Btrfs: fix accessing the root pointer in tree mod log functions
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53 struct btrfs_path *path;
54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 return path;
56 }
57
58 /*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73 }
74 }
75
76 /*
77 * reset all the locked nodes in the patch to spinning locks.
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
83 */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 struct extent_buffer *held, int held_rw)
86 {
87 int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
103 btrfs_set_path_blocking(p);
104 #endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
114 }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
118 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125 if (!p)
126 return;
127 btrfs_release_path(p);
128 kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139 int i;
140
141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 p->slots[i] = 0;
143 if (!p->nodes[i])
144 continue;
145 if (p->locks[i]) {
146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 p->locks[i] = 0;
148 }
149 free_extent_buffer(p->nodes[i]);
150 p->nodes[i] = NULL;
151 }
152 }
153
154 /*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166 struct extent_buffer *eb;
167
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
185 return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194 struct extent_buffer *eb;
195
196 while (1) {
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
199 if (eb == root->node)
200 break;
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232 spin_lock(&root->fs_info->trans_lock);
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
237 spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250 struct extent_buffer *cow;
251 int ret = 0;
252 int level;
253 struct btrfs_disk_key disk_key;
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
264
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
267 buf->start, 0);
268 if (IS_ERR(cow))
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
281
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 else
290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298 }
299
300 enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313 };
314
315 struct tree_mod_root {
316 u64 logical;
317 u8 level;
318 };
319
320 struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
323 u64 seq;
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345 read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350 read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355 write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360 write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
383 spin_unlock(&fs_info->tree_mod_seq_lock);
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391 {
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
405 elem->seq = 0;
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 if (cur_elem->seq < min_seq) {
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
426 tree_mod_log_write_lock(fs_info);
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
431 if (tm->seq > min_seq)
432 continue;
433 rb_erase(node, tm_root);
434 kfree(tm);
435 }
436 tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm || !tm->seq);
456
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
466 else if (cur->seq < tm->seq)
467 new = &((*new)->rb_left);
468 else if (cur->seq > tm->seq)
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
472 return -EEXIST;
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479 }
480
481 /*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
502 return 1;
503 }
504
505 return 0;
506 }
507
508 /*
509 * This allocates memory and gets a tree modification sequence number.
510 *
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
513 */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
516 {
517 struct tree_mod_elem *tm;
518
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 if (!tm)
525 return -ENOMEM;
526
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
535 {
536 int ret;
537 struct tree_mod_elem *tm;
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
540 if (ret < 0)
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552 return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559 {
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
568 return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574 {
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582 {
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590 {
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
597
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
609 ret = tree_mod_alloc(fs_info, flags, &tm);
610 if (ret < 0)
611 goto out;
612
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
619 ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 tree_mod_log_write_unlock(fs_info);
622 return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628 int i;
629 u32 nritems;
630 int ret;
631
632 if (btrfs_header_level(eb) == 0)
633 return;
634
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags,
647 int log_removal)
648 {
649 struct tree_mod_elem *tm;
650 int ret;
651
652 if (tree_mod_dont_log(fs_info, NULL))
653 return 0;
654
655 if (log_removal)
656 __tree_mod_log_free_eb(fs_info, old_root);
657
658 ret = tree_mod_alloc(fs_info, flags, &tm);
659 if (ret < 0)
660 goto out;
661
662 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
663 tm->old_root.logical = old_root->start;
664 tm->old_root.level = btrfs_header_level(old_root);
665 tm->generation = btrfs_header_generation(old_root);
666 tm->op = MOD_LOG_ROOT_REPLACE;
667
668 ret = __tree_mod_log_insert(fs_info, tm);
669 out:
670 tree_mod_log_write_unlock(fs_info);
671 return ret;
672 }
673
674 static struct tree_mod_elem *
675 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
676 int smallest)
677 {
678 struct rb_root *tm_root;
679 struct rb_node *node;
680 struct tree_mod_elem *cur = NULL;
681 struct tree_mod_elem *found = NULL;
682 u64 index = start >> PAGE_CACHE_SHIFT;
683
684 tree_mod_log_read_lock(fs_info);
685 tm_root = &fs_info->tree_mod_log;
686 node = tm_root->rb_node;
687 while (node) {
688 cur = container_of(node, struct tree_mod_elem, node);
689 if (cur->index < index) {
690 node = node->rb_left;
691 } else if (cur->index > index) {
692 node = node->rb_right;
693 } else if (cur->seq < min_seq) {
694 node = node->rb_left;
695 } else if (!smallest) {
696 /* we want the node with the highest seq */
697 if (found)
698 BUG_ON(found->seq > cur->seq);
699 found = cur;
700 node = node->rb_left;
701 } else if (cur->seq > min_seq) {
702 /* we want the node with the smallest seq */
703 if (found)
704 BUG_ON(found->seq < cur->seq);
705 found = cur;
706 node = node->rb_right;
707 } else {
708 found = cur;
709 break;
710 }
711 }
712 tree_mod_log_read_unlock(fs_info);
713
714 return found;
715 }
716
717 /*
718 * this returns the element from the log with the smallest time sequence
719 * value that's in the log (the oldest log item). any element with a time
720 * sequence lower than min_seq will be ignored.
721 */
722 static struct tree_mod_elem *
723 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
724 u64 min_seq)
725 {
726 return __tree_mod_log_search(fs_info, start, min_seq, 1);
727 }
728
729 /*
730 * this returns the element from the log with the largest time sequence
731 * value that's in the log (the most recent log item). any element with
732 * a time sequence lower than min_seq will be ignored.
733 */
734 static struct tree_mod_elem *
735 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
736 {
737 return __tree_mod_log_search(fs_info, start, min_seq, 0);
738 }
739
740 static noinline void
741 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
742 struct extent_buffer *src, unsigned long dst_offset,
743 unsigned long src_offset, int nr_items)
744 {
745 int ret;
746 int i;
747
748 if (tree_mod_dont_log(fs_info, NULL))
749 return;
750
751 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
752 tree_mod_log_write_unlock(fs_info);
753 return;
754 }
755
756 for (i = 0; i < nr_items; i++) {
757 ret = tree_mod_log_insert_key_locked(fs_info, src,
758 i + src_offset,
759 MOD_LOG_KEY_REMOVE);
760 BUG_ON(ret < 0);
761 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762 i + dst_offset,
763 MOD_LOG_KEY_ADD);
764 BUG_ON(ret < 0);
765 }
766
767 tree_mod_log_write_unlock(fs_info);
768 }
769
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772 int dst_offset, int src_offset, int nr_items)
773 {
774 int ret;
775 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776 nr_items, GFP_NOFS);
777 BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782 struct extent_buffer *eb, int slot, int atomic)
783 {
784 int ret;
785
786 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787 MOD_LOG_KEY_REPLACE,
788 atomic ? GFP_ATOMIC : GFP_NOFS);
789 BUG_ON(ret < 0);
790 }
791
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795 if (tree_mod_dont_log(fs_info, eb))
796 return;
797
798 __tree_mod_log_free_eb(fs_info, eb);
799
800 tree_mod_log_write_unlock(fs_info);
801 }
802
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805 struct extent_buffer *new_root_node,
806 int log_removal)
807 {
808 int ret;
809 ret = tree_mod_log_insert_root(root->fs_info, root->node,
810 new_root_node, GFP_NOFS, log_removal);
811 BUG_ON(ret < 0);
812 }
813
814 /*
815 * check if the tree block can be shared by multiple trees
816 */
817 int btrfs_block_can_be_shared(struct btrfs_root *root,
818 struct extent_buffer *buf)
819 {
820 /*
821 * Tree blocks not in refernece counted trees and tree roots
822 * are never shared. If a block was allocated after the last
823 * snapshot and the block was not allocated by tree relocation,
824 * we know the block is not shared.
825 */
826 if (root->ref_cows &&
827 buf != root->node && buf != root->commit_root &&
828 (btrfs_header_generation(buf) <=
829 btrfs_root_last_snapshot(&root->root_item) ||
830 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
831 return 1;
832 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
833 if (root->ref_cows &&
834 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
835 return 1;
836 #endif
837 return 0;
838 }
839
840 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct extent_buffer *buf,
843 struct extent_buffer *cow,
844 int *last_ref)
845 {
846 u64 refs;
847 u64 owner;
848 u64 flags;
849 u64 new_flags = 0;
850 int ret;
851
852 /*
853 * Backrefs update rules:
854 *
855 * Always use full backrefs for extent pointers in tree block
856 * allocated by tree relocation.
857 *
858 * If a shared tree block is no longer referenced by its owner
859 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
860 * use full backrefs for extent pointers in tree block.
861 *
862 * If a tree block is been relocating
863 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
864 * use full backrefs for extent pointers in tree block.
865 * The reason for this is some operations (such as drop tree)
866 * are only allowed for blocks use full backrefs.
867 */
868
869 if (btrfs_block_can_be_shared(root, buf)) {
870 ret = btrfs_lookup_extent_info(trans, root, buf->start,
871 btrfs_header_level(buf), 1,
872 &refs, &flags);
873 if (ret)
874 return ret;
875 if (refs == 0) {
876 ret = -EROFS;
877 btrfs_std_error(root->fs_info, ret);
878 return ret;
879 }
880 } else {
881 refs = 1;
882 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
883 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
884 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
885 else
886 flags = 0;
887 }
888
889 owner = btrfs_header_owner(buf);
890 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
891 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
892
893 if (refs > 1) {
894 if ((owner == root->root_key.objectid ||
895 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
897 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
898 BUG_ON(ret); /* -ENOMEM */
899
900 if (root->root_key.objectid ==
901 BTRFS_TREE_RELOC_OBJECTID) {
902 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
903 BUG_ON(ret); /* -ENOMEM */
904 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
905 BUG_ON(ret); /* -ENOMEM */
906 }
907 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
908 } else {
909
910 if (root->root_key.objectid ==
911 BTRFS_TREE_RELOC_OBJECTID)
912 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
913 else
914 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
915 BUG_ON(ret); /* -ENOMEM */
916 }
917 if (new_flags != 0) {
918 ret = btrfs_set_disk_extent_flags(trans, root,
919 buf->start,
920 buf->len,
921 new_flags, 0);
922 if (ret)
923 return ret;
924 }
925 } else {
926 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
927 if (root->root_key.objectid ==
928 BTRFS_TREE_RELOC_OBJECTID)
929 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
930 else
931 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
932 BUG_ON(ret); /* -ENOMEM */
933 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
934 BUG_ON(ret); /* -ENOMEM */
935 }
936 clean_tree_block(trans, root, buf);
937 *last_ref = 1;
938 }
939 return 0;
940 }
941
942 /*
943 * does the dirty work in cow of a single block. The parent block (if
944 * supplied) is updated to point to the new cow copy. The new buffer is marked
945 * dirty and returned locked. If you modify the block it needs to be marked
946 * dirty again.
947 *
948 * search_start -- an allocation hint for the new block
949 *
950 * empty_size -- a hint that you plan on doing more cow. This is the size in
951 * bytes the allocator should try to find free next to the block it returns.
952 * This is just a hint and may be ignored by the allocator.
953 */
954 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct extent_buffer *buf,
957 struct extent_buffer *parent, int parent_slot,
958 struct extent_buffer **cow_ret,
959 u64 search_start, u64 empty_size)
960 {
961 struct btrfs_disk_key disk_key;
962 struct extent_buffer *cow;
963 int level, ret;
964 int last_ref = 0;
965 int unlock_orig = 0;
966 u64 parent_start;
967
968 if (*cow_ret == buf)
969 unlock_orig = 1;
970
971 btrfs_assert_tree_locked(buf);
972
973 WARN_ON(root->ref_cows && trans->transid !=
974 root->fs_info->running_transaction->transid);
975 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
976
977 level = btrfs_header_level(buf);
978
979 if (level == 0)
980 btrfs_item_key(buf, &disk_key, 0);
981 else
982 btrfs_node_key(buf, &disk_key, 0);
983
984 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
985 if (parent)
986 parent_start = parent->start;
987 else
988 parent_start = 0;
989 } else
990 parent_start = 0;
991
992 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
993 root->root_key.objectid, &disk_key,
994 level, search_start, empty_size);
995 if (IS_ERR(cow))
996 return PTR_ERR(cow);
997
998 /* cow is set to blocking by btrfs_init_new_buffer */
999
1000 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1001 btrfs_set_header_bytenr(cow, cow->start);
1002 btrfs_set_header_generation(cow, trans->transid);
1003 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1004 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1005 BTRFS_HEADER_FLAG_RELOC);
1006 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1007 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1008 else
1009 btrfs_set_header_owner(cow, root->root_key.objectid);
1010
1011 write_extent_buffer(cow, root->fs_info->fsid,
1012 (unsigned long)btrfs_header_fsid(cow),
1013 BTRFS_FSID_SIZE);
1014
1015 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1016 if (ret) {
1017 btrfs_abort_transaction(trans, root, ret);
1018 return ret;
1019 }
1020
1021 if (root->ref_cows)
1022 btrfs_reloc_cow_block(trans, root, buf, cow);
1023
1024 if (buf == root->node) {
1025 WARN_ON(parent && parent != buf);
1026 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1027 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1028 parent_start = buf->start;
1029 else
1030 parent_start = 0;
1031
1032 extent_buffer_get(cow);
1033 tree_mod_log_set_root_pointer(root, cow, 1);
1034 rcu_assign_pointer(root->node, cow);
1035
1036 btrfs_free_tree_block(trans, root, buf, parent_start,
1037 last_ref);
1038 free_extent_buffer(buf);
1039 add_root_to_dirty_list(root);
1040 } else {
1041 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1042 parent_start = parent->start;
1043 else
1044 parent_start = 0;
1045
1046 WARN_ON(trans->transid != btrfs_header_generation(parent));
1047 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1048 MOD_LOG_KEY_REPLACE);
1049 btrfs_set_node_blockptr(parent, parent_slot,
1050 cow->start);
1051 btrfs_set_node_ptr_generation(parent, parent_slot,
1052 trans->transid);
1053 btrfs_mark_buffer_dirty(parent);
1054 tree_mod_log_free_eb(root->fs_info, buf);
1055 btrfs_free_tree_block(trans, root, buf, parent_start,
1056 last_ref);
1057 }
1058 if (unlock_orig)
1059 btrfs_tree_unlock(buf);
1060 free_extent_buffer_stale(buf);
1061 btrfs_mark_buffer_dirty(cow);
1062 *cow_ret = cow;
1063 return 0;
1064 }
1065
1066 /*
1067 * returns the logical address of the oldest predecessor of the given root.
1068 * entries older than time_seq are ignored.
1069 */
1070 static struct tree_mod_elem *
1071 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1072 struct extent_buffer *eb_root, u64 time_seq)
1073 {
1074 struct tree_mod_elem *tm;
1075 struct tree_mod_elem *found = NULL;
1076 u64 root_logical = eb_root->start;
1077 int looped = 0;
1078
1079 if (!time_seq)
1080 return 0;
1081
1082 /*
1083 * the very last operation that's logged for a root is the replacement
1084 * operation (if it is replaced at all). this has the index of the *new*
1085 * root, making it the very first operation that's logged for this root.
1086 */
1087 while (1) {
1088 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1089 time_seq);
1090 if (!looped && !tm)
1091 return 0;
1092 /*
1093 * if there are no tree operation for the oldest root, we simply
1094 * return it. this should only happen if that (old) root is at
1095 * level 0.
1096 */
1097 if (!tm)
1098 break;
1099
1100 /*
1101 * if there's an operation that's not a root replacement, we
1102 * found the oldest version of our root. normally, we'll find a
1103 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1104 */
1105 if (tm->op != MOD_LOG_ROOT_REPLACE)
1106 break;
1107
1108 found = tm;
1109 root_logical = tm->old_root.logical;
1110 looped = 1;
1111 }
1112
1113 /* if there's no old root to return, return what we found instead */
1114 if (!found)
1115 found = tm;
1116
1117 return found;
1118 }
1119
1120 /*
1121 * tm is a pointer to the first operation to rewind within eb. then, all
1122 * previous operations will be rewinded (until we reach something older than
1123 * time_seq).
1124 */
1125 static void
1126 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1127 struct tree_mod_elem *first_tm)
1128 {
1129 u32 n;
1130 struct rb_node *next;
1131 struct tree_mod_elem *tm = first_tm;
1132 unsigned long o_dst;
1133 unsigned long o_src;
1134 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1135
1136 n = btrfs_header_nritems(eb);
1137 while (tm && tm->seq >= time_seq) {
1138 /*
1139 * all the operations are recorded with the operator used for
1140 * the modification. as we're going backwards, we do the
1141 * opposite of each operation here.
1142 */
1143 switch (tm->op) {
1144 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1145 BUG_ON(tm->slot < n);
1146 /* Fallthrough */
1147 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1148 case MOD_LOG_KEY_REMOVE:
1149 btrfs_set_node_key(eb, &tm->key, tm->slot);
1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151 btrfs_set_node_ptr_generation(eb, tm->slot,
1152 tm->generation);
1153 n++;
1154 break;
1155 case MOD_LOG_KEY_REPLACE:
1156 BUG_ON(tm->slot >= n);
1157 btrfs_set_node_key(eb, &tm->key, tm->slot);
1158 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1159 btrfs_set_node_ptr_generation(eb, tm->slot,
1160 tm->generation);
1161 break;
1162 case MOD_LOG_KEY_ADD:
1163 /* if a move operation is needed it's in the log */
1164 n--;
1165 break;
1166 case MOD_LOG_MOVE_KEYS:
1167 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1168 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1169 memmove_extent_buffer(eb, o_dst, o_src,
1170 tm->move.nr_items * p_size);
1171 break;
1172 case MOD_LOG_ROOT_REPLACE:
1173 /*
1174 * this operation is special. for roots, this must be
1175 * handled explicitly before rewinding.
1176 * for non-roots, this operation may exist if the node
1177 * was a root: root A -> child B; then A gets empty and
1178 * B is promoted to the new root. in the mod log, we'll
1179 * have a root-replace operation for B, a tree block
1180 * that is no root. we simply ignore that operation.
1181 */
1182 break;
1183 }
1184 next = rb_next(&tm->node);
1185 if (!next)
1186 break;
1187 tm = container_of(next, struct tree_mod_elem, node);
1188 if (tm->index != first_tm->index)
1189 break;
1190 }
1191 btrfs_set_header_nritems(eb, n);
1192 }
1193
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1196 u64 time_seq)
1197 {
1198 struct extent_buffer *eb_rewin;
1199 struct tree_mod_elem *tm;
1200
1201 if (!time_seq)
1202 return eb;
1203
1204 if (btrfs_header_level(eb) == 0)
1205 return eb;
1206
1207 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208 if (!tm)
1209 return eb;
1210
1211 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1212 BUG_ON(tm->slot != 0);
1213 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1214 fs_info->tree_root->nodesize);
1215 BUG_ON(!eb_rewin);
1216 btrfs_set_header_bytenr(eb_rewin, eb->start);
1217 btrfs_set_header_backref_rev(eb_rewin,
1218 btrfs_header_backref_rev(eb));
1219 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1220 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1221 } else {
1222 eb_rewin = btrfs_clone_extent_buffer(eb);
1223 BUG_ON(!eb_rewin);
1224 }
1225
1226 extent_buffer_get(eb_rewin);
1227 free_extent_buffer(eb);
1228
1229 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1230 WARN_ON(btrfs_header_nritems(eb_rewin) >
1231 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1232
1233 return eb_rewin;
1234 }
1235
1236 /*
1237 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1238 * value. If there are no changes, the current root->root_node is returned. If
1239 * anything changed in between, there's a fresh buffer allocated on which the
1240 * rewind operations are done. In any case, the returned buffer is read locked.
