 memcpy(split->keys, c->keys + mid,
482 (c->header.nritems - mid) * sizeof(struct key));
483 memcpy(split->blockptrs, c->blockptrs + mid,
484 (c->header.nritems - mid) * sizeof(u64));
485 split->header.nritems = c->header.nritems - mid;
486 c->header.nritems = mid;
487 write_tree_block(root, t);
488 write_tree_block(root, split_buffer);
489 insert_ptr(root, path, split->keys, split_buffer->blocknr,
490 path->slots[level + 1] + 1, level + 1);
491 if (path->slots[level] >= mid) {
492 path->slots[level] -= mid;
493 tree_block_release(root, t);
494 path->nodes[level] = split_buffer;
495 path->slots[level + 1] += 1;
496 } else {
497 tree_block_release(root, split_buffer);
498 }
499 return 0;
500 }
501
502 /*
503 * how many bytes are required to store the items in a leaf. start
504 * and nr indicate which items in the leaf to check. This totals up the
505 * space used both by the item structs and the item data
506 */
507 int leaf_space_used(struct leaf *l, int start, int nr)
508 {
509 int data_len;
510 int end = start + nr - 1;
511
512 if (!nr)
513 return 0;
514 data_len = l->items[start].offset + l->items[start].size;
515 data_len = data_len - l->items[end].offset;
516 data_len += sizeof(struct item) * nr;
517 return data_len;
518 }
519
520 /*
521 * push some data in the path leaf to the left, trying to free up at
522 * least data_size bytes. returns zero if the push worked, nonzero otherwise
523 */
524 int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
525 int data_size)
526 {
527 struct tree_buffer *right_buf = path->nodes[0];
528 struct leaf *right = &right_buf->leaf;
529 struct tree_buffer *t;
530 struct leaf *left;
531 int slot;
532 int i;
533 int free_space;
534 int push_space = 0;
535 int push_items = 0;
536 struct item *item;
537 int old_left_nritems;
538
539 slot = path->slots[1];
540 if (slot == 0) {
541 return 1;
542 }
543 if (!path->nodes[1]) {
544 return 1;
545 }
546 t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
547 left = &t->leaf;
548 free_space = leaf_free_space(left);
549 if (free_space < data_size + sizeof(struct item)) {
550 tree_block_release(root, t);
551 return 1;
552 }
553 for (i = 0; i < right->header.nritems; i++) {
554 item = right->items + i;
555 if (path->slots[0] == i)
556 push_space += data_size + sizeof(*item);
557 if (item->size + sizeof(*item) + push_space > free_space)
558 break;
559 push_items++;
560 push_space += item->size + sizeof(*item);
561 }
562 if (push_items == 0) {
563 tree_block_release(root, t);
564 return 1;
565 }
566 /* push data from right to left */
567 memcpy(left->items + left->header.nritems,
568 right->items, push_items * sizeof(struct item));
569 push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
570 memcpy(left->data + leaf_data_end(left) - push_space,
571 right->data + right->items[push_items - 1].offset,
572 push_space);
573 old_left_nritems = left->header.nritems;
574 BUG_ON(old_left_nritems < 0);
575
576 for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
577 left->items[i].offset -= LEAF_DATA_SIZE -
578 left->items[old_left_nritems -1].offset;
579 }
580 left->header.nritems += push_items;
581
582 /* fixup right node */
583 push_space = right->items[push_items-1].offset - leaf_data_end(right);
584 memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
585 leaf_data_end(right), push_space);
586 memmove(right->items, right->items + push_items,
587 (right->header.nritems - push_items) * sizeof(struct item));
588 right->header.nritems -= push_items;
589 push_space = LEAF_DATA_SIZE;
590
591 for (i = 0; i < right->header.nritems; i++) {
592 right->items[i].offset = push_space - right->items[i].size;
593 push_space = right->items[i].offset;
594 }
595
596 write_tree_block(root, t);
597 write_tree_block(root, right_buf);
598
599 fixup_low_keys(root, path, &right->items[0].key, 1);
600
601 /* then fixup the leaf pointer in the path */
602 if (path->slots[0] < push_items) {
603 path->slots[0] += old_left_nritems;
604 tree_block_release(root, path->nodes[0]);
605 path->nodes[0] = t;
606 path->slots[1] -= 1;
607 } else {
608 tree_block_release(root, t);
609 path->slots[0] -= push_items;
610 }
611 BUG_ON(path->slots[0] < 0);
612 return 0;
613 }
614
615 /*
616 * split the path's leaf in two, making sure there is at least data_size
617 * available for the resulting leaf level of the path.
