Btrfs: Do more extensive readahead during tree searches
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24 *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26 *root, struct btrfs_key *ins_key,
27 struct btrfs_path *path, int data_size);
28 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct buffer_head *dst, struct buffer_head
30 *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans, struct
32 btrfs_root *root, struct buffer_head *dst_buf,
33 struct buffer_head *src_buf);
34 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
35 struct btrfs_path *path, int level, int slot);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39 memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 struct btrfs_path *path;
45 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
46 if (path) {
47 btrfs_init_path(path);
48 path->reada = 1;
49 }
50 return path;
51 }
52
53 void btrfs_free_path(struct btrfs_path *p)
54 {
55 btrfs_release_path(NULL, p);
56 kmem_cache_free(btrfs_path_cachep, p);
57 }
58
59 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
60 {
61 int i;
62 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
63 if (!p->nodes[i])
64 break;
65 btrfs_block_release(root, p->nodes[i]);
66 }
67 memset(p, 0, sizeof(*p));
68 }
69
70 static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
71 *root, struct buffer_head *buf, struct buffer_head
72 *parent, int parent_slot, struct buffer_head
73 **cow_ret, u64 search_start, u64 empty_size)
74 {
75 struct buffer_head *cow;
76 struct btrfs_node *cow_node;
77 int ret = 0;
78 int different_trans = 0;
79
80 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
81 WARN_ON(!buffer_uptodate(buf));
82 cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
83 if (IS_ERR(cow))
84 return PTR_ERR(cow);
85
86 cow_node = btrfs_buffer_node(cow);
87 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
88 WARN_ON(1);
89
90 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
91 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
92 btrfs_set_header_generation(&cow_node->header, trans->transid);
93 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
94
95 WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
96 trans->transid);
97 if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
98 trans->transid) {
99 different_trans = 1;
100 ret = btrfs_inc_ref(trans, root, buf);
101 if (ret)
102 return ret;
103 } else {
104 clean_tree_block(trans, root, buf);
105 }
106
107 if (buf == root->node) {
108 root->node = cow;
109 get_bh(cow);
110 if (buf != root->commit_root) {
111 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
112 }
113 btrfs_block_release(root, buf);
114 } else {
115 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
116 bh_blocknr(cow));
117 btrfs_mark_buffer_dirty(parent);
118 WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
119 trans->transid);
120 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
121 }
122 btrfs_block_release(root, buf);
123 btrfs_mark_buffer_dirty(cow);
124 *cow_ret = cow;
125 return 0;
126 }
127
128 int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
129 *root, struct buffer_head *buf, struct buffer_head
130 *parent, int parent_slot, struct buffer_head
131 **cow_ret)
132 {
133 u64 search_start;
134 if (trans->transaction != root->fs_info->running_transaction) {
135 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
136 root->fs_info->running_transaction->transid);
137 WARN_ON(1);
138 }
139 if (trans->transid != root->fs_info->generation) {
140 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
141 root->fs_info->generation);
142 WARN_ON(1);
143 }
144 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
145 trans->transid) {
146 *cow_ret = buf;
147 return 0;
148 }
149
150 search_start = bh_blocknr(buf) & ~((u64)65535);
151 return __btrfs_cow_block(trans, root, buf, parent,
152 parent_slot, cow_ret, search_start, 0);
153 }
154
155 static int close_blocks(u64 blocknr, u64 other)
156 {
157 if (blocknr < other && other - blocknr < 8)
158 return 1;
159 if (blocknr > other && blocknr - other < 8)
160 return 1;
161 return 0;
162 }
163
164 static int should_defrag_leaf(struct buffer_head *bh)
165 {
166 struct btrfs_leaf *leaf = btrfs_buffer_leaf(bh);
167 struct btrfs_disk_key *key;
168 u32 nritems;
169
170 if (buffer_defrag(bh))
171 return 1;
172
173 nritems = btrfs_header_nritems(&leaf->header);
174 if (nritems == 0)
175 return 0;
176
177 key = &leaf->items[0].key;
178 if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
179 return 1;
180
181 key = &leaf->items[nritems-1].key;
182 if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
183 return 1;
184 if (nritems > 4) {
185 key = &leaf->items[nritems/2].key;
186 if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
187 return 1;
188 }
189 return 0;
190 }
191
192 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
193 struct btrfs_root *root, struct buffer_head *parent,
194 int cache_only, u64 *last_ret)
195 {
196 struct btrfs_node *parent_node;
197 struct buffer_head *cur_bh;
198 struct buffer_head *tmp_bh;
199 u64 blocknr;
200 u64 search_start = *last_ret;
201 u64 last_block = 0;
202 u64 other;
203 u32 parent_nritems;
204 int start_slot;
205 int end_slot;
206 int i;
207 int err = 0;
208 int parent_level;
209
210 if (trans->transaction != root->fs_info->running_transaction) {
211 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
212 root->fs_info->running_transaction->transid);
213 WARN_ON(1);
214 }
215 if (trans->transid != root->fs_info->generation) {
216 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
217 root->fs_info->generation);
218 WARN_ON(1);
219 }
220 parent_node = btrfs_buffer_node(parent);
221 parent_nritems = btrfs_header_nritems(&parent_node->header);
222 parent_level = btrfs_header_level(&parent_node->header);
223
224 start_slot = 0;
225 end_slot = parent_nritems;
226
227 if (parent_nritems == 1)
228 return 0;
229
230 for (i = start_slot; i < end_slot; i++) {
231 int close = 1;
232 blocknr = btrfs_node_blockptr(parent_node, i);
233 if (last_block == 0)
234 last_block = blocknr;
235 if (i > 0) {
236 other = btrfs_node_blockptr(parent_node, i - 1);
237 close = close_blocks(blocknr, other);
238 }
239 if (close && i < end_slot - 1) {
240 other = btrfs_node_blockptr(parent_node, i + 1);
241 close = close_blocks(blocknr, other);
242 }
243 if (close) {
244 last_block = blocknr;
245 continue;
246 }
247
248 cur_bh = btrfs_find_tree_block(root, blocknr);
249 if (!cur_bh || !buffer_uptodate(cur_bh) ||
250 buffer_locked(cur_bh) ||
251 (parent_level != 1 && !buffer_defrag(cur_bh)) ||
252 (parent_level == 1 && !should_defrag_leaf(cur_bh))) {
253 if (cache_only) {
254 brelse(cur_bh);
255 continue;
256 }
257 if (!cur_bh || !buffer_uptodate(cur_bh) ||
258 buffer_locked(cur_bh)) {
259 brelse(cur_bh);
260 cur_bh = read_tree_block(root, blocknr);
261 }
262 }
263 if (search_start == 0)
264 search_start = last_block & ~((u64)65535);
265
266 err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
267 &tmp_bh, search_start,
268 min(8, end_slot - i));
269 if (err)
270 break;
271 search_start = bh_blocknr(tmp_bh);
272 *last_ret = search_start;
273 if (parent_level == 1)
274 clear_buffer_defrag(tmp_bh);
275 brelse(tmp_bh);
276 }
277 return err;
278 }
279
280 /*
281 * The leaf data grows from end-to-front in the node.