1241 * Returns NULL on error (with no locks held).
1242 */
1243 static inline struct extent_buffer *
1244 get_old_root(struct btrfs_root *root, u64 time_seq)
1245 {
1246 struct tree_mod_elem *tm;
1247 struct extent_buffer *eb = NULL;
1248 struct extent_buffer *eb_root;
1249 struct extent_buffer *old;
1250 struct tree_mod_root *old_root = NULL;
1251 u64 old_generation = 0;
1252 u64 logical;
1253 u32 blocksize;
1254
1255 eb_root = btrfs_read_lock_root_node(root);
1256 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1257 if (!tm)
1258 return eb_root;
1259
1260 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1261 old_root = &tm->old_root;
1262 old_generation = tm->generation;
1263 logical = old_root->logical;
1264 } else {
1265 logical = eb_root->start;
1266 }
1267
1268 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1269 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1270 btrfs_tree_read_unlock(eb_root);
1271 free_extent_buffer(eb_root);
1272 blocksize = btrfs_level_size(root, old_root->level);
1273 old = read_tree_block(root, logical, blocksize, 0);
1274 if (!old) {
1275 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1276 logical);
1277 WARN_ON(1);
1278 } else {
1279 eb = btrfs_clone_extent_buffer(old);
1280 free_extent_buffer(old);
1281 }
1282 } else if (old_root) {
1283 btrfs_tree_read_unlock(eb_root);
1284 free_extent_buffer(eb_root);
1285 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1286 } else {
1287 eb = btrfs_clone_extent_buffer(eb_root);
1288 btrfs_tree_read_unlock(eb_root);
1289 free_extent_buffer(eb_root);
1290 }
1291
1292 if (!eb)
1293 return NULL;
1294 extent_buffer_get(eb);
1295 btrfs_tree_read_lock(eb);
1296 if (old_root) {
1297 btrfs_set_header_bytenr(eb, eb->start);
1298 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1299 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1300 btrfs_set_header_level(eb, old_root->level);
1301 btrfs_set_header_generation(eb, old_generation);
1302 }
1303 if (tm)
1304 __tree_mod_log_rewind(eb, time_seq, tm);
1305 else
1306 WARN_ON(btrfs_header_level(eb) != 0);
1307 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1308
1309 return eb;
1310 }
1311
1312 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1313 {
1314 struct tree_mod_elem *tm;
1315 int level;
1316 struct extent_buffer *eb_root = btrfs_root_node(root);
1317
1318 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1319 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1320 level = tm->old_root.level;
1321 } else {
1322 level = btrfs_header_level(eb_root);
1323 }
1324 free_extent_buffer(eb_root);
1325
1326 return level;
1327 }
1328
1329 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1330 struct btrfs_root *root,
1331 struct extent_buffer *buf)
1332 {
1333 /* ensure we can see the force_cow */
1334 smp_rmb();
1335
1336 /*
1337 * We do not need to cow a block if
1338 * 1) this block is not created or changed in this transaction;
1339 * 2) this block does not belong to TREE_RELOC tree;
1340 * 3) the root is not forced COW.
1341 *
1342 * What is forced COW:
1343 * when we create snapshot during commiting the transaction,
1344 * after we've finished coping src root, we must COW the shared
1345 * block to ensure the metadata consistency.
1346 */
1347 if (btrfs_header_generation(buf) == trans->transid &&
1348 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1349 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1350 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1351 !root->force_cow)
1352 return 0;
1353 return 1;
1354 }
1355
1356 /*
1357 * cows a single block, see __btrfs_cow_block for the real work.
1358 * This version of it has extra checks so that a block isn't cow'd more than
1359 * once per transaction, as long as it hasn't been written yet
1360 */
1361 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root, struct extent_buffer *buf,
1363 struct extent_buffer *parent, int parent_slot,
1364 struct extent_buffer **cow_ret)
1365 {
1366 u64 search_start;
1367 int ret;
1368
1369 if (trans->transaction != root->fs_info->running_transaction)
1370 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1371 (unsigned long long)trans->transid,
1372 (unsigned long long)
1373 root->fs_info->running_transaction->transid);
1374
1375 if (trans->transid != root->fs_info->generation)
1376 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1377 (unsigned long long)trans->transid,
1378 (unsigned long long)root->fs_info->generation);
1379
1380 if (!should_cow_block(trans, root, buf)) {
1381 *cow_ret = buf;
1382 return 0;
1383 }
1384
1385 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1386
1387 if (parent)
1388 btrfs_set_lock_blocking(parent);
1389 btrfs_set_lock_blocking(buf);
1390
1391 ret = __btrfs_cow_block(trans, root, buf, parent,
1392 parent_slot, cow_ret, search_start, 0);
1393
1394 trace_btrfs_cow_block(root, buf, *cow_ret);
1395
1396 return ret;
1397 }
1398
1399 /*
1400 * helper function for defrag to decide if two blocks pointed to by a
1401 * node are actually close by
1402 */
1403 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1404 {
1405 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1406 return 1;
1407 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1408 return 1;
1409 return 0;
1410 }
1411
1412 /*
1413 * compare two keys in a memcmp fashion
1414 */
1415 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1416 {
1417 struct btrfs_key k1;
1418
1419 btrfs_disk_key_to_cpu(&k1, disk);
1420
1421 return btrfs_comp_cpu_keys(&k1, k2);
1422 }
1423
1424 /*
1425 * same as comp_keys only with two btrfs_key's
1426 */
1427 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1428 {
1429 if (k1->objectid > k2->objectid)
1430 return 1;
1431 if (k1->objectid < k2->objectid)
1432 return -1;
1433 if (k1->type > k2->type)
1434 return 1;
1435 if (k1->type < k2->type)
1436 return -1;
1437 if (k1->offset > k2->offset)
1438 return 1;
1439 if (k1->offset < k2->offset)
1440 return -1;
1441 return 0;
1442 }
1443
1444 /*
1445 * this is used by the defrag code to go through all the
1446 * leaves pointed to by a node and reallocate them so that
1447 * disk order is close to key order
1448 */
1449 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root, struct extent_buffer *parent,
1451 int start_slot, u64 *last_ret,
1452 struct btrfs_key *progress)
1453 {
1454 struct extent_buffer *cur;
1455 u64 blocknr;
1456 u64 gen;
1457 u64 search_start = *last_ret;
1458 u64 last_block = 0;
1459 u64 other;
1460 u32 parent_nritems;
1461 int end_slot;
1462 int i;
1463 int err = 0;
1464 int parent_level;
1465 int uptodate;
1466 u32 blocksize;
1467 int progress_passed = 0;
1468 struct btrfs_disk_key disk_key;
1469
1470 parent_level = btrfs_header_level(parent);
1471
1472 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1473 WARN_ON(trans->transid != root->fs_info->generation);
1474
1475 parent_nritems = btrfs_header_nritems(parent);
1476 blocksize = btrfs_level_size(root, parent_level - 1);
1477 end_slot = parent_nritems;
1478
1479 if (parent_nritems == 1)
1480 return 0;
1481
1482 btrfs_set_lock_blocking(parent);
1483
1484 for (i = start_slot; i < end_slot; i++) {
1485 int close = 1;
1486
1487 btrfs_node_key(parent, &disk_key, i);
1488 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1489 continue;
1490
1491 progress_passed = 1;
1492 blocknr = btrfs_node_blockptr(parent, i);
1493 gen = btrfs_node_ptr_generation(parent, i);
1494 if (last_block == 0)
1495 last_block = blocknr;
1496
1497 if (i > 0) {
1498 other = btrfs_node_blockptr(parent, i - 1);
1499 close = close_blocks(blocknr, other, blocksize);
1500 }
1501 if (!close && i < end_slot - 2) {
1502 other = btrfs_node_blockptr(parent, i + 1);
1503 close = close_blocks(blocknr, other, blocksize);
1504 }
1505 if (close) {
1506 last_block = blocknr;
1507 continue;
1508 }
1509
1510 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1511 if (cur)
1512 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1513 else
1514 uptodate = 0;
1515 if (!cur || !uptodate) {
1516 if (!cur) {
1517 cur = read_tree_block(root, blocknr,
1518 blocksize, gen);
1519 if (!cur)
1520 return -EIO;
1521 } else if (!uptodate) {
1522 err = btrfs_read_buffer(cur, gen);
1523 if (err) {
1524 free_extent_buffer(cur);
1525 return err;
1526 }
1527 }
1528 }
1529 if (search_start == 0)
1530 search_start = last_block;
1531
1532 btrfs_tree_lock(cur);
1533 btrfs_set_lock_blocking(cur);
1534 err = __btrfs_cow_block(trans, root, cur, parent, i,
1535 &cur, search_start,
1536 min(16 * blocksize,
1537 (end_slot - i) * blocksize));
1538 if (err) {
1539 btrfs_tree_unlock(cur);
1540 free_extent_buffer(cur);
1541 break;
1542 }
1543 search_start = cur->start;
1544 last_block = cur->start;
1545 *last_ret = search_start;
1546 btrfs_tree_unlock(cur);
1547 free_extent_buffer(cur);
1548 }
1549 return err;
1550 }
1551
1552 /*
1553 * The leaf data grows from end-to-front in the node.
1554 * this returns the address of the start of the last item,
1555 * which is the stop of the leaf data stack
1556 */
1557 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1558 struct extent_buffer *leaf)
1559 {
1560 u32 nr = btrfs_header_nritems(leaf);
1561 if (nr == 0)
1562 return BTRFS_LEAF_DATA_SIZE(root);
1563 return btrfs_item_offset_nr(leaf, nr - 1);
1564 }
1565
1566
1567 /*
1568 * search for key in the extent_buffer. The items start at offset p,
1569 * and they are item_size apart. There are 'max' items in p.
1570 *
1571 * the slot in the array is returned via slot, and it points to
1572 * the place where you would insert key if it is not found in
1573 * the array.
1574 *
1575 * slot may point to max if the key is bigger than all of the keys
1576 */
1577 static noinline int generic_bin_search(struct extent_buffer *eb,
1578 unsigned long p,
1579 int item_size, struct btrfs_key *key,
1580 int max, int *slot)
1581 {
1582 int low = 0;
1583 int high = max;
1584 int mid;
1585 int ret;
1586 struct btrfs_disk_key *tmp = NULL;
1587 struct btrfs_disk_key unaligned;
1588 unsigned long offset;
1589 char *kaddr = NULL;
1590 unsigned long map_start = 0;
1591 unsigned long map_len = 0;
1592 int err;
1593
1594 while (low < high) {
1595 mid = (low + high) / 2;
1596 offset = p + mid * item_size;
1597
1598 if (!kaddr || offset < map_start ||
1599 (offset + sizeof(struct btrfs_disk_key)) >
1600 map_start + map_len) {
1601
1602 err = map_private_extent_buffer(eb, offset,
1603 sizeof(struct btrfs_disk_key),
1604 &kaddr, &map_start, &map_len);
1605
1606 if (!err) {
1607 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1608 map_start);
1609 } else {
1610 read_extent_buffer(eb, &unaligned,
1611 offset, sizeof(unaligned));
1612 tmp = &unaligned;
1613 }
1614
1615 } else {
1616 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1617 map_start);
1618 }
1619 ret = comp_keys(tmp, key);
1620
1621 if (ret < 0)
1622 low = mid + 1;
1623 else if (ret > 0)
1624 high = mid;
1625 else {
1626 *slot = mid;
1627 return 0;
1628 }
1629 }
1630 *slot = low;
1631 return 1;
1632 }
1633
1634 /*
1635 * simple bin_search frontend that does the right thing for
1636 * leaves vs nodes
1637 */
1638 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1639 int level, int *slot)
1640 {
1641 if (level == 0)
1642 return generic_bin_search(eb,
1643 offsetof(struct btrfs_leaf, items),
1644 sizeof(struct btrfs_item),
1645 key, btrfs_header_nritems(eb),
1646 slot);
1647 else
1648 return generic_bin_search(eb,
1649 offsetof(struct btrfs_node, ptrs),
1650 sizeof(struct btrfs_key_ptr),
1651 key, btrfs_header_nritems(eb),
1652 slot);
1653 }
1654
1655 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1656 int level, int *slot)
1657 {
1658 return bin_search(eb, key, level, slot);
1659 }
1660
1661 static void root_add_used(struct btrfs_root *root, u32 size)
1662 {
1663 spin_lock(&root->accounting_lock);
1664 btrfs_set_root_used(&root->root_item,
1665 btrfs_root_used(&root->root_item) + size);
1666 spin_unlock(&root->accounting_lock);
1667 }
1668
1669 static void root_sub_used(struct btrfs_root *root, u32 size)
1670 {
1671 spin_lock(&root->accounting_lock);
1672 btrfs_set_root_used(&root->root_item,
1673 btrfs_root_used(&root->root_item) - size);
1674 spin_unlock(&root->accounting_lock);
1675 }
1676
1677 /* given a node and slot number, this reads the blocks it points to. The
1678 * extent buffer is returned with a reference taken (but unlocked).
1679 * NULL is returned on error.
1680 */
1681 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1682 struct extent_buffer *parent, int slot)
1683 {
1684 int level = btrfs_header_level(parent);
1685 if (slot < 0)
1686 return NULL;
1687 if (slot >= btrfs_header_nritems(parent))
1688 return NULL;
1689
1690 BUG_ON(level == 0);
1691
1692 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1693 btrfs_level_size(root, level - 1),
1694 btrfs_node_ptr_generation(parent, slot));
1695 }
1696
1697 /*
1698 * node level balancing, used to make sure nodes are in proper order for
1699 * item deletion. We balance from the top down, so we have to make sure
1700 * that a deletion won't leave an node completely empty later on.
1701 */
1702 static noinline int balance_level(struct btrfs_trans_handle *trans,
1703 struct btrfs_root *root,
1704 struct btrfs_path *path, int level)
1705 {
1706 struct extent_buffer *right = NULL;
1707 struct extent_buffer *mid;
1708 struct extent_buffer *left = NULL;
1709 struct extent_buffer *parent = NULL;
1710 int ret = 0;
1711 int wret;
1712 int pslot;
1713 int orig_slot = path->slots[level];
1714 u64 orig_ptr;
1715
1716 if (level == 0)
1717 return 0;
1718
1719 mid = path->nodes[level];
1720
1721 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1722 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1723 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1724
1725 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1726
1727 if (level < BTRFS_MAX_LEVEL - 1) {
1728 parent = path->nodes[level + 1];
1729 pslot = path->slots[level + 1];
1730 }
1731
1732 /*
1733 * deal with the case where there is only one pointer in the root
1734 * by promoting the node below to a root
1735 */
1736 if (!parent) {
1737 struct extent_buffer *child;
1738
1739 if (btrfs_header_nritems(mid) != 1)
1740 return 0;
1741
1742 /* promote the child to a root */
1743 child = read_node_slot(root, mid, 0);
1744 if (!child) {
1745 ret = -EROFS;
1746 btrfs_std_error(root->fs_info, ret);
1747 goto enospc;
1748 }
1749
1750 btrfs_tree_lock(child);
1751 btrfs_set_lock_blocking(child);
1752 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1753 if (ret) {
1754 btrfs_tree_unlock(child);
1755 free_extent_buffer(child);
1756 goto enospc;
1757 }
1758
1759 tree_mod_log_set_root_pointer(root, child, 1);
1760 rcu_assign_pointer(root->node, child);
1761
1762 add_root_to_dirty_list(root);
1763 btrfs_tree_unlock(child);
1764
1765 path->locks[level] = 0;
1766 path->nodes[level] = NULL;
1767 clean_tree_block(trans, root, mid);
1768 btrfs_tree_unlock(mid);
1769 /* once for the path */
1770 free_extent_buffer(mid);
1771
1772 root_sub_used(root, mid->len);
1773 btrfs_free_tree_block(trans, root, mid, 0, 1);
1774 /* once for the root ptr */
1775 free_extent_buffer_stale(mid);
1776 return 0;
1777 }
1778 if (btrfs_header_nritems(mid) >
1779 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1780 return 0;
1781
1782 left = read_node_slot(root, parent, pslot - 1);
1783 if (left) {
1784 btrfs_tree_lock(left);
1785 btrfs_set_lock_blocking(left);
1786 wret = btrfs_cow_block(trans, root, left,
1787 parent, pslot - 1, &left);
1788 if (wret) {
1789 ret = wret;
1790 goto enospc;
1791 }
1792 }
1793 right = read_node_slot(root, parent, pslot + 1);
1794 if (right) {
1795 btrfs_tree_lock(right);
1796 btrfs_set_lock_blocking(right);
1797 wret = btrfs_cow_block(trans, root, right,
1798 parent, pslot + 1, &right);
1799 if (wret) {
1800 ret = wret;
1801 goto enospc;
1802 }
1803 }
1804
1805 /* first, try to make some room in the middle buffer */
1806 if (left) {
1807 orig_slot += btrfs_header_nritems(left);
1808 wret = push_node_left(trans, root, left, mid, 1);
1809 if (wret < 0)
1810 ret = wret;
1811 }
1812
1813 /*
1814 * then try to empty the right most buffer into the middle
1815 */
1816 if (right) {
1817 wret = push_node_left(trans, root, mid, right, 1);
1818 if (wret < 0 && wret != -ENOSPC)
1819 ret = wret;
1820 if (btrfs_header_nritems(right) == 0) {
1821 clean_tree_block(trans, root, right);
1822 btrfs_tree_unlock(right);
1823 del_ptr(trans, root, path, level + 1, pslot + 1);
1824 root_sub_used(root, right->len);
1825 btrfs_free_tree_block(trans, root, right, 0, 1);
1826 free_extent_buffer_stale(right);
1827 right = NULL;
1828 } else {
1829 struct btrfs_disk_key right_key;
1830 btrfs_node_key(right, &right_key, 0);
1831 tree_mod_log_set_node_key(root->fs_info, parent,
1832 pslot + 1, 0);
1833 btrfs_set_node_key(parent, &right_key, pslot + 1);
1834 btrfs_mark_buffer_dirty(parent);
1835 }
1836 }
1837 if (btrfs_header_nritems(mid) == 1) {
1838 /*
1839 * we're not allowed to leave a node with one item in the
1840 * tree during a delete. A deletion from lower in the tree
1841 * could try to delete the only pointer in this node.
1842 * So, pull some keys from the left.
