Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53 struct btrfs_path *path;
54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 return path;
56 }
57
58 /*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73 }
74 }
75
76 /*
77 * reset all the locked nodes in the patch to spinning locks.
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
83 */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 struct extent_buffer *held, int held_rw)
86 {
87 int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
103 btrfs_set_path_blocking(p);
104 #endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
114 }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
118 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125 if (!p)
126 return;
127 btrfs_release_path(p);
128 kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139 int i;
140
141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 p->slots[i] = 0;
143 if (!p->nodes[i])
144 continue;
145 if (p->locks[i]) {
146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 p->locks[i] = 0;
148 }
149 free_extent_buffer(p->nodes[i]);
150 p->nodes[i] = NULL;
151 }
152 }
153
154 /*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166 struct extent_buffer *eb;
167
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
185 return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194 struct extent_buffer *eb;
195
196 while (1) {
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
199 if (eb == root->node)
200 break;
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232 spin_lock(&root->fs_info->trans_lock);
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
237 spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250 struct extent_buffer *cow;
251 int ret = 0;
252 int level;
253 struct btrfs_disk_key disk_key;
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
264
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
267 buf->start, 0);
268 if (IS_ERR(cow))
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
281
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 else
290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298 }
299
300 enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313 };
314
315 struct tree_mod_root {
316 u64 logical;
317 u8 level;
318 };
319
320 struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
323 u64 seq;
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345 read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350 read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355 write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360 write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
383 spin_unlock(&fs_info->tree_mod_seq_lock);
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391 {
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
405 elem->seq = 0;
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 if (cur_elem->seq < min_seq) {
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
426 tree_mod_log_write_lock(fs_info);
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
431 if (tm->seq > min_seq)
432 continue;
433 rb_erase(node, tm_root);
434 kfree(tm);
435 }
436 tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm || !tm->seq);
456
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
466 else if (cur->seq < tm->seq)
467 new = &((*new)->rb_left);
468 else if (cur->seq > tm->seq)
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
472 return -EEXIST;
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
502 return 1;
503 }
504
505 return 0;
506 }
507
508 /*
509 * This allocates memory and gets a tree modification sequence number.
510 *
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
513 */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
516 {
517 struct tree_mod_elem *tm;
518
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 if (!tm)
525 return -ENOMEM;
526
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
535 {
536 int ret;
537 struct tree_mod_elem *tm;
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
540 if (ret < 0)
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552 return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559 {
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
568 return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574 {
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582 {
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590 {
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
597
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
609 ret = tree_mod_alloc(fs_info, flags, &tm);
610 if (ret < 0)
611 goto out;
612
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
619 ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 tree_mod_log_write_unlock(fs_info);
622 return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628 int i;
629 u32 nritems;
630 int ret;
631
632 if (btrfs_header_level(eb) == 0)
633 return;
634
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
647 {
648 struct tree_mod_elem *tm;
649 int ret;
650
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
653
654 __tree_mod_log_free_eb(fs_info, old_root);
655
656 ret = tree_mod_alloc(fs_info, flags, &tm);
657 if (ret < 0)
658 goto out;
659
660 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
661 tm->old_root.logical = old_root->start;
662 tm->old_root.level = btrfs_header_level(old_root);
663 tm->generation = btrfs_header_generation(old_root);
664 tm->op = MOD_LOG_ROOT_REPLACE;
665
666 ret = __tree_mod_log_insert(fs_info, tm);
667 out:
668 tree_mod_log_write_unlock(fs_info);
669 return ret;
670 }
671
672 static struct tree_mod_elem *
673 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
674 int smallest)
675 {
676 struct rb_root *tm_root;
677 struct rb_node *node;
678 struct tree_mod_elem *cur = NULL;
679 struct tree_mod_elem *found = NULL;
680 u64 index = start >> PAGE_CACHE_SHIFT;
681
682 tree_mod_log_read_lock(fs_info);
683 tm_root = &fs_info->tree_mod_log;
684 node = tm_root->rb_node;
685 while (node) {
686 cur = container_of(node, struct tree_mod_elem, node);
687 if (cur->index < index) {
688 node = node->rb_left;
689 } else if (cur->index > index) {
690 node = node->rb_right;
691 } else if (cur->seq < min_seq) {
692 node = node->rb_left;
693 } else if (!smallest) {
694 /* we want the node with the highest seq */
695 if (found)
696 BUG_ON(found->seq > cur->seq);
697 found = cur;
698 node = node->rb_left;
699 } else if (cur->seq > min_seq) {
700 /* we want the node with the smallest seq */
701 if (found)
702 BUG_ON(found->seq < cur->seq);
703 found = cur;
704 node = node->rb_right;
705 } else {
706 found = cur;
707 break;
708 }
709 }
710 tree_mod_log_read_unlock(fs_info);
711
712 return found;
713 }
714
715 /*
716 * this returns the element from the log with the smallest time sequence
717 * value that's in the log (the oldest log item). any element with a time
718 * sequence lower than min_seq will be ignored.
719 */
720 static struct tree_mod_elem *
721 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
722 u64 min_seq)
723 {
724 return __tree_mod_log_search(fs_info, start, min_seq, 1);
725 }
726
727 /*
728 * this returns the element from the log with the largest time sequence
729 * value that's in the log (the most recent log item). any element with
730 * a time sequence lower than min_seq will be ignored.
731 */
732 static struct tree_mod_elem *
733 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 {
735 return __tree_mod_log_search(fs_info, start, min_seq, 0);
736 }
737
738 static noinline void
739 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
740 struct extent_buffer *src, unsigned long dst_offset,
741 unsigned long src_offset, int nr_items, int log_removal)
742 {
743 int ret;
744 int i;
745
746 if (tree_mod_dont_log(fs_info, NULL))
747 return;
748
749 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
750 tree_mod_log_write_unlock(fs_info);
751 return;
752 }
753
754 for (i = 0; i < nr_items; i++) {
755 if (log_removal) {
756 ret = tree_mod_log_insert_key_locked(fs_info, src,
757 i + src_offset,
758 MOD_LOG_KEY_REMOVE);
759 BUG_ON(ret < 0);
760 }
761 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762 i + dst_offset,
763 MOD_LOG_KEY_ADD);
764 BUG_ON(ret < 0);
765 }
766
767 tree_mod_log_write_unlock(fs_info);
768 }
769
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772 int dst_offset, int src_offset, int nr_items)
773 {
774 int ret;
775 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776 nr_items, GFP_NOFS);
777 BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782 struct extent_buffer *eb, int slot, int atomic)
783 {
784 int ret;
785
786 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787 MOD_LOG_KEY_REPLACE,
788 atomic ? GFP_ATOMIC : GFP_NOFS);
789 BUG_ON(ret < 0);
790 }
791
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795 if (tree_mod_dont_log(fs_info, eb))
796 return;
797
798 __tree_mod_log_free_eb(fs_info, eb);
799
800 tree_mod_log_write_unlock(fs_info);
801 }
802
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805 struct extent_buffer *new_root_node)
806 {
807 int ret;
808 ret = tree_mod_log_insert_root(root->fs_info, root->node,
809 new_root_node, GFP_NOFS);
810 BUG_ON(ret < 0);
811 }
812
813 /*
814 * check if the tree block can be shared by multiple trees
815 */
816 int btrfs_block_can_be_shared(struct btrfs_root *root,
817 struct extent_buffer *buf)
818 {
819 /*
820 * Tree blocks not in refernece counted trees and tree roots
821 * are never shared. If a block was allocated after the last
822 * snapshot and the block was not allocated by tree relocation,
823 * we know the block is not shared.
824 */
825 if (root->ref_cows &&
826 buf != root->node && buf != root->commit_root &&
827 (btrfs_header_generation(buf) <=
828 btrfs_root_last_snapshot(&root->root_item) ||
829 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
830 return 1;
831 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
832 if (root->ref_cows &&
833 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
834 return 1;
835 #endif
836 return 0;
837 }
838
839 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
840 struct btrfs_root *root,
841 struct extent_buffer *buf,
842 struct extent_buffer *cow,
843 int *last_ref)
844 {
845 u64 refs;
846 u64 owner;
847 u64 flags;
848 u64 new_flags = 0;
849 int ret;
850
851 /*
852 * Backrefs update rules:
853 *
854 * Always use full backrefs for extent pointers in tree block
855 * allocated by tree relocation.
856 *
857 * If a shared tree block is no longer referenced by its owner
858 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
859 * use full backrefs for extent pointers in tree block.
860 *
861 * If a tree block is been relocating
862 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
863 * use full backrefs for extent pointers in tree block.
864 * The reason for this is some operations (such as drop tree)
865 * are only allowed for blocks use full backrefs.
866 */
867
868 if (btrfs_block_can_be_shared(root, buf)) {
869 ret = btrfs_lookup_extent_info(trans, root, buf->start,
870 buf->len, &refs, &flags);
871 if (ret)
872 return ret;
873 if (refs == 0) {
874 ret = -EROFS;
875 btrfs_std_error(root->fs_info, ret);
876 return ret;
877 }
878 } else {
879 refs = 1;
880 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
881 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
882 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 else
884 flags = 0;
885 }
886
887 owner = btrfs_header_owner(buf);
888 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
889 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
890
891 if (refs > 1) {
892 if ((owner == root->root_key.objectid ||
893 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
894 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
895 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
896 BUG_ON(ret); /* -ENOMEM */
897
898 if (root->root_key.objectid ==
899 BTRFS_TREE_RELOC_OBJECTID) {
900 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
901 BUG_ON(ret); /* -ENOMEM */
902 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
903 BUG_ON(ret); /* -ENOMEM */
904 }
905 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 } else {
907
908 if (root->root_key.objectid ==
909 BTRFS_TREE_RELOC_OBJECTID)
910 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
911 else
912 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
913 BUG_ON(ret); /* -ENOMEM */
914 }
915 if (new_flags != 0) {
916 ret = btrfs_set_disk_extent_flags(trans, root,
917 buf->start,
918 buf->len,
919 new_flags, 0);
920 if (ret)
921 return ret;
922 }
923 } else {
924 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
925 if (root->root_key.objectid ==
926 BTRFS_TREE_RELOC_OBJECTID)
927 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
928 else
929 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
930 BUG_ON(ret); /* -ENOMEM */
931 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
932 BUG_ON(ret); /* -ENOMEM */
933 }
934 clean_tree_block(trans, root, buf);
935 *last_ref = 1;
936 }
937 return 0;
938 }
939
940 /*
941 * does the dirty work in cow of a single block. The parent block (if
942 * supplied) is updated to point to the new cow copy. The new buffer is marked
943 * dirty and returned locked. If you modify the block it needs to be marked
944 * dirty again.
945 *
946 * search_start -- an allocation hint for the new block
947 *
948 * empty_size -- a hint that you plan on doing more cow. This is the size in
949 * bytes the allocator should try to find free next to the block it returns.
950 * This is just a hint and may be ignored by the allocator.
951 */
952 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 struct extent_buffer *buf,
955 struct extent_buffer *parent, int parent_slot,
956 struct extent_buffer **cow_ret,
957 u64 search_start, u64 empty_size)
958 {
959 struct btrfs_disk_key disk_key;
960 struct extent_buffer *cow;
961 int level, ret;
962 int last_ref = 0;
963 int unlock_orig = 0;
964 u64 parent_start;
965
966 if (*cow_ret == buf)
967 unlock_orig = 1;
968
969 btrfs_assert_tree_locked(buf);
970
971 WARN_ON(root->ref_cows && trans->transid !=
972 root->fs_info->running_transaction->transid);
973 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
974
975 level = btrfs_header_level(buf);
976
977 if (level == 0)
978 btrfs_item_key(buf, &disk_key, 0);
979 else
980 btrfs_node_key(buf, &disk_key, 0);
981
982 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
983 if (parent)
984 parent_start = parent->start;
985 else
986 parent_start = 0;
987 } else
988 parent_start = 0;
989
990 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
991 root->root_key.objectid, &disk_key,
992 level, search_start, empty_size);
993 if (IS_ERR(cow))
994 return PTR_ERR(cow);
995
996 /* cow is set to blocking by btrfs_init_new_buffer */
997
998 copy_extent_buffer(cow, buf, 0, 0, cow->len);
999 btrfs_set_header_bytenr(cow, cow->start);
1000 btrfs_set_header_generation(cow, trans->transid);
1001 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1002 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1003 BTRFS_HEADER_FLAG_RELOC);
1004 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1005 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1006 else
1007 btrfs_set_header_owner(cow, root->root_key.objectid);
1008
1009 write_extent_buffer(cow, root->fs_info->fsid,
1010 (unsigned long)btrfs_header_fsid(cow),
1011 BTRFS_FSID_SIZE);
1012
1013 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1014 if (ret) {
1015 btrfs_abort_transaction(trans, root, ret);
1016 return ret;
1017 }
1018
1019 if (root->ref_cows)
1020 btrfs_reloc_cow_block(trans, root, buf, cow);
1021
1022 if (buf == root->node) {
1023 WARN_ON(parent && parent != buf);
1024 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1025 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1026 parent_start = buf->start;
1027 else
1028 parent_start = 0;
1029
1030 extent_buffer_get(cow);
1031 tree_mod_log_set_root_pointer(root, cow);
1032 rcu_assign_pointer(root->node, cow);
1033
1034 btrfs_free_tree_block(trans, root, buf, parent_start,
1035 last_ref);
1036 free_extent_buffer(buf);
1037 add_root_to_dirty_list(root);
1038 } else {
1039 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1040 parent_start = parent->start;
1041 else
1042 parent_start = 0;
1043
1044 WARN_ON(trans->transid != btrfs_header_generation(parent));
1045 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1046 MOD_LOG_KEY_REPLACE);
1047 btrfs_set_node_blockptr(parent, parent_slot,
1048 cow->start);
1049 btrfs_set_node_ptr_generation(parent, parent_slot,
1050 trans->transid);
1051 btrfs_mark_buffer_dirty(parent);
1052 tree_mod_log_free_eb(root->fs_info, buf);
1053 btrfs_free_tree_block(trans, root, buf, parent_start,
1054 last_ref);
1055 }
1056 if (unlock_orig)
1057 btrfs_tree_unlock(buf);
1058 free_extent_buffer_stale(buf);
1059 btrfs_mark_buffer_dirty(cow);
1060 *cow_ret = cow;
1061 return 0;
1062 }
1063
1064 /*
1065 * returns the logical address of the oldest predecessor of the given root.
1066 * entries older than time_seq are ignored.
1067 */
1068 static struct tree_mod_elem *
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1070 struct btrfs_root *root, u64 time_seq)
1071 {
1072 struct tree_mod_elem *tm;
1073 struct tree_mod_elem *found = NULL;
1074 u64 root_logical = root->node->start;
1075 int looped = 0;
1076
1077 if (!time_seq)
1078 return 0;
1079
1080 /*
1081 * the very last operation that's logged for a root is the replacement
1082 * operation (if it is replaced at all). this has the index of the *new*
1083 * root, making it the very first operation that's logged for this root.
1084 */
1085 while (1) {
1086 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1087 time_seq);
1088 if (!looped && !tm)
1089 return 0;
1090 /*
1091 * if there are no tree operation for the oldest root, we simply
1092 * return it. this should only happen if that (old) root is at
1093 * level 0.
1094 */
1095 if (!tm)
1096 break;
1097
1098 /*
1099 * if there's an operation that's not a root replacement, we
1100 * found the oldest version of our root. normally, we'll find a
1101 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1102 */
1103 if (tm->op != MOD_LOG_ROOT_REPLACE)
1104 break;
1105
1106 found = tm;
1107 root_logical = tm->old_root.logical;
1108 BUG_ON(root_logical == root->node->start);
1109 looped = 1;
1110 }
1111
1112 /* if there's no old root to return, return what we found instead */
1113 if (!found)
1114 found = tm;
1115
1116 return found;
1117 }
1118
1119 /*
1120 * tm is a pointer to the first operation to rewind within eb. then, all
1121 * previous operations will be rewinded (until we reach something older than
1122 * time_seq).
1123 */
1124 static void
1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1126 struct tree_mod_elem *first_tm)
1127 {
1128 u32 n;
1129 struct rb_node *next;
1130 struct tree_mod_elem *tm = first_tm;
1131 unsigned long o_dst;
1132 unsigned long o_src;
1133 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1134
1135 n = btrfs_header_nritems(eb);
1136 while (tm && tm->seq >= time_seq) {
1137 /*
1138 * all the operations are recorded with the operator used for
1139 * the modification. as we're going backwards, we do the
1140 * opposite of each operation here.
1141 */
1142 switch (tm->op) {
1143 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1144 BUG_ON(tm->slot < n);
1145 /* Fallthrough */
1146 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1147 case MOD_LOG_KEY_REMOVE:
1148 btrfs_set_node_key(eb, &tm->key, tm->slot);
1149 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150 btrfs_set_node_ptr_generation(eb, tm->slot,
1151 tm->generation);
1152 n++;
1153 break;
1154 case MOD_LOG_KEY_REPLACE:
1155 BUG_ON(tm->slot >= n);
1156 btrfs_set_node_key(eb, &tm->key, tm->slot);
1157 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1158 btrfs_set_node_ptr_generation(eb, tm->slot,
1159 tm->generation);
1160 break;
1161 case MOD_LOG_KEY_ADD:
1162 /* if a move operation is needed it's in the log */
1163 n--;
1164 break;
1165 case MOD_LOG_MOVE_KEYS:
1166 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1167 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1168 memmove_extent_buffer(eb, o_dst, o_src,
1169 tm->move.nr_items * p_size);
1170 break;
1171 case MOD_LOG_ROOT_REPLACE:
1172 /*
1173 * this operation is special. for roots, this must be
1174 * handled explicitly before rewinding.
1175 * for non-roots, this operation may exist if the node
1176 * was a root: root A -> child B; then A gets empty and
1177 * B is promoted to the new root. in the mod log, we'll
1178 * have a root-replace operation for B, a tree block
1179 * that is no root. we simply ignore that operation.
1180 */
1181 break;
1182 }
1183 next = rb_next(&tm->node);
1184 if (!next)
1185 break;
1186 tm = container_of(next, struct tree_mod_elem, node);
1187 if (tm->index != first_tm->index)
1188 break;
1189 }
1190 btrfs_set_header_nritems(eb, n);
1191 }
1192
1193 static struct extent_buffer *
1194 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 u64 time_seq)
1196 {
1197 struct extent_buffer *eb_rewin;
1198 struct tree_mod_elem *tm;
1199
1200 if (!time_seq)
1201 return eb;
1202
1203 if (btrfs_header_level(eb) == 0)
1204 return eb;
1205
1206 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1207 if (!tm)
1208 return eb;
1209
1210 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1211 BUG_ON(tm->slot != 0);
1212 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1213 fs_info->tree_root->nodesize);
1214 BUG_ON(!eb_rewin);
1215 btrfs_set_header_bytenr(eb_rewin, eb->start);
1216 btrfs_set_header_backref_rev(eb_rewin,
1217 btrfs_header_backref_rev(eb));
1218 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1219 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1220 } else {
1221 eb_rewin = btrfs_clone_extent_buffer(eb);
1222 BUG_ON(!eb_rewin);
1223 }
1224
1225 extent_buffer_get(eb_rewin);
1226 free_extent_buffer(eb);
1227
1228 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1229 WARN_ON(btrfs_header_nritems(eb_rewin) >
1230 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1231
1232 return eb_rewin;
1233 }
1234
1235 /*
1236 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237 * value. If there are no changes, the current root->root_node is returned. If
1238 * anything changed in between, there's a fresh buffer allocated on which the
1239 * rewind operations are done. In any case, the returned buffer is read locked.
1240 * Returns NULL on error (with no locks held).