282 * this returns the address of the start of the last item,
283 * which is the stop of the leaf data stack
284 */
285 static inline unsigned int leaf_data_end(struct btrfs_root *root,
286 struct btrfs_leaf *leaf)
287 {
288 u32 nr = btrfs_header_nritems(&leaf->header);
289 if (nr == 0)
290 return BTRFS_LEAF_DATA_SIZE(root);
291 return btrfs_item_offset(leaf->items + nr - 1);
292 }
293
294 /*
295 * compare two keys in a memcmp fashion
296 */
297 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
298 {
299 struct btrfs_key k1;
300
301 btrfs_disk_key_to_cpu(&k1, disk);
302
303 if (k1.objectid > k2->objectid)
304 return 1;
305 if (k1.objectid < k2->objectid)
306 return -1;
307 if (k1.flags > k2->flags)
308 return 1;
309 if (k1.flags < k2->flags)
310 return -1;
311 if (k1.offset > k2->offset)
312 return 1;
313 if (k1.offset < k2->offset)
314 return -1;
315 return 0;
316 }
317
318 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
319 int level)
320 {
321 struct btrfs_node *parent = NULL;
322 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
323 int parent_slot;
324 int slot;
325 struct btrfs_key cpukey;
326 u32 nritems = btrfs_header_nritems(&node->header);
327
328 if (path->nodes[level + 1])
329 parent = btrfs_buffer_node(path->nodes[level + 1]);
330
331 slot = path->slots[level];
332 BUG_ON(!buffer_uptodate(path->nodes[level]));
333 BUG_ON(nritems == 0);
334 if (parent) {
335 struct btrfs_disk_key *parent_key;
336
337 parent_slot = path->slots[level + 1];
338 parent_key = &parent->ptrs[parent_slot].key;
339 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
340 sizeof(struct btrfs_disk_key)));
341 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
342 btrfs_header_blocknr(&node->header));
343 }
344 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
345 if (slot != 0) {
346 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
347 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
348 }
349 if (slot < nritems - 1) {
350 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
351 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
352 }
353 return 0;
354 }
355
356 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
357 int level)
358 {
359 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
360 struct btrfs_node *parent = NULL;
361 int parent_slot;
362 int slot = path->slots[0];
363 struct btrfs_key cpukey;
364
365 u32 nritems = btrfs_header_nritems(&leaf->header);
366
367 if (path->nodes[level + 1])
368 parent = btrfs_buffer_node(path->nodes[level + 1]);
369
370 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
371
372 if (nritems == 0)
373 return 0;
374
375 if (parent) {
376 struct btrfs_disk_key *parent_key;
377
378 parent_slot = path->slots[level + 1];
379 parent_key = &parent->ptrs[parent_slot].key;
380
381 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
382 sizeof(struct btrfs_disk_key)));
383 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
384 btrfs_header_blocknr(&leaf->header));
385 }
386 if (slot != 0) {
387 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
388 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
389 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
390 btrfs_item_end(leaf->items + slot));
391 }
392 if (slot < nritems - 1) {
393 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
394 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
395 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
396 btrfs_item_end(leaf->items + slot + 1));
397 }
398 BUG_ON(btrfs_item_offset(leaf->items) +
399 btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
400 return 0;
401 }
402
403 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
404 int level)
405 {
406 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
407 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
408 sizeof(node->header.fsid)))
409 BUG();
410 if (level == 0)
411 return check_leaf(root, path, level);
412 return check_node(root, path, level);
413 }
414
415 /*
416 * search for key in the array p. items p are item_size apart
417 * and there are 'max' items in p
418 * the slot in the array is returned via slot, and it points to
419 * the place where you would insert key if it is not found in
420 * the array.
421 *
422 * slot may point to max if the key is bigger than all of the keys
423 */
424 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
425 int max, int *slot)
426 {
427 int low = 0;
428 int high = max;
429 int mid;
430 int ret;
431 struct btrfs_disk_key *tmp;
432
433 while(low < high) {
434 mid = (low + high) / 2;
435 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
436 ret = comp_keys(tmp, key);
437
438 if (ret < 0)
439 low = mid + 1;
440 else if (ret > 0)
441 high = mid;
442 else {
443 *slot = mid;
444 return 0;
445 }
446 }
447 *slot = low;
448 return 1;
449 }
450
451 /*
452 * simple bin_search frontend that does the right thing for
453 * leaves vs nodes
454 */
455 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
456 {
457 if (btrfs_is_leaf(c)) {
458 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
459 return generic_bin_search((void *)l->items,
460 sizeof(struct btrfs_item),
461 key, btrfs_header_nritems(&c->header),
462 slot);
463 } else {
464 return generic_bin_search((void *)c->ptrs,
465 sizeof(struct btrfs_key_ptr),
466 key, btrfs_header_nritems(&c->header),
467 slot);
468 }
469 return -1;
470 }
471
472 static struct buffer_head *read_node_slot(struct btrfs_root *root,
473 struct buffer_head *parent_buf,
474 int slot)
475 {
476 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
477 if (slot < 0)
478 return NULL;
479 if (slot >= btrfs_header_nritems(&node->header))
480 return NULL;
481 return read_tree_block(root, btrfs_node_blockptr(node, slot));
482 }
483
484 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
485 *root, struct btrfs_path *path, int level)
486 {
487 struct buffer_head *right_buf;
488 struct buffer_head *mid_buf;
489 struct buffer_head *left_buf;
490 struct buffer_head *parent_buf = NULL;
491 struct btrfs_node *right = NULL;
492 struct btrfs_node *mid;
493 struct btrfs_node *left = NULL;
494 struct btrfs_node *parent = NULL;
495 int ret = 0;
496 int wret;
497 int pslot;
498 int orig_slot = path->slots[level];
499 int err_on_enospc = 0;
500 u64 orig_ptr;
501
502 if (level == 0)
503 return 0;
504
505 mid_buf = path->nodes[level];
506 mid = btrfs_buffer_node(mid_buf);
507 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
508
509 if (level < BTRFS_MAX_LEVEL - 1)
510 parent_buf = path->nodes[level + 1];
511 pslot = path->slots[level + 1];
512
513 /*
514 * deal with the case where there is only one pointer in the root
515 * by promoting the node below to a root
516 */
517 if (!parent_buf) {
518 struct buffer_head *child;
519 u64 blocknr = bh_blocknr(mid_buf);
520
521 if (btrfs_header_nritems(&mid->header) != 1)
522 return 0;
523
524 /* promote the child to a root */
525 child = read_node_slot(root, mid_buf, 0);
526 BUG_ON(!child);
527 root->node = child;
528 path->nodes[level] = NULL;
529 clean_tree_block(trans, root, mid_buf);
530 wait_on_buffer(mid_buf);
531 /* once for the path */
532 btrfs_block_release(root, mid_buf);
533 /* once for the root ptr */
534 btrfs_block_release(root, mid_buf);
535 return btrfs_free_extent(trans, root, blocknr, 1, 1);
536 }
537 parent = btrfs_buffer_node(parent_buf);
538
539 if (btrfs_header_nritems(&mid->header) >
540 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
541 return 0;
542
543 if (btrfs_header_nritems(&mid->header) < 2)
544 err_on_enospc = 1;
545
546 left_buf = read_node_slot(root, parent_buf, pslot - 1);
547 if (left_buf) {
548 wret = btrfs_cow_block(trans, root, left_buf,
549 parent_buf, pslot - 1, &left_buf);
550 if (wret) {
551 ret = wret;
552 goto enospc;
553 }
554 }
555 right_buf = read_node_slot(root, parent_buf, pslot + 1);
556 if (right_buf) {
557 wret = btrfs_cow_block(trans, root, right_buf,
558 parent_buf, pslot + 1, &right_buf);
559 if (wret) {
560 ret = wret;
561 goto enospc;
562 }
563 }
564
565 /* first, try to make some room in the middle buffer */
566 if (left_buf) {
567 left = btrfs_buffer_node(left_buf);
568 orig_slot += btrfs_header_nritems(&left->header);
569 wret = push_node_left(trans, root, left_buf, mid_buf);
570 if (wret < 0)
571 ret = wret;
572 if (btrfs_header_nritems(&mid->header) < 2)
573 err_on_enospc = 1;
574 }
575
576 /*
577 * then try to empty the right most buffer into the middle
578 */
579 if (right_buf) {
580 right = btrfs_buffer_node(right_buf);
581 wret = push_node_left(trans, root, mid_buf, right_buf);
582 if (wret < 0 && wret != -ENOSPC)
583 ret = wret;
584 if (btrfs_header_nritems(&right->header) == 0) {
585 u64 blocknr = bh_blocknr(right_buf);
586 clean_tree_block(trans, root, right_buf);
587 wait_on_buffer(right_buf);
588 btrfs_block_release(root, right_buf);
589 right_buf = NULL;
590 right = NULL;
591 wret = del_ptr(trans, root, path, level + 1, pslot +
592 1);
593 if (wret)
594 ret = wret;
595 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
596 if (wret)
597 ret = wret;
598 } else {
599 btrfs_memcpy(root, parent,
600 &parent->ptrs[pslot + 1].key,
601 &right->ptrs[0].key,
602 sizeof(struct btrfs_disk_key));
603 btrfs_mark_buffer_dirty(parent_buf);
604 }
605 }
606 if (btrfs_header_nritems(&mid->header) == 1) {
607 /*
608 * we're not allowed to leave a node with one item in the
609 * tree during a delete. A deletion from lower in the tree
610 * could try to delete the only pointer in this node.
611 * So, pull some keys from the left.