1843 * There has to be a left pointer at this point because
1844 * otherwise we would have pulled some pointers from the
1845 * right
1846 */
1847 if (!left) {
1848 ret = -EROFS;
1849 btrfs_std_error(root->fs_info, ret);
1850 goto enospc;
1851 }
1852 wret = balance_node_right(trans, root, mid, left);
1853 if (wret < 0) {
1854 ret = wret;
1855 goto enospc;
1856 }
1857 if (wret == 1) {
1858 wret = push_node_left(trans, root, left, mid, 1);
1859 if (wret < 0)
1860 ret = wret;
1861 }
1862 BUG_ON(wret == 1);
1863 }
1864 if (btrfs_header_nritems(mid) == 0) {
1865 clean_tree_block(trans, root, mid);
1866 btrfs_tree_unlock(mid);
1867 del_ptr(trans, root, path, level + 1, pslot);
1868 root_sub_used(root, mid->len);
1869 btrfs_free_tree_block(trans, root, mid, 0, 1);
1870 free_extent_buffer_stale(mid);
1871 mid = NULL;
1872 } else {
1873 /* update the parent key to reflect our changes */
1874 struct btrfs_disk_key mid_key;
1875 btrfs_node_key(mid, &mid_key, 0);
1876 tree_mod_log_set_node_key(root->fs_info, parent,
1877 pslot, 0);
1878 btrfs_set_node_key(parent, &mid_key, pslot);
1879 btrfs_mark_buffer_dirty(parent);
1880 }
1881
1882 /* update the path */
1883 if (left) {
1884 if (btrfs_header_nritems(left) > orig_slot) {
1885 extent_buffer_get(left);
1886 /* left was locked after cow */
1887 path->nodes[level] = left;
1888 path->slots[level + 1] -= 1;
1889 path->slots[level] = orig_slot;
1890 if (mid) {
1891 btrfs_tree_unlock(mid);
1892 free_extent_buffer(mid);
1893 }
1894 } else {
1895 orig_slot -= btrfs_header_nritems(left);
1896 path->slots[level] = orig_slot;
1897 }
1898 }
1899 /* double check we haven't messed things up */
1900 if (orig_ptr !=
1901 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1902 BUG();
1903 enospc:
1904 if (right) {
1905 btrfs_tree_unlock(right);
1906 free_extent_buffer(right);
1907 }
1908 if (left) {
1909 if (path->nodes[level] != left)
1910 btrfs_tree_unlock(left);
1911 free_extent_buffer(left);
1912 }
1913 return ret;
1914 }
1915
1916 /* Node balancing for insertion. Here we only split or push nodes around
1917 * when they are completely full. This is also done top down, so we
1918 * have to be pessimistic.
1919 */
1920 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1921 struct btrfs_root *root,
1922 struct btrfs_path *path, int level)
1923 {
1924 struct extent_buffer *right = NULL;
1925 struct extent_buffer *mid;
1926 struct extent_buffer *left = NULL;
1927 struct extent_buffer *parent = NULL;
1928 int ret = 0;
1929 int wret;
1930 int pslot;
1931 int orig_slot = path->slots[level];
1932
1933 if (level == 0)
1934 return 1;
1935
1936 mid = path->nodes[level];
1937 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1938
1939 if (level < BTRFS_MAX_LEVEL - 1) {
1940 parent = path->nodes[level + 1];
1941 pslot = path->slots[level + 1];
1942 }
1943
1944 if (!parent)
1945 return 1;
1946
1947 left = read_node_slot(root, parent, pslot - 1);
1948
1949 /* first, try to make some room in the middle buffer */
1950 if (left) {
1951 u32 left_nr;
1952
1953 btrfs_tree_lock(left);
1954 btrfs_set_lock_blocking(left);
1955
1956 left_nr = btrfs_header_nritems(left);
1957 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958 wret = 1;
1959 } else {
1960 ret = btrfs_cow_block(trans, root, left, parent,
1961 pslot - 1, &left);
1962 if (ret)
1963 wret = 1;
1964 else {
1965 wret = push_node_left(trans, root,
1966 left, mid, 0);
1967 }
1968 }
1969 if (wret < 0)
1970 ret = wret;
1971 if (wret == 0) {
1972 struct btrfs_disk_key disk_key;
1973 orig_slot += left_nr;
1974 btrfs_node_key(mid, &disk_key, 0);
1975 tree_mod_log_set_node_key(root->fs_info, parent,
1976 pslot, 0);
1977 btrfs_set_node_key(parent, &disk_key, pslot);
1978 btrfs_mark_buffer_dirty(parent);
1979 if (btrfs_header_nritems(left) > orig_slot) {
1980 path->nodes[level] = left;
1981 path->slots[level + 1] -= 1;
1982 path->slots[level] = orig_slot;
1983 btrfs_tree_unlock(mid);
1984 free_extent_buffer(mid);
1985 } else {
1986 orig_slot -=
1987 btrfs_header_nritems(left);
1988 path->slots[level] = orig_slot;
1989 btrfs_tree_unlock(left);
1990 free_extent_buffer(left);
1991 }
1992 return 0;
1993 }
1994 btrfs_tree_unlock(left);
1995 free_extent_buffer(left);
1996 }
1997 right = read_node_slot(root, parent, pslot + 1);
1998
1999 /*
2000 * then try to empty the right most buffer into the middle
2001 */
2002 if (right) {
2003 u32 right_nr;
2004
2005 btrfs_tree_lock(right);
2006 btrfs_set_lock_blocking(right);
2007
2008 right_nr = btrfs_header_nritems(right);
2009 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010 wret = 1;
2011 } else {
2012 ret = btrfs_cow_block(trans, root, right,
2013 parent, pslot + 1,
2014 &right);
2015 if (ret)
2016 wret = 1;
2017 else {
2018 wret = balance_node_right(trans, root,
2019 right, mid);
2020 }
2021 }
2022 if (wret < 0)
2023 ret = wret;
2024 if (wret == 0) {
2025 struct btrfs_disk_key disk_key;
2026
2027 btrfs_node_key(right, &disk_key, 0);
2028 tree_mod_log_set_node_key(root->fs_info, parent,
2029 pslot + 1, 0);
2030 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031 btrfs_mark_buffer_dirty(parent);
2032
2033 if (btrfs_header_nritems(mid) <= orig_slot) {
2034 path->nodes[level] = right;
2035 path->slots[level + 1] += 1;
2036 path->slots[level] = orig_slot -
2037 btrfs_header_nritems(mid);
2038 btrfs_tree_unlock(mid);
2039 free_extent_buffer(mid);
2040 } else {
2041 btrfs_tree_unlock(right);
2042 free_extent_buffer(right);
2043 }
2044 return 0;
2045 }
2046 btrfs_tree_unlock(right);
2047 free_extent_buffer(right);
2048 }
2049 return 1;
2050 }
2051
2052 /*
2053 * readahead one full node of leaves, finding things that are close
2054 * to the block in 'slot', and triggering ra on them.
2055 */
2056 static void reada_for_search(struct btrfs_root *root,
2057 struct btrfs_path *path,
2058 int level, int slot, u64 objectid)
2059 {
2060 struct extent_buffer *node;
2061 struct btrfs_disk_key disk_key;
2062 u32 nritems;
2063 u64 search;
2064 u64 target;
2065 u64 nread = 0;
2066 u64 gen;
2067 int direction = path->reada;
2068 struct extent_buffer *eb;
2069 u32 nr;
2070 u32 blocksize;
2071 u32 nscan = 0;
2072
2073 if (level != 1)
2074 return;
2075
2076 if (!path->nodes[level])
2077 return;
2078
2079 node = path->nodes[level];
2080
2081 search = btrfs_node_blockptr(node, slot);
2082 blocksize = btrfs_level_size(root, level - 1);
2083 eb = btrfs_find_tree_block(root, search, blocksize);
2084 if (eb) {
2085 free_extent_buffer(eb);
2086 return;
2087 }
2088
2089 target = search;
2090
2091 nritems = btrfs_header_nritems(node);
2092 nr = slot;
2093
2094 while (1) {
2095 if (direction < 0) {
2096 if (nr == 0)
2097 break;
2098 nr--;
2099 } else if (direction > 0) {
2100 nr++;
2101 if (nr >= nritems)
2102 break;
2103 }
2104 if (path->reada < 0 && objectid) {
2105 btrfs_node_key(node, &disk_key, nr);
2106 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107 break;
2108 }
2109 search = btrfs_node_blockptr(node, nr);
2110 if ((search <= target && target - search <= 65536) ||
2111 (search > target && search - target <= 65536)) {
2112 gen = btrfs_node_ptr_generation(node, nr);
2113 readahead_tree_block(root, search, blocksize, gen);
2114 nread += blocksize;
2115 }
2116 nscan++;
2117 if ((nread > 65536 || nscan > 32))
2118 break;
2119 }
2120 }
2121
2122 /*
2123 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124 * cache
2125 */
2126 static noinline int reada_for_balance(struct btrfs_root *root,
2127 struct btrfs_path *path, int level)
2128 {
2129 int slot;
2130 int nritems;
2131 struct extent_buffer *parent;
2132 struct extent_buffer *eb;
2133 u64 gen;
2134 u64 block1 = 0;
2135 u64 block2 = 0;
2136 int ret = 0;
2137 int blocksize;
2138
2139 parent = path->nodes[level + 1];
2140 if (!parent)
2141 return 0;
2142
2143 nritems = btrfs_header_nritems(parent);
2144 slot = path->slots[level + 1];
2145 blocksize = btrfs_level_size(root, level);
2146
2147 if (slot > 0) {
2148 block1 = btrfs_node_blockptr(parent, slot - 1);
2149 gen = btrfs_node_ptr_generation(parent, slot - 1);
2150 eb = btrfs_find_tree_block(root, block1, blocksize);
2151 /*
2152 * if we get -eagain from btrfs_buffer_uptodate, we
2153 * don't want to return eagain here. That will loop
2154 * forever
2155 */
2156 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2157 block1 = 0;
2158 free_extent_buffer(eb);
2159 }
2160 if (slot + 1 < nritems) {
2161 block2 = btrfs_node_blockptr(parent, slot + 1);
2162 gen = btrfs_node_ptr_generation(parent, slot + 1);
2163 eb = btrfs_find_tree_block(root, block2, blocksize);
2164 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165 block2 = 0;
2166 free_extent_buffer(eb);
2167 }
2168 if (block1 || block2) {
2169 ret = -EAGAIN;
2170
2171 /* release the whole path */
2172 btrfs_release_path(path);
2173
2174 /* read the blocks */
2175 if (block1)
2176 readahead_tree_block(root, block1, blocksize, 0);
2177 if (block2)
2178 readahead_tree_block(root, block2, blocksize, 0);
2179
2180 if (block1) {
2181 eb = read_tree_block(root, block1, blocksize, 0);
2182 free_extent_buffer(eb);
2183 }
2184 if (block2) {
2185 eb = read_tree_block(root, block2, blocksize, 0);
2186 free_extent_buffer(eb);
2187 }
2188 }
2189 return ret;
2190 }
2191
2192
2193 /*
2194 * when we walk down the tree, it is usually safe to unlock the higher layers
2195 * in the tree. The exceptions are when our path goes through slot 0, because
2196 * operations on the tree might require changing key pointers higher up in the
2197 * tree.
2198 *
2199 * callers might also have set path->keep_locks, which tells this code to keep
2200 * the lock if the path points to the last slot in the block. This is part of
2201 * walking through the tree, and selecting the next slot in the higher block.
2202 *
2203 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2204 * if lowest_unlock is 1, level 0 won't be unlocked
2205 */
2206 static noinline void unlock_up(struct btrfs_path *path, int level,
2207 int lowest_unlock, int min_write_lock_level,
2208 int *write_lock_level)
2209 {
2210 int i;
2211 int skip_level = level;
2212 int no_skips = 0;
2213 struct extent_buffer *t;
2214
2215 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2216 if (!path->nodes[i])
2217 break;
2218 if (!path->locks[i])
2219 break;
2220 if (!no_skips && path->slots[i] == 0) {
2221 skip_level = i + 1;
2222 continue;
2223 }
2224 if (!no_skips && path->keep_locks) {
2225 u32 nritems;
2226 t = path->nodes[i];
2227 nritems = btrfs_header_nritems(t);
2228 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2229 skip_level = i + 1;
2230 continue;
2231 }
2232 }
2233 if (skip_level < i && i >= lowest_unlock)
2234 no_skips = 1;
2235
2236 t = path->nodes[i];
2237 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2238 btrfs_tree_unlock_rw(t, path->locks[i]);
2239 path->locks[i] = 0;
2240 if (write_lock_level &&
2241 i > min_write_lock_level &&
2242 i <= *write_lock_level) {
2243 *write_lock_level = i - 1;
2244 }
2245 }
2246 }
2247 }
2248
2249 /*
2250 * This releases any locks held in the path starting at level and
2251 * going all the way up to the root.
2252 *
2253 * btrfs_search_slot will keep the lock held on higher nodes in a few
2254 * corner cases, such as COW of the block at slot zero in the node. This
2255 * ignores those rules, and it should only be called when there are no
2256 * more updates to be done higher up in the tree.
2257 */
2258 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2259 {
2260 int i;
2261
2262 if (path->keep_locks)
2263 return;
2264
2265 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2266 if (!path->nodes[i])
2267 continue;
2268 if (!path->locks[i])
2269 continue;
2270 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2271 path->locks[i] = 0;
2272 }
2273 }
2274
2275 /*
2276 * helper function for btrfs_search_slot. The goal is to find a block
2277 * in cache without setting the path to blocking. If we find the block
2278 * we return zero and the path is unchanged.
2279 *
2280 * If we can't find the block, we set the path blocking and do some
2281 * reada. -EAGAIN is returned and the search must be repeated.
2282 */
2283 static int
2284 read_block_for_search(struct btrfs_trans_handle *trans,
2285 struct btrfs_root *root, struct btrfs_path *p,
2286 struct extent_buffer **eb_ret, int level, int slot,
2287 struct btrfs_key *key, u64 time_seq)
2288 {
2289 u64 blocknr;
2290 u64 gen;
2291 u32 blocksize;
2292 struct extent_buffer *b = *eb_ret;
2293 struct extent_buffer *tmp;
2294 int ret;
2295
2296 blocknr = btrfs_node_blockptr(b, slot);
2297 gen = btrfs_node_ptr_generation(b, slot);
2298 blocksize = btrfs_level_size(root, level - 1);
2299
2300 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2301 if (tmp) {
2302 /* first we do an atomic uptodate check */
2303 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2304 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2305 /*
2306 * we found an up to date block without
2307 * sleeping, return
2308 * right away
2309 */
2310 *eb_ret = tmp;
2311 return 0;
2312 }
2313 /* the pages were up to date, but we failed
2314 * the generation number check. Do a full
2315 * read for the generation number that is correct.
2316 * We must do this without dropping locks so
2317 * we can trust our generation number
2318 */
2319 free_extent_buffer(tmp);
2320 btrfs_set_path_blocking(p);
2321
2322 /* now we're allowed to do a blocking uptodate check */
2323 tmp = read_tree_block(root, blocknr, blocksize, gen);
2324 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2325 *eb_ret = tmp;
2326 return 0;
2327 }
2328 free_extent_buffer(tmp);
2329 btrfs_release_path(p);
2330 return -EIO;
2331 }
2332 }
2333
2334 /*
2335 * reduce lock contention at high levels
2336 * of the btree by dropping locks before
2337 * we read. Don't release the lock on the current
2338 * level because we need to walk this node to figure
2339 * out which blocks to read.
2340 */
2341 btrfs_unlock_up_safe(p, level + 1);
2342 btrfs_set_path_blocking(p);
2343
2344 free_extent_buffer(tmp);
2345 if (p->reada)
2346 reada_for_search(root, p, level, slot, key->objectid);
2347
2348 btrfs_release_path(p);
2349
2350 ret = -EAGAIN;
2351 tmp = read_tree_block(root, blocknr, blocksize, 0);
2352 if (tmp) {
2353 /*
2354 * If the read above didn't mark this buffer up to date,
2355 * it will never end up being up to date. Set ret to EIO now
2356 * and give up so that our caller doesn't loop forever
2357 * on our EAGAINs.
2358 */
2359 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2360 ret = -EIO;
2361 free_extent_buffer(tmp);
2362 }
2363 return ret;
2364 }
2365
2366 /*
2367 * helper function for btrfs_search_slot. This does all of the checks
2368 * for node-level blocks and does any balancing required based on
2369 * the ins_len.
2370 *
2371 * If no extra work was required, zero is returned. If we had to
2372 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2373 * start over
2374 */
2375 static int
2376 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root, struct btrfs_path *p,
2378 struct extent_buffer *b, int level, int ins_len,
2379 int *write_lock_level)
2380 {
2381 int ret;
2382 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2383 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2384 int sret;
2385
2386 if (*write_lock_level < level + 1) {
2387 *write_lock_level = level + 1;
2388 btrfs_release_path(p);
2389 goto again;
2390 }
2391
2392 sret = reada_for_balance(root, p, level);
2393 if (sret)
2394 goto again;
2395
2396 btrfs_set_path_blocking(p);
2397 sret = split_node(trans, root, p, level);
2398 btrfs_clear_path_blocking(p, NULL, 0);
2399
2400 BUG_ON(sret > 0);
2401 if (sret) {
2402 ret = sret;
2403 goto done;
2404 }
2405 b = p->nodes[level];
2406 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2407 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2408 int sret;
2409
2410 if (*write_lock_level < level + 1) {
2411 *write_lock_level = level + 1;
2412 btrfs_release_path(p);
2413 goto again;
2414 }
2415
2416 sret = reada_for_balance(root, p, level);
2417 if (sret)
2418 goto again;
2419
2420 btrfs_set_path_blocking(p);
2421 sret = balance_level(trans, root, p, level);
2422 btrfs_clear_path_blocking(p, NULL, 0);
2423
2424 if (sret) {
2425 ret = sret;
2426 goto done;
2427 }
2428 b = p->nodes[level];
2429 if (!b) {
2430 btrfs_release_path(p);
2431 goto again;
2432 }
2433 BUG_ON(btrfs_header_nritems(b) == 1);
2434 }
2435 return 0;
2436
2437 again:
2438 ret = -EAGAIN;
2439 done:
2440 return ret;
2441 }
2442
2443 /*
2444 * look for key in the tree. path is filled in with nodes along the way
2445 * if key is found, we return zero and you can find the item in the leaf
2446 * level of the path (level 0)
2447 *
2448 * If the key isn't found, the path points to the slot where it should
2449 * be inserted, and 1 is returned. If there are other errors during the
2450 * search a negative error number is returned.
2451 *
2452 * if ins_len > 0, nodes and leaves will be split as we walk down the
2453 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2454 * possible)
2455 */
2456 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2457 *root, struct btrfs_key *key, struct btrfs_path *p, int
2458 ins_len, int cow)
2459 {
2460 struct extent_buffer *b;
2461 int slot;
2462 int ret;
2463 int err;
2464 int level;
2465 int lowest_unlock = 1;
2466 int root_lock;
2467 /* everything at write_lock_level or lower must be write locked */
2468 int write_lock_level = 0;
2469 u8 lowest_level = 0;
2470 int min_write_lock_level;
2471
2472 lowest_level = p->lowest_level;
2473 WARN_ON(lowest_level && ins_len > 0);
2474 WARN_ON(p->nodes[0] != NULL);
2475
2476 if (ins_len < 0) {
2477 lowest_unlock = 2;
2478
2479 /* when we are removing items, we might have to go up to level
2480 * two as we update tree pointers Make sure we keep write
2481 * for those levels as well
2482 */
2483 write_lock_level = 2;
2484 } else if (ins_len > 0) {
2485 /*
2486 * for inserting items, make sure we have a write lock on
2487 * level 1 so we can update keys
2488 */
2489 write_lock_level = 1;
2490 }
2491
2492 if (!cow)
2493 write_lock_level = -1;
2494
2495 if (cow && (p->keep_locks || p->lowest_level))
2496 write_lock_level = BTRFS_MAX_LEVEL;
2497
2498 min_write_lock_level = write_lock_level;
2499
2500 again:
2501 /*
2502 * we try very hard to do read locks on the root
2503 */
2504 root_lock = BTRFS_READ_LOCK;
2505 level = 0;
2506 if (p->search_commit_root) {
2507 /*
2508 * the commit roots are read only
2509 * so we always do read locks
2510 */
2511 b = root->commit_root;
2512 extent_buffer_get(b);
2513 level = btrfs_header_level(b);
2514 if (!p->skip_locking)
2515 btrfs_tree_read_lock(b);
2516 } else {
2517 if (p->skip_locking) {
2518 b = btrfs_root_node(root);
2519 level = btrfs_header_level(b);
2520 } else {
2521 /* we don't know the level of the root node
2522 * until we actually have it read locked
2523 */
2524 b = btrfs_read_lock_root_node(root);
2525 level = btrfs_header_level(b);
2526 if (level <= write_lock_level) {
2527 /* whoops, must trade for write lock */
2528 btrfs_tree_read_unlock(b);
2529 free_extent_buffer(b);
2530 b = btrfs_lock_root_node(root);
2531 root_lock = BTRFS_WRITE_LOCK;
2532
2533 /* the level might have changed, check again */
2534 level = btrfs_header_level(b);
2535 }
2536 }
2537 }
2538 p->nodes[level] = b;
2539 if (!p->skip_locking)
2540 p->locks[level] = root_lock;
2541
2542 while (b) {
2543 level = btrfs_header_level(b);
2544
2545 /*
2546 * setup the path here so we can release it under lock
2547 * contention with the cow code
2548 */
2549 if (cow) {
2550 /*
2551 * if we don't really need to cow this block
2552 * then we don't want to set the path blocking,
2553 * so we test it here
2554 */
2555 if (!should_cow_block(trans, root, b))
2556 goto cow_done;
2557
2558 btrfs_set_path_blocking(p);
2559
2560 /*
2561 * must have write locks on this node and the
2562 * parent
2563 */
2564 if (level > write_lock_level ||
2565 (level + 1 > write_lock_level &&
2566 level + 1 < BTRFS_MAX_LEVEL &&
2567 p->nodes[level + 1])) {
2568 write_lock_level = level + 1;
2569 btrfs_release_path(p);
2570 goto again;
2571 }
2572
2573 err = btrfs_cow_block(trans, root, b,
2574 p->nodes[level + 1],
2575 p->slots[level + 1], &b);
2576 if (err) {
2577 ret = err;
2578 goto done;
2579 }
2580 }
2581 cow_done:
2582 BUG_ON(!cow && ins_len);
2583
2584 p->nodes[level] = b;
2585 btrfs_clear_path_blocking(p, NULL, 0);
2586
2587 /*
2588 * we have a lock on b and as long as we aren't changing
2589 * the tree, there is no way to for the items in b to change.
