Btrfs: still corruption hunting
[deliverable/linux.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7 *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9 *root, struct btrfs_path *path, int data_size);
10 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
11 *root, struct buffer_head *dst, struct buffer_head
12 *src);
13 static int balance_node_right(struct btrfs_trans_handle *trans, struct
14 btrfs_root *root, struct buffer_head *dst_buf,
15 struct buffer_head *src_buf);
16 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
17 struct btrfs_path *path, int level, int slot);
18
19 struct btrfs_path *btrfs_alloc_path(void)
20 {
21 return kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
22 }
23
24 void btrfs_free_path(struct btrfs_path *p)
25 {
26 kmem_cache_free(btrfs_path_cachep, p);
27 }
28
29 inline void btrfs_init_path(struct btrfs_path *p)
30 {
31 memset(p, 0, sizeof(*p));
32 }
33
34 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
35 {
36 int i;
37 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
38 if (!p->nodes[i])
39 break;
40 btrfs_block_release(root, p->nodes[i]);
41 }
42 memset(p, 0, sizeof(*p));
43 }
44
45 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
46 *root, struct buffer_head *buf, struct buffer_head
47 *parent, int parent_slot, struct buffer_head
48 **cow_ret)
49 {
50 struct buffer_head *cow;
51 struct btrfs_node *cow_node;
52
53 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
54 trans->transid) {
55 *cow_ret = buf;
56 return 0;
57 }
58 cow = btrfs_alloc_free_block(trans, root);
59 cow_node = btrfs_buffer_node(cow);
60 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
61 WARN_ON(1);
62 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
63 btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
64 btrfs_set_header_generation(&cow_node->header, trans->transid);
65 btrfs_inc_ref(trans, root, buf);
66 if (buf == root->node) {
67 root->node = cow;
68 get_bh(cow);
69 if (buf != root->commit_root) {
70 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
71 }
72 btrfs_block_release(root, buf);
73 } else {
74 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
75 cow->b_blocknr);
76 btrfs_mark_buffer_dirty(parent);
77 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
78 }
79 btrfs_block_release(root, buf);
80 *cow_ret = cow;
81 return 0;
82 }
83
84 /*
85 * The leaf data grows from end-to-front in the node.
86 * this returns the address of the start of the last item,
87 * which is the stop of the leaf data stack
88 */
89 static inline unsigned int leaf_data_end(struct btrfs_root *root,
90 struct btrfs_leaf *leaf)
91 {
92 u32 nr = btrfs_header_nritems(&leaf->header);
93 if (nr == 0)
94 return BTRFS_LEAF_DATA_SIZE(root);
95 return btrfs_item_offset(leaf->items + nr - 1);
96 }
97
98 /*
99 * The space between the end of the leaf items and
100 * the start of the leaf data. IOW, how much room
101 * the leaf has left for both items and data
102 */
103 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
104 {
105 int data_end = leaf_data_end(root, leaf);
106 int nritems = btrfs_header_nritems(&leaf->header);
107 char *items_end = (char *)(leaf->items + nritems + 1);
108 return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end;
109 }
110
111 /*
112 * compare two keys in a memcmp fashion
113 */
114 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
115 {
116 struct btrfs_key k1;
117
118 btrfs_disk_key_to_cpu(&k1, disk);
119
120 if (k1.objectid > k2->objectid)
121 return 1;
122 if (k1.objectid < k2->objectid)
123 return -1;
124 if (k1.offset > k2->offset)
125 return 1;
126 if (k1.offset < k2->offset)
127 return -1;
128 if (k1.flags > k2->flags)
129 return 1;
130 if (k1.flags < k2->flags)
131 return -1;
132 return 0;
133 }
134
135 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
136 int level)
137 {
138 int i;
139 struct btrfs_node *parent = NULL;
140 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
141 int parent_slot;
142 u32 nritems = btrfs_header_nritems(&node->header);
143
144 if (path->nodes[level + 1])
145 parent = btrfs_buffer_node(path->nodes[level + 1]);
146 parent_slot = path->slots[level + 1];
147 BUG_ON(nritems == 0);
148 if (parent) {
149 struct btrfs_disk_key *parent_key;
150 parent_key = &parent->ptrs[parent_slot].key;
151 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
152 sizeof(struct btrfs_disk_key)));
153 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
154 btrfs_header_blocknr(&node->header));
155 }
156 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
157 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
158 struct btrfs_key cpukey;
159 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
160 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
161 }
162 return 0;
163 }
164
165 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
166 int level)
167 {
168 int i;
169 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
170 struct btrfs_node *parent = NULL;
171 int parent_slot;
172 u32 nritems = btrfs_header_nritems(&leaf->header);
173
174 if (path->nodes[level + 1])
175 parent = btrfs_buffer_node(path->nodes[level + 1]);
176 parent_slot = path->slots[level + 1];
177 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
178
179 if (nritems == 0)
180 return 0;
181
182 if (parent) {
183 struct btrfs_disk_key *parent_key;
184 parent_key = &parent->ptrs[parent_slot].key;
185 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
186 sizeof(struct btrfs_disk_key)));
187 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
188 btrfs_header_blocknr(&leaf->header));
189 }
190 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
191 struct btrfs_key cpukey;
192 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
193 BUG_ON(comp_keys(&leaf->items[i].key,
194 &cpukey) >= 0);
195 BUG_ON(btrfs_item_offset(leaf->items + i) !=
196 btrfs_item_end(leaf->items + i + 1));
197 if (i == 0) {
198 BUG_ON(btrfs_item_offset(leaf->items + i) +
199 btrfs_item_size(leaf->items + i) !=
200 BTRFS_LEAF_DATA_SIZE(root));
201 }
202 }
203 return 0;
204 }
205
206 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
207 int level)
208 {
209 if (level == 0)
210 return check_leaf(root, path, level);
211 return check_node(root, path, level);
212 }
213
214 /*
215 * search for key in the array p. items p are item_size apart
216 * and there are 'max' items in p
217 * the slot in the array is returned via slot, and it points to
218 * the place where you would insert key if it is not found in
219 * the array.