612 * There has to be a left pointer at this point because
613 * otherwise we would have pulled some pointers from the
614 * right
615 */
616 BUG_ON(!left_buf);
617 wret = balance_node_right(trans, root, mid_buf, left_buf);
618 if (wret < 0) {
619 ret = wret;
620 goto enospc;
621 }
622 BUG_ON(wret == 1);
623 }
624 if (btrfs_header_nritems(&mid->header) == 0) {
625 /* we've managed to empty the middle node, drop it */
626 u64 blocknr = bh_blocknr(mid_buf);
627 clean_tree_block(trans, root, mid_buf);
628 wait_on_buffer(mid_buf);
629 btrfs_block_release(root, mid_buf);
630 mid_buf = NULL;
631 mid = NULL;
632 wret = del_ptr(trans, root, path, level + 1, pslot);
633 if (wret)
634 ret = wret;
635 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
636 if (wret)
637 ret = wret;
638 } else {
639 /* update the parent key to reflect our changes */
640 btrfs_memcpy(root, parent,
641 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
642 sizeof(struct btrfs_disk_key));
643 btrfs_mark_buffer_dirty(parent_buf);
644 }
645
646 /* update the path */
647 if (left_buf) {
648 if (btrfs_header_nritems(&left->header) > orig_slot) {
649 get_bh(left_buf);
650 path->nodes[level] = left_buf;
651 path->slots[level + 1] -= 1;
652 path->slots[level] = orig_slot;
653 if (mid_buf)
654 btrfs_block_release(root, mid_buf);
655 } else {
656 orig_slot -= btrfs_header_nritems(&left->header);
657 path->slots[level] = orig_slot;
658 }
659 }
660 /* double check we haven't messed things up */
661 check_block(root, path, level);
662 if (orig_ptr !=
663 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
664 path->slots[level]))
665 BUG();
666 enospc:
667 if (right_buf)
668 btrfs_block_release(root, right_buf);
669 if (left_buf)
670 btrfs_block_release(root, left_buf);
671 return ret;
672 }
673
674 /* returns zero if the push worked, non-zero otherwise */
675 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root,
677 struct btrfs_path *path, int level)
678 {
679 struct buffer_head *right_buf;
680 struct buffer_head *mid_buf;
681 struct buffer_head *left_buf;
682 struct buffer_head *parent_buf = NULL;
683 struct btrfs_node *right = NULL;
684 struct btrfs_node *mid;
685 struct btrfs_node *left = NULL;
686 struct btrfs_node *parent = NULL;
687 int ret = 0;
688 int wret;
689 int pslot;
690 int orig_slot = path->slots[level];
691 u64 orig_ptr;
692
693 if (level == 0)
694 return 1;
695
696 mid_buf = path->nodes[level];
697 mid = btrfs_buffer_node(mid_buf);
698 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
699
700 if (level < BTRFS_MAX_LEVEL - 1)
701 parent_buf = path->nodes[level + 1];
702 pslot = path->slots[level + 1];
703
704 if (!parent_buf)
705 return 1;
706 parent = btrfs_buffer_node(parent_buf);
707
708 left_buf = read_node_slot(root, parent_buf, pslot - 1);
709
710 /* first, try to make some room in the middle buffer */
711 if (left_buf) {
712 u32 left_nr;
713 left = btrfs_buffer_node(left_buf);
714 left_nr = btrfs_header_nritems(&left->header);
715 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
716 wret = 1;
717 } else {
718 ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
719 pslot - 1, &left_buf);
720 if (ret)
721 wret = 1;
722 else {
723 left = btrfs_buffer_node(left_buf);
724 wret = push_node_left(trans, root,
725 left_buf, mid_buf);
726 }
727 }
728 if (wret < 0)
729 ret = wret;
730 if (wret == 0) {
731 orig_slot += left_nr;
732 btrfs_memcpy(root, parent,
733 &parent->ptrs[pslot].key,
734 &mid->ptrs[0].key,
735 sizeof(struct btrfs_disk_key));
736 btrfs_mark_buffer_dirty(parent_buf);
737 if (btrfs_header_nritems(&left->header) > orig_slot) {
738 path->nodes[level] = left_buf;
739 path->slots[level + 1] -= 1;
740 path->slots[level] = orig_slot;
741 btrfs_block_release(root, mid_buf);
742 } else {
743 orig_slot -=
744 btrfs_header_nritems(&left->header);
745 path->slots[level] = orig_slot;
746 btrfs_block_release(root, left_buf);
747 }
748 check_node(root, path, level);
749 return 0;
750 }
751 btrfs_block_release(root, left_buf);
752 }
753 right_buf = read_node_slot(root, parent_buf, pslot + 1);
754
755 /*
756 * then try to empty the right most buffer into the middle
757 */
758 if (right_buf) {
759 u32 right_nr;
760 right = btrfs_buffer_node(right_buf);
761 right_nr = btrfs_header_nritems(&right->header);
762 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
763 wret = 1;
764 } else {
765 ret = btrfs_cow_block(trans, root, right_buf,
766 parent_buf, pslot + 1,
767 &right_buf);
768 if (ret)
769 wret = 1;
770 else {
771 right = btrfs_buffer_node(right_buf);
772 wret = balance_node_right(trans, root,
773 right_buf, mid_buf);
774 }
775 }
776 if (wret < 0)
777 ret = wret;
778 if (wret == 0) {
779 btrfs_memcpy(root, parent,
780 &parent->ptrs[pslot + 1].key,
781 &right->ptrs[0].key,
782 sizeof(struct btrfs_disk_key));
783 btrfs_mark_buffer_dirty(parent_buf);
784 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
785 path->nodes[level] = right_buf;
786 path->slots[level + 1] += 1;
787 path->slots[level] = orig_slot -
788 btrfs_header_nritems(&mid->header);
789 btrfs_block_release(root, mid_buf);
790 } else {
791 btrfs_block_release(root, right_buf);
792 }
793 check_node(root, path, level);
794 return 0;
795 }
796 btrfs_block_release(root, right_buf);
797 }
798 check_node(root, path, level);
799 return 1;
800 }
801
802 /*
803 * readahead one full node of leaves
804 */
805 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
806 int level, int slot)
807 {
808 struct btrfs_node *node;
809 int i;
810 u32 nritems;
811 u64 item_objectid;
812 u64 blocknr;
813 u64 search;
814 u64 cluster_start;
815 int ret;
816 int nread = 0;
817 int direction = path->reada;
818 struct radix_tree_root found;
819 unsigned long gang[8];
820 struct buffer_head *bh;
821
822 if (level == 0)
823 return;
824
825 if (!path->nodes[level])
826 return;
827
828 node = btrfs_buffer_node(path->nodes[level]);
829 search = btrfs_node_blockptr(node, slot);
830 bh = btrfs_find_tree_block(root, search);
831 if (bh) {
832 brelse(bh);
833 return;
834 }
835
836 init_bit_radix(&found);
837 nritems = btrfs_header_nritems(&node->header);
838 for (i = slot; i < nritems; i++) {
839 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
840 blocknr = btrfs_node_blockptr(node, i);
841 set_radix_bit(&found, blocknr);
842 }
843 if (direction > 0) {
844 cluster_start = search - 4;
845 if (cluster_start > search)
846 cluster_start = 0;
847 } else
848 cluster_start = search + 4;
849 while(1) {
850 ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
851 if (!ret)
852 break;
853 for (i = 0; i < ret; i++) {
854 blocknr = gang[i];
855 clear_radix_bit(&found, blocknr);
856 if (path->reada == 1 && nread > 16)
857 continue;
858 if (close_blocks(cluster_start, blocknr)) {
859 readahead_tree_block(root, blocknr);
860 nread++;
861 cluster_start = blocknr;
862 }
863 }
864 }
865 }
866 /*
867 * look for key in the tree. path is filled in with nodes along the way
868 * if key is found, we return zero and you can find the item in the leaf
869 * level of the path (level 0)
870 *
871 * If the key isn't found, the path points to the slot where it should
872 * be inserted, and 1 is returned. If there are other errors during the
873 * search a negative error number is returned.