618 */
619 int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
620 {
621 struct tree_buffer *l_buf = path->nodes[0];
622 struct leaf *l = &l_buf->leaf;
623 int nritems;
624 int mid;
625 int slot;
626 struct leaf *right;
627 struct tree_buffer *right_buffer;
628 int space_needed = data_size + sizeof(struct item);
629 int data_copy_size;
630 int rt_data_off;
631 int i;
632 int ret;
633
634 if (push_leaf_left(root, path, data_size) == 0) {
635 l_buf = path->nodes[0];
636 l = &l_buf->leaf;
637 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
638 return 0;
639 }
640 if (!path->nodes[1]) {
641 ret = insert_new_root(root, path, 1);
642 if (ret)
643 return ret;
644 }
645 slot = path->slots[0];
646 nritems = l->header.nritems;
647 mid = (nritems + 1)/ 2;
648
649 right_buffer = alloc_free_block(root);
650 BUG_ON(!right_buffer);
651 BUG_ON(mid == nritems);
652 right = &right_buffer->leaf;
653 memset(right, 0, sizeof(*right));
654 if (mid <= slot) {
655 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
656 LEAF_DATA_SIZE)
657 BUG();
658 } else {
659 if (leaf_space_used(l, 0, mid + 1) + space_needed >
660 LEAF_DATA_SIZE)
661 BUG();
662 }
663 right->header.nritems = nritems - mid;
664 right->header.blocknr = right_buffer->blocknr;
665 right->header.flags = node_level(0);
666 right->header.parentid = root->node->node.header.parentid;
667 data_copy_size = l->items[mid].offset + l->items[mid].size -
668 leaf_data_end(l);
669 memcpy(right->items, l->items + mid,
670 (nritems - mid) * sizeof(struct item));
671 memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
672 l->data + leaf_data_end(l), data_copy_size);
673 rt_data_off = LEAF_DATA_SIZE -
674 (l->items[mid].offset + l->items[mid].size);
675
676 for (i = 0; i < right->header.nritems; i++)
677 right->items[i].offset += rt_data_off;
678
679 l->header.nritems = mid;
680 ret = insert_ptr(root, path, &right->items[0].key,
681 right_buffer->blocknr, path->slots[1] + 1, 1);
682 write_tree_block(root, right_buffer);
683 write_tree_block(root, l_buf);
684
685 BUG_ON(path->slots[0] != slot);
686 if (mid <= slot) {
687 tree_block_release(root, path->nodes[0]);
688 path->nodes[0] = right_buffer;
689 path->slots[0] -= mid;
690 path->slots[1] += 1;
691 } else
692 tree_block_release(root, right_buffer);
693 BUG_ON(path->slots[0] < 0);
694 return ret;
695 }
696
697 /*
698 * Given a key and some data, insert an item into the tree.
699 * This does all the path init required, making room in the tree if needed.