220 *
221 * slot may point to max if the key is bigger than all of the keys
222 */
223 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
224 int max, int *slot)
225 {
226 int low = 0;
227 int high = max;
228 int mid;
229 int ret;
230 struct btrfs_disk_key *tmp;
231
232 while(low < high) {
233 mid = (low + high) / 2;
234 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
235 ret = comp_keys(tmp, key);
236
237 if (ret < 0)
238 low = mid + 1;
239 else if (ret > 0)
240 high = mid;
241 else {
242 *slot = mid;
243 return 0;
244 }
245 }
246 *slot = low;
247 return 1;
248 }
249
250 /*
251 * simple bin_search frontend that does the right thing for
252 * leaves vs nodes
253 */
254 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
255 {
256 if (btrfs_is_leaf(c)) {
257 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
258 return generic_bin_search((void *)l->items,
259 sizeof(struct btrfs_item),
260 key, btrfs_header_nritems(&c->header),
261 slot);
262 } else {
263 return generic_bin_search((void *)c->ptrs,
264 sizeof(struct btrfs_key_ptr),
265 key, btrfs_header_nritems(&c->header),
266 slot);
267 }
268 return -1;
269 }
270
271 static struct buffer_head *read_node_slot(struct btrfs_root *root,
272 struct buffer_head *parent_buf,
273 int slot)
274 {
275 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
276 if (slot < 0)
277 return NULL;
278 if (slot >= btrfs_header_nritems(&node->header))
279 return NULL;
280 return read_tree_block(root, btrfs_node_blockptr(node, slot));
281 }
282
283 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
284 *root, struct btrfs_path *path, int level)
285 {
286 struct buffer_head *right_buf;
287 struct buffer_head *mid_buf;
288 struct buffer_head *left_buf;
289 struct buffer_head *parent_buf = NULL;
290 struct btrfs_node *right = NULL;
291 struct btrfs_node *mid;
292 struct btrfs_node *left = NULL;
293 struct btrfs_node *parent = NULL;
294 int ret = 0;
295 int wret;
296 int pslot;
297 int orig_slot = path->slots[level];
298 u64 orig_ptr;
299
300 if (level == 0)
301 return 0;
302
303 mid_buf = path->nodes[level];
304 mid = btrfs_buffer_node(mid_buf);
305 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
306
307 if (level < BTRFS_MAX_LEVEL - 1)
308 parent_buf = path->nodes[level + 1];
309 pslot = path->slots[level + 1];
310
311 /*
312 * deal with the case where there is only one pointer in the root
313 * by promoting the node below to a root
314 */
315 if (!parent_buf) {
316 struct buffer_head *child;
317 u64 blocknr = mid_buf->b_blocknr;
318
319 if (btrfs_header_nritems(&mid->header) != 1)
320 return 0;
321
322 /* promote the child to a root */
323 child = read_node_slot(root, mid_buf, 0);
324 BUG_ON(!child);
325 root->node = child;
326 path->nodes[level] = NULL;
327 clean_tree_block(trans, root, mid_buf);
328 wait_on_buffer(mid_buf);
329 /* once for the path */
330 btrfs_block_release(root, mid_buf);
331 /* once for the root ptr */
332 btrfs_block_release(root, mid_buf);
333 return btrfs_free_extent(trans, root, blocknr, 1, 1);
334 }
335 parent = btrfs_buffer_node(parent_buf);
336
337 if (btrfs_header_nritems(&mid->header) >
338 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
339 return 0;
340
341 left_buf = read_node_slot(root, parent_buf, pslot - 1);
342 right_buf = read_node_slot(root, parent_buf, pslot + 1);
343
344 /* first, try to make some room in the middle buffer */
345 if (left_buf) {
346 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
347 &left_buf);
348 left = btrfs_buffer_node(left_buf);
349 orig_slot += btrfs_header_nritems(&left->header);
350 wret = push_node_left(trans, root, left_buf, mid_buf);
351 if (wret < 0)
352 ret = wret;
353 }
354
355 /*
356 * then try to empty the right most buffer into the middle
357 */
358 if (right_buf) {
359 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
360 &right_buf);
361 right = btrfs_buffer_node(right_buf);
362 wret = push_node_left(trans, root, mid_buf, right_buf);
363 if (wret < 0)
364 ret = wret;
365 if (btrfs_header_nritems(&right->header) == 0) {
366 u64 blocknr = right_buf->b_blocknr;
367 clean_tree_block(trans, root, right_buf);
368 wait_on_buffer(right_buf);
369 btrfs_block_release(root, right_buf);
370 right_buf = NULL;
371 right = NULL;
372 wret = del_ptr(trans, root, path, level + 1, pslot +
373 1);
374 if (wret)
375 ret = wret;
376 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
377 if (wret)
378 ret = wret;
379 } else {
380 btrfs_memcpy(root, parent,
381 &parent->ptrs[pslot + 1].key,
382 &right->ptrs[0].key,
383 sizeof(struct btrfs_disk_key));
384 btrfs_mark_buffer_dirty(parent_buf);
385 }
386 }
387 if (btrfs_header_nritems(&mid->header) == 1) {
388 /*
389 * we're not allowed to leave a node with one item in the
390 * tree during a delete. A deletion from lower in the tree
391 * could try to delete the only pointer in this node.
392 * So, pull some keys from the left.