2590 * It is safe to drop the lock on our parent before we
2591 * go through the expensive btree search on b.
2592 *
2593 * If cow is true, then we might be changing slot zero,
2594 * which may require changing the parent. So, we can't
2595 * drop the lock until after we know which slot we're
2596 * operating on.
2597 */
2598 if (!cow)
2599 btrfs_unlock_up_safe(p, level + 1);
2600
2601 ret = bin_search(b, key, level, &slot);
2602
2603 if (level != 0) {
2604 int dec = 0;
2605 if (ret && slot > 0) {
2606 dec = 1;
2607 slot -= 1;
2608 }
2609 p->slots[level] = slot;
2610 err = setup_nodes_for_search(trans, root, p, b, level,
2611 ins_len, &write_lock_level);
2612 if (err == -EAGAIN)
2613 goto again;
2614 if (err) {
2615 ret = err;
2616 goto done;
2617 }
2618 b = p->nodes[level];
2619 slot = p->slots[level];
2620
2621 /*
2622 * slot 0 is special, if we change the key
2623 * we have to update the parent pointer
2624 * which means we must have a write lock
2625 * on the parent
2626 */
2627 if (slot == 0 && cow &&
2628 write_lock_level < level + 1) {
2629 write_lock_level = level + 1;
2630 btrfs_release_path(p);
2631 goto again;
2632 }
2633
2634 unlock_up(p, level, lowest_unlock,
2635 min_write_lock_level, &write_lock_level);
2636
2637 if (level == lowest_level) {
2638 if (dec)
2639 p->slots[level]++;
2640 goto done;
2641 }
2642
2643 err = read_block_for_search(trans, root, p,
2644 &b, level, slot, key, 0);
2645 if (err == -EAGAIN)
2646 goto again;
2647 if (err) {
2648 ret = err;
2649 goto done;
2650 }
2651
2652 if (!p->skip_locking) {
2653 level = btrfs_header_level(b);
2654 if (level <= write_lock_level) {
2655 err = btrfs_try_tree_write_lock(b);
2656 if (!err) {
2657 btrfs_set_path_blocking(p);
2658 btrfs_tree_lock(b);
2659 btrfs_clear_path_blocking(p, b,
2660 BTRFS_WRITE_LOCK);
2661 }
2662 p->locks[level] = BTRFS_WRITE_LOCK;
2663 } else {
2664 err = btrfs_try_tree_read_lock(b);
2665 if (!err) {
2666 btrfs_set_path_blocking(p);
2667 btrfs_tree_read_lock(b);
2668 btrfs_clear_path_blocking(p, b,
2669 BTRFS_READ_LOCK);
2670 }
2671 p->locks[level] = BTRFS_READ_LOCK;
2672 }
2673 p->nodes[level] = b;
2674 }
2675 } else {
2676 p->slots[level] = slot;
2677 if (ins_len > 0 &&
2678 btrfs_leaf_free_space(root, b) < ins_len) {
2679 if (write_lock_level < 1) {
2680 write_lock_level = 1;
2681 btrfs_release_path(p);
2682 goto again;
2683 }
2684
2685 btrfs_set_path_blocking(p);
2686 err = split_leaf(trans, root, key,
2687 p, ins_len, ret == 0);
2688 btrfs_clear_path_blocking(p, NULL, 0);
2689
2690 BUG_ON(err > 0);
2691 if (err) {
2692 ret = err;
2693 goto done;
2694 }
2695 }
2696 if (!p->search_for_split)
2697 unlock_up(p, level, lowest_unlock,
2698 min_write_lock_level, &write_lock_level);
2699 goto done;
2700 }
2701 }
2702 ret = 1;
2703 done:
2704 /*
2705 * we don't really know what they plan on doing with the path
2706 * from here on, so for now just mark it as blocking
2707 */
2708 if (!p->leave_spinning)
2709 btrfs_set_path_blocking(p);
2710 if (ret < 0)
2711 btrfs_release_path(p);
2712 return ret;
2713 }
2714
2715 /*
2716 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2717 * current state of the tree together with the operations recorded in the tree
2718 * modification log to search for the key in a previous version of this tree, as
2719 * denoted by the time_seq parameter.
2720 *
2721 * Naturally, there is no support for insert, delete or cow operations.
2722 *
2723 * The resulting path and return value will be set up as if we called
2724 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2725 */
2726 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2727 struct btrfs_path *p, u64 time_seq)
2728 {
2729 struct extent_buffer *b;
2730 int slot;
2731 int ret;
2732 int err;
2733 int level;
2734 int lowest_unlock = 1;
2735 u8 lowest_level = 0;
2736
2737 lowest_level = p->lowest_level;
2738 WARN_ON(p->nodes[0] != NULL);
2739
2740 if (p->search_commit_root) {
2741 BUG_ON(time_seq);
2742 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2743 }
2744
2745 again:
2746 b = get_old_root(root, time_seq);
2747 level = btrfs_header_level(b);
2748 p->locks[level] = BTRFS_READ_LOCK;
2749
2750 while (b) {
2751 level = btrfs_header_level(b);
2752 p->nodes[level] = b;
2753 btrfs_clear_path_blocking(p, NULL, 0);
2754
2755 /*
2756 * we have a lock on b and as long as we aren't changing
2757 * the tree, there is no way to for the items in b to change.
2758 * It is safe to drop the lock on our parent before we
2759 * go through the expensive btree search on b.
2760 */
2761 btrfs_unlock_up_safe(p, level + 1);
2762
2763 ret = bin_search(b, key, level, &slot);
2764
2765 if (level != 0) {
2766 int dec = 0;
2767 if (ret && slot > 0) {
2768 dec = 1;
2769 slot -= 1;
2770 }
2771 p->slots[level] = slot;
2772 unlock_up(p, level, lowest_unlock, 0, NULL);
2773
2774 if (level == lowest_level) {
2775 if (dec)
2776 p->slots[level]++;
2777 goto done;
2778 }
2779
2780 err = read_block_for_search(NULL, root, p, &b, level,
2781 slot, key, time_seq);
2782 if (err == -EAGAIN)
2783 goto again;
2784 if (err) {
2785 ret = err;
2786 goto done;
2787 }
2788
2789 level = btrfs_header_level(b);
2790 err = btrfs_try_tree_read_lock(b);
2791 if (!err) {
2792 btrfs_set_path_blocking(p);
2793 btrfs_tree_read_lock(b);
2794 btrfs_clear_path_blocking(p, b,
2795 BTRFS_READ_LOCK);
2796 }
2797 p->locks[level] = BTRFS_READ_LOCK;
2798 p->nodes[level] = b;
2799 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2800 if (b != p->nodes[level]) {
2801 btrfs_tree_unlock_rw(p->nodes[level],
2802 p->locks[level]);
2803 p->locks[level] = 0;
2804 p->nodes[level] = b;
2805 }
2806 } else {
2807 p->slots[level] = slot;
2808 unlock_up(p, level, lowest_unlock, 0, NULL);
2809 goto done;
2810 }
2811 }
2812 ret = 1;
2813 done:
2814 if (!p->leave_spinning)
2815 btrfs_set_path_blocking(p);
2816 if (ret < 0)
2817 btrfs_release_path(p);
2818
2819 return ret;
2820 }
2821
2822 /*
2823 * helper to use instead of search slot if no exact match is needed but
2824 * instead the next or previous item should be returned.
2825 * When find_higher is true, the next higher item is returned, the next lower
2826 * otherwise.
2827 * When return_any and find_higher are both true, and no higher item is found,
2828 * return the next lower instead.
2829 * When return_any is true and find_higher is false, and no lower item is found,
2830 * return the next higher instead.
2831 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2832 * < 0 on error
2833 */
2834 int btrfs_search_slot_for_read(struct btrfs_root *root,
2835 struct btrfs_key *key, struct btrfs_path *p,
2836 int find_higher, int return_any)
2837 {
2838 int ret;
2839 struct extent_buffer *leaf;
2840
2841 again:
2842 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2843 if (ret <= 0)
2844 return ret;
2845 /*
2846 * a return value of 1 means the path is at the position where the
2847 * item should be inserted. Normally this is the next bigger item,
2848 * but in case the previous item is the last in a leaf, path points
2849 * to the first free slot in the previous leaf, i.e. at an invalid
2850 * item.
2851 */
2852 leaf = p->nodes[0];
2853
2854 if (find_higher) {
2855 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2856 ret = btrfs_next_leaf(root, p);
2857 if (ret <= 0)
2858 return ret;
2859 if (!return_any)
2860 return 1;
2861 /*
2862 * no higher item found, return the next
2863 * lower instead
2864 */
2865 return_any = 0;
2866 find_higher = 0;
2867 btrfs_release_path(p);
2868 goto again;
2869 }
2870 } else {
2871 if (p->slots[0] == 0) {
2872 ret = btrfs_prev_leaf(root, p);
2873 if (ret < 0)
2874 return ret;
2875 if (!ret) {
2876 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2877 return 0;
2878 }
2879 if (!return_any)
2880 return 1;
2881 /*
2882 * no lower item found, return the next
2883 * higher instead
2884 */
2885 return_any = 0;
2886 find_higher = 1;
2887 btrfs_release_path(p);
2888 goto again;
2889 } else {
2890 --p->slots[0];
2891 }
2892 }
2893 return 0;
2894 }
2895
2896 /*
2897 * adjust the pointers going up the tree, starting at level
2898 * making sure the right key of each node is points to 'key'.
2899 * This is used after shifting pointers to the left, so it stops
2900 * fixing up pointers when a given leaf/node is not in slot 0 of the
2901 * higher levels
2902 *
2903 */
2904 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2905 struct btrfs_root *root, struct btrfs_path *path,
2906 struct btrfs_disk_key *key, int level)
2907 {
2908 int i;
2909 struct extent_buffer *t;
2910
2911 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2912 int tslot = path->slots[i];
2913 if (!path->nodes[i])
2914 break;
2915 t = path->nodes[i];
2916 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2917 btrfs_set_node_key(t, key, tslot);
2918 btrfs_mark_buffer_dirty(path->nodes[i]);
2919 if (tslot != 0)
2920 break;
2921 }
2922 }
2923
2924 /*
2925 * update item key.
2926 *
2927 * This function isn't completely safe. It's the caller's responsibility
2928 * that the new key won't break the order
2929 */
2930 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2931 struct btrfs_root *root, struct btrfs_path *path,
2932 struct btrfs_key *new_key)
2933 {
2934 struct btrfs_disk_key disk_key;
2935 struct extent_buffer *eb;
2936 int slot;
2937
2938 eb = path->nodes[0];
2939 slot = path->slots[0];
2940 if (slot > 0) {
2941 btrfs_item_key(eb, &disk_key, slot - 1);
2942 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2943 }
2944 if (slot < btrfs_header_nritems(eb) - 1) {
2945 btrfs_item_key(eb, &disk_key, slot + 1);
2946 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2947 }
2948
2949 btrfs_cpu_key_to_disk(&disk_key, new_key);
2950 btrfs_set_item_key(eb, &disk_key, slot);
2951 btrfs_mark_buffer_dirty(eb);
2952 if (slot == 0)
2953 fixup_low_keys(trans, root, path, &disk_key, 1);
2954 }
2955
2956 /*
2957 * try to push data from one node into the next node left in the
2958 * tree.
2959 *
2960 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2961 * error, and > 0 if there was no room in the left hand block.
2962 */
2963 static int push_node_left(struct btrfs_trans_handle *trans,
2964 struct btrfs_root *root, struct extent_buffer *dst,
2965 struct extent_buffer *src, int empty)
2966 {
2967 int push_items = 0;
2968 int src_nritems;
2969 int dst_nritems;
2970 int ret = 0;
2971
2972 src_nritems = btrfs_header_nritems(src);
2973 dst_nritems = btrfs_header_nritems(dst);
2974 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2975 WARN_ON(btrfs_header_generation(src) != trans->transid);
2976 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2977
2978 if (!empty && src_nritems <= 8)
2979 return 1;
2980
2981 if (push_items <= 0)
2982 return 1;
2983
2984 if (empty) {
2985 push_items = min(src_nritems, push_items);
2986 if (push_items < src_nritems) {
2987 /* leave at least 8 pointers in the node if
2988 * we aren't going to empty it
2989 */
2990 if (src_nritems - push_items < 8) {
2991 if (push_items <= 8)
2992 return 1;
2993 push_items -= 8;
2994 }
2995 }
2996 } else
2997 push_items = min(src_nritems - 8, push_items);
2998
2999 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3000 push_items);
3001 copy_extent_buffer(dst, src,
3002 btrfs_node_key_ptr_offset(dst_nritems),
3003 btrfs_node_key_ptr_offset(0),
3004 push_items * sizeof(struct btrfs_key_ptr));
3005
3006 if (push_items < src_nritems) {
3007 /*
3008 * don't call tree_mod_log_eb_move here, key removal was already
3009 * fully logged by tree_mod_log_eb_copy above.
3010 */
3011 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3012 btrfs_node_key_ptr_offset(push_items),
3013 (src_nritems - push_items) *
3014 sizeof(struct btrfs_key_ptr));
3015 }
3016 btrfs_set_header_nritems(src, src_nritems - push_items);
3017 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3018 btrfs_mark_buffer_dirty(src);
3019 btrfs_mark_buffer_dirty(dst);
3020
3021 return ret;
3022 }
3023
3024 /*
3025 * try to push data from one node into the next node right in the
3026 * tree.
3027 *
3028 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3029 * error, and > 0 if there was no room in the right hand block.
3030 *
3031 * this will only push up to 1/2 the contents of the left node over
3032 */
3033 static int balance_node_right(struct btrfs_trans_handle *trans,
3034 struct btrfs_root *root,
3035 struct extent_buffer *dst,
3036 struct extent_buffer *src)
3037 {
3038 int push_items = 0;
3039 int max_push;
3040 int src_nritems;
3041 int dst_nritems;
3042 int ret = 0;
3043
3044 WARN_ON(btrfs_header_generation(src) != trans->transid);
3045 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3046
3047 src_nritems = btrfs_header_nritems(src);
3048 dst_nritems = btrfs_header_nritems(dst);
3049 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3050 if (push_items <= 0)
3051 return 1;
3052
3053 if (src_nritems < 4)
3054 return 1;
3055
3056 max_push = src_nritems / 2 + 1;
3057 /* don't try to empty the node */
3058 if (max_push >= src_nritems)
3059 return 1;
3060
3061 if (max_push < push_items)
3062 push_items = max_push;
3063
3064 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3065 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3066 btrfs_node_key_ptr_offset(0),
3067 (dst_nritems) *
3068 sizeof(struct btrfs_key_ptr));
3069
3070 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3071 src_nritems - push_items, push_items);
3072 copy_extent_buffer(dst, src,
3073 btrfs_node_key_ptr_offset(0),
3074 btrfs_node_key_ptr_offset(src_nritems - push_items),
3075 push_items * sizeof(struct btrfs_key_ptr));
3076
3077 btrfs_set_header_nritems(src, src_nritems - push_items);
3078 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3079
3080 btrfs_mark_buffer_dirty(src);
3081 btrfs_mark_buffer_dirty(dst);
3082
3083 return ret;
3084 }
3085
3086 /*
3087 * helper function to insert a new root level in the tree.
3088 * A new node is allocated, and a single item is inserted to
3089 * point to the existing root
3090 *
3091 * returns zero on success or < 0 on failure.
3092 */
3093 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root,
3095 struct btrfs_path *path, int level, int log_removal)
3096 {
3097 u64 lower_gen;
3098 struct extent_buffer *lower;
3099 struct extent_buffer *c;
3100 struct extent_buffer *old;
3101 struct btrfs_disk_key lower_key;
3102
3103 BUG_ON(path->nodes[level]);
3104 BUG_ON(path->nodes[level-1] != root->node);
3105
3106 lower = path->nodes[level-1];
3107 if (level == 1)
3108 btrfs_item_key(lower, &lower_key, 0);
3109 else
3110 btrfs_node_key(lower, &lower_key, 0);
3111
3112 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3113 root->root_key.objectid, &lower_key,
3114 level, root->node->start, 0);
3115 if (IS_ERR(c))
3116 return PTR_ERR(c);
3117
3118 root_add_used(root, root->nodesize);
3119
3120 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3121 btrfs_set_header_nritems(c, 1);
3122 btrfs_set_header_level(c, level);
3123 btrfs_set_header_bytenr(c, c->start);
3124 btrfs_set_header_generation(c, trans->transid);
3125 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3126 btrfs_set_header_owner(c, root->root_key.objectid);
3127
3128 write_extent_buffer(c, root->fs_info->fsid,
3129 (unsigned long)btrfs_header_fsid(c),
3130 BTRFS_FSID_SIZE);
3131
3132 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3133 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3134 BTRFS_UUID_SIZE);
3135
3136 btrfs_set_node_key(c, &lower_key, 0);
3137 btrfs_set_node_blockptr(c, 0, lower->start);
3138 lower_gen = btrfs_header_generation(lower);
3139 WARN_ON(lower_gen != trans->transid);
3140
3141 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3142
3143 btrfs_mark_buffer_dirty(c);
3144
3145 old = root->node;
3146 tree_mod_log_set_root_pointer(root, c, log_removal);
3147 rcu_assign_pointer(root->node, c);
3148
3149 /* the super has an extra ref to root->node */
3150 free_extent_buffer(old);
3151
3152 add_root_to_dirty_list(root);
3153 extent_buffer_get(c);
3154 path->nodes[level] = c;
3155 path->locks[level] = BTRFS_WRITE_LOCK;
3156 path->slots[level] = 0;
3157 return 0;
3158 }
3159
3160 /*
3161 * worker function to insert a single pointer in a node.