874 *
875 * if ins_len > 0, nodes and leaves will be split as we walk down the
876 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
877 * possible)
878 */
879 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
880 *root, struct btrfs_key *key, struct btrfs_path *p, int
881 ins_len, int cow)
882 {
883 struct buffer_head *b;
884 struct buffer_head *cow_buf;
885 struct btrfs_node *c;
886 u64 blocknr;
887 int slot;
888 int ret;
889 int level;
890 int should_reada = p->reada;
891 u8 lowest_level = 0;
892
893 lowest_level = p->lowest_level;
894 WARN_ON(lowest_level && ins_len);
895 WARN_ON(p->nodes[0] != NULL);
896 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
897 again:
898 b = root->node;
899 get_bh(b);
900 while (b) {
901 c = btrfs_buffer_node(b);
902 level = btrfs_header_level(&c->header);
903 if (cow) {
904 int wret;
905 wret = btrfs_cow_block(trans, root, b,
906 p->nodes[level + 1],
907 p->slots[level + 1],
908 &cow_buf);
909 if (wret) {
910 btrfs_block_release(root, cow_buf);
911 return wret;
912 }
913 b = cow_buf;
914 c = btrfs_buffer_node(b);
915 }
916 BUG_ON(!cow && ins_len);
917 if (level != btrfs_header_level(&c->header))
918 WARN_ON(1);
919 level = btrfs_header_level(&c->header);
920 p->nodes[level] = b;
921 ret = check_block(root, p, level);
922 if (ret)
923 return -1;
924 ret = bin_search(c, key, &slot);
925 if (!btrfs_is_leaf(c)) {
926 if (ret && slot > 0)
927 slot -= 1;
928 p->slots[level] = slot;
929 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
930 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
931 int sret = split_node(trans, root, p, level);
932 BUG_ON(sret > 0);
933 if (sret)
934 return sret;
935 b = p->nodes[level];
936 c = btrfs_buffer_node(b);
937 slot = p->slots[level];
938 } else if (ins_len < 0) {
939 int sret = balance_level(trans, root, p,
940 level);
941 if (sret)
942 return sret;
943 b = p->nodes[level];
944 if (!b)
945 goto again;
946 c = btrfs_buffer_node(b);
947 slot = p->slots[level];
948 BUG_ON(btrfs_header_nritems(&c->header) == 1);
949 }
950 /* this is only true while dropping a snapshot */
951 if (level == lowest_level)
952 break;
953 blocknr = btrfs_node_blockptr(c, slot);
954 if (should_reada)
955 reada_for_search(root, p, level, slot);
956 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
957
958 } else {
959 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
960 p->slots[level] = slot;
961 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
962 sizeof(struct btrfs_item) + ins_len) {
963 int sret = split_leaf(trans, root, key,
964 p, ins_len);
965 BUG_ON(sret > 0);
966 if (sret)
967 return sret;
968 }
969 return ret;
970 }
971 }
972 return 1;
973 }
974
975 /*
976 * adjust the pointers going up the tree, starting at level
977 * making sure the right key of each node is points to 'key'.
978 * This is used after shifting pointers to the left, so it stops
979 * fixing up pointers when a given leaf/node is not in slot 0 of the
980 * higher levels
981 *
982 * If this fails to write a tree block, it returns -1, but continues
983 * fixing up the blocks in ram so the tree is consistent.
984 */
985 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
986 *root, struct btrfs_path *path, struct btrfs_disk_key
987 *key, int level)
988 {
989 int i;
990 int ret = 0;
991 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
992 struct btrfs_node *t;
993 int tslot = path->slots[i];
994 if (!path->nodes[i])
995 break;
996 t = btrfs_buffer_node(path->nodes[i]);
997 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
998 btrfs_mark_buffer_dirty(path->nodes[i]);
999 if (tslot != 0)
1000 break;
1001 }
1002 return ret;
1003 }
1004
1005 /*
1006 * try to push data from one node into the next node left in the
1007 * tree.
1008 *
1009 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1010 * error, and > 0 if there was no room in the left hand block.
1011 */
1012 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
1013 *root, struct buffer_head *dst_buf, struct
1014 buffer_head *src_buf)
1015 {
1016 struct btrfs_node *src = btrfs_buffer_node(src_buf);
1017 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
1018 int push_items = 0;
1019 int src_nritems;
1020 int dst_nritems;
1021 int ret = 0;
1022
1023 src_nritems = btrfs_header_nritems(&src->header);
1024 dst_nritems = btrfs_header_nritems(&dst->header);
1025 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1026
1027 if (push_items <= 0) {
1028 return 1;
1029 }
1030
1031 if (src_nritems < push_items)
1032 push_items = src_nritems;
1033
1034 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
1035 push_items * sizeof(struct btrfs_key_ptr));
1036 if (push_items < src_nritems) {
1037 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
1038 (src_nritems - push_items) *
1039 sizeof(struct btrfs_key_ptr));
1040 }
1041 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1042 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1043 btrfs_mark_buffer_dirty(src_buf);
1044 btrfs_mark_buffer_dirty(dst_buf);
1045 return ret;
1046 }
1047
1048 /*
1049 * try to push data from one node into the next node right in the
1050 * tree.
1051 *
1052 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1053 * error, and > 0 if there was no room in the right hand block.
1054 *
1055 * this will only push up to 1/2 the contents of the left node over
1056 */
1057 static int balance_node_right(struct btrfs_trans_handle *trans, struct
1058 btrfs_root *root, struct buffer_head *dst_buf,
1059 struct buffer_head *src_buf)
1060 {
1061 struct btrfs_node *src = btrfs_buffer_node(src_buf);
1062 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
1063 int push_items = 0;
1064 int max_push;
1065 int src_nritems;
1066 int dst_nritems;
1067 int ret = 0;
1068
1069 src_nritems = btrfs_header_nritems(&src->header);
1070 dst_nritems = btrfs_header_nritems(&dst->header);
1071 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1072 if (push_items <= 0) {
1073 return 1;
1074 }
1075
1076 max_push = src_nritems / 2 + 1;
1077 /* don't try to empty the node */
1078 if (max_push > src_nritems)
1079 return 1;
1080 if (max_push < push_items)
1081 push_items = max_push;
1082
1083 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
1084 dst_nritems * sizeof(struct btrfs_key_ptr));
1085
1086 btrfs_memcpy(root, dst, dst->ptrs,
1087 src->ptrs + src_nritems - push_items,
1088 push_items * sizeof(struct btrfs_key_ptr));
1089
1090 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1091 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1092
1093 btrfs_mark_buffer_dirty(src_buf);
1094 btrfs_mark_buffer_dirty(dst_buf);
1095 return ret;
1096 }
1097
1098 /*
1099 * helper function to insert a new root level in the tree.
1100 * A new node is allocated, and a single item is inserted to
1101 * point to the existing root
1102 *
1103 * returns zero on success or < 0 on failure.
1104 */
1105 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
1106 *root, struct btrfs_path *path, int level)
1107 {
1108 struct buffer_head *t;
1109 struct btrfs_node *lower;
1110 struct btrfs_node *c;
1111 struct btrfs_disk_key *lower_key;
1112
1113 BUG_ON(path->nodes[level]);
1114 BUG_ON(path->nodes[level-1] != root->node);
1115
1116 t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
1117 if (IS_ERR(t))
1118 return PTR_ERR(t);
1119 c = btrfs_buffer_node(t);
1120 memset(c, 0, root->blocksize);
1121 btrfs_set_header_nritems(&c->header, 1);
1122 btrfs_set_header_level(&c->header, level);
1123 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
1124 btrfs_set_header_generation(&c->header, trans->transid);
1125 btrfs_set_header_owner(&c->header, root->root_key.objectid);
1126 lower = btrfs_buffer_node(path->nodes[level-1]);
1127 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
1128 sizeof(c->header.fsid));
1129 if (btrfs_is_leaf(lower))
1130 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
1131 else
1132 lower_key = &lower->ptrs[0].key;
1133 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
1134 sizeof(struct btrfs_disk_key));
1135 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
1136
1137 btrfs_mark_buffer_dirty(t);
1138
1139 /* the super has an extra ref to root->node */
1140 btrfs_block_release(root, root->node);
1141 root->node = t;
1142 get_bh(t);
1143 path->nodes[level] = t;
1144 path->slots[level] = 0;
1145 return 0;
1146 }
1147
1148 /*
1149 * worker function to insert a single pointer in a node.
1150 * the node should have enough room for the pointer already
1151 *
1152 * slot and level indicate where you want the key to go, and
1153 * blocknr is the block the key points to.