393 * There has to be a left pointer at this point because
394 * otherwise we would have pulled some pointers from the
395 * right
396 */
397 BUG_ON(!left_buf);
398 wret = balance_node_right(trans, root, mid_buf, left_buf);
399 if (wret < 0)
400 ret = wret;
401 BUG_ON(wret == 1);
402 }
403 if (btrfs_header_nritems(&mid->header) == 0) {
404 /* we've managed to empty the middle node, drop it */
405 u64 blocknr = mid_buf->b_blocknr;
406 clean_tree_block(trans, root, mid_buf);
407 wait_on_buffer(mid_buf);
408 btrfs_block_release(root, mid_buf);
409 mid_buf = NULL;
410 mid = NULL;
411 wret = del_ptr(trans, root, path, level + 1, pslot);
412 if (wret)
413 ret = wret;
414 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
415 if (wret)
416 ret = wret;
417 } else {
418 /* update the parent key to reflect our changes */
419 btrfs_memcpy(root, parent,
420 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
421 sizeof(struct btrfs_disk_key));
422 btrfs_mark_buffer_dirty(parent_buf);
423 }
424
425 /* update the path */
426 if (left_buf) {
427 if (btrfs_header_nritems(&left->header) > orig_slot) {
428 get_bh(left_buf);
429 path->nodes[level] = left_buf;
430 path->slots[level + 1] -= 1;
431 path->slots[level] = orig_slot;
432 if (mid_buf)
433 btrfs_block_release(root, mid_buf);
434 } else {
435 orig_slot -= btrfs_header_nritems(&left->header);
436 path->slots[level] = orig_slot;
437 }
438 }
439 /* double check we haven't messed things up */
440 check_block(root, path, level);
441 if (orig_ptr !=
442 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
443 path->slots[level]))
444 BUG();
445
446 if (right_buf)
447 btrfs_block_release(root, right_buf);
448 if (left_buf)
449 btrfs_block_release(root, left_buf);
450 return ret;
451 }
452
453 /*
454 * look for key in the tree. path is filled in with nodes along the way
455 * if key is found, we return zero and you can find the item in the leaf
456 * level of the path (level 0)
457 *
458 * If the key isn't found, the path points to the slot where it should
459 * be inserted, and 1 is returned. If there are other errors during the
460 * search a negative error number is returned.
461 *
462 * if ins_len > 0, nodes and leaves will be split as we walk down the
463 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
464 * possible)
465 */
466 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
467 *root, struct btrfs_key *key, struct btrfs_path *p, int
468 ins_len, int cow)
469 {
470 struct buffer_head *b;
471 struct buffer_head *cow_buf;
472 struct btrfs_node *c;
473 int slot;
474 int ret;
475 int level;
476
477 WARN_ON(p->nodes[0] != NULL);
478 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
479 again:
480 b = root->node;
481 get_bh(b);
482 while (b) {
483 c = btrfs_buffer_node(b);
484 level = btrfs_header_level(&c->header);
485 if (cow) {
486 int wret;
487 wret = btrfs_cow_block(trans, root, b,
488 p->nodes[level + 1],
489 p->slots[level + 1],
490 &cow_buf);
491 b = cow_buf;
492 c = btrfs_buffer_node(b);
493 }
494 BUG_ON(!cow && ins_len);
495 if (level != btrfs_header_level(&c->header))
496 WARN_ON(1);
497 level = btrfs_header_level(&c->header);
498 p->nodes[level] = b;
499 ret = check_block(root, p, level);
500 if (ret)
501 return -1;
502 ret = bin_search(c, key, &slot);
503 if (!btrfs_is_leaf(c)) {
504 if (ret && slot > 0)
505 slot -= 1;
506 p->slots[level] = slot;
507 if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
508 BTRFS_NODEPTRS_PER_BLOCK(root)) {
509 int sret = split_node(trans, root, p, level);
510 BUG_ON(sret > 0);
511 if (sret)
512 return sret;
513 b = p->nodes[level];
514 c = btrfs_buffer_node(b);
515 slot = p->slots[level];
516 } else if (ins_len < 0) {
517 int sret = balance_level(trans, root, p,
518 level);
519 if (sret)
520 return sret;
521 b = p->nodes[level];
522 if (!b)
523 goto again;
524 c = btrfs_buffer_node(b);
525 slot = p->slots[level];
526 BUG_ON(btrfs_header_nritems(&c->header) == 1);
527 }
528 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
529 } else {
530 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
531 p->slots[level] = slot;
532 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
533 sizeof(struct btrfs_item) + ins_len) {
534 int sret = split_leaf(trans, root, p, ins_len);
535 BUG_ON(sret > 0);
536 if (sret)
537 return sret;
538 }
539 return ret;
540 }
541 }
542 return 1;
543 }
544
545 /*
546 * adjust the pointers going up the tree, starting at level
547 * making sure the right key of each node is points to 'key'.
548 * This is used after shifting pointers to the left, so it stops
549 * fixing up pointers when a given leaf/node is not in slot 0 of the
550 * higher levels
551 *
552 * If this fails to write a tree block, it returns -1, but continues
553 * fixing up the blocks in ram so the tree is consistent.
554 */
555 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
556 *root, struct btrfs_path *path, struct btrfs_disk_key
557 *key, int level)
558 {
559 int i;
560 int ret = 0;
561 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
562 struct btrfs_node *t;
563 int tslot = path->slots[i];
564 if (!path->nodes[i])
565 break;
566 t = btrfs_buffer_node(path->nodes[i]);
567 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
568 btrfs_mark_buffer_dirty(path->nodes[i]);
569 if (tslot != 0)
570 break;
571 }
572 return ret;
573 }
574
575 /*
576 * try to push data from one node into the next node left in the
577 * tree.
578 *
579 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
580 * error, and > 0 if there was no room in the left hand block.
581 */
582 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
583 *root, struct buffer_head *dst_buf, struct
584 buffer_head *src_buf)
585 {
586 struct btrfs_node *src = btrfs_buffer_node(src_buf);
587 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
588 int push_items = 0;
589 int src_nritems;
590 int dst_nritems;
591 int ret = 0;
592
593 src_nritems = btrfs_header_nritems(&src->header);
594 dst_nritems = btrfs_header_nritems(&dst->header);
595 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
596 if (push_items <= 0) {
597 return 1;
598 }
599
600 if (src_nritems < push_items)
601 push_items = src_nritems;
602
603 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
604 push_items * sizeof(struct btrfs_key_ptr));
605 if (push_items < src_nritems) {
606 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
607 (src_nritems - push_items) *
608 sizeof(struct btrfs_key_ptr));
609 }
610 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
611 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
612 btrfs_mark_buffer_dirty(src_buf);
613 btrfs_mark_buffer_dirty(dst_buf);
614 return ret;
615 }
616
617 /*
618 * try to push data from one node into the next node right in the
619 * tree.