3162 * the node should have enough room for the pointer already
3163 *
3164 * slot and level indicate where you want the key to go, and
3165 * blocknr is the block the key points to.
3166 */
3167 static void insert_ptr(struct btrfs_trans_handle *trans,
3168 struct btrfs_root *root, struct btrfs_path *path,
3169 struct btrfs_disk_key *key, u64 bytenr,
3170 int slot, int level)
3171 {
3172 struct extent_buffer *lower;
3173 int nritems;
3174 int ret;
3175
3176 BUG_ON(!path->nodes[level]);
3177 btrfs_assert_tree_locked(path->nodes[level]);
3178 lower = path->nodes[level];
3179 nritems = btrfs_header_nritems(lower);
3180 BUG_ON(slot > nritems);
3181 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3182 if (slot != nritems) {
3183 if (level)
3184 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3185 slot, nritems - slot);
3186 memmove_extent_buffer(lower,
3187 btrfs_node_key_ptr_offset(slot + 1),
3188 btrfs_node_key_ptr_offset(slot),
3189 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3190 }
3191 if (level) {
3192 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3193 MOD_LOG_KEY_ADD);
3194 BUG_ON(ret < 0);
3195 }
3196 btrfs_set_node_key(lower, key, slot);
3197 btrfs_set_node_blockptr(lower, slot, bytenr);
3198 WARN_ON(trans->transid == 0);
3199 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3200 btrfs_set_header_nritems(lower, nritems + 1);
3201 btrfs_mark_buffer_dirty(lower);
3202 }
3203
3204 /*
3205 * split the node at the specified level in path in two.
3206 * The path is corrected to point to the appropriate node after the split
3207 *
3208 * Before splitting this tries to make some room in the node by pushing
3209 * left and right, if either one works, it returns right away.
3210 *
3211 * returns 0 on success and < 0 on failure
3212 */
3213 static noinline int split_node(struct btrfs_trans_handle *trans,
3214 struct btrfs_root *root,
3215 struct btrfs_path *path, int level)
3216 {
3217 struct extent_buffer *c;
3218 struct extent_buffer *split;
3219 struct btrfs_disk_key disk_key;
3220 int mid;
3221 int ret;
3222 u32 c_nritems;
3223
3224 c = path->nodes[level];
3225 WARN_ON(btrfs_header_generation(c) != trans->transid);
3226 if (c == root->node) {
3227 /*
3228 * trying to split the root, lets make a new one
3229 *
3230 * tree mod log: We pass 0 as log_removal parameter to
3231 * insert_new_root, because that root buffer will be kept as a
3232 * normal node. We are going to log removal of half of the
3233 * elements below with tree_mod_log_eb_copy. We're holding a
3234 * tree lock on the buffer, which is why we cannot race with
3235 * other tree_mod_log users.
3236 */
3237 ret = insert_new_root(trans, root, path, level + 1, 0);
3238 if (ret)
3239 return ret;
3240 } else {
3241 ret = push_nodes_for_insert(trans, root, path, level);
3242 c = path->nodes[level];
3243 if (!ret && btrfs_header_nritems(c) <
3244 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3245 return 0;
3246 if (ret < 0)
3247 return ret;
3248 }
3249
3250 c_nritems = btrfs_header_nritems(c);
3251 mid = (c_nritems + 1) / 2;
3252 btrfs_node_key(c, &disk_key, mid);
3253
3254 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3255 root->root_key.objectid,
3256 &disk_key, level, c->start, 0);
3257 if (IS_ERR(split))
3258 return PTR_ERR(split);
3259
3260 root_add_used(root, root->nodesize);
3261
3262 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3263 btrfs_set_header_level(split, btrfs_header_level(c));
3264 btrfs_set_header_bytenr(split, split->start);
3265 btrfs_set_header_generation(split, trans->transid);
3266 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3267 btrfs_set_header_owner(split, root->root_key.objectid);
3268 write_extent_buffer(split, root->fs_info->fsid,
3269 (unsigned long)btrfs_header_fsid(split),
3270 BTRFS_FSID_SIZE);
3271 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3272 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3273 BTRFS_UUID_SIZE);
3274
3275 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3276 copy_extent_buffer(split, c,
3277 btrfs_node_key_ptr_offset(0),
3278 btrfs_node_key_ptr_offset(mid),
3279 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3280 btrfs_set_header_nritems(split, c_nritems - mid);
3281 btrfs_set_header_nritems(c, mid);
3282 ret = 0;
3283
3284 btrfs_mark_buffer_dirty(c);
3285 btrfs_mark_buffer_dirty(split);
3286
3287 insert_ptr(trans, root, path, &disk_key, split->start,
3288 path->slots[level + 1] + 1, level + 1);
3289
3290 if (path->slots[level] >= mid) {
3291 path->slots[level] -= mid;
3292 btrfs_tree_unlock(c);
3293 free_extent_buffer(c);
3294 path->nodes[level] = split;
3295 path->slots[level + 1] += 1;
3296 } else {
3297 btrfs_tree_unlock(split);
3298 free_extent_buffer(split);
3299 }
3300 return ret;
3301 }
3302
3303 /*
3304 * how many bytes are required to store the items in a leaf. start
3305 * and nr indicate which items in the leaf to check. This totals up the
3306 * space used both by the item structs and the item data
3307 */
3308 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3309 {
3310 struct btrfs_item *start_item;
3311 struct btrfs_item *end_item;
3312 struct btrfs_map_token token;
3313 int data_len;
3314 int nritems = btrfs_header_nritems(l);
3315 int end = min(nritems, start + nr) - 1;
3316
3317 if (!nr)
3318 return 0;
3319 btrfs_init_map_token(&token);
3320 start_item = btrfs_item_nr(l, start);
3321 end_item = btrfs_item_nr(l, end);
3322 data_len = btrfs_token_item_offset(l, start_item, &token) +
3323 btrfs_token_item_size(l, start_item, &token);
3324 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3325 data_len += sizeof(struct btrfs_item) * nr;
3326 WARN_ON(data_len < 0);
3327 return data_len;
3328 }
3329
3330 /*
3331 * The space between the end of the leaf items and
3332 * the start of the leaf data. IOW, how much room
3333 * the leaf has left for both items and data
3334 */
3335 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3336 struct extent_buffer *leaf)
3337 {
3338 int nritems = btrfs_header_nritems(leaf);
3339 int ret;
3340 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3341 if (ret < 0) {
3342 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3343 "used %d nritems %d\n",
3344 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3345 leaf_space_used(leaf, 0, nritems), nritems);
3346 }
3347 return ret;
3348 }
3349
3350 /*
3351 * min slot controls the lowest index we're willing to push to the
3352 * right. We'll push up to and including min_slot, but no lower
3353 */
3354 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3355 struct btrfs_root *root,
3356 struct btrfs_path *path,
3357 int data_size, int empty,
3358 struct extent_buffer *right,
3359 int free_space, u32 left_nritems,
3360 u32 min_slot)
3361 {
3362 struct extent_buffer *left = path->nodes[0];
3363 struct extent_buffer *upper = path->nodes[1];
3364 struct btrfs_map_token token;
3365 struct btrfs_disk_key disk_key;
3366 int slot;
3367 u32 i;
3368 int push_space = 0;
3369 int push_items = 0;
3370 struct btrfs_item *item;
3371 u32 nr;
3372 u32 right_nritems;
3373 u32 data_end;
3374 u32 this_item_size;
3375
3376 btrfs_init_map_token(&token);
3377
3378 if (empty)
3379 nr = 0;
3380 else
3381 nr = max_t(u32, 1, min_slot);
3382
3383 if (path->slots[0] >= left_nritems)
3384 push_space += data_size;
3385
3386 slot = path->slots[1];
3387 i = left_nritems - 1;
3388 while (i >= nr) {
3389 item = btrfs_item_nr(left, i);
3390
3391 if (!empty && push_items > 0) {
3392 if (path->slots[0] > i)
3393 break;
3394 if (path->slots[0] == i) {
3395 int space = btrfs_leaf_free_space(root, left);
3396 if (space + push_space * 2 > free_space)
3397 break;
3398 }
3399 }
3400
3401 if (path->slots[0] == i)
3402 push_space += data_size;
3403
3404 this_item_size = btrfs_item_size(left, item);
3405 if (this_item_size + sizeof(*item) + push_space > free_space)
3406 break;
3407
3408 push_items++;
3409 push_space += this_item_size + sizeof(*item);
3410 if (i == 0)
3411 break;
3412 i--;
3413 }
3414
3415 if (push_items == 0)
3416 goto out_unlock;
3417
3418 WARN_ON(!empty && push_items == left_nritems);
3419
3420 /* push left to right */
3421 right_nritems = btrfs_header_nritems(right);
3422
3423 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3424 push_space -= leaf_data_end(root, left);
3425
3426 /* make room in the right data area */
3427 data_end = leaf_data_end(root, right);
3428 memmove_extent_buffer(right,
3429 btrfs_leaf_data(right) + data_end - push_space,
3430 btrfs_leaf_data(right) + data_end,
3431 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3432
3433 /* copy from the left data area */
3434 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3435 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3436 btrfs_leaf_data(left) + leaf_data_end(root, left),
3437 push_space);
3438
3439 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3440 btrfs_item_nr_offset(0),
3441 right_nritems * sizeof(struct btrfs_item));
3442
3443 /* copy the items from left to right */
3444 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3445 btrfs_item_nr_offset(left_nritems - push_items),
3446 push_items * sizeof(struct btrfs_item));
3447
3448 /* update the item pointers */
3449 right_nritems += push_items;
3450 btrfs_set_header_nritems(right, right_nritems);
3451 push_space = BTRFS_LEAF_DATA_SIZE(root);
3452 for (i = 0; i < right_nritems; i++) {
3453 item = btrfs_item_nr(right, i);
3454 push_space -= btrfs_token_item_size(right, item, &token);
3455 btrfs_set_token_item_offset(right, item, push_space, &token);
3456 }
3457
3458 left_nritems -= push_items;
3459 btrfs_set_header_nritems(left, left_nritems);
3460
3461 if (left_nritems)
3462 btrfs_mark_buffer_dirty(left);
3463 else
3464 clean_tree_block(trans, root, left);
3465
3466 btrfs_mark_buffer_dirty(right);
3467
3468 btrfs_item_key(right, &disk_key, 0);
3469 btrfs_set_node_key(upper, &disk_key, slot + 1);
3470 btrfs_mark_buffer_dirty(upper);
3471
3472 /* then fixup the leaf pointer in the path */
3473 if (path->slots[0] >= left_nritems) {
3474 path->slots[0] -= left_nritems;
3475 if (btrfs_header_nritems(path->nodes[0]) == 0)
3476 clean_tree_block(trans, root, path->nodes[0]);
3477 btrfs_tree_unlock(path->nodes[0]);
3478 free_extent_buffer(path->nodes[0]);
3479 path->nodes[0] = right;
3480 path->slots[1] += 1;
3481 } else {
3482 btrfs_tree_unlock(right);
3483 free_extent_buffer(right);
3484 }
3485 return 0;
3486
3487 out_unlock:
3488 btrfs_tree_unlock(right);
3489 free_extent_buffer(right);
3490 return 1;
3491 }
3492
3493 /*
3494 * push some data in the path leaf to the right, trying to free up at
3495 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3496 *
3497 * returns 1 if the push failed because the other node didn't have enough
3498 * room, 0 if everything worked out and < 0 if there were major errors.
3499 *
3500 * this will push starting from min_slot to the end of the leaf. It won't
3501 * push any slot lower than min_slot
3502 */
3503 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3504 *root, struct btrfs_path *path,
3505 int min_data_size, int data_size,
3506 int empty, u32 min_slot)
3507 {
3508 struct extent_buffer *left = path->nodes[0];
3509 struct extent_buffer *right;
3510 struct extent_buffer *upper;
3511 int slot;
3512 int free_space;
3513 u32 left_nritems;
3514 int ret;
3515
3516 if (!path->nodes[1])
3517 return 1;
3518
3519 slot = path->slots[1];
3520 upper = path->nodes[1];
3521 if (slot >= btrfs_header_nritems(upper) - 1)
3522 return 1;
3523
3524 btrfs_assert_tree_locked(path->nodes[1]);
3525
3526 right = read_node_slot(root, upper, slot + 1);
3527 if (right == NULL)
3528 return 1;
3529
3530 btrfs_tree_lock(right);
3531 btrfs_set_lock_blocking(right);
3532
3533 free_space = btrfs_leaf_free_space(root, right);
3534 if (free_space < data_size)
3535 goto out_unlock;
3536
3537 /* cow and double check */
3538 ret = btrfs_cow_block(trans, root, right, upper,
3539 slot + 1, &right);
3540 if (ret)
3541 goto out_unlock;
3542
3543 free_space = btrfs_leaf_free_space(root, right);
3544 if (free_space < data_size)
3545 goto out_unlock;
3546
3547 left_nritems = btrfs_header_nritems(left);
3548 if (left_nritems == 0)
3549 goto out_unlock;
3550
3551 return __push_leaf_right(trans, root, path, min_data_size, empty,
3552 right, free_space, left_nritems, min_slot);
3553 out_unlock:
3554 btrfs_tree_unlock(right);
3555 free_extent_buffer(right);
3556 return 1;
3557 }
3558
3559 /*
3560 * push some data in the path leaf to the left, trying to free up at
3561 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3562 *
3563 * max_slot can put a limit on how far into the leaf we'll push items. The
3564 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3565 * items
3566 */
3567 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root,
3569 struct btrfs_path *path, int data_size,
3570 int empty, struct extent_buffer *left,
3571 int free_space, u32 right_nritems,
3572 u32 max_slot)
3573 {
3574 struct btrfs_disk_key disk_key;
3575 struct extent_buffer *right = path->nodes[0];
3576 int i;
3577 int push_space = 0;
3578 int push_items = 0;
3579 struct btrfs_item *item;
3580 u32 old_left_nritems;
3581 u32 nr;
3582 int ret = 0;
3583 u32 this_item_size;
3584 u32 old_left_item_size;
3585 struct btrfs_map_token token;
3586
3587 btrfs_init_map_token(&token);
3588
3589 if (empty)
3590 nr = min(right_nritems, max_slot);
3591 else
3592 nr = min(right_nritems - 1, max_slot);
3593
3594 for (i = 0; i < nr; i++) {
3595 item = btrfs_item_nr(right, i);
3596
3597 if (!empty && push_items > 0) {
3598 if (path->slots[0] < i)
3599 break;
3600 if (path->slots[0] == i) {
3601 int space = btrfs_leaf_free_space(root, right);
3602 if (space + push_space * 2 > free_space)
3603 break;
3604 }
3605 }
3606
3607 if (path->slots[0] == i)
3608 push_space += data_size;
3609
3610 this_item_size = btrfs_item_size(right, item);
3611 if (this_item_size + sizeof(*item) + push_space > free_space)
3612 break;
3613
3614 push_items++;
3615 push_space += this_item_size + sizeof(*item);
3616 }
3617
3618 if (push_items == 0) {
3619 ret = 1;
3620 goto out;
3621 }
3622 if (!empty && push_items == btrfs_header_nritems(right))
3623 WARN_ON(1);
3624
3625 /* push data from right to left */
3626 copy_extent_buffer(left, right,
3627 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3628 btrfs_item_nr_offset(0),
3629 push_items * sizeof(struct btrfs_item));
3630
3631 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3632 btrfs_item_offset_nr(right, push_items - 1);
3633
3634 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3635 leaf_data_end(root, left) - push_space,
3636 btrfs_leaf_data(right) +
3637 btrfs_item_offset_nr(right, push_items - 1),
3638 push_space);
3639 old_left_nritems = btrfs_header_nritems(left);
3640 BUG_ON(old_left_nritems <= 0);
3641
3642 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3643 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3644 u32 ioff;
3645
3646 item = btrfs_item_nr(left, i);
3647
3648 ioff = btrfs_token_item_offset(left, item, &token);
3649 btrfs_set_token_item_offset(left, item,
3650 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3651 &token);
3652 }
3653 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3654
3655 /* fixup right node */
3656 if (push_items > right_nritems)
3657 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3658 right_nritems);
3659
3660 if (push_items < right_nritems) {
3661 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3662 leaf_data_end(root, right);
3663 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3664 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3665 btrfs_leaf_data(right) +
3666 leaf_data_end(root, right), push_space);
3667
3668 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3669 btrfs_item_nr_offset(push_items),
3670 (btrfs_header_nritems(right) - push_items) *
3671 sizeof(struct btrfs_item));
3672 }
3673 right_nritems -= push_items;
3674 btrfs_set_header_nritems(right, right_nritems);
3675 push_space = BTRFS_LEAF_DATA_SIZE(root);
3676 for (i = 0; i < right_nritems; i++) {
3677 item = btrfs_item_nr(right, i);
3678
3679 push_space = push_space - btrfs_token_item_size(right,
3680 item, &token);
3681 btrfs_set_token_item_offset(right, item, push_space, &token);
3682 }
3683
3684 btrfs_mark_buffer_dirty(left);
3685 if (right_nritems)
3686 btrfs_mark_buffer_dirty(right);
3687 else
3688 clean_tree_block(trans, root, right);
3689
3690 btrfs_item_key(right, &disk_key, 0);
3691 fixup_low_keys(trans, root, path, &disk_key, 1);
3692
3693 /* then fixup the leaf pointer in the path */
3694 if (path->slots[0] < push_items) {
3695 path->slots[0] += old_left_nritems;
3696 btrfs_tree_unlock(path->nodes[0]);
3697 free_extent_buffer(path->nodes[0]);
3698 path->nodes[0] = left;
3699 path->slots[1] -= 1;
3700 } else {
3701 btrfs_tree_unlock(left);
3702 free_extent_buffer(left);
3703 path->slots[0] -= push_items;
3704 }
3705 BUG_ON(path->slots[0] < 0);
3706 return ret;
3707 out:
3708 btrfs_tree_unlock(left);
3709 free_extent_buffer(left);
3710 return ret;
3711 }
3712
3713 /*
3714 * push some data in the path leaf to the left, trying to free up at
3715 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3716 *
3717 * max_slot can put a limit on how far into the leaf we'll push items. The
3718 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3719 * items
3720 */
3721 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3722 *root, struct btrfs_path *path, int min_data_size,
3723 int data_size, int empty, u32 max_slot)
3724 {
3725 struct extent_buffer *right = path->nodes[0];
3726 struct extent_buffer *left;
3727 int slot;
3728 int free_space;
3729 u32 right_nritems;
3730 int ret = 0;
3731
3732 slot = path->slots[1];
3733 if (slot == 0)
3734 return 1;
3735 if (!path->nodes[1])
3736 return 1;
3737
3738 right_nritems = btrfs_header_nritems(right);
3739 if (right_nritems == 0)
3740 return 1;
3741
3742 btrfs_assert_tree_locked(path->nodes[1]);
3743
3744 left = read_node_slot(root, path->nodes[1], slot - 1);
3745 if (left == NULL)
3746 return 1;
3747
3748 btrfs_tree_lock(left);
3749 btrfs_set_lock_blocking(left);
3750
3751 free_space = btrfs_leaf_free_space(root, left);
3752 if (free_space < data_size) {
3753 ret = 1;
3754 goto out;
3755 }
3756
3757 /* cow and double check */
3758 ret = btrfs_cow_block(trans, root, left,
3759 path->nodes[1], slot - 1, &left);
3760 if (ret) {
3761 /* we hit -ENOSPC, but it isn't fatal here */
3762 if (ret == -ENOSPC)
3763 ret = 1;
3764 goto out;
3765 }
3766
3767 free_space = btrfs_leaf_free_space(root, left);
3768 if (free_space < data_size) {
3769 ret = 1;
3770 goto out;
3771 }
3772
3773 return __push_leaf_left(trans, root, path, min_data_size,
3774 empty, left, free_space, right_nritems,
3775 max_slot);
3776 out:
3777 btrfs_tree_unlock(left);
3778 free_extent_buffer(left);
3779 return ret;
3780 }
3781
3782 /*
3783 * split the path's leaf in two, making sure there is at least data_size
3784 * available for the resulting leaf level of the path.