1241 */
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1244 {
1245 struct tree_mod_elem *tm;
1246 struct extent_buffer *eb;
1247 struct extent_buffer *old;
1248 struct tree_mod_root *old_root = NULL;
1249 u64 old_generation = 0;
1250 u64 logical;
1251 u32 blocksize;
1252
1253 eb = btrfs_read_lock_root_node(root);
1254 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1255 if (!tm)
1256 return root->node;
1257
1258 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1259 old_root = &tm->old_root;
1260 old_generation = tm->generation;
1261 logical = old_root->logical;
1262 } else {
1263 logical = root->node->start;
1264 }
1265
1266 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1267 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1268 btrfs_tree_read_unlock(root->node);
1269 free_extent_buffer(root->node);
1270 blocksize = btrfs_level_size(root, old_root->level);
1271 old = read_tree_block(root, logical, blocksize, 0);
1272 if (!old) {
1273 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1274 logical);
1275 WARN_ON(1);
1276 } else {
1277 eb = btrfs_clone_extent_buffer(old);
1278 free_extent_buffer(old);
1279 }
1280 } else if (old_root) {
1281 btrfs_tree_read_unlock(root->node);
1282 free_extent_buffer(root->node);
1283 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1284 } else {
1285 eb = btrfs_clone_extent_buffer(root->node);
1286 btrfs_tree_read_unlock(root->node);
1287 free_extent_buffer(root->node);
1288 }
1289
1290 if (!eb)
1291 return NULL;
1292 extent_buffer_get(eb);
1293 btrfs_tree_read_lock(eb);
1294 if (old_root) {
1295 btrfs_set_header_bytenr(eb, eb->start);
1296 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1297 btrfs_set_header_owner(eb, root->root_key.objectid);
1298 btrfs_set_header_level(eb, old_root->level);
1299 btrfs_set_header_generation(eb, old_generation);
1300 }
1301 if (tm)
1302 __tree_mod_log_rewind(eb, time_seq, tm);
1303 else
1304 WARN_ON(btrfs_header_level(eb) != 0);
1305 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1306
1307 return eb;
1308 }
1309
1310 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1311 {
1312 struct tree_mod_elem *tm;
1313 int level;
1314
1315 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1316 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1317 level = tm->old_root.level;
1318 } else {
1319 rcu_read_lock();
1320 level = btrfs_header_level(root->node);
1321 rcu_read_unlock();
1322 }
1323
1324 return level;
1325 }
1326
1327 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root,
1329 struct extent_buffer *buf)
1330 {
1331 /* ensure we can see the force_cow */
1332 smp_rmb();
1333
1334 /*
1335 * We do not need to cow a block if
1336 * 1) this block is not created or changed in this transaction;
1337 * 2) this block does not belong to TREE_RELOC tree;
1338 * 3) the root is not forced COW.
1339 *
1340 * What is forced COW:
1341 * when we create snapshot during commiting the transaction,
1342 * after we've finished coping src root, we must COW the shared
1343 * block to ensure the metadata consistency.
1344 */
1345 if (btrfs_header_generation(buf) == trans->transid &&
1346 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1347 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1348 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1349 !root->force_cow)
1350 return 0;
1351 return 1;
1352 }
1353
1354 /*
1355 * cows a single block, see __btrfs_cow_block for the real work.
1356 * This version of it has extra checks so that a block isn't cow'd more than
1357 * once per transaction, as long as it hasn't been written yet
1358 */
1359 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1360 struct btrfs_root *root, struct extent_buffer *buf,
1361 struct extent_buffer *parent, int parent_slot,
1362 struct extent_buffer **cow_ret)
1363 {
1364 u64 search_start;
1365 int ret;
1366
1367 if (trans->transaction != root->fs_info->running_transaction)
1368 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1369 (unsigned long long)trans->transid,
1370 (unsigned long long)
1371 root->fs_info->running_transaction->transid);
1372
1373 if (trans->transid != root->fs_info->generation)
1374 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1375 (unsigned long long)trans->transid,
1376 (unsigned long long)root->fs_info->generation);
1377
1378 if (!should_cow_block(trans, root, buf)) {
1379 *cow_ret = buf;
1380 return 0;
1381 }
1382
1383 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1384
1385 if (parent)
1386 btrfs_set_lock_blocking(parent);
1387 btrfs_set_lock_blocking(buf);
1388
1389 ret = __btrfs_cow_block(trans, root, buf, parent,
1390 parent_slot, cow_ret, search_start, 0);
1391
1392 trace_btrfs_cow_block(root, buf, *cow_ret);
1393
1394 return ret;
1395 }
1396
1397 /*
1398 * helper function for defrag to decide if two blocks pointed to by a
1399 * node are actually close by
1400 */
1401 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1402 {
1403 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1404 return 1;
1405 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1406 return 1;
1407 return 0;
1408 }
1409
1410 /*
1411 * compare two keys in a memcmp fashion
1412 */
1413 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1414 {
1415 struct btrfs_key k1;
1416
1417 btrfs_disk_key_to_cpu(&k1, disk);
1418
1419 return btrfs_comp_cpu_keys(&k1, k2);
1420 }
1421
1422 /*
1423 * same as comp_keys only with two btrfs_key's
1424 */
1425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1426 {
1427 if (k1->objectid > k2->objectid)
1428 return 1;
1429 if (k1->objectid < k2->objectid)
1430 return -1;
1431 if (k1->type > k2->type)
1432 return 1;
1433 if (k1->type < k2->type)
1434 return -1;
1435 if (k1->offset > k2->offset)
1436 return 1;
1437 if (k1->offset < k2->offset)
1438 return -1;
1439 return 0;
1440 }
1441
1442 /*
1443 * this is used by the defrag code to go through all the
1444 * leaves pointed to by a node and reallocate them so that
1445 * disk order is close to key order
1446 */
1447 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root, struct extent_buffer *parent,
1449 int start_slot, u64 *last_ret,
1450 struct btrfs_key *progress)
1451 {
1452 struct extent_buffer *cur;
1453 u64 blocknr;
1454 u64 gen;
1455 u64 search_start = *last_ret;
1456 u64 last_block = 0;
1457 u64 other;
1458 u32 parent_nritems;
1459 int end_slot;
1460 int i;
1461 int err = 0;
1462 int parent_level;
1463 int uptodate;
1464 u32 blocksize;
1465 int progress_passed = 0;
1466 struct btrfs_disk_key disk_key;
1467
1468 parent_level = btrfs_header_level(parent);
1469
1470 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1471 WARN_ON(trans->transid != root->fs_info->generation);
1472
1473 parent_nritems = btrfs_header_nritems(parent);
1474 blocksize = btrfs_level_size(root, parent_level - 1);
1475 end_slot = parent_nritems;
1476
1477 if (parent_nritems == 1)
1478 return 0;
1479
1480 btrfs_set_lock_blocking(parent);
1481
1482 for (i = start_slot; i < end_slot; i++) {
1483 int close = 1;
1484
1485 btrfs_node_key(parent, &disk_key, i);
1486 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1487 continue;
1488
1489 progress_passed = 1;
1490 blocknr = btrfs_node_blockptr(parent, i);
1491 gen = btrfs_node_ptr_generation(parent, i);
1492 if (last_block == 0)
1493 last_block = blocknr;
1494
1495 if (i > 0) {
1496 other = btrfs_node_blockptr(parent, i - 1);
1497 close = close_blocks(blocknr, other, blocksize);
1498 }
1499 if (!close && i < end_slot - 2) {
1500 other = btrfs_node_blockptr(parent, i + 1);
1501 close = close_blocks(blocknr, other, blocksize);
1502 }
1503 if (close) {
1504 last_block = blocknr;
1505 continue;
1506 }
1507
1508 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1509 if (cur)
1510 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1511 else
1512 uptodate = 0;
1513 if (!cur || !uptodate) {
1514 if (!cur) {
1515 cur = read_tree_block(root, blocknr,
1516 blocksize, gen);
1517 if (!cur)
1518 return -EIO;
1519 } else if (!uptodate) {
1520 err = btrfs_read_buffer(cur, gen);
1521 if (err) {
1522 free_extent_buffer(cur);
1523 return err;
1524 }
1525 }
1526 }
1527 if (search_start == 0)
1528 search_start = last_block;
1529
1530 btrfs_tree_lock(cur);
1531 btrfs_set_lock_blocking(cur);
1532 err = __btrfs_cow_block(trans, root, cur, parent, i,
1533 &cur, search_start,
1534 min(16 * blocksize,
1535 (end_slot - i) * blocksize));
1536 if (err) {
1537 btrfs_tree_unlock(cur);
1538 free_extent_buffer(cur);
1539 break;
1540 }
1541 search_start = cur->start;
1542 last_block = cur->start;
1543 *last_ret = search_start;
1544 btrfs_tree_unlock(cur);
1545 free_extent_buffer(cur);
1546 }
1547 return err;
1548 }
1549
1550 /*
1551 * The leaf data grows from end-to-front in the node.
1552 * this returns the address of the start of the last item,
1553 * which is the stop of the leaf data stack
1554 */
1555 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1556 struct extent_buffer *leaf)
1557 {
1558 u32 nr = btrfs_header_nritems(leaf);
1559 if (nr == 0)
1560 return BTRFS_LEAF_DATA_SIZE(root);
1561 return btrfs_item_offset_nr(leaf, nr - 1);
1562 }
1563
1564
1565 /*
1566 * search for key in the extent_buffer. The items start at offset p,
1567 * and they are item_size apart. There are 'max' items in p.
1568 *
1569 * the slot in the array is returned via slot, and it points to
1570 * the place where you would insert key if it is not found in
1571 * the array.
1572 *
1573 * slot may point to max if the key is bigger than all of the keys
1574 */
1575 static noinline int generic_bin_search(struct extent_buffer *eb,
1576 unsigned long p,
1577 int item_size, struct btrfs_key *key,
1578 int max, int *slot)
1579 {
1580 int low = 0;
1581 int high = max;
1582 int mid;
1583 int ret;
1584 struct btrfs_disk_key *tmp = NULL;
1585 struct btrfs_disk_key unaligned;
1586 unsigned long offset;
1587 char *kaddr = NULL;
1588 unsigned long map_start = 0;
1589 unsigned long map_len = 0;
1590 int err;
1591
1592 while (low < high) {
1593 mid = (low + high) / 2;
1594 offset = p + mid * item_size;
1595
1596 if (!kaddr || offset < map_start ||
1597 (offset + sizeof(struct btrfs_disk_key)) >
1598 map_start + map_len) {
1599
1600 err = map_private_extent_buffer(eb, offset,
1601 sizeof(struct btrfs_disk_key),
1602 &kaddr, &map_start, &map_len);
1603
1604 if (!err) {
1605 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1606 map_start);
1607 } else {
1608 read_extent_buffer(eb, &unaligned,
1609 offset, sizeof(unaligned));
1610 tmp = &unaligned;
1611 }
1612
1613 } else {
1614 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1615 map_start);
1616 }
1617 ret = comp_keys(tmp, key);
1618
1619 if (ret < 0)
1620 low = mid + 1;
1621 else if (ret > 0)
1622 high = mid;
1623 else {
1624 *slot = mid;
1625 return 0;
1626 }
1627 }
1628 *slot = low;
1629 return 1;
1630 }
1631
1632 /*
1633 * simple bin_search frontend that does the right thing for
1634 * leaves vs nodes
1635 */
1636 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1637 int level, int *slot)
1638 {
1639 if (level == 0)
1640 return generic_bin_search(eb,
1641 offsetof(struct btrfs_leaf, items),
1642 sizeof(struct btrfs_item),
1643 key, btrfs_header_nritems(eb),
1644 slot);
1645 else
1646 return generic_bin_search(eb,
1647 offsetof(struct btrfs_node, ptrs),
1648 sizeof(struct btrfs_key_ptr),
1649 key, btrfs_header_nritems(eb),
1650 slot);
1651 }
1652
1653 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1654 int level, int *slot)
1655 {
1656 return bin_search(eb, key, level, slot);
1657 }
1658
1659 static void root_add_used(struct btrfs_root *root, u32 size)
1660 {
1661 spin_lock(&root->accounting_lock);
1662 btrfs_set_root_used(&root->root_item,
1663 btrfs_root_used(&root->root_item) + size);
1664 spin_unlock(&root->accounting_lock);
1665 }
1666
1667 static void root_sub_used(struct btrfs_root *root, u32 size)
1668 {
1669 spin_lock(&root->accounting_lock);
1670 btrfs_set_root_used(&root->root_item,
1671 btrfs_root_used(&root->root_item) - size);
1672 spin_unlock(&root->accounting_lock);
1673 }
1674
1675 /* given a node and slot number, this reads the blocks it points to. The
1676 * extent buffer is returned with a reference taken (but unlocked).
1677 * NULL is returned on error.
1678 */
1679 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1680 struct extent_buffer *parent, int slot)
1681 {
1682 int level = btrfs_header_level(parent);
1683 if (slot < 0)
1684 return NULL;
1685 if (slot >= btrfs_header_nritems(parent))
1686 return NULL;
1687
1688 BUG_ON(level == 0);
1689
1690 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1691 btrfs_level_size(root, level - 1),
1692 btrfs_node_ptr_generation(parent, slot));
1693 }
1694
1695 /*
1696 * node level balancing, used to make sure nodes are in proper order for
1697 * item deletion. We balance from the top down, so we have to make sure
1698 * that a deletion won't leave an node completely empty later on.
1699 */
1700 static noinline int balance_level(struct btrfs_trans_handle *trans,
1701 struct btrfs_root *root,
1702 struct btrfs_path *path, int level)
1703 {
1704 struct extent_buffer *right = NULL;
1705 struct extent_buffer *mid;
1706 struct extent_buffer *left = NULL;
1707 struct extent_buffer *parent = NULL;
1708 int ret = 0;
1709 int wret;
1710 int pslot;
1711 int orig_slot = path->slots[level];
1712 u64 orig_ptr;
1713
1714 if (level == 0)
1715 return 0;
1716
1717 mid = path->nodes[level];
1718
1719 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1720 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1721 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1722
1723 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1724
1725 if (level < BTRFS_MAX_LEVEL - 1) {
1726 parent = path->nodes[level + 1];
1727 pslot = path->slots[level + 1];
1728 }
1729
1730 /*
1731 * deal with the case where there is only one pointer in the root
1732 * by promoting the node below to a root
1733 */
1734 if (!parent) {
1735 struct extent_buffer *child;
1736
1737 if (btrfs_header_nritems(mid) != 1)
1738 return 0;
1739
1740 /* promote the child to a root */
1741 child = read_node_slot(root, mid, 0);
1742 if (!child) {
1743 ret = -EROFS;
1744 btrfs_std_error(root->fs_info, ret);
1745 goto enospc;
1746 }
1747
1748 btrfs_tree_lock(child);
1749 btrfs_set_lock_blocking(child);
1750 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1751 if (ret) {
1752 btrfs_tree_unlock(child);
1753 free_extent_buffer(child);
1754 goto enospc;
1755 }
1756
1757 tree_mod_log_set_root_pointer(root, child);
1758 rcu_assign_pointer(root->node, child);
1759
1760 add_root_to_dirty_list(root);
1761 btrfs_tree_unlock(child);
1762
1763 path->locks[level] = 0;
1764 path->nodes[level] = NULL;
1765 clean_tree_block(trans, root, mid);
1766 btrfs_tree_unlock(mid);
1767 /* once for the path */
1768 free_extent_buffer(mid);
1769
1770 root_sub_used(root, mid->len);
1771 btrfs_free_tree_block(trans, root, mid, 0, 1);
1772 /* once for the root ptr */
1773 free_extent_buffer_stale(mid);
1774 return 0;
1775 }
1776 if (btrfs_header_nritems(mid) >
1777 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1778 return 0;
1779
1780 left = read_node_slot(root, parent, pslot - 1);
1781 if (left) {
1782 btrfs_tree_lock(left);
1783 btrfs_set_lock_blocking(left);
1784 wret = btrfs_cow_block(trans, root, left,
1785 parent, pslot - 1, &left);
1786 if (wret) {
1787 ret = wret;
1788 goto enospc;
1789 }
1790 }
1791 right = read_node_slot(root, parent, pslot + 1);
1792 if (right) {
1793 btrfs_tree_lock(right);
1794 btrfs_set_lock_blocking(right);
1795 wret = btrfs_cow_block(trans, root, right,
1796 parent, pslot + 1, &right);
1797 if (wret) {
1798 ret = wret;
1799 goto enospc;
1800 }
1801 }
1802
1803 /* first, try to make some room in the middle buffer */
1804 if (left) {
1805 orig_slot += btrfs_header_nritems(left);
1806 wret = push_node_left(trans, root, left, mid, 1);
1807 if (wret < 0)
1808 ret = wret;
1809 }
1810
1811 /*
1812 * then try to empty the right most buffer into the middle
1813 */
1814 if (right) {
1815 wret = push_node_left(trans, root, mid, right, 1);
1816 if (wret < 0 && wret != -ENOSPC)
1817 ret = wret;
1818 if (btrfs_header_nritems(right) == 0) {
1819 clean_tree_block(trans, root, right);
1820 btrfs_tree_unlock(right);
1821 del_ptr(trans, root, path, level + 1, pslot + 1);
1822 root_sub_used(root, right->len);
1823 btrfs_free_tree_block(trans, root, right, 0, 1);
1824 free_extent_buffer_stale(right);
1825 right = NULL;
1826 } else {
1827 struct btrfs_disk_key right_key;
1828 btrfs_node_key(right, &right_key, 0);
1829 tree_mod_log_set_node_key(root->fs_info, parent,
1830 pslot + 1, 0);
1831 btrfs_set_node_key(parent, &right_key, pslot + 1);
1832 btrfs_mark_buffer_dirty(parent);
1833 }
1834 }
1835 if (btrfs_header_nritems(mid) == 1) {
1836 /*
1837 * we're not allowed to leave a node with one item in the
1838 * tree during a delete. A deletion from lower in the tree
1839 * could try to delete the only pointer in this node.
1840 * So, pull some keys from the left.
1841 * There has to be a left pointer at this point because
1842 * otherwise we would have pulled some pointers from the
1843 * right
1844 */
1845 if (!left) {
1846 ret = -EROFS;
1847 btrfs_std_error(root->fs_info, ret);
1848 goto enospc;
1849 }
1850 wret = balance_node_right(trans, root, mid, left);
1851 if (wret < 0) {
1852 ret = wret;
1853 goto enospc;
1854 }
1855 if (wret == 1) {
1856 wret = push_node_left(trans, root, left, mid, 1);
1857 if (wret < 0)
1858 ret = wret;
1859 }
1860 BUG_ON(wret == 1);
1861 }
1862 if (btrfs_header_nritems(mid) == 0) {
1863 clean_tree_block(trans, root, mid);
1864 btrfs_tree_unlock(mid);
1865 del_ptr(trans, root, path, level + 1, pslot);
1866 root_sub_used(root, mid->len);
1867 btrfs_free_tree_block(trans, root, mid, 0, 1);
1868 free_extent_buffer_stale(mid);
1869 mid = NULL;
1870 } else {
1871 /* update the parent key to reflect our changes */
1872 struct btrfs_disk_key mid_key;
1873 btrfs_node_key(mid, &mid_key, 0);
1874 tree_mod_log_set_node_key(root->fs_info, parent,
1875 pslot, 0);
1876 btrfs_set_node_key(parent, &mid_key, pslot);
1877 btrfs_mark_buffer_dirty(parent);
1878 }
1879
1880 /* update the path */
1881 if (left) {
1882 if (btrfs_header_nritems(left) > orig_slot) {
1883 extent_buffer_get(left);
1884 /* left was locked after cow */
1885 path->nodes[level] = left;
1886 path->slots[level + 1] -= 1;
1887 path->slots[level] = orig_slot;
1888 if (mid) {
1889 btrfs_tree_unlock(mid);
1890 free_extent_buffer(mid);
1891 }
1892 } else {
1893 orig_slot -= btrfs_header_nritems(left);
1894 path->slots[level] = orig_slot;
1895 }
1896 }
1897 /* double check we haven't messed things up */
1898 if (orig_ptr !=
1899 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1900 BUG();
1901 enospc:
1902 if (right) {
1903 btrfs_tree_unlock(right);
1904 free_extent_buffer(right);
1905 }
1906 if (left) {
1907 if (path->nodes[level] != left)
1908 btrfs_tree_unlock(left);
1909 free_extent_buffer(left);
1910 }
1911 return ret;
1912 }
1913
1914 /* Node balancing for insertion. Here we only split or push nodes around
1915 * when they are completely full. This is also done top down, so we
1916 * have to be pessimistic.