620 *
621 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
622 * error, and > 0 if there was no room in the right hand block.
623 *
624 * this will only push up to 1/2 the contents of the left node over
625 */
626 static int balance_node_right(struct btrfs_trans_handle *trans, struct
627 btrfs_root *root, struct buffer_head *dst_buf,
628 struct buffer_head *src_buf)
629 {
630 struct btrfs_node *src = btrfs_buffer_node(src_buf);
631 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
632 int push_items = 0;
633 int max_push;
634 int src_nritems;
635 int dst_nritems;
636 int ret = 0;
637
638 src_nritems = btrfs_header_nritems(&src->header);
639 dst_nritems = btrfs_header_nritems(&dst->header);
640 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
641 if (push_items <= 0) {
642 return 1;
643 }
644
645 max_push = src_nritems / 2 + 1;
646 /* don't try to empty the node */
647 if (max_push > src_nritems)
648 return 1;
649 if (max_push < push_items)
650 push_items = max_push;
651
652 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
653 dst_nritems * sizeof(struct btrfs_key_ptr));
654
655 btrfs_memcpy(root, dst, dst->ptrs,
656 src->ptrs + src_nritems - push_items,
657 push_items * sizeof(struct btrfs_key_ptr));
658
659 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
660 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
661
662 btrfs_mark_buffer_dirty(src_buf);
663 btrfs_mark_buffer_dirty(dst_buf);
664 return ret;
665 }
666
667 /*
668 * helper function to insert a new root level in the tree.
669 * A new node is allocated, and a single item is inserted to
670 * point to the existing root
671 *
672 * returns zero on success or < 0 on failure.
673 */
674 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
675 *root, struct btrfs_path *path, int level)
676 {
677 struct buffer_head *t;
678 struct btrfs_node *lower;
679 struct btrfs_node *c;
680 struct btrfs_disk_key *lower_key;
681
682 BUG_ON(path->nodes[level]);
683 BUG_ON(path->nodes[level-1] != root->node);
684
685 t = btrfs_alloc_free_block(trans, root);
686 c = btrfs_buffer_node(t);
687 memset(c, 0, root->blocksize);
688 btrfs_set_header_nritems(&c->header, 1);
689 btrfs_set_header_level(&c->header, level);
690 btrfs_set_header_blocknr(&c->header, t->b_blocknr);
691 btrfs_set_header_generation(&c->header, trans->transid);
692 btrfs_set_header_parentid(&c->header,
693 btrfs_header_parentid(btrfs_buffer_header(root->node)));
694 lower = btrfs_buffer_node(path->nodes[level-1]);
695 if (btrfs_is_leaf(lower))
696 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
697 else
698 lower_key = &lower->ptrs[0].key;
699 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
700 sizeof(struct btrfs_disk_key));
701 btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
702
703 btrfs_mark_buffer_dirty(t);
704
705 /* the super has an extra ref to root->node */
706 btrfs_block_release(root, root->node);
707 root->node = t;
708 get_bh(t);
709 path->nodes[level] = t;
710 path->slots[level] = 0;
711 return 0;
712 }
713
714 /*
715 * worker function to insert a single pointer in a node.
716 * the node should have enough room for the pointer already
717 *
718 * slot and level indicate where you want the key to go, and
719 * blocknr is the block the key points to.
720 *
721 * returns zero on success and < 0 on any error
722 */
723 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
724 *root, struct btrfs_path *path, struct btrfs_disk_key
725 *key, u64 blocknr, int slot, int level)
726 {
727 struct btrfs_node *lower;
728 int nritems;
729
730 BUG_ON(!path->nodes[level]);
731 lower = btrfs_buffer_node(path->nodes[level]);
732 nritems = btrfs_header_nritems(&lower->header);
733 if (slot > nritems)
734 BUG();
735 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
736 BUG();
737 if (slot != nritems) {
738 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
739 lower->ptrs + slot,
740 (nritems - slot) * sizeof(struct btrfs_key_ptr));
741 }
742 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
743 key, sizeof(struct btrfs_disk_key));
744 btrfs_set_node_blockptr(lower, slot, blocknr);
745 btrfs_set_header_nritems(&lower->header, nritems + 1);
746 btrfs_mark_buffer_dirty(path->nodes[level]);
747 return 0;
748 }
749
750 /*
751 * split the node at the specified level in path in two.
752 * The path is corrected to point to the appropriate node after the split
753 *
754 * Before splitting this tries to make some room in the node by pushing
755 * left and right, if either one works, it returns right away.