3785 */
3786 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root,
3788 struct btrfs_path *path,
3789 struct extent_buffer *l,
3790 struct extent_buffer *right,
3791 int slot, int mid, int nritems)
3792 {
3793 int data_copy_size;
3794 int rt_data_off;
3795 int i;
3796 struct btrfs_disk_key disk_key;
3797 struct btrfs_map_token token;
3798
3799 btrfs_init_map_token(&token);
3800
3801 nritems = nritems - mid;
3802 btrfs_set_header_nritems(right, nritems);
3803 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3804
3805 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3806 btrfs_item_nr_offset(mid),
3807 nritems * sizeof(struct btrfs_item));
3808
3809 copy_extent_buffer(right, l,
3810 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3811 data_copy_size, btrfs_leaf_data(l) +
3812 leaf_data_end(root, l), data_copy_size);
3813
3814 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3815 btrfs_item_end_nr(l, mid);
3816
3817 for (i = 0; i < nritems; i++) {
3818 struct btrfs_item *item = btrfs_item_nr(right, i);
3819 u32 ioff;
3820
3821 ioff = btrfs_token_item_offset(right, item, &token);
3822 btrfs_set_token_item_offset(right, item,
3823 ioff + rt_data_off, &token);
3824 }
3825
3826 btrfs_set_header_nritems(l, mid);
3827 btrfs_item_key(right, &disk_key, 0);
3828 insert_ptr(trans, root, path, &disk_key, right->start,
3829 path->slots[1] + 1, 1);
3830
3831 btrfs_mark_buffer_dirty(right);
3832 btrfs_mark_buffer_dirty(l);
3833 BUG_ON(path->slots[0] != slot);
3834
3835 if (mid <= slot) {
3836 btrfs_tree_unlock(path->nodes[0]);
3837 free_extent_buffer(path->nodes[0]);
3838 path->nodes[0] = right;
3839 path->slots[0] -= mid;
3840 path->slots[1] += 1;
3841 } else {
3842 btrfs_tree_unlock(right);
3843 free_extent_buffer(right);
3844 }
3845
3846 BUG_ON(path->slots[0] < 0);
3847 }
3848
3849 /*
3850 * double splits happen when we need to insert a big item in the middle
3851 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3852 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3853 * A B C
3854 *
3855 * We avoid this by trying to push the items on either side of our target
3856 * into the adjacent leaves. If all goes well we can avoid the double split
3857 * completely.
3858 */
3859 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root,
3861 struct btrfs_path *path,
3862 int data_size)
3863 {
3864 int ret;
3865 int progress = 0;
3866 int slot;
3867 u32 nritems;
3868
3869 slot = path->slots[0];
3870
3871 /*
3872 * try to push all the items after our slot into the
3873 * right leaf
3874 */
3875 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3876 if (ret < 0)
3877 return ret;
3878
3879 if (ret == 0)
3880 progress++;
3881
3882 nritems = btrfs_header_nritems(path->nodes[0]);
3883 /*
3884 * our goal is to get our slot at the start or end of a leaf. If
3885 * we've done so we're done
3886 */
3887 if (path->slots[0] == 0 || path->slots[0] == nritems)
3888 return 0;
3889
3890 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3891 return 0;
3892
3893 /* try to push all the items before our slot into the next leaf */
3894 slot = path->slots[0];
3895 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3896 if (ret < 0)
3897 return ret;
3898
3899 if (ret == 0)
3900 progress++;
3901
3902 if (progress)
3903 return 0;
3904 return 1;
3905 }
3906
3907 /*
3908 * split the path's leaf in two, making sure there is at least data_size
3909 * available for the resulting leaf level of the path.
3910 *
3911 * returns 0 if all went well and < 0 on failure.
3912 */
3913 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *root,
3915 struct btrfs_key *ins_key,
3916 struct btrfs_path *path, int data_size,
3917 int extend)
3918 {
3919 struct btrfs_disk_key disk_key;
3920 struct extent_buffer *l;
3921 u32 nritems;
3922 int mid;
3923 int slot;
3924 struct extent_buffer *right;
3925 int ret = 0;
3926 int wret;
3927 int split;
3928 int num_doubles = 0;
3929 int tried_avoid_double = 0;
3930
3931 l = path->nodes[0];
3932 slot = path->slots[0];
3933 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3934 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3935 return -EOVERFLOW;
3936
3937 /* first try to make some room by pushing left and right */
3938 if (data_size) {
3939 wret = push_leaf_right(trans, root, path, data_size,
3940 data_size, 0, 0);
3941 if (wret < 0)
3942 return wret;
3943 if (wret) {
3944 wret = push_leaf_left(trans, root, path, data_size,
3945 data_size, 0, (u32)-1);
3946 if (wret < 0)
3947 return wret;
3948 }
3949 l = path->nodes[0];
3950
3951 /* did the pushes work? */
3952 if (btrfs_leaf_free_space(root, l) >= data_size)
3953 return 0;
3954 }
3955
3956 if (!path->nodes[1]) {
3957 ret = insert_new_root(trans, root, path, 1, 1);
3958 if (ret)
3959 return ret;
3960 }
3961 again:
3962 split = 1;
3963 l = path->nodes[0];
3964 slot = path->slots[0];
3965 nritems = btrfs_header_nritems(l);
3966 mid = (nritems + 1) / 2;
3967
3968 if (mid <= slot) {
3969 if (nritems == 1 ||
3970 leaf_space_used(l, mid, nritems - mid) + data_size >
3971 BTRFS_LEAF_DATA_SIZE(root)) {
3972 if (slot >= nritems) {
3973 split = 0;
3974 } else {
3975 mid = slot;
3976 if (mid != nritems &&
3977 leaf_space_used(l, mid, nritems - mid) +
3978 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3979 if (data_size && !tried_avoid_double)
3980 goto push_for_double;
3981 split = 2;
3982 }
3983 }
3984 }
3985 } else {
3986 if (leaf_space_used(l, 0, mid) + data_size >
3987 BTRFS_LEAF_DATA_SIZE(root)) {
3988 if (!extend && data_size && slot == 0) {
3989 split = 0;
3990 } else if ((extend || !data_size) && slot == 0) {
3991 mid = 1;
3992 } else {
3993 mid = slot;
3994 if (mid != nritems &&
3995 leaf_space_used(l, mid, nritems - mid) +
3996 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3997 if (data_size && !tried_avoid_double)
3998 goto push_for_double;
3999 split = 2 ;
4000 }
4001 }
4002 }
4003 }
4004
4005 if (split == 0)
4006 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4007 else
4008 btrfs_item_key(l, &disk_key, mid);
4009
4010 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4011 root->root_key.objectid,
4012 &disk_key, 0, l->start, 0);
4013 if (IS_ERR(right))
4014 return PTR_ERR(right);
4015
4016 root_add_used(root, root->leafsize);
4017
4018 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4019 btrfs_set_header_bytenr(right, right->start);
4020 btrfs_set_header_generation(right, trans->transid);
4021 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4022 btrfs_set_header_owner(right, root->root_key.objectid);
4023 btrfs_set_header_level(right, 0);
4024 write_extent_buffer(right, root->fs_info->fsid,
4025 (unsigned long)btrfs_header_fsid(right),
4026 BTRFS_FSID_SIZE);
4027
4028 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4029 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4030 BTRFS_UUID_SIZE);
4031
4032 if (split == 0) {
4033 if (mid <= slot) {
4034 btrfs_set_header_nritems(right, 0);
4035 insert_ptr(trans, root, path, &disk_key, right->start,
4036 path->slots[1] + 1, 1);
4037 btrfs_tree_unlock(path->nodes[0]);
4038 free_extent_buffer(path->nodes[0]);
4039 path->nodes[0] = right;
4040 path->slots[0] = 0;
4041 path->slots[1] += 1;
4042 } else {
4043 btrfs_set_header_nritems(right, 0);
4044 insert_ptr(trans, root, path, &disk_key, right->start,
4045 path->slots[1], 1);
4046 btrfs_tree_unlock(path->nodes[0]);
4047 free_extent_buffer(path->nodes[0]);
4048 path->nodes[0] = right;
4049 path->slots[0] = 0;
4050 if (path->slots[1] == 0)
4051 fixup_low_keys(trans, root, path,
4052 &disk_key, 1);
4053 }
4054 btrfs_mark_buffer_dirty(right);
4055 return ret;
4056 }
4057
4058 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4059
4060 if (split == 2) {
4061 BUG_ON(num_doubles != 0);
4062 num_doubles++;
4063 goto again;
4064 }
4065
4066 return 0;
4067
4068 push_for_double:
4069 push_for_double_split(trans, root, path, data_size);
4070 tried_avoid_double = 1;
4071 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4072 return 0;
4073 goto again;
4074 }
4075
4076 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4077 struct btrfs_root *root,
4078 struct btrfs_path *path, int ins_len)
4079 {
4080 struct btrfs_key key;
4081 struct extent_buffer *leaf;
4082 struct btrfs_file_extent_item *fi;
4083 u64 extent_len = 0;
4084 u32 item_size;
4085 int ret;
4086
4087 leaf = path->nodes[0];
4088 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4089
4090 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4091 key.type != BTRFS_EXTENT_CSUM_KEY);
4092
4093 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4094 return 0;
4095
4096 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4097 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4098 fi = btrfs_item_ptr(leaf, path->slots[0],
4099 struct btrfs_file_extent_item);
4100 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4101 }
4102 btrfs_release_path(path);
4103
4104 path->keep_locks = 1;
4105 path->search_for_split = 1;
4106 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4107 path->search_for_split = 0;
4108 if (ret < 0)
4109 goto err;
4110
4111 ret = -EAGAIN;
4112 leaf = path->nodes[0];
4113 /* if our item isn't there or got smaller, return now */
4114 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4115 goto err;
4116
4117 /* the leaf has changed, it now has room. return now */
4118 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4119 goto err;
4120
4121 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4122 fi = btrfs_item_ptr(leaf, path->slots[0],
4123 struct btrfs_file_extent_item);
4124 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4125 goto err;
4126 }
4127
4128 btrfs_set_path_blocking(path);
4129 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4130 if (ret)
4131 goto err;
4132
4133 path->keep_locks = 0;
4134 btrfs_unlock_up_safe(path, 1);
4135 return 0;
4136 err:
4137 path->keep_locks = 0;
4138 return ret;
4139 }
4140
4141 static noinline int split_item(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4143 struct btrfs_path *path,
4144 struct btrfs_key *new_key,
4145 unsigned long split_offset)
4146 {
4147 struct extent_buffer *leaf;
4148 struct btrfs_item *item;
4149 struct btrfs_item *new_item;
4150 int slot;
4151 char *buf;
4152 u32 nritems;
4153 u32 item_size;
4154 u32 orig_offset;
4155 struct btrfs_disk_key disk_key;
4156
4157 leaf = path->nodes[0];
4158 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4159
4160 btrfs_set_path_blocking(path);
4161
4162 item = btrfs_item_nr(leaf, path->slots[0]);
4163 orig_offset = btrfs_item_offset(leaf, item);
4164 item_size = btrfs_item_size(leaf, item);
4165
4166 buf = kmalloc(item_size, GFP_NOFS);
4167 if (!buf)
4168 return -ENOMEM;
4169
4170 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4171 path->slots[0]), item_size);
4172
4173 slot = path->slots[0] + 1;
4174 nritems = btrfs_header_nritems(leaf);
4175 if (slot != nritems) {
4176 /* shift the items */
4177 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4178 btrfs_item_nr_offset(slot),
4179 (nritems - slot) * sizeof(struct btrfs_item));
4180 }
4181
4182 btrfs_cpu_key_to_disk(&disk_key, new_key);
4183 btrfs_set_item_key(leaf, &disk_key, slot);
4184
4185 new_item = btrfs_item_nr(leaf, slot);
4186
4187 btrfs_set_item_offset(leaf, new_item, orig_offset);
4188 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4189
4190 btrfs_set_item_offset(leaf, item,
4191 orig_offset + item_size - split_offset);
4192 btrfs_set_item_size(leaf, item, split_offset);
4193
4194 btrfs_set_header_nritems(leaf, nritems + 1);
4195
4196 /* write the data for the start of the original item */
4197 write_extent_buffer(leaf, buf,
4198 btrfs_item_ptr_offset(leaf, path->slots[0]),
4199 split_offset);
4200
4201 /* write the data for the new item */
4202 write_extent_buffer(leaf, buf + split_offset,
4203 btrfs_item_ptr_offset(leaf, slot),
4204 item_size - split_offset);
4205 btrfs_mark_buffer_dirty(leaf);
4206
4207 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4208 kfree(buf);
4209 return 0;
4210 }
4211
4212 /*
4213 * This function splits a single item into two items,
4214 * giving 'new_key' to the new item and splitting the
4215 * old one at split_offset (from the start of the item).
4216 *
4217 * The path may be released by this operation. After
4218 * the split, the path is pointing to the old item. The
4219 * new item is going to be in the same node as the old one.
4220 *
4221 * Note, the item being split must be smaller enough to live alone on
4222 * a tree block with room for one extra struct btrfs_item
4223 *
4224 * This allows us to split the item in place, keeping a lock on the
4225 * leaf the entire time.
4226 */
4227 int btrfs_split_item(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 struct btrfs_path *path,
4230 struct btrfs_key *new_key,
4231 unsigned long split_offset)
4232 {
4233 int ret;
4234 ret = setup_leaf_for_split(trans, root, path,
4235 sizeof(struct btrfs_item));
4236 if (ret)
4237 return ret;
4238
4239 ret = split_item(trans, root, path, new_key, split_offset);
4240 return ret;
4241 }
4242
4243 /*
4244 * This function duplicate a item, giving 'new_key' to the new item.
4245 * It guarantees both items live in the same tree leaf and the new item
4246 * is contiguous with the original item.
4247 *
4248 * This allows us to split file extent in place, keeping a lock on the
4249 * leaf the entire time.
4250 */
4251 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4252 struct btrfs_root *root,
4253 struct btrfs_path *path,
4254 struct btrfs_key *new_key)
4255 {
4256 struct extent_buffer *leaf;
4257 int ret;
4258 u32 item_size;
4259
4260 leaf = path->nodes[0];
4261 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4262 ret = setup_leaf_for_split(trans, root, path,
4263 item_size + sizeof(struct btrfs_item));
4264 if (ret)
4265 return ret;
4266
4267 path->slots[0]++;
4268 setup_items_for_insert(trans, root, path, new_key, &item_size,
4269 item_size, item_size +
4270 sizeof(struct btrfs_item), 1);
4271 leaf = path->nodes[0];
4272 memcpy_extent_buffer(leaf,
4273 btrfs_item_ptr_offset(leaf, path->slots[0]),
4274 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4275 item_size);
4276 return 0;
4277 }
4278
4279 /*
4280 * make the item pointed to by the path smaller. new_size indicates
4281 * how small to make it, and from_end tells us if we just chop bytes
4282 * off the end of the item or if we shift the item to chop bytes off
4283 * the front.
4284 */
4285 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4286 struct btrfs_root *root,
4287 struct btrfs_path *path,
4288 u32 new_size, int from_end)
4289 {
4290 int slot;
4291 struct extent_buffer *leaf;
4292 struct btrfs_item *item;
4293 u32 nritems;
4294 unsigned int data_end;
4295 unsigned int old_data_start;
4296 unsigned int old_size;
4297 unsigned int size_diff;
4298 int i;
4299 struct btrfs_map_token token;
4300
4301 btrfs_init_map_token(&token);
4302
4303 leaf = path->nodes[0];
4304 slot = path->slots[0];
4305
4306 old_size = btrfs_item_size_nr(leaf, slot);
4307 if (old_size == new_size)
4308 return;
4309
4310 nritems = btrfs_header_nritems(leaf);
4311 data_end = leaf_data_end(root, leaf);
4312
4313 old_data_start = btrfs_item_offset_nr(leaf, slot);
4314
4315 size_diff = old_size - new_size;
4316
4317 BUG_ON(slot < 0);
4318 BUG_ON(slot >= nritems);
4319
4320 /*
4321 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4322 */
4323 /* first correct the data pointers */
4324 for (i = slot; i < nritems; i++) {
4325 u32 ioff;
4326 item = btrfs_item_nr(leaf, i);
4327
4328 ioff = btrfs_token_item_offset(leaf, item, &token);
4329 btrfs_set_token_item_offset(leaf, item,
4330 ioff + size_diff, &token);
4331 }
4332
4333 /* shift the data */
4334 if (from_end) {
4335 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4336 data_end + size_diff, btrfs_leaf_data(leaf) +
4337 data_end, old_data_start + new_size - data_end);
4338 } else {
4339 struct btrfs_disk_key disk_key;
4340 u64 offset;
4341
4342 btrfs_item_key(leaf, &disk_key, slot);
4343
4344 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4345 unsigned long ptr;
4346 struct btrfs_file_extent_item *fi;
4347
4348 fi = btrfs_item_ptr(leaf, slot,
4349 struct btrfs_file_extent_item);
4350 fi = (struct btrfs_file_extent_item *)(
4351 (unsigned long)fi - size_diff);
4352
4353 if (btrfs_file_extent_type(leaf, fi) ==
4354 BTRFS_FILE_EXTENT_INLINE) {
4355 ptr = btrfs_item_ptr_offset(leaf, slot);
4356 memmove_extent_buffer(leaf, ptr,
4357 (unsigned long)fi,
4358 offsetof(struct btrfs_file_extent_item,
4359 disk_bytenr));
4360 }
4361 }
4362
4363 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4364 data_end + size_diff, btrfs_leaf_data(leaf) +
4365 data_end, old_data_start - data_end);
4366
4367 offset = btrfs_disk_key_offset(&disk_key);
4368 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4369 btrfs_set_item_key(leaf, &disk_key, slot);
4370 if (slot == 0)
4371 fixup_low_keys(trans, root, path, &disk_key, 1);
4372 }
4373
4374 item = btrfs_item_nr(leaf, slot);
4375 btrfs_set_item_size(leaf, item, new_size);
4376 btrfs_mark_buffer_dirty(leaf);
4377
4378 if (btrfs_leaf_free_space(root, leaf) < 0) {
4379 btrfs_print_leaf(root, leaf);
4380 BUG();
4381 }
4382 }
4383
4384 /*
4385 * make the item pointed to by the path bigger, data_size is the new size.