1917 */
1918 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1919 struct btrfs_root *root,
1920 struct btrfs_path *path, int level)
1921 {
1922 struct extent_buffer *right = NULL;
1923 struct extent_buffer *mid;
1924 struct extent_buffer *left = NULL;
1925 struct extent_buffer *parent = NULL;
1926 int ret = 0;
1927 int wret;
1928 int pslot;
1929 int orig_slot = path->slots[level];
1930
1931 if (level == 0)
1932 return 1;
1933
1934 mid = path->nodes[level];
1935 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1936
1937 if (level < BTRFS_MAX_LEVEL - 1) {
1938 parent = path->nodes[level + 1];
1939 pslot = path->slots[level + 1];
1940 }
1941
1942 if (!parent)
1943 return 1;
1944
1945 left = read_node_slot(root, parent, pslot - 1);
1946
1947 /* first, try to make some room in the middle buffer */
1948 if (left) {
1949 u32 left_nr;
1950
1951 btrfs_tree_lock(left);
1952 btrfs_set_lock_blocking(left);
1953
1954 left_nr = btrfs_header_nritems(left);
1955 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1956 wret = 1;
1957 } else {
1958 ret = btrfs_cow_block(trans, root, left, parent,
1959 pslot - 1, &left);
1960 if (ret)
1961 wret = 1;
1962 else {
1963 wret = push_node_left(trans, root,
1964 left, mid, 0);
1965 }
1966 }
1967 if (wret < 0)
1968 ret = wret;
1969 if (wret == 0) {
1970 struct btrfs_disk_key disk_key;
1971 orig_slot += left_nr;
1972 btrfs_node_key(mid, &disk_key, 0);
1973 tree_mod_log_set_node_key(root->fs_info, parent,
1974 pslot, 0);
1975 btrfs_set_node_key(parent, &disk_key, pslot);
1976 btrfs_mark_buffer_dirty(parent);
1977 if (btrfs_header_nritems(left) > orig_slot) {
1978 path->nodes[level] = left;
1979 path->slots[level + 1] -= 1;
1980 path->slots[level] = orig_slot;
1981 btrfs_tree_unlock(mid);
1982 free_extent_buffer(mid);
1983 } else {
1984 orig_slot -=
1985 btrfs_header_nritems(left);
1986 path->slots[level] = orig_slot;
1987 btrfs_tree_unlock(left);
1988 free_extent_buffer(left);
1989 }
1990 return 0;
1991 }
1992 btrfs_tree_unlock(left);
1993 free_extent_buffer(left);
1994 }
1995 right = read_node_slot(root, parent, pslot + 1);
1996
1997 /*
1998 * then try to empty the right most buffer into the middle
1999 */
2000 if (right) {
2001 u32 right_nr;
2002
2003 btrfs_tree_lock(right);
2004 btrfs_set_lock_blocking(right);
2005
2006 right_nr = btrfs_header_nritems(right);
2007 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2008 wret = 1;
2009 } else {
2010 ret = btrfs_cow_block(trans, root, right,
2011 parent, pslot + 1,
2012 &right);
2013 if (ret)
2014 wret = 1;
2015 else {
2016 wret = balance_node_right(trans, root,
2017 right, mid);
2018 }
2019 }
2020 if (wret < 0)
2021 ret = wret;
2022 if (wret == 0) {
2023 struct btrfs_disk_key disk_key;
2024
2025 btrfs_node_key(right, &disk_key, 0);
2026 tree_mod_log_set_node_key(root->fs_info, parent,
2027 pslot + 1, 0);
2028 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2029 btrfs_mark_buffer_dirty(parent);
2030
2031 if (btrfs_header_nritems(mid) <= orig_slot) {
2032 path->nodes[level] = right;
2033 path->slots[level + 1] += 1;
2034 path->slots[level] = orig_slot -
2035 btrfs_header_nritems(mid);
2036 btrfs_tree_unlock(mid);
2037 free_extent_buffer(mid);
2038 } else {
2039 btrfs_tree_unlock(right);
2040 free_extent_buffer(right);
2041 }
2042 return 0;
2043 }
2044 btrfs_tree_unlock(right);
2045 free_extent_buffer(right);
2046 }
2047 return 1;
2048 }
2049
2050 /*
2051 * readahead one full node of leaves, finding things that are close
2052 * to the block in 'slot', and triggering ra on them.
2053 */
2054 static void reada_for_search(struct btrfs_root *root,
2055 struct btrfs_path *path,
2056 int level, int slot, u64 objectid)
2057 {
2058 struct extent_buffer *node;
2059 struct btrfs_disk_key disk_key;
2060 u32 nritems;
2061 u64 search;
2062 u64 target;
2063 u64 nread = 0;
2064 u64 gen;
2065 int direction = path->reada;
2066 struct extent_buffer *eb;
2067 u32 nr;
2068 u32 blocksize;
2069 u32 nscan = 0;
2070
2071 if (level != 1)
2072 return;
2073
2074 if (!path->nodes[level])
2075 return;
2076
2077 node = path->nodes[level];
2078
2079 search = btrfs_node_blockptr(node, slot);
2080 blocksize = btrfs_level_size(root, level - 1);
2081 eb = btrfs_find_tree_block(root, search, blocksize);
2082 if (eb) {
2083 free_extent_buffer(eb);
2084 return;
2085 }
2086
2087 target = search;
2088
2089 nritems = btrfs_header_nritems(node);
2090 nr = slot;
2091
2092 while (1) {
2093 if (direction < 0) {
2094 if (nr == 0)
2095 break;
2096 nr--;
2097 } else if (direction > 0) {
2098 nr++;
2099 if (nr >= nritems)
2100 break;
2101 }
2102 if (path->reada < 0 && objectid) {
2103 btrfs_node_key(node, &disk_key, nr);
2104 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2105 break;
2106 }
2107 search = btrfs_node_blockptr(node, nr);
2108 if ((search <= target && target - search <= 65536) ||
2109 (search > target && search - target <= 65536)) {
2110 gen = btrfs_node_ptr_generation(node, nr);
2111 readahead_tree_block(root, search, blocksize, gen);
2112 nread += blocksize;
2113 }
2114 nscan++;
2115 if ((nread > 65536 || nscan > 32))
2116 break;
2117 }
2118 }
2119
2120 /*
2121 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2122 * cache
2123 */
2124 static noinline int reada_for_balance(struct btrfs_root *root,
2125 struct btrfs_path *path, int level)
2126 {
2127 int slot;
2128 int nritems;
2129 struct extent_buffer *parent;
2130 struct extent_buffer *eb;
2131 u64 gen;
2132 u64 block1 = 0;
2133 u64 block2 = 0;
2134 int ret = 0;
2135 int blocksize;
2136
2137 parent = path->nodes[level + 1];
2138 if (!parent)
2139 return 0;
2140
2141 nritems = btrfs_header_nritems(parent);
2142 slot = path->slots[level + 1];
2143 blocksize = btrfs_level_size(root, level);
2144
2145 if (slot > 0) {
2146 block1 = btrfs_node_blockptr(parent, slot - 1);
2147 gen = btrfs_node_ptr_generation(parent, slot - 1);
2148 eb = btrfs_find_tree_block(root, block1, blocksize);
2149 /*
2150 * if we get -eagain from btrfs_buffer_uptodate, we
2151 * don't want to return eagain here. That will loop
2152 * forever
2153 */
2154 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2155 block1 = 0;
2156 free_extent_buffer(eb);
2157 }
2158 if (slot + 1 < nritems) {
2159 block2 = btrfs_node_blockptr(parent, slot + 1);
2160 gen = btrfs_node_ptr_generation(parent, slot + 1);
2161 eb = btrfs_find_tree_block(root, block2, blocksize);
2162 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2163 block2 = 0;
2164 free_extent_buffer(eb);
2165 }
2166 if (block1 || block2) {
2167 ret = -EAGAIN;
2168
2169 /* release the whole path */
2170 btrfs_release_path(path);
2171
2172 /* read the blocks */
2173 if (block1)
2174 readahead_tree_block(root, block1, blocksize, 0);
2175 if (block2)
2176 readahead_tree_block(root, block2, blocksize, 0);
2177
2178 if (block1) {
2179 eb = read_tree_block(root, block1, blocksize, 0);
2180 free_extent_buffer(eb);
2181 }
2182 if (block2) {
2183 eb = read_tree_block(root, block2, blocksize, 0);
2184 free_extent_buffer(eb);
2185 }
2186 }
2187 return ret;
2188 }
2189
2190
2191 /*
2192 * when we walk down the tree, it is usually safe to unlock the higher layers
2193 * in the tree. The exceptions are when our path goes through slot 0, because
2194 * operations on the tree might require changing key pointers higher up in the
2195 * tree.
2196 *
2197 * callers might also have set path->keep_locks, which tells this code to keep
2198 * the lock if the path points to the last slot in the block. This is part of
2199 * walking through the tree, and selecting the next slot in the higher block.
2200 *
2201 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2202 * if lowest_unlock is 1, level 0 won't be unlocked
2203 */
2204 static noinline void unlock_up(struct btrfs_path *path, int level,
2205 int lowest_unlock, int min_write_lock_level,
2206 int *write_lock_level)
2207 {
2208 int i;
2209 int skip_level = level;
2210 int no_skips = 0;
2211 struct extent_buffer *t;
2212
2213 if (path->really_keep_locks)
2214 return;
2215
2216 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2217 if (!path->nodes[i])
2218 break;
2219 if (!path->locks[i])
2220 break;
2221 if (!no_skips && path->slots[i] == 0) {
2222 skip_level = i + 1;
2223 continue;
2224 }
2225 if (!no_skips && path->keep_locks) {
2226 u32 nritems;
2227 t = path->nodes[i];
2228 nritems = btrfs_header_nritems(t);
2229 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2230 skip_level = i + 1;
2231 continue;
2232 }
2233 }
2234 if (skip_level < i && i >= lowest_unlock)
2235 no_skips = 1;
2236
2237 t = path->nodes[i];
2238 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2239 btrfs_tree_unlock_rw(t, path->locks[i]);
2240 path->locks[i] = 0;
2241 if (write_lock_level &&
2242 i > min_write_lock_level &&
2243 i <= *write_lock_level) {
2244 *write_lock_level = i - 1;
2245 }
2246 }
2247 }
2248 }
2249
2250 /*
2251 * This releases any locks held in the path starting at level and
2252 * going all the way up to the root.
2253 *
2254 * btrfs_search_slot will keep the lock held on higher nodes in a few
2255 * corner cases, such as COW of the block at slot zero in the node. This
2256 * ignores those rules, and it should only be called when there are no
2257 * more updates to be done higher up in the tree.
2258 */
2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2260 {
2261 int i;
2262
2263 if (path->keep_locks || path->really_keep_locks)
2264 return;
2265
2266 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2267 if (!path->nodes[i])
2268 continue;
2269 if (!path->locks[i])
2270 continue;
2271 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2272 path->locks[i] = 0;
2273 }
2274 }
2275
2276 /*
2277 * helper function for btrfs_search_slot. The goal is to find a block
2278 * in cache without setting the path to blocking. If we find the block
2279 * we return zero and the path is unchanged.
2280 *
2281 * If we can't find the block, we set the path blocking and do some
2282 * reada. -EAGAIN is returned and the search must be repeated.
2283 */
2284 static int
2285 read_block_for_search(struct btrfs_trans_handle *trans,
2286 struct btrfs_root *root, struct btrfs_path *p,
2287 struct extent_buffer **eb_ret, int level, int slot,
2288 struct btrfs_key *key, u64 time_seq)
2289 {
2290 u64 blocknr;
2291 u64 gen;
2292 u32 blocksize;
2293 struct extent_buffer *b = *eb_ret;
2294 struct extent_buffer *tmp;
2295 int ret;
2296
2297 blocknr = btrfs_node_blockptr(b, slot);
2298 gen = btrfs_node_ptr_generation(b, slot);
2299 blocksize = btrfs_level_size(root, level - 1);
2300
2301 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2302 if (tmp) {
2303 /* first we do an atomic uptodate check */
2304 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2305 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306 /*
2307 * we found an up to date block without
2308 * sleeping, return
2309 * right away
2310 */
2311 *eb_ret = tmp;
2312 return 0;
2313 }
2314 /* the pages were up to date, but we failed
2315 * the generation number check. Do a full
2316 * read for the generation number that is correct.
2317 * We must do this without dropping locks so
2318 * we can trust our generation number
2319 */
2320 free_extent_buffer(tmp);
2321 btrfs_set_path_blocking(p);
2322
2323 /* now we're allowed to do a blocking uptodate check */
2324 tmp = read_tree_block(root, blocknr, blocksize, gen);
2325 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2326 *eb_ret = tmp;
2327 return 0;
2328 }
2329 free_extent_buffer(tmp);
2330 btrfs_release_path(p);
2331 return -EIO;
2332 }
2333 }
2334
2335 /*
2336 * reduce lock contention at high levels
2337 * of the btree by dropping locks before
2338 * we read. Don't release the lock on the current
2339 * level because we need to walk this node to figure
2340 * out which blocks to read.
2341 */
2342 btrfs_unlock_up_safe(p, level + 1);
2343 btrfs_set_path_blocking(p);
2344
2345 free_extent_buffer(tmp);
2346 if (p->reada)
2347 reada_for_search(root, p, level, slot, key->objectid);
2348
2349 btrfs_release_path(p);
2350
2351 ret = -EAGAIN;
2352 tmp = read_tree_block(root, blocknr, blocksize, 0);
2353 if (tmp) {
2354 /*
2355 * If the read above didn't mark this buffer up to date,
2356 * it will never end up being up to date. Set ret to EIO now
2357 * and give up so that our caller doesn't loop forever
2358 * on our EAGAINs.
2359 */
2360 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2361 ret = -EIO;
2362 free_extent_buffer(tmp);
2363 }
2364 return ret;
2365 }
2366
2367 /*
2368 * helper function for btrfs_search_slot. This does all of the checks
2369 * for node-level blocks and does any balancing required based on
2370 * the ins_len.
2371 *
2372 * If no extra work was required, zero is returned. If we had to
2373 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2374 * start over
2375 */
2376 static int
2377 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, struct btrfs_path *p,
2379 struct extent_buffer *b, int level, int ins_len,
2380 int *write_lock_level)
2381 {
2382 int ret;
2383 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2384 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2385 int sret;
2386
2387 if (*write_lock_level < level + 1) {
2388 *write_lock_level = level + 1;
2389 btrfs_release_path(p);
2390 goto again;
2391 }
2392
2393 sret = reada_for_balance(root, p, level);
2394 if (sret)
2395 goto again;
2396
2397 btrfs_set_path_blocking(p);
2398 sret = split_node(trans, root, p, level);
2399 btrfs_clear_path_blocking(p, NULL, 0);
2400
2401 BUG_ON(sret > 0);
2402 if (sret) {
2403 ret = sret;
2404 goto done;
2405 }
2406 b = p->nodes[level];
2407 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2408 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2409 int sret;
2410
2411 if (*write_lock_level < level + 1) {
2412 *write_lock_level = level + 1;
2413 btrfs_release_path(p);
2414 goto again;
2415 }
2416
2417 sret = reada_for_balance(root, p, level);
2418 if (sret)
2419 goto again;
2420
2421 btrfs_set_path_blocking(p);
2422 sret = balance_level(trans, root, p, level);
2423 btrfs_clear_path_blocking(p, NULL, 0);
2424
2425 if (sret) {
2426 ret = sret;
2427 goto done;
2428 }
2429 b = p->nodes[level];
2430 if (!b) {
2431 btrfs_release_path(p);
2432 goto again;
2433 }
2434 BUG_ON(btrfs_header_nritems(b) == 1);
2435 }
2436 return 0;
2437
2438 again:
2439 ret = -EAGAIN;
2440 done:
2441 return ret;
2442 }
2443
2444 /*
2445 * look for key in the tree. path is filled in with nodes along the way
2446 * if key is found, we return zero and you can find the item in the leaf
2447 * level of the path (level 0)
2448 *
2449 * If the key isn't found, the path points to the slot where it should
2450 * be inserted, and 1 is returned. If there are other errors during the
2451 * search a negative error number is returned.
2452 *
2453 * if ins_len > 0, nodes and leaves will be split as we walk down the
2454 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2455 * possible)
2456 */
2457 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2458 *root, struct btrfs_key *key, struct btrfs_path *p, int
2459 ins_len, int cow)
2460 {
2461 struct extent_buffer *b;
2462 int slot;
2463 int ret;
2464 int err;
2465 int level;
2466 int lowest_unlock = 1;
2467 int root_lock;
2468 /* everything at write_lock_level or lower must be write locked */
2469 int write_lock_level = 0;
2470 u8 lowest_level = 0;
2471 int min_write_lock_level;
2472
2473 lowest_level = p->lowest_level;
2474 WARN_ON(lowest_level && ins_len > 0);
2475 WARN_ON(p->nodes[0] != NULL);
2476
2477 if (ins_len < 0) {
2478 lowest_unlock = 2;
2479
2480 /* when we are removing items, we might have to go up to level
2481 * two as we update tree pointers Make sure we keep write
2482 * for those levels as well
2483 */
2484 write_lock_level = 2;
2485 } else if (ins_len > 0) {
2486 /*
2487 * for inserting items, make sure we have a write lock on
2488 * level 1 so we can update keys
2489 */
2490 write_lock_level = 1;
2491 }
2492
2493 if (!cow)
2494 write_lock_level = -1;
2495
2496 if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2497 write_lock_level = BTRFS_MAX_LEVEL;
2498
2499 min_write_lock_level = write_lock_level;
2500
2501 again:
2502 /*
2503 * we try very hard to do read locks on the root
2504 */
2505 root_lock = BTRFS_READ_LOCK;
2506 level = 0;
2507 if (p->search_commit_root) {
2508 /*
2509 * the commit roots are read only
2510 * so we always do read locks
2511 */
2512 b = root->commit_root;
2513 extent_buffer_get(b);
2514 level = btrfs_header_level(b);
2515 if (!p->skip_locking)
2516 btrfs_tree_read_lock(b);
2517 } else {
2518 if (p->skip_locking) {
2519 b = btrfs_root_node(root);
2520 level = btrfs_header_level(b);
2521 } else {
2522 /* we don't know the level of the root node
2523 * until we actually have it read locked
2524 */
2525 b = btrfs_read_lock_root_node(root);
2526 level = btrfs_header_level(b);
2527 if (level <= write_lock_level) {
2528 /* whoops, must trade for write lock */
2529 btrfs_tree_read_unlock(b);
2530 free_extent_buffer(b);
2531 b = btrfs_lock_root_node(root);
2532 root_lock = BTRFS_WRITE_LOCK;
2533
2534 /* the level might have changed, check again */
2535 level = btrfs_header_level(b);
2536 }
2537 }
2538 }
2539 p->nodes[level] = b;
2540 if (!p->skip_locking)
2541 p->locks[level] = root_lock;
2542
2543 while (b) {
2544 level = btrfs_header_level(b);
2545
2546 /*
2547 * setup the path here so we can release it under lock
2548 * contention with the cow code
2549 */
2550 if (cow) {
2551 /*
2552 * if we don't really need to cow this block
2553 * then we don't want to set the path blocking,
2554 * so we test it here
2555 */
2556 if (!should_cow_block(trans, root, b))
2557 goto cow_done;
2558
2559 btrfs_set_path_blocking(p);
2560
2561 /*
2562 * must have write locks on this node and the
2563 * parent
2564 */
2565 if (level > write_lock_level ||
2566 (level + 1 > write_lock_level &&
2567 level + 1 < BTRFS_MAX_LEVEL &&
2568 p->nodes[level + 1])) {
2569 write_lock_level = level + 1;
2570 btrfs_release_path(p);
2571 goto again;
2572 }
2573
2574 err = btrfs_cow_block(trans, root, b,
2575 p->nodes[level + 1],
2576 p->slots[level + 1], &b);
2577 if (err) {
2578 ret = err;
2579 goto done;
2580 }
2581 }
2582 cow_done:
2583 BUG_ON(!cow && ins_len);
2584
2585 p->nodes[level] = b;
2586 btrfs_clear_path_blocking(p, NULL, 0);
2587
2588 /*
2589 * we have a lock on b and as long as we aren't changing
2590 * the tree, there is no way to for the items in b to change.