756 *
757 * returns 0 on success and < 0 on failure
758 */
759 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
760 *root, struct btrfs_path *path, int level)
761 {
762 struct buffer_head *t;
763 struct btrfs_node *c;
764 struct buffer_head *split_buffer;
765 struct btrfs_node *split;
766 int mid;
767 int ret;
768 int wret;
769 u32 c_nritems;
770
771 t = path->nodes[level];
772 c = btrfs_buffer_node(t);
773 if (t == root->node) {
774 /* trying to split the root, lets make a new one */
775 ret = insert_new_root(trans, root, path, level + 1);
776 if (ret)
777 return ret;
778 }
779 c_nritems = btrfs_header_nritems(&c->header);
780 split_buffer = btrfs_alloc_free_block(trans, root);
781 split = btrfs_buffer_node(split_buffer);
782 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
783 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
784 btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
785 btrfs_set_header_generation(&split->header, trans->transid);
786 btrfs_set_header_parentid(&split->header,
787 btrfs_header_parentid(btrfs_buffer_header(root->node)));
788 mid = (c_nritems + 1) / 2;
789 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
790 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
791 btrfs_set_header_nritems(&split->header, c_nritems - mid);
792 btrfs_set_header_nritems(&c->header, mid);
793 ret = 0;
794
795 btrfs_mark_buffer_dirty(t);
796 btrfs_mark_buffer_dirty(split_buffer);
797 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
798 split_buffer->b_blocknr, path->slots[level + 1] + 1,
799 level + 1);
800 if (wret)
801 ret = wret;
802
803 if (path->slots[level] >= mid) {
804 path->slots[level] -= mid;
805 btrfs_block_release(root, t);
806 path->nodes[level] = split_buffer;
807 path->slots[level + 1] += 1;
808 } else {
809 btrfs_block_release(root, split_buffer);
810 }
811 return ret;
812 }
813
814 /*
815 * how many bytes are required to store the items in a leaf. start
816 * and nr indicate which items in the leaf to check. This totals up the
817 * space used both by the item structs and the item data
818 */
819 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
820 {
821 int data_len;
822 int end = start + nr - 1;
823
824 if (!nr)
825 return 0;
826 data_len = btrfs_item_end(l->items + start);
827 data_len = data_len - btrfs_item_offset(l->items + end);
828 data_len += sizeof(struct btrfs_item) * nr;
829 return data_len;
830 }
831
832 /*
833 * push some data in the path leaf to the right, trying to free up at
834 * least data_size bytes. returns zero if the push worked, nonzero otherwise
835 *
836 * returns 1 if the push failed because the other node didn't have enough
837 * room, 0 if everything worked out and < 0 if there were major errors.
838 */
839 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
840 *root, struct btrfs_path *path, int data_size)
841 {
842 struct buffer_head *left_buf = path->nodes[0];
843 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
844 struct btrfs_leaf *right;
845 struct buffer_head *right_buf;
846 struct buffer_head *upper;
847 struct btrfs_node *upper_node;
848 int slot;
849 int i;
850 int free_space;
851 int push_space = 0;
852 int push_items = 0;
853 struct btrfs_item *item;
854 u32 left_nritems;
855 u32 right_nritems;
856
857 slot = path->slots[1];
858 if (!path->nodes[1]) {
859 return 1;
860 }
861 upper = path->nodes[1];
862 upper_node = btrfs_buffer_node(upper);
863 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
864 return 1;
865 }
866 right_buf = read_tree_block(root,
867 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
868 right = btrfs_buffer_leaf(right_buf);
869 free_space = btrfs_leaf_free_space(root, right);
870 if (free_space < data_size + sizeof(struct btrfs_item)) {
871 btrfs_block_release(root, right_buf);
872 return 1;
873 }
874 /* cow and double check */
875 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
876 right = btrfs_buffer_leaf(right_buf);
877 free_space = btrfs_leaf_free_space(root, right);
878 if (free_space < data_size + sizeof(struct btrfs_item)) {
879 btrfs_block_release(root, right_buf);
880 return 1;
881 }
882
883 left_nritems = btrfs_header_nritems(&left->header);
884 for (i = left_nritems - 1; i >= 0; i--) {
885 item = left->items + i;
886 if (path->slots[0] == i)
887 push_space += data_size + sizeof(*item);
888 if (btrfs_item_size(item) + sizeof(*item) + push_space >
889 free_space)
890 break;
891 push_items++;
892 push_space += btrfs_item_size(item) + sizeof(*item);
893 }
894 if (push_items == 0) {
895 btrfs_block_release(root, right_buf);
896 return 1;
897 }
898 right_nritems = btrfs_header_nritems(&right->header);
899 /* push left to right */
900 push_space = btrfs_item_end(left->items + left_nritems - push_items);
901 push_space -= leaf_data_end(root, left);
902 /* make room in the right data area */
903 btrfs_memmove(root, right, btrfs_leaf_data(right) +
904 leaf_data_end(root, right) - push_space,
905 btrfs_leaf_data(right) +
906 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
907 leaf_data_end(root, right));
908 /* copy from the left data area */
909 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
910 BTRFS_LEAF_DATA_SIZE(root) - push_space,
911 btrfs_leaf_data(left) + leaf_data_end(root, left),
912 push_space);
913 btrfs_memmove(root, right, right->items + push_items, right->items,
914 right_nritems * sizeof(struct btrfs_item));
915 /* copy the items from left to right */
916 btrfs_memcpy(root, right, right->items, left->items +
917 left_nritems - push_items,
918 push_items * sizeof(struct btrfs_item));
919
920 /* update the item pointers */
921 right_nritems += push_items;
922 btrfs_set_header_nritems(&right->header, right_nritems);
923 push_space = BTRFS_LEAF_DATA_SIZE(root);
924 for (i = 0; i < right_nritems; i++) {
925 btrfs_set_item_offset(right->items + i, push_space -
926 btrfs_item_size(right->items + i));
927 push_space = btrfs_item_offset(right->items + i);
928 }