4386 */
4387 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4388 struct btrfs_root *root, struct btrfs_path *path,
4389 u32 data_size)
4390 {
4391 int slot;
4392 struct extent_buffer *leaf;
4393 struct btrfs_item *item;
4394 u32 nritems;
4395 unsigned int data_end;
4396 unsigned int old_data;
4397 unsigned int old_size;
4398 int i;
4399 struct btrfs_map_token token;
4400
4401 btrfs_init_map_token(&token);
4402
4403 leaf = path->nodes[0];
4404
4405 nritems = btrfs_header_nritems(leaf);
4406 data_end = leaf_data_end(root, leaf);
4407
4408 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4409 btrfs_print_leaf(root, leaf);
4410 BUG();
4411 }
4412 slot = path->slots[0];
4413 old_data = btrfs_item_end_nr(leaf, slot);
4414
4415 BUG_ON(slot < 0);
4416 if (slot >= nritems) {
4417 btrfs_print_leaf(root, leaf);
4418 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4419 slot, nritems);
4420 BUG_ON(1);
4421 }
4422
4423 /*
4424 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4425 */
4426 /* first correct the data pointers */
4427 for (i = slot; i < nritems; i++) {
4428 u32 ioff;
4429 item = btrfs_item_nr(leaf, i);
4430
4431 ioff = btrfs_token_item_offset(leaf, item, &token);
4432 btrfs_set_token_item_offset(leaf, item,
4433 ioff - data_size, &token);
4434 }
4435
4436 /* shift the data */
4437 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4438 data_end - data_size, btrfs_leaf_data(leaf) +
4439 data_end, old_data - data_end);
4440
4441 data_end = old_data;
4442 old_size = btrfs_item_size_nr(leaf, slot);
4443 item = btrfs_item_nr(leaf, slot);
4444 btrfs_set_item_size(leaf, item, old_size + data_size);
4445 btrfs_mark_buffer_dirty(leaf);
4446
4447 if (btrfs_leaf_free_space(root, leaf) < 0) {
4448 btrfs_print_leaf(root, leaf);
4449 BUG();
4450 }
4451 }
4452
4453 /*
4454 * this is a helper for btrfs_insert_empty_items, the main goal here is
4455 * to save stack depth by doing the bulk of the work in a function
4456 * that doesn't call btrfs_search_slot
4457 */
4458 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4459 struct btrfs_root *root, struct btrfs_path *path,
4460 struct btrfs_key *cpu_key, u32 *data_size,
4461 u32 total_data, u32 total_size, int nr)
4462 {
4463 struct btrfs_item *item;
4464 int i;
4465 u32 nritems;
4466 unsigned int data_end;
4467 struct btrfs_disk_key disk_key;
4468 struct extent_buffer *leaf;
4469 int slot;
4470 struct btrfs_map_token token;
4471
4472 btrfs_init_map_token(&token);
4473
4474 leaf = path->nodes[0];
4475 slot = path->slots[0];
4476
4477 nritems = btrfs_header_nritems(leaf);
4478 data_end = leaf_data_end(root, leaf);
4479
4480 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4481 btrfs_print_leaf(root, leaf);
4482 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4483 total_size, btrfs_leaf_free_space(root, leaf));
4484 BUG();
4485 }
4486
4487 if (slot != nritems) {
4488 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4489
4490 if (old_data < data_end) {
4491 btrfs_print_leaf(root, leaf);
4492 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4493 slot, old_data, data_end);
4494 BUG_ON(1);
4495 }
4496 /*
4497 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4498 */
4499 /* first correct the data pointers */
4500 for (i = slot; i < nritems; i++) {
4501 u32 ioff;
4502
4503 item = btrfs_item_nr(leaf, i);
4504 ioff = btrfs_token_item_offset(leaf, item, &token);
4505 btrfs_set_token_item_offset(leaf, item,
4506 ioff - total_data, &token);
4507 }
4508 /* shift the items */
4509 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4510 btrfs_item_nr_offset(slot),
4511 (nritems - slot) * sizeof(struct btrfs_item));
4512
4513 /* shift the data */
4514 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4515 data_end - total_data, btrfs_leaf_data(leaf) +
4516 data_end, old_data - data_end);
4517 data_end = old_data;
4518 }
4519
4520 /* setup the item for the new data */
4521 for (i = 0; i < nr; i++) {
4522 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4523 btrfs_set_item_key(leaf, &disk_key, slot + i);
4524 item = btrfs_item_nr(leaf, slot + i);
4525 btrfs_set_token_item_offset(leaf, item,
4526 data_end - data_size[i], &token);
4527 data_end -= data_size[i];
4528 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4529 }
4530
4531 btrfs_set_header_nritems(leaf, nritems + nr);
4532
4533 if (slot == 0) {
4534 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4535 fixup_low_keys(trans, root, path, &disk_key, 1);
4536 }
4537 btrfs_unlock_up_safe(path, 1);
4538 btrfs_mark_buffer_dirty(leaf);
4539
4540 if (btrfs_leaf_free_space(root, leaf) < 0) {
4541 btrfs_print_leaf(root, leaf);
4542 BUG();
4543 }
4544 }
4545
4546 /*
4547 * Given a key and some data, insert items into the tree.
4548 * This does all the path init required, making room in the tree if needed.
4549 */
4550 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4551 struct btrfs_root *root,
4552 struct btrfs_path *path,
4553 struct btrfs_key *cpu_key, u32 *data_size,
4554 int nr)
4555 {
4556 int ret = 0;
4557 int slot;
4558 int i;
4559 u32 total_size = 0;
4560 u32 total_data = 0;
4561
4562 for (i = 0; i < nr; i++)
4563 total_data += data_size[i];
4564
4565 total_size = total_data + (nr * sizeof(struct btrfs_item));
4566 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4567 if (ret == 0)
4568 return -EEXIST;
4569 if (ret < 0)
4570 return ret;
4571
4572 slot = path->slots[0];
4573 BUG_ON(slot < 0);
4574
4575 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4576 total_data, total_size, nr);
4577 return 0;
4578 }
4579
4580 /*
4581 * Given a key and some data, insert an item into the tree.
4582 * This does all the path init required, making room in the tree if needed.
4583 */
4584 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4585 *root, struct btrfs_key *cpu_key, void *data, u32
4586 data_size)
4587 {
4588 int ret = 0;
4589 struct btrfs_path *path;
4590 struct extent_buffer *leaf;
4591 unsigned long ptr;
4592
4593 path = btrfs_alloc_path();
4594 if (!path)
4595 return -ENOMEM;
4596 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4597 if (!ret) {
4598 leaf = path->nodes[0];
4599 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4600 write_extent_buffer(leaf, data, ptr, data_size);
4601 btrfs_mark_buffer_dirty(leaf);
4602 }
4603 btrfs_free_path(path);
4604 return ret;
4605 }
4606
4607 /*
4608 * delete the pointer from a given node.
4609 *
4610 * the tree should have been previously balanced so the deletion does not
4611 * empty a node.
4612 */
4613 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4614 struct btrfs_path *path, int level, int slot)
4615 {
4616 struct extent_buffer *parent = path->nodes[level];
4617 u32 nritems;
4618 int ret;
4619
4620 nritems = btrfs_header_nritems(parent);
4621 if (slot != nritems - 1) {
4622 if (level)
4623 tree_mod_log_eb_move(root->fs_info, parent, slot,
4624 slot + 1, nritems - slot - 1);
4625 memmove_extent_buffer(parent,
4626 btrfs_node_key_ptr_offset(slot),
4627 btrfs_node_key_ptr_offset(slot + 1),
4628 sizeof(struct btrfs_key_ptr) *
4629 (nritems - slot - 1));
4630 } else if (level) {
4631 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4632 MOD_LOG_KEY_REMOVE);
4633 BUG_ON(ret < 0);
4634 }
4635
4636 nritems--;
4637 btrfs_set_header_nritems(parent, nritems);
4638 if (nritems == 0 && parent == root->node) {
4639 BUG_ON(btrfs_header_level(root->node) != 1);
4640 /* just turn the root into a leaf and break */
4641 btrfs_set_header_level(root->node, 0);
4642 } else if (slot == 0) {
4643 struct btrfs_disk_key disk_key;
4644
4645 btrfs_node_key(parent, &disk_key, 0);
4646 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4647 }
4648 btrfs_mark_buffer_dirty(parent);
4649 }
4650
4651 /*
4652 * a helper function to delete the leaf pointed to by path->slots[1] and
4653 * path->nodes[1].
4654 *
4655 * This deletes the pointer in path->nodes[1] and frees the leaf
4656 * block extent. zero is returned if it all worked out, < 0 otherwise.
4657 *
4658 * The path must have already been setup for deleting the leaf, including
4659 * all the proper balancing. path->nodes[1] must be locked.
4660 */
4661 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4662 struct btrfs_root *root,
4663 struct btrfs_path *path,
4664 struct extent_buffer *leaf)
4665 {
4666 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4667 del_ptr(trans, root, path, 1, path->slots[1]);
4668
4669 /*
4670 * btrfs_free_extent is expensive, we want to make sure we
4671 * aren't holding any locks when we call it
4672 */
4673 btrfs_unlock_up_safe(path, 0);
4674
4675 root_sub_used(root, leaf->len);
4676
4677 extent_buffer_get(leaf);
4678 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4679 free_extent_buffer_stale(leaf);
4680 }
4681 /*
4682 * delete the item at the leaf level in path. If that empties
4683 * the leaf, remove it from the tree
4684 */
4685 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4686 struct btrfs_path *path, int slot, int nr)
4687 {
4688 struct extent_buffer *leaf;
4689 struct btrfs_item *item;
4690 int last_off;
4691 int dsize = 0;
4692 int ret = 0;
4693 int wret;
4694 int i;
4695 u32 nritems;
4696 struct btrfs_map_token token;
4697
4698 btrfs_init_map_token(&token);
4699
4700 leaf = path->nodes[0];
4701 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4702
4703 for (i = 0; i < nr; i++)
4704 dsize += btrfs_item_size_nr(leaf, slot + i);
4705
4706 nritems = btrfs_header_nritems(leaf);
4707
4708 if (slot + nr != nritems) {
4709 int data_end = leaf_data_end(root, leaf);
4710
4711 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4712 data_end + dsize,
4713 btrfs_leaf_data(leaf) + data_end,
4714 last_off - data_end);
4715
4716 for (i = slot + nr; i < nritems; i++) {
4717 u32 ioff;
4718
4719 item = btrfs_item_nr(leaf, i);
4720 ioff = btrfs_token_item_offset(leaf, item, &token);
4721 btrfs_set_token_item_offset(leaf, item,
4722 ioff + dsize, &token);
4723 }
4724
4725 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4726 btrfs_item_nr_offset(slot + nr),
4727 sizeof(struct btrfs_item) *
4728 (nritems - slot - nr));
4729 }
4730 btrfs_set_header_nritems(leaf, nritems - nr);
4731 nritems -= nr;
4732
4733 /* delete the leaf if we've emptied it */
4734 if (nritems == 0) {
4735 if (leaf == root->node) {
4736 btrfs_set_header_level(leaf, 0);
4737 } else {
4738 btrfs_set_path_blocking(path);
4739 clean_tree_block(trans, root, leaf);
4740 btrfs_del_leaf(trans, root, path, leaf);
4741 }
4742 } else {
4743 int used = leaf_space_used(leaf, 0, nritems);
4744 if (slot == 0) {
4745 struct btrfs_disk_key disk_key;
4746
4747 btrfs_item_key(leaf, &disk_key, 0);
4748 fixup_low_keys(trans, root, path, &disk_key, 1);
4749 }
4750
4751 /* delete the leaf if it is mostly empty */
4752 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4753 /* push_leaf_left fixes the path.
4754 * make sure the path still points to our leaf
4755 * for possible call to del_ptr below
4756 */
4757 slot = path->slots[1];
4758 extent_buffer_get(leaf);
4759
4760 btrfs_set_path_blocking(path);
4761 wret = push_leaf_left(trans, root, path, 1, 1,
4762 1, (u32)-1);
4763 if (wret < 0 && wret != -ENOSPC)
4764 ret = wret;
4765
4766 if (path->nodes[0] == leaf &&
4767 btrfs_header_nritems(leaf)) {
4768 wret = push_leaf_right(trans, root, path, 1,
4769 1, 1, 0);
4770 if (wret < 0 && wret != -ENOSPC)
4771 ret = wret;
4772 }
4773
4774 if (btrfs_header_nritems(leaf) == 0) {
4775 path->slots[1] = slot;
4776 btrfs_del_leaf(trans, root, path, leaf);
4777 free_extent_buffer(leaf);
4778 ret = 0;
4779 } else {
4780 /* if we're still in the path, make sure
4781 * we're dirty. Otherwise, one of the
4782 * push_leaf functions must have already
4783 * dirtied this buffer
4784 */
4785 if (path->nodes[0] == leaf)
4786 btrfs_mark_buffer_dirty(leaf);
4787 free_extent_buffer(leaf);
4788 }
4789 } else {
4790 btrfs_mark_buffer_dirty(leaf);
4791 }
4792 }
4793 return ret;
4794 }
4795
4796 /*
4797 * search the tree again to find a leaf with lesser keys
4798 * returns 0 if it found something or 1 if there are no lesser leaves.
4799 * returns < 0 on io errors.
4800 *
4801 * This may release the path, and so you may lose any locks held at the
4802 * time you call it.
4803 */
4804 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4805 {
4806 struct btrfs_key key;
4807 struct btrfs_disk_key found_key;
4808 int ret;
4809
4810 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4811
4812 if (key.offset > 0)
4813 key.offset--;
4814 else if (key.type > 0)
4815 key.type--;
4816 else if (key.objectid > 0)
4817 key.objectid--;
4818 else
4819 return 1;
4820
4821 btrfs_release_path(path);
4822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4823 if (ret < 0)
4824 return ret;
4825 btrfs_item_key(path->nodes[0], &found_key, 0);
4826 ret = comp_keys(&found_key, &key);
4827 if (ret < 0)
4828 return 0;
4829 return 1;
4830 }
4831
4832 /*
4833 * A helper function to walk down the tree starting at min_key, and looking
4834 * for nodes or leaves that are have a minimum transaction id.
4835 * This is used by the btree defrag code, and tree logging
4836 *
4837 * This does not cow, but it does stuff the starting key it finds back
4838 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4839 * key and get a writable path.
4840 *
4841 * This does lock as it descends, and path->keep_locks should be set
4842 * to 1 by the caller.
4843 *
4844 * This honors path->lowest_level to prevent descent past a given level
4845 * of the tree.
4846 *
4847 * min_trans indicates the oldest transaction that you are interested
4848 * in walking through. Any nodes or leaves older than min_trans are
4849 * skipped over (without reading them).
4850 *
4851 * returns zero if something useful was found, < 0 on error and 1 if there
4852 * was nothing in the tree that matched the search criteria.
4853 */
4854 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4855 struct btrfs_key *max_key,
4856 struct btrfs_path *path,
4857 u64 min_trans)
4858 {
4859 struct extent_buffer *cur;
4860 struct btrfs_key found_key;
4861 int slot;
4862 int sret;
4863 u32 nritems;
4864 int level;
4865 int ret = 1;
4866
4867 WARN_ON(!path->keep_locks);
4868 again:
4869 cur = btrfs_read_lock_root_node(root);
4870 level = btrfs_header_level(cur);
4871 WARN_ON(path->nodes[level]);
4872 path->nodes[level] = cur;
4873 path->locks[level] = BTRFS_READ_LOCK;
4874
4875 if (btrfs_header_generation(cur) < min_trans) {
4876 ret = 1;
4877 goto out;
4878 }
4879 while (1) {
4880 nritems = btrfs_header_nritems(cur);
4881 level = btrfs_header_level(cur);
4882 sret = bin_search(cur, min_key, level, &slot);
4883
4884 /* at the lowest level, we're done, setup the path and exit */
4885 if (level == path->lowest_level) {
4886 if (slot >= nritems)
4887 goto find_next_key;
4888 ret = 0;
4889 path->slots[level] = slot;
4890 btrfs_item_key_to_cpu(cur, &found_key, slot);
4891 goto out;
4892 }
4893 if (sret && slot > 0)
4894 slot--;
4895 /*
4896 * check this node pointer against the min_trans parameters.
4897 * If it is too old, old, skip to the next one.
4898 */
4899 while (slot < nritems) {
4900 u64 blockptr;
4901 u64 gen;
4902
4903 blockptr = btrfs_node_blockptr(cur, slot);
4904 gen = btrfs_node_ptr_generation(cur, slot);
4905 if (gen < min_trans) {
4906 slot++;
4907 continue;
4908 }
4909 break;
4910 }
4911 find_next_key:
4912 /*
4913 * we didn't find a candidate key in this node, walk forward
4914 * and find another one
4915 */
4916 if (slot >= nritems) {
4917 path->slots[level] = slot;
4918 btrfs_set_path_blocking(path);
4919 sret = btrfs_find_next_key(root, path, min_key, level,
4920 min_trans);
4921 if (sret == 0) {
4922 btrfs_release_path(path);
4923 goto again;
4924 } else {
4925 goto out;
4926 }
4927 }
4928 /* save our key for returning back */
4929 btrfs_node_key_to_cpu(cur, &found_key, slot);
4930 path->slots[level] = slot;
4931 if (level == path->lowest_level) {
4932 ret = 0;
4933 unlock_up(path, level, 1, 0, NULL);
4934 goto out;
4935 }
4936 btrfs_set_path_blocking(path);
4937 cur = read_node_slot(root, cur, slot);
4938 BUG_ON(!cur); /* -ENOMEM */
4939
4940 btrfs_tree_read_lock(cur);
4941
4942 path->locks[level - 1] = BTRFS_READ_LOCK;
4943 path->nodes[level - 1] = cur;
4944 unlock_up(path, level, 1, 0, NULL);
4945 btrfs_clear_path_blocking(path, NULL, 0);
4946 }
4947 out:
4948 if (ret == 0)
4949 memcpy(min_key, &found_key, sizeof(found_key));
4950 btrfs_set_path_blocking(path);
4951 return ret;
4952 }
4953
4954 static void tree_move_down(struct btrfs_root *root,
4955 struct btrfs_path *path,
4956 int *level, int root_level)
4957 {
4958 BUG_ON(*level == 0);
4959 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4960 path->slots[*level]);
4961 path->slots[*level - 1] = 0;
4962 (*level)--;
4963 }
4964
4965 static int tree_move_next_or_upnext(struct btrfs_root *root,
4966 struct btrfs_path *path,
4967 int *level, int root_level)
4968 {
4969 int ret = 0;
4970 int nritems;
4971 nritems = btrfs_header_nritems(path->nodes[*level]);
4972
4973 path->slots[*level]++;
4974
4975 while (path->slots[*level] >= nritems) {
4976 if (*level == root_level)
4977 return -1;
4978
4979 /* move upnext */
4980 path->slots[*level] = 0;
4981 free_extent_buffer(path->nodes[*level]);
4982 path->nodes[*level] = NULL;
4983 (*level)++;
4984 path->slots[*level]++;
4985
4986 nritems = btrfs_header_nritems(path->nodes[*level]);
4987 ret = 1;
4988 }
4989 return ret;
4990 }
4991
4992 /*
4993 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4994 * or down.
4995 */
4996 static int tree_advance(struct btrfs_root *root,
4997 struct btrfs_path *path,
4998 int *level, int root_level,
4999 int allow_down,
5000 struct btrfs_key *key)
5001 {
5002 int ret;
5003
5004 if (*level == 0 || !allow_down) {
5005 ret = tree_move_next_or_upnext(root, path, level, root_level);
5006 } else {
5007 tree_move_down(root, path, level, root_level);
5008 ret = 0;
5009 }
5010 if (ret >= 0) {
5011 if (*level == 0)
5012 btrfs_item_key_to_cpu(path->nodes[*level], key,
5013 path->slots[*level]);
5014 else
5015 btrfs_node_key_to_cpu(path->nodes[*level], key,
5016 path->slots[*level]);
5017 }
5018 return ret;
5019 }
5020
5021 static int tree_compare_item(struct btrfs_root *left_root,
5022 struct btrfs_path *left_path,
5023 struct btrfs_path *right_path,
5024 char *tmp_buf)
5025 {
5026 int cmp;
5027 int len1, len2;
5028 unsigned long off1, off2;
5029
5030 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5031 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5032 if (len1 != len2)
5033 return 1;
5034
5035 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5036 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5037 right_path->slots[0]);
5038
5039 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5040
5041 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5042 if (cmp)
5043 return 1;
5044 return 0;
5045 }
5046
5047 #define ADVANCE 1
5048 #define ADVANCE_ONLY_NEXT -1
5049
5050 /*
5051 * This function compares two trees and calls the provided callback for
5052 * every changed/new/deleted item it finds.