2591 * It is safe to drop the lock on our parent before we
2592 * go through the expensive btree search on b.
2593 *
2594 * If cow is true, then we might be changing slot zero,
2595 * which may require changing the parent. So, we can't
2596 * drop the lock until after we know which slot we're
2597 * operating on.
2598 */
2599 if (!cow)
2600 btrfs_unlock_up_safe(p, level + 1);
2601
2602 ret = bin_search(b, key, level, &slot);
2603
2604 if (level != 0) {
2605 int dec = 0;
2606 if (ret && slot > 0) {
2607 dec = 1;
2608 slot -= 1;
2609 }
2610 p->slots[level] = slot;
2611 err = setup_nodes_for_search(trans, root, p, b, level,
2612 ins_len, &write_lock_level);
2613 if (err == -EAGAIN)
2614 goto again;
2615 if (err) {
2616 ret = err;
2617 goto done;
2618 }
2619 b = p->nodes[level];
2620 slot = p->slots[level];
2621
2622 /*
2623 * slot 0 is special, if we change the key
2624 * we have to update the parent pointer
2625 * which means we must have a write lock
2626 * on the parent
2627 */
2628 if (slot == 0 && cow &&
2629 write_lock_level < level + 1) {
2630 write_lock_level = level + 1;
2631 btrfs_release_path(p);
2632 goto again;
2633 }
2634
2635 unlock_up(p, level, lowest_unlock,
2636 min_write_lock_level, &write_lock_level);
2637
2638 if (level == lowest_level) {
2639 if (dec)
2640 p->slots[level]++;
2641 goto done;
2642 }
2643
2644 err = read_block_for_search(trans, root, p,
2645 &b, level, slot, key, 0);
2646 if (err == -EAGAIN)
2647 goto again;
2648 if (err) {
2649 ret = err;
2650 goto done;
2651 }
2652
2653 if (!p->skip_locking) {
2654 level = btrfs_header_level(b);
2655 if (level <= write_lock_level) {
2656 err = btrfs_try_tree_write_lock(b);
2657 if (!err) {
2658 btrfs_set_path_blocking(p);
2659 btrfs_tree_lock(b);
2660 btrfs_clear_path_blocking(p, b,
2661 BTRFS_WRITE_LOCK);
2662 }
2663 p->locks[level] = BTRFS_WRITE_LOCK;
2664 } else {
2665 err = btrfs_try_tree_read_lock(b);
2666 if (!err) {
2667 btrfs_set_path_blocking(p);
2668 btrfs_tree_read_lock(b);
2669 btrfs_clear_path_blocking(p, b,
2670 BTRFS_READ_LOCK);
2671 }
2672 p->locks[level] = BTRFS_READ_LOCK;
2673 }
2674 p->nodes[level] = b;
2675 }
2676 } else {
2677 p->slots[level] = slot;
2678 if (ins_len > 0 &&
2679 btrfs_leaf_free_space(root, b) < ins_len) {
2680 if (write_lock_level < 1) {
2681 write_lock_level = 1;
2682 btrfs_release_path(p);
2683 goto again;
2684 }
2685
2686 btrfs_set_path_blocking(p);
2687 err = split_leaf(trans, root, key,
2688 p, ins_len, ret == 0);
2689 btrfs_clear_path_blocking(p, NULL, 0);
2690
2691 BUG_ON(err > 0);
2692 if (err) {
2693 ret = err;
2694 goto done;
2695 }
2696 }
2697 if (!p->search_for_split)
2698 unlock_up(p, level, lowest_unlock,
2699 min_write_lock_level, &write_lock_level);
2700 goto done;
2701 }
2702 }
2703 ret = 1;
2704 done:
2705 /*
2706 * we don't really know what they plan on doing with the path
2707 * from here on, so for now just mark it as blocking
2708 */
2709 if (!p->leave_spinning)
2710 btrfs_set_path_blocking(p);
2711 if (ret < 0)
2712 btrfs_release_path(p);
2713 return ret;
2714 }
2715
2716 /*
2717 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2718 * current state of the tree together with the operations recorded in the tree
2719 * modification log to search for the key in a previous version of this tree, as
2720 * denoted by the time_seq parameter.
2721 *
2722 * Naturally, there is no support for insert, delete or cow operations.
2723 *
2724 * The resulting path and return value will be set up as if we called
2725 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2726 */
2727 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2728 struct btrfs_path *p, u64 time_seq)
2729 {
2730 struct extent_buffer *b;
2731 int slot;
2732 int ret;
2733 int err;
2734 int level;
2735 int lowest_unlock = 1;
2736 u8 lowest_level = 0;
2737
2738 lowest_level = p->lowest_level;
2739 WARN_ON(p->nodes[0] != NULL);
2740
2741 if (p->search_commit_root) {
2742 BUG_ON(time_seq);
2743 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2744 }
2745
2746 again:
2747 b = get_old_root(root, time_seq);
2748 level = btrfs_header_level(b);
2749 p->locks[level] = BTRFS_READ_LOCK;
2750
2751 while (b) {
2752 level = btrfs_header_level(b);
2753 p->nodes[level] = b;
2754 btrfs_clear_path_blocking(p, NULL, 0);
2755
2756 /*
2757 * we have a lock on b and as long as we aren't changing
2758 * the tree, there is no way to for the items in b to change.
2759 * It is safe to drop the lock on our parent before we
2760 * go through the expensive btree search on b.
2761 */
2762 btrfs_unlock_up_safe(p, level + 1);
2763
2764 ret = bin_search(b, key, level, &slot);
2765
2766 if (level != 0) {
2767 int dec = 0;
2768 if (ret && slot > 0) {
2769 dec = 1;
2770 slot -= 1;
2771 }
2772 p->slots[level] = slot;
2773 unlock_up(p, level, lowest_unlock, 0, NULL);
2774
2775 if (level == lowest_level) {
2776 if (dec)
2777 p->slots[level]++;
2778 goto done;
2779 }
2780
2781 err = read_block_for_search(NULL, root, p, &b, level,
2782 slot, key, time_seq);
2783 if (err == -EAGAIN)
2784 goto again;
2785 if (err) {
2786 ret = err;
2787 goto done;
2788 }
2789
2790 level = btrfs_header_level(b);
2791 err = btrfs_try_tree_read_lock(b);
2792 if (!err) {
2793 btrfs_set_path_blocking(p);
2794 btrfs_tree_read_lock(b);
2795 btrfs_clear_path_blocking(p, b,
2796 BTRFS_READ_LOCK);
2797 }
2798 p->locks[level] = BTRFS_READ_LOCK;
2799 p->nodes[level] = b;
2800 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2801 if (b != p->nodes[level]) {
2802 btrfs_tree_unlock_rw(p->nodes[level],
2803 p->locks[level]);
2804 p->locks[level] = 0;
2805 p->nodes[level] = b;
2806 }
2807 } else {
2808 p->slots[level] = slot;
2809 unlock_up(p, level, lowest_unlock, 0, NULL);
2810 goto done;
2811 }
2812 }
2813 ret = 1;
2814 done:
2815 if (!p->leave_spinning)
2816 btrfs_set_path_blocking(p);
2817 if (ret < 0)
2818 btrfs_release_path(p);
2819
2820 return ret;
2821 }
2822
2823 /*
2824 * helper to use instead of search slot if no exact match is needed but
2825 * instead the next or previous item should be returned.
2826 * When find_higher is true, the next higher item is returned, the next lower
2827 * otherwise.
2828 * When return_any and find_higher are both true, and no higher item is found,
2829 * return the next lower instead.
2830 * When return_any is true and find_higher is false, and no lower item is found,
2831 * return the next higher instead.
2832 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2833 * < 0 on error
2834 */
2835 int btrfs_search_slot_for_read(struct btrfs_root *root,
2836 struct btrfs_key *key, struct btrfs_path *p,
2837 int find_higher, int return_any)
2838 {
2839 int ret;
2840 struct extent_buffer *leaf;
2841
2842 again:
2843 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2844 if (ret <= 0)
2845 return ret;
2846 /*
2847 * a return value of 1 means the path is at the position where the
2848 * item should be inserted. Normally this is the next bigger item,
2849 * but in case the previous item is the last in a leaf, path points
2850 * to the first free slot in the previous leaf, i.e. at an invalid
2851 * item.
2852 */
2853 leaf = p->nodes[0];
2854
2855 if (find_higher) {
2856 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2857 ret = btrfs_next_leaf(root, p);
2858 if (ret <= 0)
2859 return ret;
2860 if (!return_any)
2861 return 1;
2862 /*
2863 * no higher item found, return the next
2864 * lower instead
2865 */
2866 return_any = 0;
2867 find_higher = 0;
2868 btrfs_release_path(p);
2869 goto again;
2870 }
2871 } else {
2872 if (p->slots[0] == 0) {
2873 ret = btrfs_prev_leaf(root, p);
2874 if (ret < 0)
2875 return ret;
2876 if (!ret) {
2877 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2878 return 0;
2879 }
2880 if (!return_any)
2881 return 1;
2882 /*
2883 * no lower item found, return the next
2884 * higher instead
2885 */
2886 return_any = 0;
2887 find_higher = 1;
2888 btrfs_release_path(p);
2889 goto again;
2890 } else {
2891 --p->slots[0];
2892 }
2893 }
2894 return 0;
2895 }
2896
2897 /*
2898 * adjust the pointers going up the tree, starting at level
2899 * making sure the right key of each node is points to 'key'.
2900 * This is used after shifting pointers to the left, so it stops
2901 * fixing up pointers when a given leaf/node is not in slot 0 of the
2902 * higher levels
2903 *
2904 */
2905 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root, struct btrfs_path *path,
2907 struct btrfs_disk_key *key, int level)
2908 {
2909 int i;
2910 struct extent_buffer *t;
2911
2912 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2913 int tslot = path->slots[i];
2914 if (!path->nodes[i])
2915 break;
2916 t = path->nodes[i];
2917 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2918 btrfs_set_node_key(t, key, tslot);
2919 btrfs_mark_buffer_dirty(path->nodes[i]);
2920 if (tslot != 0)
2921 break;
2922 }
2923 }
2924
2925 /*
2926 * update item key.
2927 *
2928 * This function isn't completely safe. It's the caller's responsibility
2929 * that the new key won't break the order
2930 */
2931 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2932 struct btrfs_root *root, struct btrfs_path *path,
2933 struct btrfs_key *new_key)
2934 {
2935 struct btrfs_disk_key disk_key;
2936 struct extent_buffer *eb;
2937 int slot;
2938
2939 eb = path->nodes[0];
2940 slot = path->slots[0];
2941 if (slot > 0) {
2942 btrfs_item_key(eb, &disk_key, slot - 1);
2943 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2944 }
2945 if (slot < btrfs_header_nritems(eb) - 1) {
2946 btrfs_item_key(eb, &disk_key, slot + 1);
2947 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2948 }
2949
2950 btrfs_cpu_key_to_disk(&disk_key, new_key);
2951 btrfs_set_item_key(eb, &disk_key, slot);
2952 btrfs_mark_buffer_dirty(eb);
2953 if (slot == 0)
2954 fixup_low_keys(trans, root, path, &disk_key, 1);
2955 }
2956
2957 /*
2958 * try to push data from one node into the next node left in the
2959 * tree.
2960 *
2961 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2962 * error, and > 0 if there was no room in the left hand block.
2963 */
2964 static int push_node_left(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root, struct extent_buffer *dst,
2966 struct extent_buffer *src, int empty)
2967 {
2968 int push_items = 0;
2969 int src_nritems;
2970 int dst_nritems;
2971 int ret = 0;
2972
2973 src_nritems = btrfs_header_nritems(src);
2974 dst_nritems = btrfs_header_nritems(dst);
2975 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2976 WARN_ON(btrfs_header_generation(src) != trans->transid);
2977 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2978
2979 if (!empty && src_nritems <= 8)
2980 return 1;
2981
2982 if (push_items <= 0)
2983 return 1;
2984
2985 if (empty) {
2986 push_items = min(src_nritems, push_items);
2987 if (push_items < src_nritems) {
2988 /* leave at least 8 pointers in the node if
2989 * we aren't going to empty it
2990 */
2991 if (src_nritems - push_items < 8) {
2992 if (push_items <= 8)
2993 return 1;
2994 push_items -= 8;
2995 }
2996 }
2997 } else
2998 push_items = min(src_nritems - 8, push_items);
2999
3000 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3001 push_items, 1);
3002 copy_extent_buffer(dst, src,
3003 btrfs_node_key_ptr_offset(dst_nritems),
3004 btrfs_node_key_ptr_offset(0),
3005 push_items * sizeof(struct btrfs_key_ptr));
3006
3007 if (push_items < src_nritems) {
3008 /*
3009 * don't call tree_mod_log_eb_move here, key removal was already
3010 * fully logged by tree_mod_log_eb_copy above.
3011 */
3012 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3013 btrfs_node_key_ptr_offset(push_items),
3014 (src_nritems - push_items) *
3015 sizeof(struct btrfs_key_ptr));
3016 }
3017 btrfs_set_header_nritems(src, src_nritems - push_items);
3018 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3019 btrfs_mark_buffer_dirty(src);
3020 btrfs_mark_buffer_dirty(dst);
3021
3022 return ret;
3023 }
3024
3025 /*
3026 * try to push data from one node into the next node right in the
3027 * tree.
3028 *
3029 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3030 * error, and > 0 if there was no room in the right hand block.
3031 *
3032 * this will only push up to 1/2 the contents of the left node over
3033 */
3034 static int balance_node_right(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root,
3036 struct extent_buffer *dst,
3037 struct extent_buffer *src)
3038 {
3039 int push_items = 0;
3040 int max_push;
3041 int src_nritems;
3042 int dst_nritems;
3043 int ret = 0;
3044
3045 WARN_ON(btrfs_header_generation(src) != trans->transid);
3046 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3047
3048 src_nritems = btrfs_header_nritems(src);
3049 dst_nritems = btrfs_header_nritems(dst);
3050 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3051 if (push_items <= 0)
3052 return 1;
3053
3054 if (src_nritems < 4)
3055 return 1;
3056
3057 max_push = src_nritems / 2 + 1;
3058 /* don't try to empty the node */
3059 if (max_push >= src_nritems)
3060 return 1;
3061
3062 if (max_push < push_items)
3063 push_items = max_push;
3064
3065 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3066 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3067 btrfs_node_key_ptr_offset(0),
3068 (dst_nritems) *
3069 sizeof(struct btrfs_key_ptr));
3070
3071 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3072 src_nritems - push_items, push_items, 1);
3073 copy_extent_buffer(dst, src,
3074 btrfs_node_key_ptr_offset(0),
3075 btrfs_node_key_ptr_offset(src_nritems - push_items),
3076 push_items * sizeof(struct btrfs_key_ptr));
3077
3078 btrfs_set_header_nritems(src, src_nritems - push_items);
3079 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3080
3081 btrfs_mark_buffer_dirty(src);
3082 btrfs_mark_buffer_dirty(dst);
3083
3084 return ret;
3085 }
3086
3087 /*
3088 * helper function to insert a new root level in the tree.
3089 * A new node is allocated, and a single item is inserted to
3090 * point to the existing root
3091 *
3092 * returns zero on success or < 0 on failure.
3093 */
3094 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3095 struct btrfs_root *root,
3096 struct btrfs_path *path, int level)
3097 {
3098 u64 lower_gen;
3099 struct extent_buffer *lower;
3100 struct extent_buffer *c;
3101 struct extent_buffer *old;
3102 struct btrfs_disk_key lower_key;
3103
3104 BUG_ON(path->nodes[level]);
3105 BUG_ON(path->nodes[level-1] != root->node);
3106
3107 lower = path->nodes[level-1];
3108 if (level == 1)
3109 btrfs_item_key(lower, &lower_key, 0);
3110 else
3111 btrfs_node_key(lower, &lower_key, 0);
3112
3113 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3114 root->root_key.objectid, &lower_key,
3115 level, root->node->start, 0);
3116 if (IS_ERR(c))
3117 return PTR_ERR(c);
3118
3119 root_add_used(root, root->nodesize);
3120
3121 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3122 btrfs_set_header_nritems(c, 1);
3123 btrfs_set_header_level(c, level);
3124 btrfs_set_header_bytenr(c, c->start);
3125 btrfs_set_header_generation(c, trans->transid);
3126 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3127 btrfs_set_header_owner(c, root->root_key.objectid);
3128
3129 write_extent_buffer(c, root->fs_info->fsid,
3130 (unsigned long)btrfs_header_fsid(c),
3131 BTRFS_FSID_SIZE);
3132
3133 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3134 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3135 BTRFS_UUID_SIZE);
3136
3137 btrfs_set_node_key(c, &lower_key, 0);
3138 btrfs_set_node_blockptr(c, 0, lower->start);
3139 lower_gen = btrfs_header_generation(lower);
3140 WARN_ON(lower_gen != trans->transid);
3141
3142 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3143
3144 btrfs_mark_buffer_dirty(c);
3145
3146 old = root->node;
3147 tree_mod_log_set_root_pointer(root, c);
3148 rcu_assign_pointer(root->node, c);
3149
3150 /* the super has an extra ref to root->node */
3151 free_extent_buffer(old);
3152
3153 add_root_to_dirty_list(root);
3154 extent_buffer_get(c);
3155 path->nodes[level] = c;
3156 path->locks[level] = BTRFS_WRITE_LOCK;
3157 path->slots[level] = 0;
3158 return 0;
3159 }
3160
3161 /*
3162 * worker function to insert a single pointer in a node.
3163 * the node should have enough room for the pointer already
3164 *
3165 * slot and level indicate where you want the key to go, and
3166 * blocknr is the block the key points to.
3167 */
3168 static void insert_ptr(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *root, struct btrfs_path *path,
3170 struct btrfs_disk_key *key, u64 bytenr,
3171 int slot, int level)
3172 {
3173 struct extent_buffer *lower;
3174 int nritems;
3175 int ret;
3176
3177 BUG_ON(!path->nodes[level]);
3178 btrfs_assert_tree_locked(path->nodes[level]);
3179 lower = path->nodes[level];
3180 nritems = btrfs_header_nritems(lower);
3181 BUG_ON(slot > nritems);
3182 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3183 if (slot != nritems) {
3184 if (level)
3185 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3186 slot, nritems - slot);
3187 memmove_extent_buffer(lower,
3188 btrfs_node_key_ptr_offset(slot + 1),
3189 btrfs_node_key_ptr_offset(slot),
3190 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3191 }
3192 if (level) {
3193 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3194 MOD_LOG_KEY_ADD);
3195 BUG_ON(ret < 0);
3196 }
3197 btrfs_set_node_key(lower, key, slot);
3198 btrfs_set_node_blockptr(lower, slot, bytenr);
3199 WARN_ON(trans->transid == 0);
3200 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3201 btrfs_set_header_nritems(lower, nritems + 1);
3202 btrfs_mark_buffer_dirty(lower);
3203 }
3204
3205 /*
3206 * split the node at the specified level in path in two.
3207 * The path is corrected to point to the appropriate node after the split
3208 *
3209 * Before splitting this tries to make some room in the node by pushing
3210 * left and right, if either one works, it returns right away.