929 left_nritems -= push_items;
930 btrfs_set_header_nritems(&left->header, left_nritems);
931
932 btrfs_mark_buffer_dirty(left_buf);
933 btrfs_mark_buffer_dirty(right_buf);
934 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
935 &right->items[0].key, sizeof(struct btrfs_disk_key));
936 btrfs_mark_buffer_dirty(upper);
937
938 /* then fixup the leaf pointer in the path */
939 if (path->slots[0] >= left_nritems) {
940 path->slots[0] -= left_nritems;
941 btrfs_block_release(root, path->nodes[0]);
942 path->nodes[0] = right_buf;
943 path->slots[1] += 1;
944 } else {
945 btrfs_block_release(root, right_buf);
946 }
947 return 0;
948 }
949 /*
950 * push some data in the path leaf to the left, trying to free up at
951 * least data_size bytes. returns zero if the push worked, nonzero otherwise
952 */
953 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
954 *root, struct btrfs_path *path, int data_size)
955 {
956 struct buffer_head *right_buf = path->nodes[0];
957 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
958 struct buffer_head *t;
959 struct btrfs_leaf *left;
960 int slot;
961 int i;
962 int free_space;
963 int push_space = 0;
964 int push_items = 0;
965 struct btrfs_item *item;
966 u32 old_left_nritems;
967 int ret = 0;
968 int wret;
969
970 slot = path->slots[1];
971 if (slot == 0) {
972 return 1;
973 }
974 if (!path->nodes[1]) {
975 return 1;
976 }
977 t = read_tree_block(root,
978 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
979 left = btrfs_buffer_leaf(t);
980 free_space = btrfs_leaf_free_space(root, left);
981 if (free_space < data_size + sizeof(struct btrfs_item)) {
982 btrfs_block_release(root, t);
983 return 1;
984 }
985
986 /* cow and double check */
987 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
988 left = btrfs_buffer_leaf(t);
989 free_space = btrfs_leaf_free_space(root, left);
990 if (free_space < data_size + sizeof(struct btrfs_item)) {
991 btrfs_block_release(root, t);
992 return 1;
993 }
994
995 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
996 item = right->items + i;
997 if (path->slots[0] == i)
998 push_space += data_size + sizeof(*item);
999 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1000 free_space)
1001 break;
1002 push_items++;
1003 push_space += btrfs_item_size(item) + sizeof(*item);
1004 }
1005 if (push_items == 0) {
1006 btrfs_block_release(root, t);
1007 return 1;
1008 }
1009 /* push data from right to left */
1010 btrfs_memcpy(root, left, left->items +
1011 btrfs_header_nritems(&left->header),
1012 right->items, push_items * sizeof(struct btrfs_item));
1013 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1014 btrfs_item_offset(right->items + push_items -1);
1015 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1016 leaf_data_end(root, left) - push_space,
1017 btrfs_leaf_data(right) +
1018 btrfs_item_offset(right->items + push_items - 1),
1019 push_space);
1020 old_left_nritems = btrfs_header_nritems(&left->header);
1021 BUG_ON(old_left_nritems < 0);
1022
1023 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1024 u32 ioff = btrfs_item_offset(left->items + i);
1025 btrfs_set_item_offset(left->items + i, ioff -
1026 (BTRFS_LEAF_DATA_SIZE(root) -
1027 btrfs_item_offset(left->items +
1028 old_left_nritems - 1)));
1029 }
1030 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1031
1032 /* fixup right node */
1033 push_space = btrfs_item_offset(right->items + push_items - 1) -
1034 leaf_data_end(root, right);
1035 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1036 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1037 btrfs_leaf_data(right) +
1038 leaf_data_end(root, right), push_space);
1039 btrfs_memmove(root, right, right->items, right->items + push_items,
1040 (btrfs_header_nritems(&right->header) - push_items) *
1041 sizeof(struct btrfs_item));
1042 btrfs_set_header_nritems(&right->header,
1043 btrfs_header_nritems(&right->header) -
1044 push_items);
1045 push_space = BTRFS_LEAF_DATA_SIZE(root);
1046
1047 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1048 btrfs_set_item_offset(right->items + i, push_space -
1049 btrfs_item_size(right->items + i));
1050 push_space = btrfs_item_offset(right->items + i);
1051 }
1052
1053 btrfs_mark_buffer_dirty(t);
1054 btrfs_mark_buffer_dirty(right_buf);
1055
1056 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1057 if (wret)
1058 ret = wret;
1059
1060 /* then fixup the leaf pointer in the path */
1061 if (path->slots[0] < push_items) {
1062 path->slots[0] += old_left_nritems;
1063 btrfs_block_release(root, path->nodes[0]);
1064 path->nodes[0] = t;
1065 path->slots[1] -= 1;
1066 } else {
1067 btrfs_block_release(root, t);
1068 path->slots[0] -= push_items;
1069 }
1070 BUG_ON(path->slots[0] < 0);
1071 return ret;
1072 }
1073
1074 /*
1075 * split the path's leaf in two, making sure there is at least data_size
1076 * available for the resulting leaf level of the path.
1077 *
1078 * returns 0 if all went well and < 0 on failure.
1079 */
1080 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1081 *root, struct btrfs_path *path, int data_size)
1082 {
1083 struct buffer_head *l_buf;
1084 struct btrfs_leaf *l;
1085 u32 nritems;
1086 int mid;
1087 int slot;
1088 struct btrfs_leaf *right;
1089 struct buffer_head *right_buffer;
1090 int space_needed = data_size + sizeof(struct btrfs_item);
1091 int data_copy_size;
1092 int rt_data_off;
1093 int i;
1094 int ret;
1095 int wret;
1096
1097 /* first try to make some room by pushing left and right */
1098 wret = push_leaf_left(trans, root, path, data_size);
1099 if (wret < 0)
1100 return wret;
1101 if (wret) {
1102 wret = push_leaf_right(trans, root, path, data_size);
1103 if (wret < 0)
1104 return wret;
1105 }
1106 l_buf = path->nodes[0];
1107 l = btrfs_buffer_leaf(l_buf);
1108
1109 /* did the pushes work? */
1110 if (btrfs_leaf_free_space(root, l) >=
1111 sizeof(struct btrfs_item) + data_size)
1112 return 0;
1113
1114 if (!path->nodes[1]) {