700 */
701 int insert_item(struct ctree_root *root, struct key *key,
702 void *data, int data_size)
703 {
704 int ret;
705 int slot;
706 int slot_orig;
707 struct leaf *leaf;
708 struct tree_buffer *leaf_buf;
709 unsigned int nritems;
710 unsigned int data_end;
711 struct ctree_path path;
712
713 /* create a root if there isn't one */
714 if (!root->node)
715 BUG();
716 init_path(&path);
717 ret = search_slot(root, key, &path, data_size);
718 if (ret == 0) {
719 release_path(root, &path);
720 return -EEXIST;
721 }
722
723 slot_orig = path.slots[0];
724 leaf_buf = path.nodes[0];
725 leaf = &leaf_buf->leaf;
726
727 nritems = leaf->header.nritems;
728 data_end = leaf_data_end(leaf);
729
730 if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
731 BUG();
732
733 slot = path.slots[0];
734 BUG_ON(slot < 0);
735 if (slot == 0)
736 fixup_low_keys(root, &path, key, 1);
737 if (slot != nritems) {
738 int i;
739 unsigned int old_data = leaf->items[slot].offset +
740 leaf->items[slot].size;
741
742 /*
743 * item0..itemN ... dataN.offset..dataN.size .. data0.size
744 */
745 /* first correct the data pointers */
746 for (i = slot; i < nritems; i++)
747 leaf->items[i].offset -= data_size;
748
749 /* shift the items */
750 memmove(leaf->items + slot + 1, leaf->items + slot,
751 (nritems - slot) * sizeof(struct item));
752
753 /* shift the data */
754 memmove(leaf->data + data_end - data_size, leaf->data +
755 data_end, old_data - data_end);
756 data_end = old_data;
757 }
758 /* copy the new data in */
759 memcpy(&leaf->items[slot].key, key, sizeof(struct key));
760 leaf->items[slot].offset = data_end - data_size;
761 leaf->items[slot].size = data_size;
762 memcpy(leaf->data + data_end - data_size, data, data_size);
763 leaf->header.nritems += 1;
764 write_tree_block(root, leaf_buf);
765 if (leaf_free_space(leaf) < 0)
766 BUG();
767 release_path(root, &path);
768 return 0;
769 }
770
771 /*
772 * delete the pointer from a given node.
773 *
774 * If the delete empties a node, the node is removed from the tree,
775 * continuing all the way the root if required. The root is converted into
776 * a leaf if all the nodes are emptied.
777 */
778 int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
779 {
780 int slot;
781 struct tree_buffer *t;
782 struct node *node;
783 int nritems;
784 u64 blocknr;
785
786 while(1) {
787 t = path->nodes[level];
788 if (!t)
789 break;
790 node = &t->node;
791 slot = path->slots[level];
792 nritems = node->header.nritems;
793
794 if (slot != nritems -1) {
795 memmove(node->keys + slot, node->keys + slot + 1,
796 sizeof(struct key) * (nritems - slot - 1));
797 memmove(node->blockptrs + slot,
798 node->blockptrs + slot + 1,
799 sizeof(u64) * (nritems - slot - 1));
800 }
801 node->header.nritems--;
802 write_tree_block(root, t);
803 blocknr = t->blocknr;
804 if (node->header.nritems != 0) {
805 if (slot == 0)
806 fixup_low_keys(root, path, node->keys,
807 level + 1);
808 break;
809 }
810 if (t == root->node) {
811 /* just turn the root into a leaf and break */
812 root->node->node.header.flags = node_level(0);
813 write_tree_block(root, t);
814 break;
815 }
816 level++;
817 free_extent(root, blocknr, 1);
818 if (!path->nodes[level])
819 BUG();
820 }
821 return 0;
822 }
823
824 /*
825 * delete the item at the leaf level in path. If that empties
826 * the leaf, remove it from the tree
827 */
828 int del_item(struct ctree_root *root, struct ctree_path *path)
829 {
830 int slot;
831 struct leaf *leaf;
832 struct tree_buffer *leaf_buf;
833 int doff;
834 int dsize;
835
836 leaf_buf = path->nodes[0];
837 leaf = &leaf_buf->leaf;
838 slot = path->slots[0];
839 doff = leaf->items[slot].offset;
840 dsize = leaf->items[slot].size;
841
842 if (slot != leaf->header.nritems - 1) {
843 int i;
844 int data_end = leaf_data_end(leaf);
845 memmove(leaf->data + data_end + dsize,
846 leaf->data + data_end,
847 doff - data_end);
848 for (i = slot + 1; i < leaf->header.nritems; i++)
849 leaf->items[i].offset += dsize;
850 memmove(leaf->items + slot, leaf->items + slot + 1,
851 sizeof(struct item) *
852 (leaf->header.nritems - slot - 1));
853 }
854 leaf->header.nritems -= 1;
855 /* delete the leaf if we've emptied it */
856 if (leaf->header.nritems == 0) {
857 if (leaf_buf == root->node) {
858 leaf->header.flags = node_level(0);
859 write_tree_block(root, leaf_buf);
860 } else {
861 del_ptr(root, path, 1);
862 free_extent(root, leaf_buf->blocknr, 1);
863 }
864 } else {
865 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
866 if (slot == 0)
867 fixup_low_keys(root, path, &leaf->items[0].key, 1);
868 write_tree_block(root, leaf_buf);
869 /* delete the leaf if it is mostly empty */
870 if (used < LEAF_DATA_SIZE / 3) {
871 /* push_leaf_left fixes the path.