1154 *
1155 * returns zero on success and < 0 on any error
1156 */
1157 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1158 *root, struct btrfs_path *path, struct btrfs_disk_key
1159 *key, u64 blocknr, int slot, int level)
1160 {
1161 struct btrfs_node *lower;
1162 int nritems;
1163
1164 BUG_ON(!path->nodes[level]);
1165 lower = btrfs_buffer_node(path->nodes[level]);
1166 nritems = btrfs_header_nritems(&lower->header);
1167 if (slot > nritems)
1168 BUG();
1169 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1170 BUG();
1171 if (slot != nritems) {
1172 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
1173 lower->ptrs + slot,
1174 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1175 }
1176 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
1177 key, sizeof(struct btrfs_disk_key));
1178 btrfs_set_node_blockptr(lower, slot, blocknr);
1179 btrfs_set_header_nritems(&lower->header, nritems + 1);
1180 btrfs_mark_buffer_dirty(path->nodes[level]);
1181 check_node(root, path, level);
1182 return 0;
1183 }
1184
1185 /*
1186 * split the node at the specified level in path in two.
1187 * The path is corrected to point to the appropriate node after the split
1188 *
1189 * Before splitting this tries to make some room in the node by pushing
1190 * left and right, if either one works, it returns right away.
1191 *
1192 * returns 0 on success and < 0 on failure
1193 */
1194 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1195 *root, struct btrfs_path *path, int level)
1196 {
1197 struct buffer_head *t;
1198 struct btrfs_node *c;
1199 struct buffer_head *split_buffer;
1200 struct btrfs_node *split;
1201 int mid;
1202 int ret;
1203 int wret;
1204 u32 c_nritems;
1205
1206 t = path->nodes[level];
1207 c = btrfs_buffer_node(t);
1208 if (t == root->node) {
1209 /* trying to split the root, lets make a new one */
1210 ret = insert_new_root(trans, root, path, level + 1);
1211 if (ret)
1212 return ret;
1213 } else {
1214 ret = push_nodes_for_insert(trans, root, path, level);
1215 t = path->nodes[level];
1216 c = btrfs_buffer_node(t);
1217 if (!ret &&
1218 btrfs_header_nritems(&c->header) <
1219 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
1220 return 0;
1221 if (ret < 0)
1222 return ret;
1223 }
1224
1225 c_nritems = btrfs_header_nritems(&c->header);
1226 split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
1227 if (IS_ERR(split_buffer))
1228 return PTR_ERR(split_buffer);
1229
1230 split = btrfs_buffer_node(split_buffer);
1231 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
1232 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
1233 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
1234 btrfs_set_header_generation(&split->header, trans->transid);
1235 btrfs_set_header_owner(&split->header, root->root_key.objectid);
1236 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
1237 sizeof(split->header.fsid));
1238 mid = (c_nritems + 1) / 2;
1239 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1240 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1241 btrfs_set_header_nritems(&split->header, c_nritems - mid);
1242 btrfs_set_header_nritems(&c->header, mid);
1243 ret = 0;
1244
1245 btrfs_mark_buffer_dirty(t);
1246 btrfs_mark_buffer_dirty(split_buffer);
1247 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1248 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1249 level + 1);
1250 if (wret)
1251 ret = wret;
1252
1253 if (path->slots[level] >= mid) {
1254 path->slots[level] -= mid;
1255 btrfs_block_release(root, t);
1256 path->nodes[level] = split_buffer;
1257 path->slots[level + 1] += 1;
1258 } else {
1259 btrfs_block_release(root, split_buffer);
1260 }
1261 return ret;
1262 }
1263
1264 /*
1265 * how many bytes are required to store the items in a leaf. start
1266 * and nr indicate which items in the leaf to check. This totals up the
1267 * space used both by the item structs and the item data
1268 */
1269 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1270 {
1271 int data_len;
1272 int nritems = btrfs_header_nritems(&l->header);
1273 int end = min(nritems, start + nr) - 1;
1274
1275 if (!nr)
1276 return 0;
1277 data_len = btrfs_item_end(l->items + start);
1278 data_len = data_len - btrfs_item_offset(l->items + end);
1279 data_len += sizeof(struct btrfs_item) * nr;
1280 WARN_ON(data_len < 0);
1281 return data_len;
1282 }
1283
1284 /*
1285 * The space between the end of the leaf items and
1286 * the start of the leaf data. IOW, how much room
1287 * the leaf has left for both items and data
1288 */
1289 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1290 {
1291 int nritems = btrfs_header_nritems(&leaf->header);
1292 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1293 }
1294
1295 /*
1296 * push some data in the path leaf to the right, trying to free up at
1297 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1298 *
1299 * returns 1 if the push failed because the other node didn't have enough
1300 * room, 0 if everything worked out and < 0 if there were major errors.
1301 */
1302 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1303 *root, struct btrfs_path *path, int data_size)
1304 {
1305 struct buffer_head *left_buf = path->nodes[0];
1306 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1307 struct btrfs_leaf *right;
1308 struct buffer_head *right_buf;
1309 struct buffer_head *upper;
1310 struct btrfs_node *upper_node;
1311 int slot;
1312 int i;
1313 int free_space;
1314 int push_space = 0;
1315 int push_items = 0;
1316 struct btrfs_item *item;
1317 u32 left_nritems;
1318 u32 right_nritems;
1319 int ret;
1320
1321 slot = path->slots[1];
1322 if (!path->nodes[1]) {
1323 return 1;
1324 }
1325 upper = path->nodes[1];
1326 upper_node = btrfs_buffer_node(upper);
1327 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1328 return 1;
1329 }
1330 right_buf = read_tree_block(root,
1331 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1332 right = btrfs_buffer_leaf(right_buf);
1333 free_space = btrfs_leaf_free_space(root, right);
1334 if (free_space < data_size + sizeof(struct btrfs_item)) {
1335 btrfs_block_release(root, right_buf);
1336 return 1;
1337 }
1338 /* cow and double check */
1339 ret = btrfs_cow_block(trans, root, right_buf, upper,
1340 slot + 1, &right_buf);
1341 if (ret) {
1342 btrfs_block_release(root, right_buf);
1343 return 1;
1344 }
1345 right = btrfs_buffer_leaf(right_buf);
1346 free_space = btrfs_leaf_free_space(root, right);
1347 if (free_space < data_size + sizeof(struct btrfs_item)) {
1348 btrfs_block_release(root, right_buf);
1349 return 1;
1350 }
1351
1352 left_nritems = btrfs_header_nritems(&left->header);
1353 if (left_nritems == 0) {
1354 btrfs_block_release(root, right_buf);
1355 return 1;
1356 }
1357 for (i = left_nritems - 1; i >= 1; i--) {
1358 item = left->items + i;
1359 if (path->slots[0] == i)
1360 push_space += data_size + sizeof(*item);
1361 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1362 free_space)
1363 break;
1364 push_items++;
1365 push_space += btrfs_item_size(item) + sizeof(*item);
1366 }
1367 if (push_items == 0) {
1368 btrfs_block_release(root, right_buf);
1369 return 1;
1370 }
1371 if (push_items == left_nritems)
1372 WARN_ON(1);
1373 right_nritems = btrfs_header_nritems(&right->header);
1374 /* push left to right */
1375 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1376 push_space -= leaf_data_end(root, left);
1377 /* make room in the right data area */
1378 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1379 leaf_data_end(root, right) - push_space,
1380 btrfs_leaf_data(right) +
1381 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1382 leaf_data_end(root, right));
1383 /* copy from the left data area */
1384 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1385 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1386 btrfs_leaf_data(left) + leaf_data_end(root, left),
1387 push_space);
1388 btrfs_memmove(root, right, right->items + push_items, right->items,
1389 right_nritems * sizeof(struct btrfs_item));
1390 /* copy the items from left to right */
1391 btrfs_memcpy(root, right, right->items, left->items +
1392 left_nritems - push_items,
1393 push_items * sizeof(struct btrfs_item));
1394
1395 /* update the item pointers */
1396 right_nritems += push_items;
1397 btrfs_set_header_nritems(&right->header, right_nritems);
1398 push_space = BTRFS_LEAF_DATA_SIZE(root);
1399 for (i = 0; i < right_nritems; i++) {
1400 btrfs_set_item_offset(right->items + i, push_space -