1115 ret = insert_new_root(trans, root, path, 1);
1116 if (ret)
1117 return ret;
1118 }
1119 slot = path->slots[0];
1120 nritems = btrfs_header_nritems(&l->header);
1121 mid = (nritems + 1)/ 2;
1122 right_buffer = btrfs_alloc_free_block(trans, root);
1123 BUG_ON(!right_buffer);
1124 BUG_ON(mid == nritems);
1125 right = btrfs_buffer_leaf(right_buffer);
1126 memset(&right->header, 0, sizeof(right->header));
1127 if (mid <= slot) {
1128 /* FIXME, just alloc a new leaf here */
1129 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1130 BTRFS_LEAF_DATA_SIZE(root))
1131 BUG();
1132 } else {
1133 /* FIXME, just alloc a new leaf here */
1134 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1135 BTRFS_LEAF_DATA_SIZE(root))
1136 BUG();
1137 }
1138 btrfs_set_header_nritems(&right->header, nritems - mid);
1139 btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1140 btrfs_set_header_generation(&right->header, trans->transid);
1141 btrfs_set_header_level(&right->header, 0);
1142 btrfs_set_header_parentid(&right->header,
1143 btrfs_header_parentid(btrfs_buffer_header(root->node)));
1144 data_copy_size = btrfs_item_end(l->items + mid) -
1145 leaf_data_end(root, l);
1146 btrfs_memcpy(root, right, right->items, l->items + mid,
1147 (nritems - mid) * sizeof(struct btrfs_item));
1148 btrfs_memcpy(root, right,
1149 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1150 data_copy_size, btrfs_leaf_data(l) +
1151 leaf_data_end(root, l), data_copy_size);
1152 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1153 btrfs_item_end(l->items + mid);
1154
1155 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1156 u32 ioff = btrfs_item_offset(right->items + i);
1157 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1158 }
1159
1160 btrfs_set_header_nritems(&l->header, mid);
1161 ret = 0;
1162 wret = insert_ptr(trans, root, path, &right->items[0].key,
1163 right_buffer->b_blocknr, path->slots[1] + 1, 1);
1164 if (wret)
1165 ret = wret;
1166 btrfs_mark_buffer_dirty(right_buffer);
1167 btrfs_mark_buffer_dirty(l_buf);
1168 BUG_ON(path->slots[0] != slot);
1169 if (mid <= slot) {
1170 btrfs_block_release(root, path->nodes[0]);
1171 path->nodes[0] = right_buffer;
1172 path->slots[0] -= mid;
1173 path->slots[1] += 1;
1174 } else
1175 btrfs_block_release(root, right_buffer);
1176 BUG_ON(path->slots[0] < 0);
1177 return ret;
1178 }
1179
1180 /*
1181 * Given a key and some data, insert an item into the tree.
1182 * This does all the path init required, making room in the tree if needed.
1183 */
1184 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1185 *root, struct btrfs_path *path, struct btrfs_key
1186 *cpu_key, u32 data_size)
1187 {
1188 int ret = 0;
1189 int slot;
1190 int slot_orig;
1191 struct btrfs_leaf *leaf;
1192 struct buffer_head *leaf_buf;
1193 u32 nritems;
1194 unsigned int data_end;
1195 struct btrfs_disk_key disk_key;
1196
1197 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1198
1199 /* create a root if there isn't one */
1200 if (!root->node)
1201 BUG();
1202 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1203 if (ret == 0) {
1204 return -EEXIST;
1205 }
1206 if (ret < 0)
1207 goto out;
1208
1209 slot_orig = path->slots[0];
1210 leaf_buf = path->nodes[0];
1211 leaf = btrfs_buffer_leaf(leaf_buf);
1212
1213 nritems = btrfs_header_nritems(&leaf->header);
1214 data_end = leaf_data_end(root, leaf);
1215
1216 if (btrfs_leaf_free_space(root, leaf) <
1217 sizeof(struct btrfs_item) + data_size)
1218 BUG();
1219
1220 slot = path->slots[0];
1221 BUG_ON(slot < 0);
1222 if (slot != nritems) {
1223 int i;
1224 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1225
1226 /*
1227 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1228 */
1229 /* first correct the data pointers */
1230 for (i = slot; i < nritems; i++) {
1231 u32 ioff = btrfs_item_offset(leaf->items + i);
1232 btrfs_set_item_offset(leaf->items + i,
1233 ioff - data_size);
1234 }
1235
1236 /* shift the items */
1237 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1238 leaf->items + slot,
1239 (nritems - slot) * sizeof(struct btrfs_item));
1240
1241 /* shift the data */
1242 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1243 data_end - data_size, btrfs_leaf_data(leaf) +
1244 data_end, old_data - data_end);
1245 data_end = old_data;
1246 }
1247 /* setup the item for the new data */
1248 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1249 sizeof(struct btrfs_disk_key));
1250 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1251 btrfs_set_item_size(leaf->items + slot, data_size);
1252 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1253 btrfs_mark_buffer_dirty(leaf_buf);
1254
1255 ret = 0;
1256 if (slot == 0)
1257 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1258
1259 if (btrfs_leaf_free_space(root, leaf) < 0)
1260 BUG();
1261 check_leaf(root, path, 0);
1262 out:
1263 return ret;
1264 }
1265
1266 /*
1267 * Given a key and some data, insert an item into the tree.
1268 * This does all the path init required, making room in the tree if needed.
1269 */
1270 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1271 *root, struct btrfs_key *cpu_key, void *data, u32
1272 data_size)
1273 {
1274 int ret = 0;
1275 struct btrfs_path *path;
1276 u8 *ptr;
1277
1278 path = btrfs_alloc_path();
1279 BUG_ON(!path);
1280 btrfs_init_path(path);
1281 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1282 if (!ret) {
1283 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1284 path->slots[0], u8);
1285 btrfs_memcpy(root, path->nodes[0]->b_data,
1286 ptr, data, data_size);
1287 btrfs_mark_buffer_dirty(path->nodes[0]);
1288 }
1289 btrfs_release_path(root, path);
1290 btrfs_free_path(path);
1291 return ret;
1292 }
1293
1294 /*
1295 * delete the pointer from a given node.
1296 *
1297 * If the delete empties a node, the node is removed from the tree,
1298 * continuing all the way the root if required. The root is converted into
1299 * a leaf if all the nodes are emptied.