3211 *
3212 * returns 0 on success and < 0 on failure
3213 */
3214 static noinline int split_node(struct btrfs_trans_handle *trans,
3215 struct btrfs_root *root,
3216 struct btrfs_path *path, int level)
3217 {
3218 struct extent_buffer *c;
3219 struct extent_buffer *split;
3220 struct btrfs_disk_key disk_key;
3221 int mid;
3222 int ret;
3223 u32 c_nritems;
3224 int tree_mod_log_removal = 1;
3225
3226 c = path->nodes[level];
3227 WARN_ON(btrfs_header_generation(c) != trans->transid);
3228 if (c == root->node) {
3229 /* trying to split the root, lets make a new one */
3230 ret = insert_new_root(trans, root, path, level + 1);
3231 /*
3232 * removal of root nodes has been logged by
3233 * tree_mod_log_set_root_pointer due to locking
3234 */
3235 tree_mod_log_removal = 0;
3236 if (ret)
3237 return ret;
3238 } else {
3239 ret = push_nodes_for_insert(trans, root, path, level);
3240 c = path->nodes[level];
3241 if (!ret && btrfs_header_nritems(c) <
3242 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3243 return 0;
3244 if (ret < 0)
3245 return ret;
3246 }
3247
3248 c_nritems = btrfs_header_nritems(c);
3249 mid = (c_nritems + 1) / 2;
3250 btrfs_node_key(c, &disk_key, mid);
3251
3252 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3253 root->root_key.objectid,
3254 &disk_key, level, c->start, 0);
3255 if (IS_ERR(split))
3256 return PTR_ERR(split);
3257
3258 root_add_used(root, root->nodesize);
3259
3260 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3261 btrfs_set_header_level(split, btrfs_header_level(c));
3262 btrfs_set_header_bytenr(split, split->start);
3263 btrfs_set_header_generation(split, trans->transid);
3264 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3265 btrfs_set_header_owner(split, root->root_key.objectid);
3266 write_extent_buffer(split, root->fs_info->fsid,
3267 (unsigned long)btrfs_header_fsid(split),
3268 BTRFS_FSID_SIZE);
3269 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3270 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3271 BTRFS_UUID_SIZE);
3272
3273 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid,
3274 tree_mod_log_removal);
3275 copy_extent_buffer(split, c,
3276 btrfs_node_key_ptr_offset(0),
3277 btrfs_node_key_ptr_offset(mid),
3278 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3279 btrfs_set_header_nritems(split, c_nritems - mid);
3280 btrfs_set_header_nritems(c, mid);
3281 ret = 0;
3282
3283 btrfs_mark_buffer_dirty(c);
3284 btrfs_mark_buffer_dirty(split);
3285
3286 insert_ptr(trans, root, path, &disk_key, split->start,
3287 path->slots[level + 1] + 1, level + 1);
3288
3289 if (path->slots[level] >= mid) {
3290 path->slots[level] -= mid;
3291 btrfs_tree_unlock(c);
3292 free_extent_buffer(c);
3293 path->nodes[level] = split;
3294 path->slots[level + 1] += 1;
3295 } else {
3296 btrfs_tree_unlock(split);
3297 free_extent_buffer(split);
3298 }
3299 return ret;
3300 }
3301
3302 /*
3303 * how many bytes are required to store the items in a leaf. start
3304 * and nr indicate which items in the leaf to check. This totals up the
3305 * space used both by the item structs and the item data
3306 */
3307 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3308 {
3309 struct btrfs_item *start_item;
3310 struct btrfs_item *end_item;
3311 struct btrfs_map_token token;
3312 int data_len;
3313 int nritems = btrfs_header_nritems(l);
3314 int end = min(nritems, start + nr) - 1;
3315
3316 if (!nr)
3317 return 0;
3318 btrfs_init_map_token(&token);
3319 start_item = btrfs_item_nr(l, start);
3320 end_item = btrfs_item_nr(l, end);
3321 data_len = btrfs_token_item_offset(l, start_item, &token) +
3322 btrfs_token_item_size(l, start_item, &token);
3323 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3324 data_len += sizeof(struct btrfs_item) * nr;
3325 WARN_ON(data_len < 0);
3326 return data_len;
3327 }
3328
3329 /*
3330 * The space between the end of the leaf items and
3331 * the start of the leaf data. IOW, how much room
3332 * the leaf has left for both items and data
3333 */
3334 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3335 struct extent_buffer *leaf)
3336 {
3337 int nritems = btrfs_header_nritems(leaf);
3338 int ret;
3339 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3340 if (ret < 0) {
3341 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3342 "used %d nritems %d\n",
3343 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3344 leaf_space_used(leaf, 0, nritems), nritems);
3345 }
3346 return ret;
3347 }
3348
3349 /*
3350 * min slot controls the lowest index we're willing to push to the
3351 * right. We'll push up to and including min_slot, but no lower
3352 */
3353 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root,
3355 struct btrfs_path *path,
3356 int data_size, int empty,
3357 struct extent_buffer *right,
3358 int free_space, u32 left_nritems,
3359 u32 min_slot)
3360 {
3361 struct extent_buffer *left = path->nodes[0];
3362 struct extent_buffer *upper = path->nodes[1];
3363 struct btrfs_map_token token;
3364 struct btrfs_disk_key disk_key;
3365 int slot;
3366 u32 i;
3367 int push_space = 0;
3368 int push_items = 0;
3369 struct btrfs_item *item;
3370 u32 nr;
3371 u32 right_nritems;
3372 u32 data_end;
3373 u32 this_item_size;
3374
3375 btrfs_init_map_token(&token);
3376
3377 if (empty)
3378 nr = 0;
3379 else
3380 nr = max_t(u32, 1, min_slot);
3381
3382 if (path->slots[0] >= left_nritems)
3383 push_space += data_size;
3384
3385 slot = path->slots[1];
3386 i = left_nritems - 1;
3387 while (i >= nr) {
3388 item = btrfs_item_nr(left, i);
3389
3390 if (!empty && push_items > 0) {
3391 if (path->slots[0] > i)
3392 break;
3393 if (path->slots[0] == i) {
3394 int space = btrfs_leaf_free_space(root, left);
3395 if (space + push_space * 2 > free_space)
3396 break;
3397 }
3398 }
3399
3400 if (path->slots[0] == i)
3401 push_space += data_size;
3402
3403 this_item_size = btrfs_item_size(left, item);
3404 if (this_item_size + sizeof(*item) + push_space > free_space)
3405 break;
3406
3407 push_items++;
3408 push_space += this_item_size + sizeof(*item);
3409 if (i == 0)
3410 break;
3411 i--;
3412 }
3413
3414 if (push_items == 0)
3415 goto out_unlock;
3416
3417 WARN_ON(!empty && push_items == left_nritems);
3418
3419 /* push left to right */
3420 right_nritems = btrfs_header_nritems(right);
3421
3422 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3423 push_space -= leaf_data_end(root, left);
3424
3425 /* make room in the right data area */
3426 data_end = leaf_data_end(root, right);
3427 memmove_extent_buffer(right,
3428 btrfs_leaf_data(right) + data_end - push_space,
3429 btrfs_leaf_data(right) + data_end,
3430 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3431
3432 /* copy from the left data area */
3433 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3434 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3435 btrfs_leaf_data(left) + leaf_data_end(root, left),
3436 push_space);
3437
3438 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3439 btrfs_item_nr_offset(0),
3440 right_nritems * sizeof(struct btrfs_item));
3441
3442 /* copy the items from left to right */
3443 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3444 btrfs_item_nr_offset(left_nritems - push_items),
3445 push_items * sizeof(struct btrfs_item));
3446
3447 /* update the item pointers */
3448 right_nritems += push_items;
3449 btrfs_set_header_nritems(right, right_nritems);
3450 push_space = BTRFS_LEAF_DATA_SIZE(root);
3451 for (i = 0; i < right_nritems; i++) {
3452 item = btrfs_item_nr(right, i);
3453 push_space -= btrfs_token_item_size(right, item, &token);
3454 btrfs_set_token_item_offset(right, item, push_space, &token);
3455 }
3456
3457 left_nritems -= push_items;
3458 btrfs_set_header_nritems(left, left_nritems);
3459
3460 if (left_nritems)
3461 btrfs_mark_buffer_dirty(left);
3462 else
3463 clean_tree_block(trans, root, left);
3464
3465 btrfs_mark_buffer_dirty(right);
3466
3467 btrfs_item_key(right, &disk_key, 0);
3468 btrfs_set_node_key(upper, &disk_key, slot + 1);
3469 btrfs_mark_buffer_dirty(upper);
3470
3471 /* then fixup the leaf pointer in the path */
3472 if (path->slots[0] >= left_nritems) {
3473 path->slots[0] -= left_nritems;
3474 if (btrfs_header_nritems(path->nodes[0]) == 0)
3475 clean_tree_block(trans, root, path->nodes[0]);
3476 btrfs_tree_unlock(path->nodes[0]);
3477 free_extent_buffer(path->nodes[0]);
3478 path->nodes[0] = right;
3479 path->slots[1] += 1;
3480 } else {
3481 btrfs_tree_unlock(right);
3482 free_extent_buffer(right);
3483 }
3484 return 0;
3485
3486 out_unlock:
3487 btrfs_tree_unlock(right);
3488 free_extent_buffer(right);
3489 return 1;
3490 }
3491
3492 /*
3493 * push some data in the path leaf to the right, trying to free up at
3494 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3495 *
3496 * returns 1 if the push failed because the other node didn't have enough
3497 * room, 0 if everything worked out and < 0 if there were major errors.
3498 *
3499 * this will push starting from min_slot to the end of the leaf. It won't
3500 * push any slot lower than min_slot
3501 */
3502 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3503 *root, struct btrfs_path *path,
3504 int min_data_size, int data_size,
3505 int empty, u32 min_slot)
3506 {
3507 struct extent_buffer *left = path->nodes[0];
3508 struct extent_buffer *right;
3509 struct extent_buffer *upper;
3510 int slot;
3511 int free_space;
3512 u32 left_nritems;
3513 int ret;
3514
3515 if (!path->nodes[1])
3516 return 1;
3517
3518 slot = path->slots[1];
3519 upper = path->nodes[1];
3520 if (slot >= btrfs_header_nritems(upper) - 1)
3521 return 1;
3522
3523 btrfs_assert_tree_locked(path->nodes[1]);
3524
3525 right = read_node_slot(root, upper, slot + 1);
3526 if (right == NULL)
3527 return 1;
3528
3529 btrfs_tree_lock(right);
3530 btrfs_set_lock_blocking(right);
3531
3532 free_space = btrfs_leaf_free_space(root, right);
3533 if (free_space < data_size)
3534 goto out_unlock;
3535
3536 /* cow and double check */
3537 ret = btrfs_cow_block(trans, root, right, upper,
3538 slot + 1, &right);
3539 if (ret)
3540 goto out_unlock;
3541
3542 free_space = btrfs_leaf_free_space(root, right);
3543 if (free_space < data_size)
3544 goto out_unlock;
3545
3546 left_nritems = btrfs_header_nritems(left);
3547 if (left_nritems == 0)
3548 goto out_unlock;
3549
3550 return __push_leaf_right(trans, root, path, min_data_size, empty,
3551 right, free_space, left_nritems, min_slot);
3552 out_unlock:
3553 btrfs_tree_unlock(right);
3554 free_extent_buffer(right);
3555 return 1;
3556 }
3557
3558 /*
3559 * push some data in the path leaf to the left, trying to free up at
3560 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3561 *
3562 * max_slot can put a limit on how far into the leaf we'll push items. The
3563 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3564 * items
3565 */
3566 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root,
3568 struct btrfs_path *path, int data_size,
3569 int empty, struct extent_buffer *left,
3570 int free_space, u32 right_nritems,
3571 u32 max_slot)
3572 {
3573 struct btrfs_disk_key disk_key;
3574 struct extent_buffer *right = path->nodes[0];
3575 int i;
3576 int push_space = 0;
3577 int push_items = 0;
3578 struct btrfs_item *item;
3579 u32 old_left_nritems;
3580 u32 nr;
3581 int ret = 0;
3582 u32 this_item_size;
3583 u32 old_left_item_size;
3584 struct btrfs_map_token token;
3585
3586 btrfs_init_map_token(&token);
3587
3588 if (empty)
3589 nr = min(right_nritems, max_slot);
3590 else
3591 nr = min(right_nritems - 1, max_slot);
3592
3593 for (i = 0; i < nr; i++) {
3594 item = btrfs_item_nr(right, i);
3595
3596 if (!empty && push_items > 0) {
3597 if (path->slots[0] < i)
3598 break;
3599 if (path->slots[0] == i) {
3600 int space = btrfs_leaf_free_space(root, right);
3601 if (space + push_space * 2 > free_space)
3602 break;
3603 }
3604 }
3605
3606 if (path->slots[0] == i)
3607 push_space += data_size;
3608
3609 this_item_size = btrfs_item_size(right, item);
3610 if (this_item_size + sizeof(*item) + push_space > free_space)
3611 break;
3612
3613 push_items++;
3614 push_space += this_item_size + sizeof(*item);
3615 }
3616
3617 if (push_items == 0) {
3618 ret = 1;
3619 goto out;
3620 }
3621 if (!empty && push_items == btrfs_header_nritems(right))
3622 WARN_ON(1);
3623
3624 /* push data from right to left */
3625 copy_extent_buffer(left, right,
3626 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3627 btrfs_item_nr_offset(0),
3628 push_items * sizeof(struct btrfs_item));
3629
3630 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3631 btrfs_item_offset_nr(right, push_items - 1);
3632
3633 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3634 leaf_data_end(root, left) - push_space,
3635 btrfs_leaf_data(right) +
3636 btrfs_item_offset_nr(right, push_items - 1),
3637 push_space);
3638 old_left_nritems = btrfs_header_nritems(left);
3639 BUG_ON(old_left_nritems <= 0);
3640
3641 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3642 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3643 u32 ioff;
3644
3645 item = btrfs_item_nr(left, i);
3646
3647 ioff = btrfs_token_item_offset(left, item, &token);
3648 btrfs_set_token_item_offset(left, item,
3649 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3650 &token);
3651 }
3652 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3653
3654 /* fixup right node */
3655 if (push_items > right_nritems)
3656 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3657 right_nritems);
3658
3659 if (push_items < right_nritems) {
3660 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3661 leaf_data_end(root, right);
3662 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3663 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3664 btrfs_leaf_data(right) +
3665 leaf_data_end(root, right), push_space);
3666
3667 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3668 btrfs_item_nr_offset(push_items),
3669 (btrfs_header_nritems(right) - push_items) *
3670 sizeof(struct btrfs_item));
3671 }
3672 right_nritems -= push_items;
3673 btrfs_set_header_nritems(right, right_nritems);
3674 push_space = BTRFS_LEAF_DATA_SIZE(root);
3675 for (i = 0; i < right_nritems; i++) {
3676 item = btrfs_item_nr(right, i);
3677
3678 push_space = push_space - btrfs_token_item_size(right,
3679 item, &token);
3680 btrfs_set_token_item_offset(right, item, push_space, &token);
3681 }
3682
3683 btrfs_mark_buffer_dirty(left);
3684 if (right_nritems)
3685 btrfs_mark_buffer_dirty(right);
3686 else
3687 clean_tree_block(trans, root, right);
3688
3689 btrfs_item_key(right, &disk_key, 0);
3690 fixup_low_keys(trans, root, path, &disk_key, 1);
3691
3692 /* then fixup the leaf pointer in the path */
3693 if (path->slots[0] < push_items) {
3694 path->slots[0] += old_left_nritems;
3695 btrfs_tree_unlock(path->nodes[0]);
3696 free_extent_buffer(path->nodes[0]);
3697 path->nodes[0] = left;
3698 path->slots[1] -= 1;
3699 } else {
3700 btrfs_tree_unlock(left);
3701 free_extent_buffer(left);
3702 path->slots[0] -= push_items;
3703 }
3704 BUG_ON(path->slots[0] < 0);
3705 return ret;
3706 out:
3707 btrfs_tree_unlock(left);
3708 free_extent_buffer(left);
3709 return ret;
3710 }
3711
3712 /*
3713 * push some data in the path leaf to the left, trying to free up at
3714 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3715 *
3716 * max_slot can put a limit on how far into the leaf we'll push items. The
3717 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3718 * items
3719 */
3720 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3721 *root, struct btrfs_path *path, int min_data_size,
3722 int data_size, int empty, u32 max_slot)
3723 {
3724 struct extent_buffer *right = path->nodes[0];
3725 struct extent_buffer *left;
3726 int slot;
3727 int free_space;
3728 u32 right_nritems;
3729 int ret = 0;
3730
3731 slot = path->slots[1];
3732 if (slot == 0)
3733 return 1;
3734 if (!path->nodes[1])
3735 return 1;
3736
3737 right_nritems = btrfs_header_nritems(right);
3738 if (right_nritems == 0)
3739 return 1;
3740
3741 btrfs_assert_tree_locked(path->nodes[1]);
3742
3743 left = read_node_slot(root, path->nodes[1], slot - 1);
3744 if (left == NULL)
3745 return 1;
3746
3747 btrfs_tree_lock(left);
3748 btrfs_set_lock_blocking(left);
3749
3750 free_space = btrfs_leaf_free_space(root, left);
3751 if (free_space < data_size) {
3752 ret = 1;
3753 goto out;
3754 }
3755
3756 /* cow and double check */
3757 ret = btrfs_cow_block(trans, root, left,
3758 path->nodes[1], slot - 1, &left);
3759 if (ret) {
3760 /* we hit -ENOSPC, but it isn't fatal here */
3761 if (ret == -ENOSPC)
3762 ret = 1;
3763 goto out;
3764 }
3765
3766 free_space = btrfs_leaf_free_space(root, left);
3767 if (free_space < data_size) {
3768 ret = 1;
3769 goto out;
3770 }
3771
3772 return __push_leaf_left(trans, root, path, min_data_size,
3773 empty, left, free_space, right_nritems,
3774 max_slot);
3775 out:
3776 btrfs_tree_unlock(left);
3777 free_extent_buffer(left);
3778 return ret;
3779 }
3780
3781 /*
3782 * split the path's leaf in two, making sure there is at least data_size
3783 * available for the resulting leaf level of the path.
3784 */
3785 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3786 struct btrfs_root *root,
3787 struct btrfs_path *path,
3788 struct extent_buffer *l,
3789 struct extent_buffer *right,
3790 int slot, int mid, int nritems)
3791 {
3792 int data_copy_size;
3793 int rt_data_off;
3794 int i;
3795 struct btrfs_disk_key disk_key;
3796 struct btrfs_map_token token;
3797
3798 btrfs_init_map_token(&token);
3799
3800 nritems = nritems - mid;
3801 btrfs_set_header_nritems(right, nritems);
3802 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3803
3804 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3805 btrfs_item_nr_offset(mid),
3806 nritems * sizeof(struct btrfs_item));
3807
3808 copy_extent_buffer(right, l,
3809 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3810 data_copy_size, btrfs_leaf_data(l) +
3811 leaf_data_end(root, l), data_copy_size);
3812
3813 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3814 btrfs_item_end_nr(l, mid);
3815
3816 for (i = 0; i < nritems; i++) {
3817 struct btrfs_item *item = btrfs_item_nr(right, i);
3818 u32 ioff;
3819
3820 ioff = btrfs_token_item_offset(right, item, &token);
3821 btrfs_set_token_item_offset(right, item,
3822 ioff + rt_data_off, &token);
3823 }
3824
3825 btrfs_set_header_nritems(l, mid);
3826 btrfs_item_key(right, &disk_key, 0);
3827 insert_ptr(trans, root, path, &disk_key, right->start,
3828 path->slots[1] + 1, 1);
3829
3830 btrfs_mark_buffer_dirty(right);
3831 btrfs_mark_buffer_dirty(l);
3832 BUG_ON(path->slots[0] != slot);
3833
3834 if (mid <= slot) {
3835 btrfs_tree_unlock(path->nodes[0]);
3836 free_extent_buffer(path->nodes[0]);
3837 path->nodes[0] = right;
3838 path->slots[0] -= mid;
3839 path->slots[1] += 1;
3840 } else {
3841 btrfs_tree_unlock(right);
3842 free_extent_buffer(right);
3843 }
3844
3845 BUG_ON(path->slots[0] < 0);
3846 }
3847
3848 /*
3849 * double splits happen when we need to insert a big item in the middle
3850 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3851 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3852 * A B C
3853 *
3854 * We avoid this by trying to push the items on either side of our target
3855 * into the adjacent leaves. If all goes well we can avoid the double split
3856 * completely.