872 * make sure the path still points to our leaf
873 * for possible call to del_ptr below
874 */
875 slot = path->slots[1];
876 leaf_buf->count++;
877 push_leaf_left(root, path, 1);
878 if (leaf->header.nritems == 0) {
879 u64 blocknr = leaf_buf->blocknr;
880 path->slots[1] = slot;
881 del_ptr(root, path, 1);
882 tree_block_release(root, leaf_buf);
883 free_extent(root, blocknr, 1);
884 } else {
885 tree_block_release(root, leaf_buf);
886 }
887 }
888 }
889 return 0;
890 }
891
892 int next_leaf(struct ctree_root *root, struct ctree_path *path)
893 {
894 int slot;
895 int level = 1;
896 u64 blocknr;
897 struct tree_buffer *c;
898 struct tree_buffer *next = NULL;
899
900 while(level < MAX_LEVEL) {
901 if (!path->nodes[level])
902 return -1;
903 slot = path->slots[level] + 1;
904 c = path->nodes[level];
905 if (slot >= c->node.header.nritems) {
906 level++;
907 continue;
908 }
909 blocknr = c->node.blockptrs[slot];
910 if (next)
911 tree_block_release(root, next);
912 next = read_tree_block(root, blocknr);
913 break;
914 }
915 path->slots[level] = slot;
916 while(1) {
917 level--;
918 c = path->nodes[level];
919 tree_block_release(root, c);
920 path->nodes[level] = next;
921 path->slots[level] = 0;
922 if (!level)
923 break;
924 next = read_tree_block(root, next->node.blockptrs[0]);
925 }
926 return 0;
927 }
928
929 /* for testing only */
930 int next_key(int i, int max_key) {
931 return rand() % max_key;
932 // return i;
933 }
934
935 int main() {
936 struct ctree_root *root;
937 struct key ins;
938 struct key last = { (u64)-1, 0, 0};
939 char *buf;
940 int i;
941 int num;
942 int ret;
943 int run_size = 20000000;
944 int max_key = 100000000;
945 int tree_size = 0;
946 struct ctree_path path;
947 struct ctree_super_block super;
948
949 radix_tree_init();
950
951
952 root = open_ctree("dbfile", &super);
953
954 srand(55);
955 for (i = 0; i < run_size; i++) {
956 buf = malloc(64);
957 num = next_key(i, max_key);
958 // num = i;
959 sprintf(buf, "string-%d", num);
960 if (i % 10000 == 0)
961 printf("insert %d:%d\n", num, i);
962 ins.objectid = num;
963 ins.offset = 0;
964 ins.flags = 0;
965 ret = insert_item(root, &ins, buf, strlen(buf));
966 if (!ret)
967 tree_size++;
968 free(buf);
969 }
970 write_ctree_super(root, &super);
971 close_ctree(root);
972
973 root = open_ctree("dbfile", &super);
974 printf("starting search\n");
975 srand(55);
976 for (i = 0; i < run_size; i++) {
977 num = next_key(i, max_key);
978 ins.objectid = num;
979 init_path(&path);
980 if (i % 10000 == 0)
981 printf("search %d:%d\n", num, i);
982 ret = search_slot(root, &ins, &path, 0);
983 if (ret) {
984 print_tree(root, root->node);
985 printf("unable to find %d\n", num);
986 exit(1);
987 }
988 release_path(root, &path);
989 }
990 write_ctree_super(root, &super);
991 close_ctree(root);