5053 * If shared tree blocks are encountered, whole subtrees are skipped, making
5054 * the compare pretty fast on snapshotted subvolumes.
5055 *
5056 * This currently works on commit roots only. As commit roots are read only,
5057 * we don't do any locking. The commit roots are protected with transactions.
5058 * Transactions are ended and rejoined when a commit is tried in between.
5059 *
5060 * This function checks for modifications done to the trees while comparing.
5061 * If it detects a change, it aborts immediately.
5062 */
5063 int btrfs_compare_trees(struct btrfs_root *left_root,
5064 struct btrfs_root *right_root,
5065 btrfs_changed_cb_t changed_cb, void *ctx)
5066 {
5067 int ret;
5068 int cmp;
5069 struct btrfs_trans_handle *trans = NULL;
5070 struct btrfs_path *left_path = NULL;
5071 struct btrfs_path *right_path = NULL;
5072 struct btrfs_key left_key;
5073 struct btrfs_key right_key;
5074 char *tmp_buf = NULL;
5075 int left_root_level;
5076 int right_root_level;
5077 int left_level;
5078 int right_level;
5079 int left_end_reached;
5080 int right_end_reached;
5081 int advance_left;
5082 int advance_right;
5083 u64 left_blockptr;
5084 u64 right_blockptr;
5085 u64 left_start_ctransid;
5086 u64 right_start_ctransid;
5087 u64 ctransid;
5088
5089 left_path = btrfs_alloc_path();
5090 if (!left_path) {
5091 ret = -ENOMEM;
5092 goto out;
5093 }
5094 right_path = btrfs_alloc_path();
5095 if (!right_path) {
5096 ret = -ENOMEM;
5097 goto out;
5098 }
5099
5100 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5101 if (!tmp_buf) {
5102 ret = -ENOMEM;
5103 goto out;
5104 }
5105
5106 left_path->search_commit_root = 1;
5107 left_path->skip_locking = 1;
5108 right_path->search_commit_root = 1;
5109 right_path->skip_locking = 1;
5110
5111 spin_lock(&left_root->root_item_lock);
5112 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5113 spin_unlock(&left_root->root_item_lock);
5114
5115 spin_lock(&right_root->root_item_lock);
5116 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5117 spin_unlock(&right_root->root_item_lock);
5118
5119 trans = btrfs_join_transaction(left_root);
5120 if (IS_ERR(trans)) {
5121 ret = PTR_ERR(trans);
5122 trans = NULL;
5123 goto out;
5124 }
5125
5126 /*
5127 * Strategy: Go to the first items of both trees. Then do
5128 *
5129 * If both trees are at level 0
5130 * Compare keys of current items
5131 * If left < right treat left item as new, advance left tree
5132 * and repeat
5133 * If left > right treat right item as deleted, advance right tree
5134 * and repeat
5135 * If left == right do deep compare of items, treat as changed if
5136 * needed, advance both trees and repeat
5137 * If both trees are at the same level but not at level 0
5138 * Compare keys of current nodes/leafs
5139 * If left < right advance left tree and repeat
5140 * If left > right advance right tree and repeat
5141 * If left == right compare blockptrs of the next nodes/leafs
5142 * If they match advance both trees but stay at the same level
5143 * and repeat
5144 * If they don't match advance both trees while allowing to go
5145 * deeper and repeat
5146 * If tree levels are different
5147 * Advance the tree that needs it and repeat
5148 *
5149 * Advancing a tree means:
5150 * If we are at level 0, try to go to the next slot. If that's not
5151 * possible, go one level up and repeat. Stop when we found a level
5152 * where we could go to the next slot. We may at this point be on a
5153 * node or a leaf.
5154 *
5155 * If we are not at level 0 and not on shared tree blocks, go one
5156 * level deeper.
5157 *
5158 * If we are not at level 0 and on shared tree blocks, go one slot to
5159 * the right if possible or go up and right.
5160 */
5161
5162 left_level = btrfs_header_level(left_root->commit_root);
5163 left_root_level = left_level;
5164 left_path->nodes[left_level] = left_root->commit_root;
5165 extent_buffer_get(left_path->nodes[left_level]);
5166
5167 right_level = btrfs_header_level(right_root->commit_root);
5168 right_root_level = right_level;
5169 right_path->nodes[right_level] = right_root->commit_root;
5170 extent_buffer_get(right_path->nodes[right_level]);
5171
5172 if (left_level == 0)
5173 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5174 &left_key, left_path->slots[left_level]);
5175 else
5176 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5177 &left_key, left_path->slots[left_level]);
5178 if (right_level == 0)
5179 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5180 &right_key, right_path->slots[right_level]);
5181 else
5182 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5183 &right_key, right_path->slots[right_level]);
5184
5185 left_end_reached = right_end_reached = 0;
5186 advance_left = advance_right = 0;
5187
5188 while (1) {
5189 /*
5190 * We need to make sure the transaction does not get committed
5191 * while we do anything on commit roots. This means, we need to
5192 * join and leave transactions for every item that we process.
5193 */
5194 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5195 btrfs_release_path(left_path);
5196 btrfs_release_path(right_path);
5197
5198 ret = btrfs_end_transaction(trans, left_root);
5199 trans = NULL;
5200 if (ret < 0)
5201 goto out;
5202 }
5203 /* now rejoin the transaction */
5204 if (!trans) {
5205 trans = btrfs_join_transaction(left_root);
5206 if (IS_ERR(trans)) {
5207 ret = PTR_ERR(trans);
5208 trans = NULL;
5209 goto out;
5210 }
5211
5212 spin_lock(&left_root->root_item_lock);
5213 ctransid = btrfs_root_ctransid(&left_root->root_item);
5214 spin_unlock(&left_root->root_item_lock);
5215 if (ctransid != left_start_ctransid)
5216 left_start_ctransid = 0;
5217
5218 spin_lock(&right_root->root_item_lock);
5219 ctransid = btrfs_root_ctransid(&right_root->root_item);
5220 spin_unlock(&right_root->root_item_lock);
5221 if (ctransid != right_start_ctransid)
5222 right_start_ctransid = 0;
5223
5224 if (!left_start_ctransid || !right_start_ctransid) {
5225 WARN(1, KERN_WARNING
5226 "btrfs: btrfs_compare_tree detected "
5227 "a change in one of the trees while "
5228 "iterating. This is probably a "
5229 "bug.\n");
5230 ret = -EIO;
5231 goto out;
5232 }
5233
5234 /*
5235 * the commit root may have changed, so start again
5236 * where we stopped
5237 */
5238 left_path->lowest_level = left_level;
5239 right_path->lowest_level = right_level;
5240 ret = btrfs_search_slot(NULL, left_root,
5241 &left_key, left_path, 0, 0);
5242 if (ret < 0)
5243 goto out;
5244 ret = btrfs_search_slot(NULL, right_root,
5245 &right_key, right_path, 0, 0);
5246 if (ret < 0)
5247 goto out;
5248 }
5249
5250 if (advance_left && !left_end_reached) {
5251 ret = tree_advance(left_root, left_path, &left_level,
5252 left_root_level,
5253 advance_left != ADVANCE_ONLY_NEXT,
5254 &left_key);
5255 if (ret < 0)
5256 left_end_reached = ADVANCE;
5257 advance_left = 0;
5258 }
5259 if (advance_right && !right_end_reached) {
5260 ret = tree_advance(right_root, right_path, &right_level,
5261 right_root_level,
5262 advance_right != ADVANCE_ONLY_NEXT,
5263 &right_key);
5264 if (ret < 0)
5265 right_end_reached = ADVANCE;
5266 advance_right = 0;
5267 }
5268
5269 if (left_end_reached && right_end_reached) {
5270 ret = 0;
5271 goto out;
5272 } else if (left_end_reached) {
5273 if (right_level == 0) {
5274 ret = changed_cb(left_root, right_root,
5275 left_path, right_path,
5276 &right_key,
5277 BTRFS_COMPARE_TREE_DELETED,
5278 ctx);
5279 if (ret < 0)
5280 goto out;
5281 }
5282 advance_right = ADVANCE;
5283 continue;
5284 } else if (right_end_reached) {
5285 if (left_level == 0) {
5286 ret = changed_cb(left_root, right_root,
5287 left_path, right_path,
5288 &left_key,
5289 BTRFS_COMPARE_TREE_NEW,
5290 ctx);
5291 if (ret < 0)
5292 goto out;
5293 }
5294 advance_left = ADVANCE;
5295 continue;
5296 }
5297
5298 if (left_level == 0 && right_level == 0) {
5299 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5300 if (cmp < 0) {
5301 ret = changed_cb(left_root, right_root,
5302 left_path, right_path,
5303 &left_key,
5304 BTRFS_COMPARE_TREE_NEW,
5305 ctx);
5306 if (ret < 0)
5307 goto out;
5308 advance_left = ADVANCE;
5309 } else if (cmp > 0) {
5310 ret = changed_cb(left_root, right_root,
5311 left_path, right_path,
5312 &right_key,
5313 BTRFS_COMPARE_TREE_DELETED,
5314 ctx);
5315 if (ret < 0)
5316 goto out;
5317 advance_right = ADVANCE;
5318 } else {
5319 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5320 ret = tree_compare_item(left_root, left_path,
5321 right_path, tmp_buf);
5322 if (ret) {
5323 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5324 ret = changed_cb(left_root, right_root,
5325 left_path, right_path,
5326 &left_key,
5327 BTRFS_COMPARE_TREE_CHANGED,
5328 ctx);
5329 if (ret < 0)
5330 goto out;
5331 }
5332 advance_left = ADVANCE;
5333 advance_right = ADVANCE;
5334 }
5335 } else if (left_level == right_level) {
5336 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5337 if (cmp < 0) {
5338 advance_left = ADVANCE;
5339 } else if (cmp > 0) {
5340 advance_right = ADVANCE;
5341 } else {
5342 left_blockptr = btrfs_node_blockptr(
5343 left_path->nodes[left_level],
5344 left_path->slots[left_level]);
5345 right_blockptr = btrfs_node_blockptr(
5346 right_path->nodes[right_level],
5347 right_path->slots[right_level]);
5348 if (left_blockptr == right_blockptr) {
5349 /*
5350 * As we're on a shared block, don't
5351 * allow to go deeper.
5352 */
5353 advance_left = ADVANCE_ONLY_NEXT;
5354 advance_right = ADVANCE_ONLY_NEXT;
5355 } else {
5356 advance_left = ADVANCE;
5357 advance_right = ADVANCE;
5358 }
5359 }
5360 } else if (left_level < right_level) {
5361 advance_right = ADVANCE;
5362 } else {
5363 advance_left = ADVANCE;
5364 }
5365 }
5366
5367 out:
5368 btrfs_free_path(left_path);
5369 btrfs_free_path(right_path);
5370 kfree(tmp_buf);
5371
5372 if (trans) {
5373 if (!ret)
5374 ret = btrfs_end_transaction(trans, left_root);
5375 else
5376 btrfs_end_transaction(trans, left_root);
5377 }
5378
5379 return ret;
5380 }
5381
5382 /*
5383 * this is similar to btrfs_next_leaf, but does not try to preserve
5384 * and fixup the path. It looks for and returns the next key in the
5385 * tree based on the current path and the min_trans parameters.
5386 *
5387 * 0 is returned if another key is found, < 0 if there are any errors
5388 * and 1 is returned if there are no higher keys in the tree
5389 *
5390 * path->keep_locks should be set to 1 on the search made before
5391 * calling this function.
5392 */
5393 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5394 struct btrfs_key *key, int level, u64 min_trans)
5395 {
5396 int slot;
5397 struct extent_buffer *c;
5398
5399 WARN_ON(!path->keep_locks);
5400 while (level < BTRFS_MAX_LEVEL) {
5401 if (!path->nodes[level])
5402 return 1;
5403
5404 slot = path->slots[level] + 1;
5405 c = path->nodes[level];
5406 next:
5407 if (slot >= btrfs_header_nritems(c)) {
5408 int ret;
5409 int orig_lowest;
5410 struct btrfs_key cur_key;
5411 if (level + 1 >= BTRFS_MAX_LEVEL ||
5412 !path->nodes[level + 1])
5413 return 1;
5414
5415 if (path->locks[level + 1]) {
5416 level++;
5417 continue;
5418 }
5419
5420 slot = btrfs_header_nritems(c) - 1;
5421 if (level == 0)
5422 btrfs_item_key_to_cpu(c, &cur_key, slot);
5423 else
5424 btrfs_node_key_to_cpu(c, &cur_key, slot);
5425
5426 orig_lowest = path->lowest_level;
5427 btrfs_release_path(path);
5428 path->lowest_level = level;
5429 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5430 0, 0);
5431 path->lowest_level = orig_lowest;
5432 if (ret < 0)
5433 return ret;
5434
5435 c = path->nodes[level];
5436 slot = path->slots[level];
5437 if (ret == 0)
5438 slot++;
5439 goto next;
5440 }
5441
5442 if (level == 0)
5443 btrfs_item_key_to_cpu(c, key, slot);
5444 else {
5445 u64 gen = btrfs_node_ptr_generation(c, slot);
5446
5447 if (gen < min_trans) {
5448 slot++;
5449 goto next;
5450 }
5451 btrfs_node_key_to_cpu(c, key, slot);
5452 }
5453 return 0;
5454 }
5455 return 1;
5456 }
5457
5458 /*
5459 * search the tree again to find a leaf with greater keys
5460 * returns 0 if it found something or 1 if there are no greater leaves.
5461 * returns < 0 on io errors.
5462 */
5463 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5464 {
5465 return btrfs_next_old_leaf(root, path, 0);
5466 }
5467
5468 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5469 u64 time_seq)
5470 {
5471 int slot;
5472 int level;
5473 struct extent_buffer *c;
5474 struct extent_buffer *next;
5475 struct btrfs_key key;
5476 u32 nritems;
5477 int ret;
5478 int old_spinning = path->leave_spinning;
5479 int next_rw_lock = 0;
5480
5481 nritems = btrfs_header_nritems(path->nodes[0]);
5482 if (nritems == 0)
5483 return 1;
5484
5485 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5486 again:
5487 level = 1;
5488 next = NULL;
5489 next_rw_lock = 0;
5490 btrfs_release_path(path);
5491
5492 path->keep_locks = 1;
5493 path->leave_spinning = 1;
5494
5495 if (time_seq)
5496 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5497 else
5498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5499 path->keep_locks = 0;
5500
5501 if (ret < 0)
5502 return ret;
5503
5504 nritems = btrfs_header_nritems(path->nodes[0]);
5505 /*
5506 * by releasing the path above we dropped all our locks. A balance
5507 * could have added more items next to the key that used to be
5508 * at the very end of the block. So, check again here and
5509 * advance the path if there are now more items available.
5510 */
5511 if (nritems > 0 && path->slots[0] < nritems - 1) {
5512 if (ret == 0)
5513 path->slots[0]++;
5514 ret = 0;
5515 goto done;
5516 }
5517
5518 while (level < BTRFS_MAX_LEVEL) {
5519 if (!path->nodes[level]) {
5520 ret = 1;
5521 goto done;
5522 }
5523
5524 slot = path->slots[level] + 1;
5525 c = path->nodes[level];
5526 if (slot >= btrfs_header_nritems(c)) {
5527 level++;
5528 if (level == BTRFS_MAX_LEVEL) {
5529 ret = 1;
5530 goto done;
5531 }
5532 continue;
5533 }
5534
5535 if (next) {
5536 btrfs_tree_unlock_rw(next, next_rw_lock);
5537 free_extent_buffer(next);
5538 }
5539
5540 next = c;
5541 next_rw_lock = path->locks[level];
5542 ret = read_block_for_search(NULL, root, path, &next, level,
5543 slot, &key, 0);
5544 if (ret == -EAGAIN)
5545 goto again;
5546
5547 if (ret < 0) {
5548 btrfs_release_path(path);
5549 goto done;
5550 }
5551
5552 if (!path->skip_locking) {
5553 ret = btrfs_try_tree_read_lock(next);
5554 if (!ret && time_seq) {
5555 /*
5556 * If we don't get the lock, we may be racing
5557 * with push_leaf_left, holding that lock while
5558 * itself waiting for the leaf we've currently
5559 * locked. To solve this situation, we give up
5560 * on our lock and cycle.
5561 */
5562 free_extent_buffer(next);
5563 btrfs_release_path(path);
5564 cond_resched();
5565 goto again;
5566 }
5567 if (!ret) {
5568 btrfs_set_path_blocking(path);
5569 btrfs_tree_read_lock(next);
5570 btrfs_clear_path_blocking(path, next,
5571 BTRFS_READ_LOCK);
5572 }
5573 next_rw_lock = BTRFS_READ_LOCK;
5574 }
5575 break;
5576 }
5577 path->slots[level] = slot;
5578 while (1) {
5579 level--;
5580 c = path->nodes[level];
5581 if (path->locks[level])
5582 btrfs_tree_unlock_rw(c, path->locks[level]);
5583
5584 free_extent_buffer(c);
5585 path->nodes[level] = next;
5586 path->slots[level] = 0;
5587 if (!path->skip_locking)
5588 path->locks[level] = next_rw_lock;
5589 if (!level)
5590 break;
5591
5592 ret = read_block_for_search(NULL, root, path, &next, level,
5593 0, &key, 0);
5594 if (ret == -EAGAIN)
5595 goto again;
5596
5597 if (ret < 0) {
5598 btrfs_release_path(path);
5599 goto done;
5600 }
5601
5602 if (!path->skip_locking) {
5603 ret = btrfs_try_tree_read_lock(next);
5604 if (!ret) {
5605 btrfs_set_path_blocking(path);
5606 btrfs_tree_read_lock(next);
5607 btrfs_clear_path_blocking(path, next,
5608 BTRFS_READ_LOCK);
5609 }
5610 next_rw_lock = BTRFS_READ_LOCK;
5611 }
5612 }
5613 ret = 0;
5614 done:
5615 unlock_up(path, 0, 1, 0, NULL);
5616 path->leave_spinning = old_spinning;
5617 if (!old_spinning)
5618 btrfs_set_path_blocking(path);
5619
5620 return ret;
5621 }
5622
5623 /*
5624 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5625 * searching until it gets past min_objectid or finds an item of 'type'
5626 *
5627 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5628 */
5629 int btrfs_previous_item(struct btrfs_root *root,
5630 struct btrfs_path *path, u64 min_objectid,
5631 int type)
5632 {
5633 struct btrfs_key found_key;
5634 struct extent_buffer *leaf;
5635 u32 nritems;
5636 int ret;
5637
5638 while (1) {
5639 if (path->slots[0] == 0) {
5640 btrfs_set_path_blocking(path);
5641 ret = btrfs_prev_leaf(root, path);
5642 if (ret != 0)
5643 return ret;
5644 } else {
5645 path->slots[0]--;
5646 }
5647 leaf = path->nodes[0];
5648 nritems = btrfs_header_nritems(leaf);
5649 if (nritems == 0)
5650 return 1;
5651 if (path->slots[0] == nritems)
5652 path->slots[0]--;
5653
5654 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5655 if (found_key.objectid < min_objectid)
5656 break;
5657 if (found_key.type == type)
5658 return 0;
5659 if (found_key.objectid == min_objectid &&
5660 found_key.type < type)
5661 break;
5662 }
5663 return 1;
5664 }
This page took 0.150192 seconds and 6 git commands to generate.