3857 */
3858 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3859 struct btrfs_root *root,
3860 struct btrfs_path *path,
3861 int data_size)
3862 {
3863 int ret;
3864 int progress = 0;
3865 int slot;
3866 u32 nritems;
3867
3868 slot = path->slots[0];
3869
3870 /*
3871 * try to push all the items after our slot into the
3872 * right leaf
3873 */
3874 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3875 if (ret < 0)
3876 return ret;
3877
3878 if (ret == 0)
3879 progress++;
3880
3881 nritems = btrfs_header_nritems(path->nodes[0]);
3882 /*
3883 * our goal is to get our slot at the start or end of a leaf. If
3884 * we've done so we're done
3885 */
3886 if (path->slots[0] == 0 || path->slots[0] == nritems)
3887 return 0;
3888
3889 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3890 return 0;
3891
3892 /* try to push all the items before our slot into the next leaf */
3893 slot = path->slots[0];
3894 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3895 if (ret < 0)
3896 return ret;
3897
3898 if (ret == 0)
3899 progress++;
3900
3901 if (progress)
3902 return 0;
3903 return 1;
3904 }
3905
3906 /*
3907 * split the path's leaf in two, making sure there is at least data_size
3908 * available for the resulting leaf level of the path.
3909 *
3910 * returns 0 if all went well and < 0 on failure.
3911 */
3912 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root,
3914 struct btrfs_key *ins_key,
3915 struct btrfs_path *path, int data_size,
3916 int extend)
3917 {
3918 struct btrfs_disk_key disk_key;
3919 struct extent_buffer *l;
3920 u32 nritems;
3921 int mid;
3922 int slot;
3923 struct extent_buffer *right;
3924 int ret = 0;
3925 int wret;
3926 int split;
3927 int num_doubles = 0;
3928 int tried_avoid_double = 0;
3929
3930 l = path->nodes[0];
3931 slot = path->slots[0];
3932 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3933 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3934 return -EOVERFLOW;
3935
3936 /* first try to make some room by pushing left and right */
3937 if (data_size) {
3938 wret = push_leaf_right(trans, root, path, data_size,
3939 data_size, 0, 0);
3940 if (wret < 0)
3941 return wret;
3942 if (wret) {
3943 wret = push_leaf_left(trans, root, path, data_size,
3944 data_size, 0, (u32)-1);
3945 if (wret < 0)
3946 return wret;
3947 }
3948 l = path->nodes[0];
3949
3950 /* did the pushes work? */
3951 if (btrfs_leaf_free_space(root, l) >= data_size)
3952 return 0;
3953 }
3954
3955 if (!path->nodes[1]) {
3956 ret = insert_new_root(trans, root, path, 1);
3957 if (ret)
3958 return ret;
3959 }
3960 again:
3961 split = 1;
3962 l = path->nodes[0];
3963 slot = path->slots[0];
3964 nritems = btrfs_header_nritems(l);
3965 mid = (nritems + 1) / 2;
3966
3967 if (mid <= slot) {
3968 if (nritems == 1 ||
3969 leaf_space_used(l, mid, nritems - mid) + data_size >
3970 BTRFS_LEAF_DATA_SIZE(root)) {
3971 if (slot >= nritems) {
3972 split = 0;
3973 } else {
3974 mid = slot;
3975 if (mid != nritems &&
3976 leaf_space_used(l, mid, nritems - mid) +
3977 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3978 if (data_size && !tried_avoid_double)
3979 goto push_for_double;
3980 split = 2;
3981 }
3982 }
3983 }
3984 } else {
3985 if (leaf_space_used(l, 0, mid) + data_size >
3986 BTRFS_LEAF_DATA_SIZE(root)) {
3987 if (!extend && data_size && slot == 0) {
3988 split = 0;
3989 } else if ((extend || !data_size) && slot == 0) {
3990 mid = 1;
3991 } else {
3992 mid = slot;
3993 if (mid != nritems &&
3994 leaf_space_used(l, mid, nritems - mid) +
3995 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3996 if (data_size && !tried_avoid_double)
3997 goto push_for_double;
3998 split = 2 ;
3999 }
4000 }
4001 }
4002 }
4003
4004 if (split == 0)
4005 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4006 else
4007 btrfs_item_key(l, &disk_key, mid);
4008
4009 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4010 root->root_key.objectid,
4011 &disk_key, 0, l->start, 0);
4012 if (IS_ERR(right))
4013 return PTR_ERR(right);
4014
4015 root_add_used(root, root->leafsize);
4016
4017 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4018 btrfs_set_header_bytenr(right, right->start);
4019 btrfs_set_header_generation(right, trans->transid);
4020 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4021 btrfs_set_header_owner(right, root->root_key.objectid);
4022 btrfs_set_header_level(right, 0);
4023 write_extent_buffer(right, root->fs_info->fsid,
4024 (unsigned long)btrfs_header_fsid(right),
4025 BTRFS_FSID_SIZE);
4026
4027 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4028 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4029 BTRFS_UUID_SIZE);
4030
4031 if (split == 0) {
4032 if (mid <= slot) {
4033 btrfs_set_header_nritems(right, 0);
4034 insert_ptr(trans, root, path, &disk_key, right->start,
4035 path->slots[1] + 1, 1);
4036 btrfs_tree_unlock(path->nodes[0]);
4037 free_extent_buffer(path->nodes[0]);
4038 path->nodes[0] = right;
4039 path->slots[0] = 0;
4040 path->slots[1] += 1;
4041 } else {
4042 btrfs_set_header_nritems(right, 0);
4043 insert_ptr(trans, root, path, &disk_key, right->start,
4044 path->slots[1], 1);
4045 btrfs_tree_unlock(path->nodes[0]);
4046 free_extent_buffer(path->nodes[0]);
4047 path->nodes[0] = right;
4048 path->slots[0] = 0;
4049 if (path->slots[1] == 0)
4050 fixup_low_keys(trans, root, path,
4051 &disk_key, 1);
4052 }
4053 btrfs_mark_buffer_dirty(right);
4054 return ret;
4055 }
4056
4057 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4058
4059 if (split == 2) {
4060 BUG_ON(num_doubles != 0);
4061 num_doubles++;
4062 goto again;
4063 }
4064
4065 return 0;
4066
4067 push_for_double:
4068 push_for_double_split(trans, root, path, data_size);
4069 tried_avoid_double = 1;
4070 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4071 return 0;
4072 goto again;
4073 }
4074
4075 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4076 struct btrfs_root *root,
4077 struct btrfs_path *path, int ins_len)
4078 {
4079 struct btrfs_key key;
4080 struct extent_buffer *leaf;
4081 struct btrfs_file_extent_item *fi;
4082 u64 extent_len = 0;
4083 u32 item_size;
4084 int ret;
4085
4086 leaf = path->nodes[0];
4087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4088
4089 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4090 key.type != BTRFS_EXTENT_CSUM_KEY);
4091
4092 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4093 return 0;
4094
4095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4096 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4097 fi = btrfs_item_ptr(leaf, path->slots[0],
4098 struct btrfs_file_extent_item);
4099 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4100 }
4101 btrfs_release_path(path);
4102
4103 path->keep_locks = 1;
4104 path->search_for_split = 1;
4105 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4106 path->search_for_split = 0;
4107 if (ret < 0)
4108 goto err;
4109
4110 ret = -EAGAIN;
4111 leaf = path->nodes[0];
4112 /* if our item isn't there or got smaller, return now */
4113 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4114 goto err;
4115
4116 /* the leaf has changed, it now has room. return now */
4117 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4118 goto err;
4119
4120 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4121 fi = btrfs_item_ptr(leaf, path->slots[0],
4122 struct btrfs_file_extent_item);
4123 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4124 goto err;
4125 }
4126
4127 btrfs_set_path_blocking(path);
4128 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4129 if (ret)
4130 goto err;
4131
4132 path->keep_locks = 0;
4133 btrfs_unlock_up_safe(path, 1);
4134 return 0;
4135 err:
4136 path->keep_locks = 0;
4137 return ret;
4138 }
4139
4140 static noinline int split_item(struct btrfs_trans_handle *trans,
4141 struct btrfs_root *root,
4142 struct btrfs_path *path,
4143 struct btrfs_key *new_key,
4144 unsigned long split_offset)
4145 {
4146 struct extent_buffer *leaf;
4147 struct btrfs_item *item;
4148 struct btrfs_item *new_item;
4149 int slot;
4150 char *buf;
4151 u32 nritems;
4152 u32 item_size;
4153 u32 orig_offset;
4154 struct btrfs_disk_key disk_key;
4155
4156 leaf = path->nodes[0];
4157 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4158
4159 btrfs_set_path_blocking(path);
4160
4161 item = btrfs_item_nr(leaf, path->slots[0]);
4162 orig_offset = btrfs_item_offset(leaf, item);
4163 item_size = btrfs_item_size(leaf, item);
4164
4165 buf = kmalloc(item_size, GFP_NOFS);
4166 if (!buf)
4167 return -ENOMEM;
4168
4169 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4170 path->slots[0]), item_size);
4171
4172 slot = path->slots[0] + 1;
4173 nritems = btrfs_header_nritems(leaf);
4174 if (slot != nritems) {
4175 /* shift the items */
4176 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4177 btrfs_item_nr_offset(slot),
4178 (nritems - slot) * sizeof(struct btrfs_item));
4179 }
4180
4181 btrfs_cpu_key_to_disk(&disk_key, new_key);
4182 btrfs_set_item_key(leaf, &disk_key, slot);
4183
4184 new_item = btrfs_item_nr(leaf, slot);
4185
4186 btrfs_set_item_offset(leaf, new_item, orig_offset);
4187 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4188
4189 btrfs_set_item_offset(leaf, item,
4190 orig_offset + item_size - split_offset);
4191 btrfs_set_item_size(leaf, item, split_offset);
4192
4193 btrfs_set_header_nritems(leaf, nritems + 1);
4194
4195 /* write the data for the start of the original item */
4196 write_extent_buffer(leaf, buf,
4197 btrfs_item_ptr_offset(leaf, path->slots[0]),
4198 split_offset);
4199
4200 /* write the data for the new item */
4201 write_extent_buffer(leaf, buf + split_offset,
4202 btrfs_item_ptr_offset(leaf, slot),
4203 item_size - split_offset);
4204 btrfs_mark_buffer_dirty(leaf);
4205
4206 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4207 kfree(buf);
4208 return 0;
4209 }
4210
4211 /*
4212 * This function splits a single item into two items,
4213 * giving 'new_key' to the new item and splitting the
4214 * old one at split_offset (from the start of the item).
4215 *
4216 * The path may be released by this operation. After
4217 * the split, the path is pointing to the old item. The
4218 * new item is going to be in the same node as the old one.
4219 *
4220 * Note, the item being split must be smaller enough to live alone on
4221 * a tree block with room for one extra struct btrfs_item
4222 *
4223 * This allows us to split the item in place, keeping a lock on the
4224 * leaf the entire time.
4225 */
4226 int btrfs_split_item(struct btrfs_trans_handle *trans,
4227 struct btrfs_root *root,
4228 struct btrfs_path *path,
4229 struct btrfs_key *new_key,
4230 unsigned long split_offset)
4231 {
4232 int ret;
4233 ret = setup_leaf_for_split(trans, root, path,
4234 sizeof(struct btrfs_item));
4235 if (ret)
4236 return ret;
4237
4238 ret = split_item(trans, root, path, new_key, split_offset);
4239 return ret;
4240 }
4241
4242 /*
4243 * This function duplicate a item, giving 'new_key' to the new item.
4244 * It guarantees both items live in the same tree leaf and the new item
4245 * is contiguous with the original item.
4246 *
4247 * This allows us to split file extent in place, keeping a lock on the
4248 * leaf the entire time.
4249 */
4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251 struct btrfs_root *root,
4252 struct btrfs_path *path,
4253 struct btrfs_key *new_key)
4254 {
4255 struct extent_buffer *leaf;
4256 int ret;
4257 u32 item_size;
4258
4259 leaf = path->nodes[0];
4260 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4261 ret = setup_leaf_for_split(trans, root, path,
4262 item_size + sizeof(struct btrfs_item));
4263 if (ret)
4264 return ret;
4265
4266 path->slots[0]++;
4267 setup_items_for_insert(trans, root, path, new_key, &item_size,
4268 item_size, item_size +
4269 sizeof(struct btrfs_item), 1);
4270 leaf = path->nodes[0];
4271 memcpy_extent_buffer(leaf,
4272 btrfs_item_ptr_offset(leaf, path->slots[0]),
4273 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4274 item_size);
4275 return 0;
4276 }
4277
4278 /*
4279 * make the item pointed to by the path smaller. new_size indicates
4280 * how small to make it, and from_end tells us if we just chop bytes
4281 * off the end of the item or if we shift the item to chop bytes off
4282 * the front.
4283 */
4284 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4285 struct btrfs_root *root,
4286 struct btrfs_path *path,
4287 u32 new_size, int from_end)
4288 {
4289 int slot;
4290 struct extent_buffer *leaf;
4291 struct btrfs_item *item;
4292 u32 nritems;
4293 unsigned int data_end;
4294 unsigned int old_data_start;
4295 unsigned int old_size;
4296 unsigned int size_diff;
4297 int i;
4298 struct btrfs_map_token token;
4299
4300 btrfs_init_map_token(&token);
4301
4302 leaf = path->nodes[0];
4303 slot = path->slots[0];
4304
4305 old_size = btrfs_item_size_nr(leaf, slot);
4306 if (old_size == new_size)
4307 return;
4308
4309 nritems = btrfs_header_nritems(leaf);
4310 data_end = leaf_data_end(root, leaf);
4311
4312 old_data_start = btrfs_item_offset_nr(leaf, slot);
4313
4314 size_diff = old_size - new_size;
4315
4316 BUG_ON(slot < 0);
4317 BUG_ON(slot >= nritems);
4318
4319 /*
4320 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4321 */
4322 /* first correct the data pointers */
4323 for (i = slot; i < nritems; i++) {
4324 u32 ioff;
4325 item = btrfs_item_nr(leaf, i);
4326
4327 ioff = btrfs_token_item_offset(leaf, item, &token);
4328 btrfs_set_token_item_offset(leaf, item,
4329 ioff + size_diff, &token);
4330 }
4331
4332 /* shift the data */
4333 if (from_end) {
4334 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4335 data_end + size_diff, btrfs_leaf_data(leaf) +
4336 data_end, old_data_start + new_size - data_end);
4337 } else {
4338 struct btrfs_disk_key disk_key;
4339 u64 offset;
4340
4341 btrfs_item_key(leaf, &disk_key, slot);
4342
4343 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4344 unsigned long ptr;
4345 struct btrfs_file_extent_item *fi;
4346
4347 fi = btrfs_item_ptr(leaf, slot,
4348 struct btrfs_file_extent_item);
4349 fi = (struct btrfs_file_extent_item *)(
4350 (unsigned long)fi - size_diff);
4351
4352 if (btrfs_file_extent_type(leaf, fi) ==
4353 BTRFS_FILE_EXTENT_INLINE) {
4354 ptr = btrfs_item_ptr_offset(leaf, slot);
4355 memmove_extent_buffer(leaf, ptr,
4356 (unsigned long)fi,
4357 offsetof(struct btrfs_file_extent_item,
4358 disk_bytenr));
4359 }
4360 }
4361
4362 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4363 data_end + size_diff, btrfs_leaf_data(leaf) +
4364 data_end, old_data_start - data_end);
4365
4366 offset = btrfs_disk_key_offset(&disk_key);
4367 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4368 btrfs_set_item_key(leaf, &disk_key, slot);
4369 if (slot == 0)
4370 fixup_low_keys(trans, root, path, &disk_key, 1);
4371 }
4372
4373 item = btrfs_item_nr(leaf, slot);
4374 btrfs_set_item_size(leaf, item, new_size);
4375 btrfs_mark_buffer_dirty(leaf);
4376
4377 if (btrfs_leaf_free_space(root, leaf) < 0) {
4378 btrfs_print_leaf(root, leaf);
4379 BUG();
4380 }
4381 }
4382
4383 /*
4384 * make the item pointed to by the path bigger, data_size is the new size.
4385 */
4386 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4387 struct btrfs_root *root, struct btrfs_path *path,
4388 u32 data_size)
4389 {
4390 int slot;
4391 struct extent_buffer *leaf;
4392 struct btrfs_item *item;
4393 u32 nritems;
4394 unsigned int data_end;
4395 unsigned int old_data;
4396 unsigned int old_size;
4397 int i;
4398 struct btrfs_map_token token;
4399
4400 btrfs_init_map_token(&token);
4401
4402 leaf = path->nodes[0];
4403
4404 nritems = btrfs_header_nritems(leaf);
4405 data_end = leaf_data_end(root, leaf);
4406
4407 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4408 btrfs_print_leaf(root, leaf);
4409 BUG();
4410 }
4411 slot = path->slots[0];
4412 old_data = btrfs_item_end_nr(leaf, slot);
4413
4414 BUG_ON(slot < 0);
4415 if (slot >= nritems) {
4416 btrfs_print_leaf(root, leaf);
4417 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4418 slot, nritems);
4419 BUG_ON(1);
4420 }
4421
4422 /*
4423 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4424 */
4425 /* first correct the data pointers */
4426 for (i = slot; i < nritems; i++) {
4427 u32 ioff;
4428 item = btrfs_item_nr(leaf, i);
4429
4430 ioff = btrfs_token_item_offset(leaf, item, &token);
4431 btrfs_set_token_item_offset(leaf, item,
4432 ioff - data_size, &token);
4433 }
4434
4435 /* shift the data */
4436 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4437 data_end - data_size, btrfs_leaf_data(leaf) +
4438 data_end, old_data - data_end);
4439
4440 data_end = old_data;
4441 old_size = btrfs_item_size_nr(leaf, slot);
4442 item = btrfs_item_nr(leaf, slot);
4443 btrfs_set_item_size(leaf, item, old_size + data_size);
4444 btrfs_mark_buffer_dirty(leaf);
4445
4446 if (btrfs_leaf_free_space(root, leaf) < 0) {
4447 btrfs_print_leaf(root, leaf);
4448 BUG();
4449 }
4450 }
4451
4452 /*
4453 * this is a helper for btrfs_insert_empty_items, the main goal here is
4454 * to save stack depth by doing the bulk of the work in a function
4455 * that doesn't call btrfs_search_slot
4456 */
4457 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4458 struct btrfs_root *root, struct btrfs_path *path,
4459 struct btrfs_key *cpu_key, u32 *data_size,
4460 u32 total_data, u32 total_size, int nr)
4461 {
4462 struct btrfs_item *item;
4463 int i;
4464 u32 nritems;
4465 unsigned int data_end;
4466 struct btrfs_disk_key disk_key;
4467 struct extent_buffer *leaf;
4468 int slot;
4469 struct btrfs_map_token token;
4470
4471 btrfs_init_map_token(&token);
4472
4473 leaf = path->nodes[0];
4474 slot = path->slots[0];
4475
4476 nritems = btrfs_header_nritems(leaf);
4477 data_end = leaf_data_end(root, leaf);
4478
4479 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4480 btrfs_print_leaf(root, leaf);
4481 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4482 total_size, btrfs_leaf_free_space(root, leaf));
4483 BUG();
4484 }
4485
4486 if (slot != nritems) {
4487 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4488
4489 if (old_data < data_end) {
4490 btrfs_print_leaf(root, leaf);
4491 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4492 slot, old_data, data_end);
4493 BUG_ON(1);
4494 }
4495 /*
4496 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4497 */
4498 /* first correct the data pointers */
4499 for (i = slot; i < nritems; i++) {
4500 u32 ioff;
4501
4502 item = btrfs_item_nr(leaf, i);
4503 ioff = btrfs_token_item_offset(leaf, item, &token);
4504 btrfs_set_token_item_offset(leaf, item,
4505 ioff - total_data, &token);
4506 }
4507 /* shift the items */
4508 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4509 btrfs_item_nr_offset(slot),
4510 (nritems - slot) * sizeof(struct btrfs_item));
4511
4512 /* shift the data */
4513 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4514 data_end - total_data, btrfs_leaf_data(leaf) +
4515 data_end, old_data - data_end);
4516 data_end = old_data;
4517 }
4518
4519 /* setup the item for the new data */
4520 for (i = 0; i < nr; i++) {
4521 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4522 btrfs_set_item_key(leaf, &disk_key, slot + i);
4523 item = btrfs_item_nr(leaf, slot + i);
4524 btrfs_set_token_item_offset(leaf, item,
4525 data_end - data_size[i], &token);
4526 data_end -= data_size[i];
4527 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4528 }
4529
4530 btrfs_set_header_nritems(leaf, nritems + nr);
4531
4532 if (slot == 0) {
4533 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4534 fixup_low_keys(trans, root, path, &disk_key, 1);
4535 }
4536 btrfs_unlock_up_safe(path, 1);
4537 btrfs_mark_buffer_dirty(leaf);
4538
4539 if (btrfs_leaf_free_space(root, leaf) < 0) {
4540 btrfs_print_leaf(root, leaf);
4541 BUG();
4542 }
4543 }
4544
4545 /*
4546 * Given a key and some data, insert items into the tree.