992 root = open_ctree("dbfile", &super);
993 printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
994 node_level(root->node->node.header.flags),
995 root->node->node.header.nritems,
996 NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
997 printf("all searches good, deleting some items\n");
998 i = 0;
999 srand(55);
1000 for (i = 0 ; i < run_size/4; i++) {
1001 num = next_key(i, max_key);
1002 ins.objectid = num;
1003 init_path(&path);
1004 ret = search_slot(root, &ins, &path, -1);
1005 if (!ret) {
1006 if (i % 10000 == 0)
1007 printf("del %d:%d\n", num, i);
1008 ret = del_item(root, &path);
1009 if (ret != 0)
1010 BUG();
1011 tree_size--;
1012 }
1013 release_path(root, &path);
1014 }
1015 write_ctree_super(root, &super);
1016 close_ctree(root);
1017 root = open_ctree("dbfile", &super);
1018 srand(128);
1019 for (i = 0; i < run_size; i++) {
1020 buf = malloc(64);
1021 num = next_key(i, max_key);
1022 sprintf(buf, "string-%d", num);
1023 ins.objectid = num;
1024 if (i % 10000 == 0)
1025 printf("insert %d:%d\n", num, i);
1026 ret = insert_item(root, &ins, buf, strlen(buf));
1027 if (!ret)
1028 tree_size++;
1029 free(buf);
1030 }
1031 write_ctree_super(root, &super);
1032 close_ctree(root);
1033 root = open_ctree("dbfile", &super);
1034 srand(128);
1035 printf("starting search2\n");
1036 for (i = 0; i < run_size; i++) {
1037 num = next_key(i, max_key);
1038 ins.objectid = num;
1039 init_path(&path);
1040 if (i % 10000 == 0)
1041 printf("search %d:%d\n", num, i);
1042 ret = search_slot(root, &ins, &path, 0);
1043 if (ret) {
1044 print_tree(root, root->node);
1045 printf("unable to find %d\n", num);
1046 exit(1);
1047 }
1048 release_path(root, &path);
1049 }
1050 printf("starting big long delete run\n");
1051 while(root->node && root->node->node.header.nritems > 0) {
1052 struct leaf *leaf;
1053 int slot;
1054 ins.objectid = (u64)-1;
1055 init_path(&path);
1056 ret = search_slot(root, &ins, &path, -1);
1057 if (ret == 0)
1058 BUG();
1059
1060 leaf = &path.nodes[0]->leaf;
1061 slot = path.slots[0];
1062 if (slot != leaf->header.nritems)
1063 BUG();
1064 while(path.slots[0] > 0) {
1065 path.slots[0] -= 1;
1066 slot = path.slots[0];
1067 leaf = &path.nodes[0]->leaf;
1068
1069 if (comp_keys(&last, &leaf->items[slot].key) <= 0)
1070 BUG();
1071 memcpy(&last, &leaf->items[slot].key, sizeof(last));
1072 if (tree_size % 10000 == 0)
1073 printf("big del %d:%d\n", tree_size, i);
1074 ret = del_item(root, &path);
1075 if (ret != 0) {
1076 printf("del_item returned %d\n", ret);
1077 BUG();
1078 }
1079 tree_size--;
1080 }
1081 release_path(root, &path);
1082 }
1083 printf("tree size is now %d\n", tree_size);
1084 printf("map tree\n");
1085 write_ctree_super(root, &super);
1086 close_ctree(root);
1087 return 0;
1088 }
This page took 0.054736 seconds and 5 git commands to generate.