1401 btrfs_item_size(right->items + i));
1402 push_space = btrfs_item_offset(right->items + i);
1403 }
1404 left_nritems -= push_items;
1405 btrfs_set_header_nritems(&left->header, left_nritems);
1406
1407 btrfs_mark_buffer_dirty(left_buf);
1408 btrfs_mark_buffer_dirty(right_buf);
1409
1410 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1411 &right->items[0].key, sizeof(struct btrfs_disk_key));
1412 btrfs_mark_buffer_dirty(upper);
1413
1414 /* then fixup the leaf pointer in the path */
1415 if (path->slots[0] >= left_nritems) {
1416 path->slots[0] -= left_nritems;
1417 btrfs_block_release(root, path->nodes[0]);
1418 path->nodes[0] = right_buf;
1419 path->slots[1] += 1;
1420 } else {
1421 btrfs_block_release(root, right_buf);
1422 }
1423 if (path->nodes[1])
1424 check_node(root, path, 1);
1425 return 0;
1426 }
1427 /*
1428 * push some data in the path leaf to the left, trying to free up at
1429 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1430 */
1431 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1432 *root, struct btrfs_path *path, int data_size)
1433 {
1434 struct buffer_head *right_buf = path->nodes[0];
1435 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1436 struct buffer_head *t;
1437 struct btrfs_leaf *left;
1438 int slot;
1439 int i;
1440 int free_space;
1441 int push_space = 0;
1442 int push_items = 0;
1443 struct btrfs_item *item;
1444 u32 old_left_nritems;
1445 int ret = 0;
1446 int wret;
1447
1448 slot = path->slots[1];
1449 if (slot == 0) {
1450 return 1;
1451 }
1452 if (!path->nodes[1]) {
1453 return 1;
1454 }
1455 t = read_tree_block(root,
1456 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1457 left = btrfs_buffer_leaf(t);
1458 free_space = btrfs_leaf_free_space(root, left);
1459 if (free_space < data_size + sizeof(struct btrfs_item)) {
1460 btrfs_block_release(root, t);
1461 return 1;
1462 }
1463
1464 /* cow and double check */
1465 ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1466 if (ret) {
1467 /* we hit -ENOSPC, but it isn't fatal here */
1468 return 1;
1469 }
1470 left = btrfs_buffer_leaf(t);
1471 free_space = btrfs_leaf_free_space(root, left);
1472 if (free_space < data_size + sizeof(struct btrfs_item)) {
1473 btrfs_block_release(root, t);
1474 return 1;
1475 }
1476
1477 if (btrfs_header_nritems(&right->header) == 0) {
1478 btrfs_block_release(root, t);
1479 return 1;
1480 }
1481
1482 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1483 item = right->items + i;
1484 if (path->slots[0] == i)
1485 push_space += data_size + sizeof(*item);
1486 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1487 free_space)
1488 break;
1489 push_items++;
1490 push_space += btrfs_item_size(item) + sizeof(*item);
1491 }
1492 if (push_items == 0) {
1493 btrfs_block_release(root, t);
1494 return 1;
1495 }
1496 if (push_items == btrfs_header_nritems(&right->header))
1497 WARN_ON(1);
1498 /* push data from right to left */
1499 btrfs_memcpy(root, left, left->items +
1500 btrfs_header_nritems(&left->header),
1501 right->items, push_items * sizeof(struct btrfs_item));
1502 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1503 btrfs_item_offset(right->items + push_items -1);
1504 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1505 leaf_data_end(root, left) - push_space,
1506 btrfs_leaf_data(right) +
1507 btrfs_item_offset(right->items + push_items - 1),
1508 push_space);
1509 old_left_nritems = btrfs_header_nritems(&left->header);
1510 BUG_ON(old_left_nritems < 0);
1511
1512 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1513 u32 ioff = btrfs_item_offset(left->items + i);
1514 btrfs_set_item_offset(left->items + i, ioff -
1515 (BTRFS_LEAF_DATA_SIZE(root) -
1516 btrfs_item_offset(left->items +
1517 old_left_nritems - 1)));
1518 }
1519 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1520
1521 /* fixup right node */
1522 push_space = btrfs_item_offset(right->items + push_items - 1) -
1523 leaf_data_end(root, right);
1524 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1525 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1526 btrfs_leaf_data(right) +
1527 leaf_data_end(root, right), push_space);
1528 btrfs_memmove(root, right, right->items, right->items + push_items,
1529 (btrfs_header_nritems(&right->header) - push_items) *
1530 sizeof(struct btrfs_item));
1531 btrfs_set_header_nritems(&right->header,
1532 btrfs_header_nritems(&right->header) -
1533 push_items);
1534 push_space = BTRFS_LEAF_DATA_SIZE(root);
1535
1536 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1537 btrfs_set_item_offset(right->items + i, push_space -
1538 btrfs_item_size(right->items + i));
1539 push_space = btrfs_item_offset(right->items + i);
1540 }
1541
1542 btrfs_mark_buffer_dirty(t);
1543 btrfs_mark_buffer_dirty(right_buf);
1544
1545 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1546 if (wret)
1547 ret = wret;
1548
1549 /* then fixup the leaf pointer in the path */
1550 if (path->slots[0] < push_items) {
1551 path->slots[0] += old_left_nritems;
1552 btrfs_block_release(root, path->nodes[0]);
1553 path->nodes[0] = t;
1554 path->slots[1] -= 1;
1555 } else {
1556 btrfs_block_release(root, t);
1557 path->slots[0] -= push_items;
1558 }
1559 BUG_ON(path->slots[0] < 0);
1560 if (path->nodes[1])
1561 check_node(root, path, 1);
1562 return ret;
1563 }
1564
1565 /*
1566 * split the path's leaf in two, making sure there is at least data_size
1567 * available for the resulting leaf level of the path.
1568 *
1569 * returns 0 if all went well and < 0 on failure.
1570 */
1571 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1572 *root, struct btrfs_key *ins_key,
1573 struct btrfs_path *path, int data_size)
1574 {
1575 struct buffer_head *l_buf;
1576 struct btrfs_leaf *l;
1577 u32 nritems;
1578 int mid;
1579 int slot;
1580 struct btrfs_leaf *right;
1581 struct buffer_head *right_buffer;
1582 int space_needed = data_size + sizeof(struct btrfs_item);
1583 int data_copy_size;
1584 int rt_data_off;
1585 int i;
1586 int ret = 0;
1587 int wret;
1588 int double_split = 0;
1589 struct btrfs_disk_key disk_key;
1590
1591 /* first try to make some room by pushing left and right */
1592 wret = push_leaf_left(trans, root, path, data_size);
1593 if (wret < 0)
1594 return wret;
1595 if (wret) {
1596 wret = push_leaf_right(trans, root, path, data_size);
1597 if (wret < 0)
1598 return wret;
1599 }
1600 l_buf = path->nodes[0];
1601 l = btrfs_buffer_leaf(l_buf);
1602
1603 /* did the pushes work? */
1604 if (btrfs_leaf_free_space(root, l) >=
1605 sizeof(struct btrfs_item) + data_size)
1606 return 0;
1607
1608 if (!path->nodes[1]) {
1609 ret = insert_new_root(trans, root, path, 1);
1610 if (ret)
1611 return ret;
1612 }
1613 slot = path->slots[0];
1614 nritems = btrfs_header_nritems(&l->header);
1615 mid = (nritems + 1)/ 2;
1616
1617 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1618 if (IS_ERR(right_buffer))
1619 return PTR_ERR(right_buffer);
1620
1621 right = btrfs_buffer_leaf(right_buffer);
1622 memset(&right->header, 0, sizeof(right->header));
1623 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1624 btrfs_set_header_generation(&right->header, trans->transid);
1625 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1626 btrfs_set_header_level(&right->header, 0);
1627 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1628 sizeof(right->header.fsid));
1629 if (mid <= slot) {
1630 if (nritems == 1 ||
1631 leaf_space_used(l, mid, nritems - mid) + space_needed >
1632 BTRFS_LEAF_DATA_SIZE(root)) {
1633 if (slot >= nritems) {
1634 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1635 btrfs_set_header_nritems(&right->header, 0);
1636 wret = insert_ptr(trans, root, path,
1637 &disk_key,
1638 bh_blocknr(right_buffer),
1639 path->slots[1] + 1, 1);
1640 if (wret)
1641 ret = wret;
1642 btrfs_block_release(root, path->nodes[0]);
1643 path->nodes[0] = right_buffer;
1644 path->slots[0] = 0;
1645 path->slots[1] += 1;
1646 return ret;
1647 }
1648 mid = slot;
1649 double_split = 1;
1650 }
1651 } else {
1652 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1653 BTRFS_LEAF_DATA_SIZE(root)) {
1654 if (slot == 0) {
1655 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1656 btrfs_set_header_nritems(&right->header, 0);
1657 wret = insert_ptr(trans, root, path,
1658 &disk_key,
1659 bh_blocknr(right_buffer),
1660 path->slots[1], 1);
1661 if (wret)
1662 ret = wret;
1663 btrfs_block_release(root, path->nodes[0]);
1664 path->nodes[0] = right_buffer;
1665 path->slots[0] = 0;