4547 * This does all the path init required, making room in the tree if needed.
4548 */
4549 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4550 struct btrfs_root *root,
4551 struct btrfs_path *path,
4552 struct btrfs_key *cpu_key, u32 *data_size,
4553 int nr)
4554 {
4555 int ret = 0;
4556 int slot;
4557 int i;
4558 u32 total_size = 0;
4559 u32 total_data = 0;
4560
4561 for (i = 0; i < nr; i++)
4562 total_data += data_size[i];
4563
4564 total_size = total_data + (nr * sizeof(struct btrfs_item));
4565 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4566 if (ret == 0)
4567 return -EEXIST;
4568 if (ret < 0)
4569 return ret;
4570
4571 slot = path->slots[0];
4572 BUG_ON(slot < 0);
4573
4574 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4575 total_data, total_size, nr);
4576 return 0;
4577 }
4578
4579 /*
4580 * Given a key and some data, insert an item into the tree.
4581 * This does all the path init required, making room in the tree if needed.
4582 */
4583 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4584 *root, struct btrfs_key *cpu_key, void *data, u32
4585 data_size)
4586 {
4587 int ret = 0;
4588 struct btrfs_path *path;
4589 struct extent_buffer *leaf;
4590 unsigned long ptr;
4591
4592 path = btrfs_alloc_path();
4593 if (!path)
4594 return -ENOMEM;
4595 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4596 if (!ret) {
4597 leaf = path->nodes[0];
4598 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4599 write_extent_buffer(leaf, data, ptr, data_size);
4600 btrfs_mark_buffer_dirty(leaf);
4601 }
4602 btrfs_free_path(path);
4603 return ret;
4604 }
4605
4606 /*
4607 * delete the pointer from a given node.
4608 *
4609 * the tree should have been previously balanced so the deletion does not
4610 * empty a node.
4611 */
4612 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4613 struct btrfs_path *path, int level, int slot)
4614 {
4615 struct extent_buffer *parent = path->nodes[level];
4616 u32 nritems;
4617 int ret;
4618
4619 nritems = btrfs_header_nritems(parent);
4620 if (slot != nritems - 1) {
4621 if (level)
4622 tree_mod_log_eb_move(root->fs_info, parent, slot,
4623 slot + 1, nritems - slot - 1);
4624 memmove_extent_buffer(parent,
4625 btrfs_node_key_ptr_offset(slot),
4626 btrfs_node_key_ptr_offset(slot + 1),
4627 sizeof(struct btrfs_key_ptr) *
4628 (nritems - slot - 1));
4629 } else if (level) {
4630 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4631 MOD_LOG_KEY_REMOVE);
4632 BUG_ON(ret < 0);
4633 }
4634
4635 nritems--;
4636 btrfs_set_header_nritems(parent, nritems);
4637 if (nritems == 0 && parent == root->node) {
4638 BUG_ON(btrfs_header_level(root->node) != 1);
4639 /* just turn the root into a leaf and break */
4640 btrfs_set_header_level(root->node, 0);
4641 } else if (slot == 0) {
4642 struct btrfs_disk_key disk_key;
4643
4644 btrfs_node_key(parent, &disk_key, 0);
4645 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4646 }
4647 btrfs_mark_buffer_dirty(parent);
4648 }
4649
4650 /*
4651 * a helper function to delete the leaf pointed to by path->slots[1] and
4652 * path->nodes[1].
4653 *
4654 * This deletes the pointer in path->nodes[1] and frees the leaf
4655 * block extent. zero is returned if it all worked out, < 0 otherwise.
4656 *
4657 * The path must have already been setup for deleting the leaf, including
4658 * all the proper balancing. path->nodes[1] must be locked.
4659 */
4660 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4661 struct btrfs_root *root,
4662 struct btrfs_path *path,
4663 struct extent_buffer *leaf)
4664 {
4665 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4666 del_ptr(trans, root, path, 1, path->slots[1]);
4667
4668 /*
4669 * btrfs_free_extent is expensive, we want to make sure we
4670 * aren't holding any locks when we call it
4671 */
4672 btrfs_unlock_up_safe(path, 0);
4673
4674 root_sub_used(root, leaf->len);
4675
4676 extent_buffer_get(leaf);
4677 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4678 free_extent_buffer_stale(leaf);
4679 }
4680 /*
4681 * delete the item at the leaf level in path. If that empties
4682 * the leaf, remove it from the tree
4683 */
4684 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4685 struct btrfs_path *path, int slot, int nr)
4686 {
4687 struct extent_buffer *leaf;
4688 struct btrfs_item *item;
4689 int last_off;
4690 int dsize = 0;
4691 int ret = 0;
4692 int wret;
4693 int i;
4694 u32 nritems;
4695 struct btrfs_map_token token;
4696
4697 btrfs_init_map_token(&token);
4698
4699 leaf = path->nodes[0];
4700 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4701
4702 for (i = 0; i < nr; i++)
4703 dsize += btrfs_item_size_nr(leaf, slot + i);
4704
4705 nritems = btrfs_header_nritems(leaf);
4706
4707 if (slot + nr != nritems) {
4708 int data_end = leaf_data_end(root, leaf);
4709
4710 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4711 data_end + dsize,
4712 btrfs_leaf_data(leaf) + data_end,
4713 last_off - data_end);
4714
4715 for (i = slot + nr; i < nritems; i++) {
4716 u32 ioff;
4717
4718 item = btrfs_item_nr(leaf, i);
4719 ioff = btrfs_token_item_offset(leaf, item, &token);
4720 btrfs_set_token_item_offset(leaf, item,
4721 ioff + dsize, &token);
4722 }
4723
4724 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4725 btrfs_item_nr_offset(slot + nr),
4726 sizeof(struct btrfs_item) *
4727 (nritems - slot - nr));
4728 }
4729 btrfs_set_header_nritems(leaf, nritems - nr);
4730 nritems -= nr;
4731
4732 /* delete the leaf if we've emptied it */
4733 if (nritems == 0) {
4734 if (leaf == root->node) {
4735 btrfs_set_header_level(leaf, 0);
4736 } else {
4737 btrfs_set_path_blocking(path);
4738 clean_tree_block(trans, root, leaf);
4739 btrfs_del_leaf(trans, root, path, leaf);
4740 }
4741 } else {
4742 int used = leaf_space_used(leaf, 0, nritems);
4743 if (slot == 0) {
4744 struct btrfs_disk_key disk_key;
4745
4746 btrfs_item_key(leaf, &disk_key, 0);
4747 fixup_low_keys(trans, root, path, &disk_key, 1);
4748 }
4749
4750 /* delete the leaf if it is mostly empty */
4751 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4752 /* push_leaf_left fixes the path.
4753 * make sure the path still points to our leaf
4754 * for possible call to del_ptr below
4755 */
4756 slot = path->slots[1];
4757 extent_buffer_get(leaf);
4758
4759 btrfs_set_path_blocking(path);
4760 wret = push_leaf_left(trans, root, path, 1, 1,
4761 1, (u32)-1);
4762 if (wret < 0 && wret != -ENOSPC)
4763 ret = wret;
4764
4765 if (path->nodes[0] == leaf &&
4766 btrfs_header_nritems(leaf)) {
4767 wret = push_leaf_right(trans, root, path, 1,
4768 1, 1, 0);
4769 if (wret < 0 && wret != -ENOSPC)
4770 ret = wret;
4771 }
4772
4773 if (btrfs_header_nritems(leaf) == 0) {
4774 path->slots[1] = slot;
4775 btrfs_del_leaf(trans, root, path, leaf);
4776 free_extent_buffer(leaf);
4777 ret = 0;
4778 } else {
4779 /* if we're still in the path, make sure
4780 * we're dirty. Otherwise, one of the
4781 * push_leaf functions must have already
4782 * dirtied this buffer
4783 */
4784 if (path->nodes[0] == leaf)
4785 btrfs_mark_buffer_dirty(leaf);
4786 free_extent_buffer(leaf);
4787 }
4788 } else {
4789 btrfs_mark_buffer_dirty(leaf);
4790 }
4791 }
4792 return ret;
4793 }
4794
4795 /*
4796 * search the tree again to find a leaf with lesser keys
4797 * returns 0 if it found something or 1 if there are no lesser leaves.
4798 * returns < 0 on io errors.
4799 *
4800 * This may release the path, and so you may lose any locks held at the
4801 * time you call it.
4802 */
4803 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4804 {
4805 struct btrfs_key key;
4806 struct btrfs_disk_key found_key;
4807 int ret;
4808
4809 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4810
4811 if (key.offset > 0)
4812 key.offset--;
4813 else if (key.type > 0)
4814 key.type--;
4815 else if (key.objectid > 0)
4816 key.objectid--;
4817 else
4818 return 1;
4819
4820 btrfs_release_path(path);
4821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822 if (ret < 0)
4823 return ret;
4824 btrfs_item_key(path->nodes[0], &found_key, 0);
4825 ret = comp_keys(&found_key, &key);
4826 if (ret < 0)
4827 return 0;
4828 return 1;
4829 }
4830
4831 /*
4832 * A helper function to walk down the tree starting at min_key, and looking
4833 * for nodes or leaves that are have a minimum transaction id.
4834 * This is used by the btree defrag code, and tree logging
4835 *
4836 * This does not cow, but it does stuff the starting key it finds back
4837 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4838 * key and get a writable path.
4839 *
4840 * This does lock as it descends, and path->keep_locks should be set
4841 * to 1 by the caller.
4842 *
4843 * This honors path->lowest_level to prevent descent past a given level
4844 * of the tree.
4845 *
4846 * min_trans indicates the oldest transaction that you are interested
4847 * in walking through. Any nodes or leaves older than min_trans are
4848 * skipped over (without reading them).
4849 *
4850 * returns zero if something useful was found, < 0 on error and 1 if there
4851 * was nothing in the tree that matched the search criteria.
4852 */
4853 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4854 struct btrfs_key *max_key,
4855 struct btrfs_path *path,
4856 u64 min_trans)
4857 {
4858 struct extent_buffer *cur;
4859 struct btrfs_key found_key;
4860 int slot;
4861 int sret;
4862 u32 nritems;
4863 int level;
4864 int ret = 1;
4865
4866 WARN_ON(!path->keep_locks);
4867 again:
4868 cur = btrfs_read_lock_root_node(root);
4869 level = btrfs_header_level(cur);
4870 WARN_ON(path->nodes[level]);
4871 path->nodes[level] = cur;
4872 path->locks[level] = BTRFS_READ_LOCK;
4873
4874 if (btrfs_header_generation(cur) < min_trans) {
4875 ret = 1;
4876 goto out;
4877 }
4878 while (1) {
4879 nritems = btrfs_header_nritems(cur);
4880 level = btrfs_header_level(cur);
4881 sret = bin_search(cur, min_key, level, &slot);
4882
4883 /* at the lowest level, we're done, setup the path and exit */
4884 if (level == path->lowest_level) {
4885 if (slot >= nritems)
4886 goto find_next_key;
4887 ret = 0;
4888 path->slots[level] = slot;
4889 btrfs_item_key_to_cpu(cur, &found_key, slot);
4890 goto out;
4891 }
4892 if (sret && slot > 0)
4893 slot--;
4894 /*
4895 * check this node pointer against the min_trans parameters.
4896 * If it is too old, old, skip to the next one.
4897 */
4898 while (slot < nritems) {
4899 u64 blockptr;
4900 u64 gen;
4901
4902 blockptr = btrfs_node_blockptr(cur, slot);
4903 gen = btrfs_node_ptr_generation(cur, slot);
4904 if (gen < min_trans) {
4905 slot++;
4906 continue;
4907 }
4908 break;
4909 }
4910 find_next_key:
4911 /*
4912 * we didn't find a candidate key in this node, walk forward
4913 * and find another one
4914 */
4915 if (slot >= nritems) {
4916 path->slots[level] = slot;
4917 btrfs_set_path_blocking(path);
4918 sret = btrfs_find_next_key(root, path, min_key, level,
4919 min_trans);
4920 if (sret == 0) {
4921 btrfs_release_path(path);
4922 goto again;
4923 } else {
4924 goto out;
4925 }
4926 }
4927 /* save our key for returning back */
4928 btrfs_node_key_to_cpu(cur, &found_key, slot);
4929 path->slots[level] = slot;
4930 if (level == path->lowest_level) {
4931 ret = 0;
4932 unlock_up(path, level, 1, 0, NULL);
4933 goto out;
4934 }
4935 btrfs_set_path_blocking(path);
4936 cur = read_node_slot(root, cur, slot);
4937 BUG_ON(!cur); /* -ENOMEM */
4938
4939 btrfs_tree_read_lock(cur);
4940
4941 path->locks[level - 1] = BTRFS_READ_LOCK;
4942 path->nodes[level - 1] = cur;
4943 unlock_up(path, level, 1, 0, NULL);
4944 btrfs_clear_path_blocking(path, NULL, 0);
4945 }
4946 out:
4947 if (ret == 0)
4948 memcpy(min_key, &found_key, sizeof(found_key));
4949 btrfs_set_path_blocking(path);
4950 return ret;
4951 }
4952
4953 static void tree_move_down(struct btrfs_root *root,
4954 struct btrfs_path *path,
4955 int *level, int root_level)
4956 {
4957 BUG_ON(*level == 0);
4958 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4959 path->slots[*level]);
4960 path->slots[*level - 1] = 0;
4961 (*level)--;
4962 }
4963
4964 static int tree_move_next_or_upnext(struct btrfs_root *root,
4965 struct btrfs_path *path,
4966 int *level, int root_level)
4967 {
4968 int ret = 0;
4969 int nritems;
4970 nritems = btrfs_header_nritems(path->nodes[*level]);
4971
4972 path->slots[*level]++;
4973
4974 while (path->slots[*level] >= nritems) {
4975 if (*level == root_level)
4976 return -1;
4977
4978 /* move upnext */
4979 path->slots[*level] = 0;
4980 free_extent_buffer(path->nodes[*level]);
4981 path->nodes[*level] = NULL;
4982 (*level)++;
4983 path->slots[*level]++;
4984
4985 nritems = btrfs_header_nritems(path->nodes[*level]);
4986 ret = 1;
4987 }
4988 return ret;
4989 }
4990
4991 /*
4992 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4993 * or down.
4994 */
4995 static int tree_advance(struct btrfs_root *root,
4996 struct btrfs_path *path,
4997 int *level, int root_level,
4998 int allow_down,
4999 struct btrfs_key *key)
5000 {
5001 int ret;
5002
5003 if (*level == 0 || !allow_down) {
5004 ret = tree_move_next_or_upnext(root, path, level, root_level);
5005 } else {
5006 tree_move_down(root, path, level, root_level);
5007 ret = 0;
5008 }
5009 if (ret >= 0) {
5010 if (*level == 0)
5011 btrfs_item_key_to_cpu(path->nodes[*level], key,
5012 path->slots[*level]);
5013 else
5014 btrfs_node_key_to_cpu(path->nodes[*level], key,
5015 path->slots[*level]);
5016 }
5017 return ret;
5018 }
5019
5020 static int tree_compare_item(struct btrfs_root *left_root,
5021 struct btrfs_path *left_path,
5022 struct btrfs_path *right_path,
5023 char *tmp_buf)
5024 {
5025 int cmp;
5026 int len1, len2;
5027 unsigned long off1, off2;
5028
5029 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5030 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5031 if (len1 != len2)
5032 return 1;
5033
5034 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5035 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5036 right_path->slots[0]);
5037
5038 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5039
5040 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5041 if (cmp)
5042 return 1;
5043 return 0;
5044 }
5045
5046 #define ADVANCE 1
5047 #define ADVANCE_ONLY_NEXT -1
5048
5049 /*
5050 * This function compares two trees and calls the provided callback for
5051 * every changed/new/deleted item it finds.
5052 * If shared tree blocks are encountered, whole subtrees are skipped, making
5053 * the compare pretty fast on snapshotted subvolumes.
5054 *
5055 * This currently works on commit roots only. As commit roots are read only,
5056 * we don't do any locking. The commit roots are protected with transactions.
5057 * Transactions are ended and rejoined when a commit is tried in between.
5058 *
5059 * This function checks for modifications done to the trees while comparing.
5060 * If it detects a change, it aborts immediately.
5061 */
5062 int btrfs_compare_trees(struct btrfs_root *left_root,
5063 struct btrfs_root *right_root,
5064 btrfs_changed_cb_t changed_cb, void *ctx)
5065 {
5066 int ret;
5067 int cmp;
5068 struct btrfs_trans_handle *trans = NULL;
5069 struct btrfs_path *left_path = NULL;
5070 struct btrfs_path *right_path = NULL;
5071 struct btrfs_key left_key;
5072 struct btrfs_key right_key;
5073 char *tmp_buf = NULL;
5074 int left_root_level;
5075 int right_root_level;
5076 int left_level;
5077 int right_level;
5078 int left_end_reached;
5079 int right_end_reached;
5080 int advance_left;
5081 int advance_right;
5082 u64 left_blockptr;
5083 u64 right_blockptr;
5084 u64 left_start_ctransid;
5085 u64 right_start_ctransid;
5086 u64 ctransid;
5087
5088 left_path = btrfs_alloc_path();
5089 if (!left_path) {
5090 ret = -ENOMEM;
5091 goto out;
5092 }
5093 right_path = btrfs_alloc_path();
5094 if (!right_path) {
5095 ret = -ENOMEM;
5096 goto out;
5097 }
5098
5099 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5100 if (!tmp_buf) {
5101 ret = -ENOMEM;
5102 goto out;
5103 }
5104
5105 left_path->search_commit_root = 1;
5106 left_path->skip_locking = 1;
5107 right_path->search_commit_root = 1;
5108 right_path->skip_locking = 1;
5109
5110 spin_lock(&left_root->root_item_lock);
5111 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5112 spin_unlock(&left_root->root_item_lock);
5113
5114 spin_lock(&right_root->root_item_lock);
5115 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5116 spin_unlock(&right_root->root_item_lock);
5117
5118 trans = btrfs_join_transaction(left_root);
5119 if (IS_ERR(trans)) {
5120 ret = PTR_ERR(trans);
5121 trans = NULL;
5122 goto out;
5123 }
5124
5125 /*
5126 * Strategy: Go to the first items of both trees. Then do
5127 *
5128 * If both trees are at level 0
5129 * Compare keys of current items
5130 * If left < right treat left item as new, advance left tree
5131 * and repeat
5132 * If left > right treat right item as deleted, advance right tree
5133 * and repeat
5134 * If left == right do deep compare of items, treat as changed if
5135 * needed, advance both trees and repeat
5136 * If both trees are at the same level but not at level 0
5137 * Compare keys of current nodes/leafs
5138 * If left < right advance left tree and repeat
5139 * If left > right advance right tree and repeat
5140 * If left == right compare blockptrs of the next nodes/leafs
5141 * If they match advance both trees but stay at the same level
5142 * and repeat
5143 * If they don't match advance both trees while allowing to go
5144 * deeper and repeat
5145 * If tree levels are different
5146 * Advance the tree that needs it and repeat
5147 *
5148 * Advancing a tree means:
5149 * If we are at level 0, try to go to the next slot. If that's not
5150 * possible, go one level up and repeat. Stop when we found a level
5151 * where we could go to the next slot. We may at this point be on a
5152 * node or a leaf.