1300 */
1301 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1302 struct btrfs_path *path, int level, int slot)
1303 {
1304 struct btrfs_node *node;
1305 struct buffer_head *parent = path->nodes[level];
1306 u32 nritems;
1307 int ret = 0;
1308 int wret;
1309
1310 node = btrfs_buffer_node(parent);
1311 nritems = btrfs_header_nritems(&node->header);
1312 if (slot != nritems -1) {
1313 btrfs_memmove(root, node, node->ptrs + slot,
1314 node->ptrs + slot + 1,
1315 sizeof(struct btrfs_key_ptr) *
1316 (nritems - slot - 1));
1317 }
1318 nritems--;
1319 btrfs_set_header_nritems(&node->header, nritems);
1320 if (nritems == 0 && parent == root->node) {
1321 struct btrfs_header *header = btrfs_buffer_header(root->node);
1322 BUG_ON(btrfs_header_level(header) != 1);
1323 /* just turn the root into a leaf and break */
1324 btrfs_set_header_level(header, 0);
1325 } else if (slot == 0) {
1326 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1327 level + 1);
1328 if (wret)
1329 ret = wret;
1330 }
1331 btrfs_mark_buffer_dirty(parent);
1332 return ret;
1333 }
1334
1335 /*
1336 * delete the item at the leaf level in path. If that empties
1337 * the leaf, remove it from the tree
1338 */
1339 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1340 struct btrfs_path *path)
1341 {
1342 int slot;
1343 struct btrfs_leaf *leaf;
1344 struct buffer_head *leaf_buf;
1345 int doff;
1346 int dsize;
1347 int ret = 0;
1348 int wret;
1349 u32 nritems;
1350
1351 leaf_buf = path->nodes[0];
1352 leaf = btrfs_buffer_leaf(leaf_buf);
1353 slot = path->slots[0];
1354 doff = btrfs_item_offset(leaf->items + slot);
1355 dsize = btrfs_item_size(leaf->items + slot);
1356 nritems = btrfs_header_nritems(&leaf->header);
1357
1358 if (slot != nritems - 1) {
1359 int i;
1360 int data_end = leaf_data_end(root, leaf);
1361 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1362 data_end + dsize,
1363 btrfs_leaf_data(leaf) + data_end,
1364 doff - data_end);
1365 for (i = slot + 1; i < nritems; i++) {
1366 u32 ioff = btrfs_item_offset(leaf->items + i);
1367 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1368 }
1369 btrfs_memmove(root, leaf, leaf->items + slot,
1370 leaf->items + slot + 1,
1371 sizeof(struct btrfs_item) *
1372 (nritems - slot - 1));
1373 }
1374 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1375 nritems--;
1376 /* delete the leaf if we've emptied it */
1377 if (nritems == 0) {
1378 if (leaf_buf == root->node) {
1379 btrfs_set_header_level(&leaf->header, 0);
1380 } else {
1381 clean_tree_block(trans, root, leaf_buf);
1382 wait_on_buffer(leaf_buf);
1383 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1384 if (wret)
1385 ret = wret;
1386 wret = btrfs_free_extent(trans, root,
1387 leaf_buf->b_blocknr, 1, 1);
1388 if (wret)
1389 ret = wret;
1390 }
1391 } else {
1392 int used = leaf_space_used(leaf, 0, nritems);
1393 if (slot == 0) {
1394 wret = fixup_low_keys(trans, root, path,
1395 &leaf->items[0].key, 1);
1396 if (wret)
1397 ret = wret;
1398 }
1399
1400 /* delete the leaf if it is mostly empty */
1401 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1402 /* push_leaf_left fixes the path.
1403 * make sure the path still points to our leaf
1404 * for possible call to del_ptr below
1405 */
1406 slot = path->slots[1];
1407 get_bh(leaf_buf);
1408 wret = push_leaf_left(trans, root, path, 1);
1409 if (wret < 0)
1410 ret = wret;
1411 if (path->nodes[0] == leaf_buf &&
1412 btrfs_header_nritems(&leaf->header)) {
1413 wret = push_leaf_right(trans, root, path, 1);
1414 if (wret < 0)
1415 ret = wret;
1416 }
1417 if (btrfs_header_nritems(&leaf->header) == 0) {
1418 u64 blocknr = leaf_buf->b_blocknr;
1419 clean_tree_block(trans, root, leaf_buf);
1420 wait_on_buffer(leaf_buf);
1421 wret = del_ptr(trans, root, path, 1, slot);
1422 if (wret)
1423 ret = wret;
1424 btrfs_block_release(root, leaf_buf);
1425 wret = btrfs_free_extent(trans, root, blocknr,
1426 1, 1);
1427 if (wret)
1428 ret = wret;
1429 } else {
1430 btrfs_mark_buffer_dirty(leaf_buf);
1431 btrfs_block_release(root, leaf_buf);
1432 }
1433 } else {
1434 btrfs_mark_buffer_dirty(leaf_buf);
1435 }
1436 }
1437 return ret;
1438 }
1439
1440 /*
1441 * walk up the tree as far as required to find the next leaf.
1442 * returns 0 if it found something or 1 if there are no greater leaves.
1443 * returns < 0 on io errors.
1444 */
1445 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1446 {
1447 int slot;
1448 int level = 1;
1449 u64 blocknr;
1450 struct buffer_head *c;
1451 struct btrfs_node *c_node;
1452 struct buffer_head *next = NULL;
1453
1454 while(level < BTRFS_MAX_LEVEL) {
1455 if (!path->nodes[level])
1456 return 1;
1457 slot = path->slots[level] + 1;
1458 c = path->nodes[level];
1459 c_node = btrfs_buffer_node(c);
1460 if (slot >= btrfs_header_nritems(&c_node->header)) {
1461 level++;
1462 continue;
1463 }
1464 blocknr = btrfs_node_blockptr(c_node, slot);
1465 if (next)
1466 btrfs_block_release(root, next);
1467 next = read_tree_block(root, blocknr);
1468 break;
1469 }
1470 path->slots[level] = slot;
1471 while(1) {
1472 level--;
1473 c = path->nodes[level];
1474 btrfs_block_release(root, c);
1475 path->nodes[level] = next;
1476 path->slots[level] = 0;
1477 if (!level)
1478 break;
1479 next = read_tree_block(root,
1480 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1481 }
1482 return 0;
1483 }
This page took 0.061627 seconds and 6 git commands to generate.