1666 if (path->slots[1] == 0) {
1667 wret = fixup_low_keys(trans, root,
1668 path, &disk_key, 1);
1669 if (wret)
1670 ret = wret;
1671 }
1672 return ret;
1673 }
1674 mid = slot;
1675 double_split = 1;
1676 }
1677 }
1678 btrfs_set_header_nritems(&right->header, nritems - mid);
1679 data_copy_size = btrfs_item_end(l->items + mid) -
1680 leaf_data_end(root, l);
1681 btrfs_memcpy(root, right, right->items, l->items + mid,
1682 (nritems - mid) * sizeof(struct btrfs_item));
1683 btrfs_memcpy(root, right,
1684 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1685 data_copy_size, btrfs_leaf_data(l) +
1686 leaf_data_end(root, l), data_copy_size);
1687 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1688 btrfs_item_end(l->items + mid);
1689
1690 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1691 u32 ioff = btrfs_item_offset(right->items + i);
1692 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1693 }
1694
1695 btrfs_set_header_nritems(&l->header, mid);
1696 ret = 0;
1697 wret = insert_ptr(trans, root, path, &right->items[0].key,
1698 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1699 if (wret)
1700 ret = wret;
1701 btrfs_mark_buffer_dirty(right_buffer);
1702 btrfs_mark_buffer_dirty(l_buf);
1703 BUG_ON(path->slots[0] != slot);
1704 if (mid <= slot) {
1705 btrfs_block_release(root, path->nodes[0]);
1706 path->nodes[0] = right_buffer;
1707 path->slots[0] -= mid;
1708 path->slots[1] += 1;
1709 } else
1710 btrfs_block_release(root, right_buffer);
1711 BUG_ON(path->slots[0] < 0);
1712 check_node(root, path, 1);
1713
1714 if (!double_split)
1715 return ret;
1716 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1717 if (IS_ERR(right_buffer))
1718 return PTR_ERR(right_buffer);
1719
1720 right = btrfs_buffer_leaf(right_buffer);
1721 memset(&right->header, 0, sizeof(right->header));
1722 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1723 btrfs_set_header_generation(&right->header, trans->transid);
1724 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1725 btrfs_set_header_level(&right->header, 0);
1726 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1727 sizeof(right->header.fsid));
1728 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1729 btrfs_set_header_nritems(&right->header, 0);
1730 wret = insert_ptr(trans, root, path,
1731 &disk_key,
1732 bh_blocknr(right_buffer),
1733 path->slots[1], 1);
1734 if (wret)
1735 ret = wret;
1736 if (path->slots[1] == 0) {
1737 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1738 if (wret)
1739 ret = wret;
1740 }
1741 btrfs_block_release(root, path->nodes[0]);
1742 path->nodes[0] = right_buffer;
1743 path->slots[0] = 0;
1744 check_node(root, path, 1);
1745 check_leaf(root, path, 0);
1746 return ret;
1747 }
1748
1749 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root,
1751 struct btrfs_path *path,
1752 u32 new_size)
1753 {
1754 int ret = 0;
1755 int slot;
1756 int slot_orig;
1757 struct btrfs_leaf *leaf;
1758 struct buffer_head *leaf_buf;
1759 u32 nritems;
1760 unsigned int data_end;
1761 unsigned int old_data_start;
1762 unsigned int old_size;
1763 unsigned int size_diff;
1764 int i;
1765
1766 slot_orig = path->slots[0];
1767 leaf_buf = path->nodes[0];
1768 leaf = btrfs_buffer_leaf(leaf_buf);
1769
1770 nritems = btrfs_header_nritems(&leaf->header);
1771 data_end = leaf_data_end(root, leaf);
1772
1773 slot = path->slots[0];
1774 old_data_start = btrfs_item_offset(leaf->items + slot);
1775 old_size = btrfs_item_size(leaf->items + slot);
1776 BUG_ON(old_size <= new_size);
1777 size_diff = old_size - new_size;
1778
1779 BUG_ON(slot < 0);
1780 BUG_ON(slot >= nritems);
1781
1782 /*
1783 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1784 */
1785 /* first correct the data pointers */
1786 for (i = slot; i < nritems; i++) {
1787 u32 ioff = btrfs_item_offset(leaf->items + i);
1788 btrfs_set_item_offset(leaf->items + i,
1789 ioff + size_diff);
1790 }
1791 /* shift the data */
1792 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1793 data_end + size_diff, btrfs_leaf_data(leaf) +
1794 data_end, old_data_start + new_size - data_end);
1795 btrfs_set_item_size(leaf->items + slot, new_size);
1796 btrfs_mark_buffer_dirty(leaf_buf);
1797
1798 ret = 0;
1799 if (btrfs_leaf_free_space(root, leaf) < 0)
1800 BUG();
1801 check_leaf(root, path, 0);
1802 return ret;
1803 }
1804
1805 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1806 *root, struct btrfs_path *path, u32 data_size)
1807 {
1808 int ret = 0;
1809 int slot;
1810 int slot_orig;
1811 struct btrfs_leaf *leaf;
1812 struct buffer_head *leaf_buf;
1813 u32 nritems;
1814 unsigned int data_end;
1815 unsigned int old_data;
1816 unsigned int old_size;
1817 int i;
1818
1819 slot_orig = path->slots[0];
1820 leaf_buf = path->nodes[0];
1821 leaf = btrfs_buffer_leaf(leaf_buf);
1822
1823 nritems = btrfs_header_nritems(&leaf->header);
1824 data_end = leaf_data_end(root, leaf);
1825
1826 if (btrfs_leaf_free_space(root, leaf) < data_size)
1827 BUG();
1828 slot = path->slots[0];
1829 old_data = btrfs_item_end(leaf->items + slot);
1830
1831 BUG_ON(slot < 0);
1832 BUG_ON(slot >= nritems);
1833
1834 /*
1835 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1836 */
1837 /* first correct the data pointers */
1838 for (i = slot; i < nritems; i++) {
1839 u32 ioff = btrfs_item_offset(leaf->items + i);
1840 btrfs_set_item_offset(leaf->items + i,
1841 ioff - data_size);
1842 }
1843 /* shift the data */
1844 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1845 data_end - data_size, btrfs_leaf_data(leaf) +
1846 data_end, old_data - data_end);
1847 data_end = old_data;
1848 old_size = btrfs_item_size(leaf->items + slot);
1849 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1850 btrfs_mark_buffer_dirty(leaf_buf);
1851
1852 ret = 0;
1853 if (btrfs_leaf_free_space(root, leaf) < 0)
1854 BUG();
1855 check_leaf(root, path, 0);
1856 return ret;
1857 }
1858
1859 /*
1860 * Given a key and some data, insert an item into the tree.
1861 * This does all the path init required, making room in the tree if needed.
1862 */
1863 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1864 *root, struct btrfs_path *path, struct btrfs_key
1865 *cpu_key, u32 data_size)
1866 {
1867 int ret = 0;
1868 int slot;
1869 int slot_orig;
1870 struct btrfs_leaf *leaf;
1871 struct buffer_head *leaf_buf;
1872 u32 nritems;
1873 unsigned int data_end;
1874 struct btrfs_disk_key disk_key;
1875
1876 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1877
1878 /* create a root if there isn't one */
1879 if (!root->node)
1880 BUG();
1881 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1882 if (ret == 0) {
1883 return -EEXIST;
1884 }
1885 if (ret < 0)
1886 goto out;
1887
1888 slot_orig = path->slots[0];
1889 leaf_buf = path->nodes[0];
1890 leaf = btrfs_buffer_leaf(leaf_buf);
1891
1892 nritems = btrfs_header_nritems(&leaf->header);
1893 data_end = leaf_data_end(root, leaf);
1894
1895 if (btrfs_leaf_free_space(root, leaf) <
1896 sizeof(struct btrfs_item) + data_size) {
1897 BUG();
1898 }
1899 slot = path->slots[0];
1900 BUG_ON(slot < 0);
1901 if (slot != nritems) {
1902 int i;
1903 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1904
1905 /*
1906 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1907 */
1908 /* first correct the data pointers */
1909 for (i = slot; i < nritems; i++) {
1910 u32 ioff = btrfs_item_offset(leaf->items + i);
1911 btrfs_set_item_offset(leaf->items + i,
1912 ioff - data_size);
1913 }
1914
1915 /* shift the items */
1916 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1917 leaf->items + slot,
1918 (nritems - slot) * sizeof(struct btrfs_item));
1919
1920 /* shift the data */
1921 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1922 data_end - data_size, btrfs_leaf_data(leaf) +
1923 data_end, old_data - data_end);
1924 data_end = old_data;
1925 }
1926 /* setup the item for the new data */
1927 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1928 sizeof(struct btrfs_disk_key));
1929 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1930 btrfs_set_item_size(leaf->items + slot, data_size);
1931 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1932 btrfs_mark_buffer_dirty(leaf_buf);
1933
1934 ret = 0;
1935 if (slot == 0)
1936 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1937
1938 if (btrfs_leaf_free_space(root, leaf) < 0)
1939 BUG();
1940 check_leaf(root, path, 0);
1941 out:
1942 return ret;
1943 }
1944
1945 /*
1946 * Given a key and some data, insert an item into the tree.