5153 *
5154 * If we are not at level 0 and not on shared tree blocks, go one
5155 * level deeper.
5156 *
5157 * If we are not at level 0 and on shared tree blocks, go one slot to
5158 * the right if possible or go up and right.
5159 */
5160
5161 left_level = btrfs_header_level(left_root->commit_root);
5162 left_root_level = left_level;
5163 left_path->nodes[left_level] = left_root->commit_root;
5164 extent_buffer_get(left_path->nodes[left_level]);
5165
5166 right_level = btrfs_header_level(right_root->commit_root);
5167 right_root_level = right_level;
5168 right_path->nodes[right_level] = right_root->commit_root;
5169 extent_buffer_get(right_path->nodes[right_level]);
5170
5171 if (left_level == 0)
5172 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5173 &left_key, left_path->slots[left_level]);
5174 else
5175 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5176 &left_key, left_path->slots[left_level]);
5177 if (right_level == 0)
5178 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5179 &right_key, right_path->slots[right_level]);
5180 else
5181 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5182 &right_key, right_path->slots[right_level]);
5183
5184 left_end_reached = right_end_reached = 0;
5185 advance_left = advance_right = 0;
5186
5187 while (1) {
5188 /*
5189 * We need to make sure the transaction does not get committed
5190 * while we do anything on commit roots. This means, we need to
5191 * join and leave transactions for every item that we process.
5192 */
5193 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5194 btrfs_release_path(left_path);
5195 btrfs_release_path(right_path);
5196
5197 ret = btrfs_end_transaction(trans, left_root);
5198 trans = NULL;
5199 if (ret < 0)
5200 goto out;
5201 }
5202 /* now rejoin the transaction */
5203 if (!trans) {
5204 trans = btrfs_join_transaction(left_root);
5205 if (IS_ERR(trans)) {
5206 ret = PTR_ERR(trans);
5207 trans = NULL;
5208 goto out;
5209 }
5210
5211 spin_lock(&left_root->root_item_lock);
5212 ctransid = btrfs_root_ctransid(&left_root->root_item);
5213 spin_unlock(&left_root->root_item_lock);
5214 if (ctransid != left_start_ctransid)
5215 left_start_ctransid = 0;
5216
5217 spin_lock(&right_root->root_item_lock);
5218 ctransid = btrfs_root_ctransid(&right_root->root_item);
5219 spin_unlock(&right_root->root_item_lock);
5220 if (ctransid != right_start_ctransid)
5221 right_start_ctransid = 0;
5222
5223 if (!left_start_ctransid || !right_start_ctransid) {
5224 WARN(1, KERN_WARNING
5225 "btrfs: btrfs_compare_tree detected "
5226 "a change in one of the trees while "
5227 "iterating. This is probably a "
5228 "bug.\n");
5229 ret = -EIO;
5230 goto out;
5231 }
5232
5233 /*
5234 * the commit root may have changed, so start again
5235 * where we stopped
5236 */
5237 left_path->lowest_level = left_level;
5238 right_path->lowest_level = right_level;
5239 ret = btrfs_search_slot(NULL, left_root,
5240 &left_key, left_path, 0, 0);
5241 if (ret < 0)
5242 goto out;
5243 ret = btrfs_search_slot(NULL, right_root,
5244 &right_key, right_path, 0, 0);
5245 if (ret < 0)
5246 goto out;
5247 }
5248
5249 if (advance_left && !left_end_reached) {
5250 ret = tree_advance(left_root, left_path, &left_level,
5251 left_root_level,
5252 advance_left != ADVANCE_ONLY_NEXT,
5253 &left_key);
5254 if (ret < 0)
5255 left_end_reached = ADVANCE;
5256 advance_left = 0;
5257 }
5258 if (advance_right && !right_end_reached) {
5259 ret = tree_advance(right_root, right_path, &right_level,
5260 right_root_level,
5261 advance_right != ADVANCE_ONLY_NEXT,
5262 &right_key);
5263 if (ret < 0)
5264 right_end_reached = ADVANCE;
5265 advance_right = 0;
5266 }
5267
5268 if (left_end_reached && right_end_reached) {
5269 ret = 0;
5270 goto out;
5271 } else if (left_end_reached) {
5272 if (right_level == 0) {
5273 ret = changed_cb(left_root, right_root,
5274 left_path, right_path,
5275 &right_key,
5276 BTRFS_COMPARE_TREE_DELETED,
5277 ctx);
5278 if (ret < 0)
5279 goto out;
5280 }
5281 advance_right = ADVANCE;
5282 continue;
5283 } else if (right_end_reached) {
5284 if (left_level == 0) {
5285 ret = changed_cb(left_root, right_root,
5286 left_path, right_path,
5287 &left_key,
5288 BTRFS_COMPARE_TREE_NEW,
5289 ctx);
5290 if (ret < 0)
5291 goto out;
5292 }
5293 advance_left = ADVANCE;
5294 continue;
5295 }
5296
5297 if (left_level == 0 && right_level == 0) {
5298 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5299 if (cmp < 0) {
5300 ret = changed_cb(left_root, right_root,
5301 left_path, right_path,
5302 &left_key,
5303 BTRFS_COMPARE_TREE_NEW,
5304 ctx);
5305 if (ret < 0)
5306 goto out;
5307 advance_left = ADVANCE;
5308 } else if (cmp > 0) {
5309 ret = changed_cb(left_root, right_root,
5310 left_path, right_path,
5311 &right_key,
5312 BTRFS_COMPARE_TREE_DELETED,
5313 ctx);
5314 if (ret < 0)
5315 goto out;
5316 advance_right = ADVANCE;
5317 } else {
5318 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5319 ret = tree_compare_item(left_root, left_path,
5320 right_path, tmp_buf);
5321 if (ret) {
5322 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5323 ret = changed_cb(left_root, right_root,
5324 left_path, right_path,
5325 &left_key,
5326 BTRFS_COMPARE_TREE_CHANGED,
5327 ctx);
5328 if (ret < 0)
5329 goto out;
5330 }
5331 advance_left = ADVANCE;
5332 advance_right = ADVANCE;
5333 }
5334 } else if (left_level == right_level) {
5335 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5336 if (cmp < 0) {
5337 advance_left = ADVANCE;
5338 } else if (cmp > 0) {
5339 advance_right = ADVANCE;
5340 } else {
5341 left_blockptr = btrfs_node_blockptr(
5342 left_path->nodes[left_level],
5343 left_path->slots[left_level]);
5344 right_blockptr = btrfs_node_blockptr(
5345 right_path->nodes[right_level],
5346 right_path->slots[right_level]);
5347 if (left_blockptr == right_blockptr) {
5348 /*
5349 * As we're on a shared block, don't
5350 * allow to go deeper.
5351 */
5352 advance_left = ADVANCE_ONLY_NEXT;
5353 advance_right = ADVANCE_ONLY_NEXT;
5354 } else {
5355 advance_left = ADVANCE;
5356 advance_right = ADVANCE;
5357 }
5358 }
5359 } else if (left_level < right_level) {
5360 advance_right = ADVANCE;
5361 } else {
5362 advance_left = ADVANCE;
5363 }
5364 }
5365
5366 out:
5367 btrfs_free_path(left_path);
5368 btrfs_free_path(right_path);
5369 kfree(tmp_buf);
5370
5371 if (trans) {
5372 if (!ret)
5373 ret = btrfs_end_transaction(trans, left_root);
5374 else
5375 btrfs_end_transaction(trans, left_root);
5376 }
5377
5378 return ret;
5379 }
5380
5381 /*
5382 * this is similar to btrfs_next_leaf, but does not try to preserve
5383 * and fixup the path. It looks for and returns the next key in the
5384 * tree based on the current path and the min_trans parameters.
5385 *
5386 * 0 is returned if another key is found, < 0 if there are any errors
5387 * and 1 is returned if there are no higher keys in the tree
5388 *
5389 * path->keep_locks should be set to 1 on the search made before
5390 * calling this function.
5391 */
5392 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5393 struct btrfs_key *key, int level, u64 min_trans)
5394 {
5395 int slot;
5396 struct extent_buffer *c;
5397
5398 WARN_ON(!path->keep_locks);
5399 while (level < BTRFS_MAX_LEVEL) {
5400 if (!path->nodes[level])
5401 return 1;
5402
5403 slot = path->slots[level] + 1;
5404 c = path->nodes[level];
5405 next:
5406 if (slot >= btrfs_header_nritems(c)) {
5407 int ret;
5408 int orig_lowest;
5409 struct btrfs_key cur_key;
5410 if (level + 1 >= BTRFS_MAX_LEVEL ||
5411 !path->nodes[level + 1])
5412 return 1;
5413
5414 if (path->locks[level + 1]) {
5415 level++;
5416 continue;
5417 }
5418
5419 slot = btrfs_header_nritems(c) - 1;
5420 if (level == 0)
5421 btrfs_item_key_to_cpu(c, &cur_key, slot);
5422 else
5423 btrfs_node_key_to_cpu(c, &cur_key, slot);
5424
5425 orig_lowest = path->lowest_level;
5426 btrfs_release_path(path);
5427 path->lowest_level = level;
5428 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5429 0, 0);
5430 path->lowest_level = orig_lowest;
5431 if (ret < 0)
5432 return ret;
5433
5434 c = path->nodes[level];
5435 slot = path->slots[level];
5436 if (ret == 0)
5437 slot++;
5438 goto next;
5439 }
5440
5441 if (level == 0)
5442 btrfs_item_key_to_cpu(c, key, slot);
5443 else {
5444 u64 gen = btrfs_node_ptr_generation(c, slot);
5445
5446 if (gen < min_trans) {
5447 slot++;
5448 goto next;
5449 }
5450 btrfs_node_key_to_cpu(c, key, slot);
5451 }
5452 return 0;
5453 }
5454 return 1;
5455 }
5456
5457 /*
5458 * search the tree again to find a leaf with greater keys
5459 * returns 0 if it found something or 1 if there are no greater leaves.
5460 * returns < 0 on io errors.
5461 */
5462 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5463 {
5464 return btrfs_next_old_leaf(root, path, 0);
5465 }
5466
5467 /* Release the path up to but not including the given level */
5468 static void btrfs_release_level(struct btrfs_path *path, int level)
5469 {
5470 int i;
5471
5472 for (i = 0; i < level; i++) {
5473 path->slots[i] = 0;
5474 if (!path->nodes[i])
5475 continue;
5476 if (path->locks[i]) {
5477 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5478 path->locks[i] = 0;
5479 }
5480 free_extent_buffer(path->nodes[i]);
5481 path->nodes[i] = NULL;
5482 }
5483 }
5484
5485 /*
5486 * This function assumes 2 things
5487 *
5488 * 1) You are using path->keep_locks
5489 * 2) You are not inserting items.
5490 *
5491 * If either of these are not true do not use this function. If you need a next
5492 * leaf with either of these not being true then this function can be easily
5493 * adapted to do that, but at the moment these are the limitations.
5494 */
5495 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5496 struct btrfs_root *root, struct btrfs_path *path,
5497 int del)
5498 {
5499 struct extent_buffer *b;
5500 struct btrfs_key key;
5501 u32 nritems;
5502 int level = 1;
5503 int slot;
5504 int ret = 1;
5505 int write_lock_level = BTRFS_MAX_LEVEL;
5506 int ins_len = del ? -1 : 0;
5507
5508 WARN_ON(!(path->keep_locks || path->really_keep_locks));
5509
5510 nritems = btrfs_header_nritems(path->nodes[0]);
5511 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5512
5513 while (path->nodes[level]) {
5514 nritems = btrfs_header_nritems(path->nodes[level]);
5515 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5516 search:
5517 btrfs_release_path(path);
5518 ret = btrfs_search_slot(trans, root, &key, path,
5519 ins_len, 1);
5520 if (ret < 0)
5521 goto out;
5522 level = 1;
5523 continue;
5524 }
5525
5526 if (path->slots[level] >= nritems - 1) {
5527 level++;
5528 continue;
5529 }
5530
5531 btrfs_release_level(path, level);
5532 break;
5533 }
5534
5535 if (!path->nodes[level]) {
5536 ret = 1;
5537 goto out;
5538 }
5539
5540 path->slots[level]++;
5541 b = path->nodes[level];
5542
5543 while (b) {
5544 level = btrfs_header_level(b);
5545
5546 if (!should_cow_block(trans, root, b))
5547 goto cow_done;
5548
5549 btrfs_set_path_blocking(path);
5550 ret = btrfs_cow_block(trans, root, b,
5551 path->nodes[level + 1],
5552 path->slots[level + 1], &b);
5553 if (ret)
5554 goto out;
5555 cow_done:
5556 path->nodes[level] = b;
5557 btrfs_clear_path_blocking(path, NULL, 0);
5558 if (level != 0) {
5559 ret = setup_nodes_for_search(trans, root, path, b,
5560 level, ins_len,
5561 &write_lock_level);
5562 if (ret == -EAGAIN)
5563 goto search;
5564 if (ret)
5565 goto out;
5566
5567 b = path->nodes[level];
5568 slot = path->slots[level];
5569
5570 ret = read_block_for_search(trans, root, path,
5571 &b, level, slot, &key, 0);
5572 if (ret == -EAGAIN)
5573 goto search;
5574 if (ret)
5575 goto out;
5576 level = btrfs_header_level(b);
5577 if (!btrfs_try_tree_write_lock(b)) {
5578 btrfs_set_path_blocking(path);
5579 btrfs_tree_lock(b);
5580 btrfs_clear_path_blocking(path, b,
5581 BTRFS_WRITE_LOCK);
5582 }
5583 path->locks[level] = BTRFS_WRITE_LOCK;
5584 path->nodes[level] = b;
5585 path->slots[level] = 0;
5586 } else {
5587 path->slots[level] = 0;
5588 ret = 0;
5589 break;
5590 }
5591 }
5592
5593 out:
5594 if (ret)
5595 btrfs_release_path(path);
5596
5597 return ret;
5598 }
5599
5600 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5601 u64 time_seq)
5602 {
5603 int slot;
5604 int level;
5605 struct extent_buffer *c;
5606 struct extent_buffer *next;
5607 struct btrfs_key key;
5608 u32 nritems;
5609 int ret;
5610 int old_spinning = path->leave_spinning;
5611 int next_rw_lock = 0;
5612
5613 nritems = btrfs_header_nritems(path->nodes[0]);
5614 if (nritems == 0)
5615 return 1;
5616
5617 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5618 again:
5619 level = 1;
5620 next = NULL;
5621 next_rw_lock = 0;
5622 btrfs_release_path(path);
5623
5624 path->keep_locks = 1;
5625 path->leave_spinning = 1;
5626
5627 if (time_seq)
5628 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5629 else
5630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 path->keep_locks = 0;
5632
5633 if (ret < 0)
5634 return ret;
5635
5636 nritems = btrfs_header_nritems(path->nodes[0]);
5637 /*
5638 * by releasing the path above we dropped all our locks. A balance
5639 * could have added more items next to the key that used to be
5640 * at the very end of the block. So, check again here and
5641 * advance the path if there are now more items available.
5642 */
5643 if (nritems > 0 && path->slots[0] < nritems - 1) {
5644 if (ret == 0)
5645 path->slots[0]++;
5646 ret = 0;
5647 goto done;
5648 }
5649
5650 while (level < BTRFS_MAX_LEVEL) {
5651 if (!path->nodes[level]) {
5652 ret = 1;
5653 goto done;
5654 }
5655
5656 slot = path->slots[level] + 1;
5657 c = path->nodes[level];
5658 if (slot >= btrfs_header_nritems(c)) {
5659 level++;
5660 if (level == BTRFS_MAX_LEVEL) {
5661 ret = 1;
5662 goto done;
5663 }
5664 continue;
5665 }
5666
5667 if (next) {
5668 btrfs_tree_unlock_rw(next, next_rw_lock);
5669 free_extent_buffer(next);
5670 }
5671
5672 next = c;
5673 next_rw_lock = path->locks[level];
5674 ret = read_block_for_search(NULL, root, path, &next, level,
5675 slot, &key, 0);
5676 if (ret == -EAGAIN)
5677 goto again;
5678
5679 if (ret < 0) {
5680 btrfs_release_path(path);
5681 goto done;
5682 }
5683
5684 if (!path->skip_locking) {
5685 ret = btrfs_try_tree_read_lock(next);
5686 if (!ret && time_seq) {
5687 /*
5688 * If we don't get the lock, we may be racing
5689 * with push_leaf_left, holding that lock while
5690 * itself waiting for the leaf we've currently
5691 * locked. To solve this situation, we give up
5692 * on our lock and cycle.
5693 */
5694 free_extent_buffer(next);
5695 btrfs_release_path(path);
5696 cond_resched();
5697 goto again;
5698 }
5699 if (!ret) {
5700 btrfs_set_path_blocking(path);
5701 btrfs_tree_read_lock(next);
5702 btrfs_clear_path_blocking(path, next,
5703 BTRFS_READ_LOCK);
5704 }
5705 next_rw_lock = BTRFS_READ_LOCK;
5706 }
5707 break;
5708 }
5709 path->slots[level] = slot;
5710 while (1) {
5711 level--;
5712 c = path->nodes[level];
5713 if (path->locks[level])
5714 btrfs_tree_unlock_rw(c, path->locks[level]);
5715
5716 free_extent_buffer(c);
5717 path->nodes[level] = next;
5718 path->slots[level] = 0;
5719 if (!path->skip_locking)
5720 path->locks[level] = next_rw_lock;
5721 if (!level)
5722 break;
5723
5724 ret = read_block_for_search(NULL, root, path, &next, level,
5725 0, &key, 0);
5726 if (ret == -EAGAIN)
5727 goto again;
5728
5729 if (ret < 0) {
5730 btrfs_release_path(path);
5731 goto done;
5732 }
5733
5734 if (!path->skip_locking) {
5735 ret = btrfs_try_tree_read_lock(next);
5736 if (!ret) {
5737 btrfs_set_path_blocking(path);
5738 btrfs_tree_read_lock(next);
5739 btrfs_clear_path_blocking(path, next,
5740 BTRFS_READ_LOCK);
5741 }
5742 next_rw_lock = BTRFS_READ_LOCK;
5743 }
5744 }
5745 ret = 0;
5746 done:
5747 unlock_up(path, 0, 1, 0, NULL);
5748 path->leave_spinning = old_spinning;
5749 if (!old_spinning)
5750 btrfs_set_path_blocking(path);
5751
5752 return ret;
5753 }
5754
5755 /*
5756 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5757 * searching until it gets past min_objectid or finds an item of 'type'
5758 *
5759 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5760 */
5761 int btrfs_previous_item(struct btrfs_root *root,
5762 struct btrfs_path *path, u64 min_objectid,
5763 int type)
5764 {
5765 struct btrfs_key found_key;
5766 struct extent_buffer *leaf;
5767 u32 nritems;
5768 int ret;
5769
5770 while (1) {
5771 if (path->slots[0] == 0) {
5772 btrfs_set_path_blocking(path);
5773 ret = btrfs_prev_leaf(root, path);
5774 if (ret != 0)
5775 return ret;
5776 } else {
5777 path->slots[0]--;
5778 }
5779 leaf = path->nodes[0];
5780 nritems = btrfs_header_nritems(leaf);
5781 if (nritems == 0)
5782 return 1;
5783 if (path->slots[0] == nritems)
5784 path->slots[0]--;
5785
5786 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5787 if (found_key.objectid < min_objectid)
5788 break;
5789 if (found_key.type == type)
5790 return 0;
5791 if (found_key.objectid == min_objectid &&
5792 found_key.type < type)
5793 break;
5794 }
5795 return 1;
5796 }
This page took 0.195202 seconds and 6 git commands to generate.