1947 * This does all the path init required, making room in the tree if needed.
1948 */
1949 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1950 *root, struct btrfs_key *cpu_key, void *data, u32
1951 data_size)
1952 {
1953 int ret = 0;
1954 struct btrfs_path *path;
1955 u8 *ptr;
1956
1957 path = btrfs_alloc_path();
1958 BUG_ON(!path);
1959 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1960 if (!ret) {
1961 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1962 path->slots[0], u8);
1963 btrfs_memcpy(root, path->nodes[0]->b_data,
1964 ptr, data, data_size);
1965 btrfs_mark_buffer_dirty(path->nodes[0]);
1966 }
1967 btrfs_free_path(path);
1968 return ret;
1969 }
1970
1971 /*
1972 * delete the pointer from a given node.
1973 *
1974 * If the delete empties a node, the node is removed from the tree,
1975 * continuing all the way the root if required. The root is converted into
1976 * a leaf if all the nodes are emptied.
1977 */
1978 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1979 struct btrfs_path *path, int level, int slot)
1980 {
1981 struct btrfs_node *node;
1982 struct buffer_head *parent = path->nodes[level];
1983 u32 nritems;
1984 int ret = 0;
1985 int wret;
1986
1987 node = btrfs_buffer_node(parent);
1988 nritems = btrfs_header_nritems(&node->header);
1989 if (slot != nritems -1) {
1990 btrfs_memmove(root, node, node->ptrs + slot,
1991 node->ptrs + slot + 1,
1992 sizeof(struct btrfs_key_ptr) *
1993 (nritems - slot - 1));
1994 }
1995 nritems--;
1996 btrfs_set_header_nritems(&node->header, nritems);
1997 if (nritems == 0 && parent == root->node) {
1998 struct btrfs_header *header = btrfs_buffer_header(root->node);
1999 BUG_ON(btrfs_header_level(header) != 1);
2000 /* just turn the root into a leaf and break */
2001 btrfs_set_header_level(header, 0);
2002 } else if (slot == 0) {
2003 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
2004 level + 1);
2005 if (wret)
2006 ret = wret;
2007 }
2008 btrfs_mark_buffer_dirty(parent);
2009 return ret;
2010 }
2011
2012 /*
2013 * delete the item at the leaf level in path. If that empties
2014 * the leaf, remove it from the tree
2015 */
2016 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2017 struct btrfs_path *path)
2018 {
2019 int slot;
2020 struct btrfs_leaf *leaf;
2021 struct buffer_head *leaf_buf;
2022 int doff;
2023 int dsize;
2024 int ret = 0;
2025 int wret;
2026 u32 nritems;
2027
2028 leaf_buf = path->nodes[0];
2029 leaf = btrfs_buffer_leaf(leaf_buf);
2030 slot = path->slots[0];
2031 doff = btrfs_item_offset(leaf->items + slot);
2032 dsize = btrfs_item_size(leaf->items + slot);
2033 nritems = btrfs_header_nritems(&leaf->header);
2034
2035 if (slot != nritems - 1) {
2036 int i;
2037 int data_end = leaf_data_end(root, leaf);
2038 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
2039 data_end + dsize,
2040 btrfs_leaf_data(leaf) + data_end,
2041 doff - data_end);
2042 for (i = slot + 1; i < nritems; i++) {
2043 u32 ioff = btrfs_item_offset(leaf->items + i);
2044 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
2045 }
2046 btrfs_memmove(root, leaf, leaf->items + slot,
2047 leaf->items + slot + 1,
2048 sizeof(struct btrfs_item) *
2049 (nritems - slot - 1));
2050 }
2051 btrfs_set_header_nritems(&leaf->header, nritems - 1);
2052 nritems--;
2053 /* delete the leaf if we've emptied it */
2054 if (nritems == 0) {
2055 if (leaf_buf == root->node) {
2056 btrfs_set_header_level(&leaf->header, 0);
2057 } else {
2058 clean_tree_block(trans, root, leaf_buf);
2059 wait_on_buffer(leaf_buf);
2060 wret = del_ptr(trans, root, path, 1, path->slots[1]);
2061 if (wret)
2062 ret = wret;
2063 wret = btrfs_free_extent(trans, root,
2064 bh_blocknr(leaf_buf), 1, 1);
2065 if (wret)
2066 ret = wret;
2067 }
2068 } else {
2069 int used = leaf_space_used(leaf, 0, nritems);
2070 if (slot == 0) {
2071 wret = fixup_low_keys(trans, root, path,
2072 &leaf->items[0].key, 1);
2073 if (wret)
2074 ret = wret;
2075 }
2076
2077 /* delete the leaf if it is mostly empty */
2078 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
2079 /* push_leaf_left fixes the path.
2080 * make sure the path still points to our leaf
2081 * for possible call to del_ptr below
2082 */
2083 slot = path->slots[1];
2084 get_bh(leaf_buf);
2085 wret = push_leaf_left(trans, root, path, 1);
2086 if (wret < 0 && wret != -ENOSPC)
2087 ret = wret;
2088 if (path->nodes[0] == leaf_buf &&
2089 btrfs_header_nritems(&leaf->header)) {
2090 wret = push_leaf_right(trans, root, path, 1);
2091 if (wret < 0 && wret != -ENOSPC)
2092 ret = wret;
2093 }
2094 if (btrfs_header_nritems(&leaf->header) == 0) {
2095 u64 blocknr = bh_blocknr(leaf_buf);
2096 clean_tree_block(trans, root, leaf_buf);
2097 wait_on_buffer(leaf_buf);
2098 wret = del_ptr(trans, root, path, 1, slot);
2099 if (wret)
2100 ret = wret;
2101 btrfs_block_release(root, leaf_buf);
2102 wret = btrfs_free_extent(trans, root, blocknr,
2103 1, 1);
2104 if (wret)
2105 ret = wret;
2106 } else {
2107 btrfs_mark_buffer_dirty(leaf_buf);
2108 btrfs_block_release(root, leaf_buf);
2109 }
2110 } else {
2111 btrfs_mark_buffer_dirty(leaf_buf);
2112 }
2113 }
2114 return ret;
2115 }
2116
2117 /*
2118 * walk up the tree as far as required to find the next leaf.
2119 * returns 0 if it found something or 1 if there are no greater leaves.
2120 * returns < 0 on io errors.
2121 */
2122 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2123 {
2124 int slot;
2125 int level = 1;
2126 u64 blocknr;
2127 struct buffer_head *c;
2128 struct btrfs_node *c_node;
2129 struct buffer_head *next = NULL;
2130
2131 while(level < BTRFS_MAX_LEVEL) {
2132 if (!path->nodes[level])
2133 return 1;
2134 slot = path->slots[level] + 1;
2135 c = path->nodes[level];
2136 c_node = btrfs_buffer_node(c);
2137 if (slot >= btrfs_header_nritems(&c_node->header)) {
2138 level++;
2139 continue;
2140 }
2141 blocknr = btrfs_node_blockptr(c_node, slot);
2142 if (next)
2143 btrfs_block_release(root, next);
2144 if (path->reada)
2145 reada_for_search(root, path, level, slot);
2146 next = read_tree_block(root, blocknr);
2147 break;
2148 }
2149 path->slots[level] = slot;
2150 while(1) {
2151 level--;
2152 c = path->nodes[level];
2153 btrfs_block_release(root, c);
2154 path->nodes[level] = next;
2155 path->slots[level] = 0;
2156 if (!level)
2157 break;
2158 if (path->reada)
2159 reada_for_search(root, path, level, 0);
2160 next = read_tree_block(root,
2161 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
2162 }
2163 return 0;
2164 }
This page took 0.113258 seconds and 6 git commands to generate.