Merge tag 'mac80211-for-davem-2015-05-28' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136 }
137
138 /*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
219
220 spin_lock(&root->fs_info->trans_lock);
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
229 }
230 spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
237 */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243 struct extent_buffer *cow;
244 int ret = 0;
245 int level;
246 struct btrfs_disk_key disk_key;
247
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
252
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
258
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
261 if (IS_ERR(cow))
262 return PTR_ERR(cow);
263
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
274
275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 BTRFS_FSID_SIZE);
277
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284 if (ret)
285 return ret;
286
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
290 }
291
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
305 };
306
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
310 };
311
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 u64 seq;
316 enum mod_log_op op;
317
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
320
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
323
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
327
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
330
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337 read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342 read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347 write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352 write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356 * Pull a new tree mod seq number for our operation.
357 */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 tree_mod_log_write_lock(fs_info);
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 if (!elem->seq) {
377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379 }
380 spin_unlock(&fs_info->tree_mod_seq_lock);
381 tree_mod_log_write_unlock(fs_info);
382
383 return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
388 {
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
396
397 if (!seq_putting)
398 return;
399
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
402 elem->seq = 0;
403
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 if (cur_elem->seq < min_seq) {
406 if (seq_putting > cur_elem->seq) {
407 /*
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
410 */
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
413 }
414 min_seq = cur_elem->seq;
415 }
416 }
417 spin_unlock(&fs_info->tree_mod_seq_lock);
418
419 /*
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
422 */
423 tree_mod_log_write_lock(fs_info);
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
428 if (tm->seq > min_seq)
429 continue;
430 rb_erase(node, tm_root);
431 kfree(tm);
432 }
433 tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437 * key order of the log:
438 * index -> sequence
439 *
440 * the index is the shifted logical of the *new* root node for root replace
441 * operations, or the shifted logical of the affected block for all other
442 * operations.
443 *
444 * Note: must be called with write lock (tree_mod_log_write_lock).
445 */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
453
454 BUG_ON(!tm);
455
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
478 }
479
480 /*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
500 return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506 {
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
519 {
520 struct tree_mod_elem *tm;
521
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
525
526 tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
535
536 return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
543 {
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
563
564 return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
571 {
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
577
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
580
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582 if (!tm_list)
583 return -ENOMEM;
584
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
591 tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
619 }
620
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
626
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
638
639 return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
646 {
647 int i, j;
648 int ret;
649
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
658 }
659
660 return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
668 {
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
674
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
677
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
695
696 tm = kzalloc(sizeof(*tm), flags);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
701
702 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737 {
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742 u64 index = start >> PAGE_CACHE_SHIFT;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->index < index) {
750 node = node->rb_left;
751 } else if (cur->index > index) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944 {
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949 }
950
951 /*
952 * check if the tree block can be shared by multiple trees
953 */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956 {
957 /*
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982 {
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_std_error(root->fs_info, ret);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret)
1163 return ret;
1164 }
1165
1166 if (buf == root->node) {
1167 WARN_ON(parent && parent != buf);
1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170 parent_start = buf->start;
1171 else
1172 parent_start = 0;
1173
1174 extent_buffer_get(cow);
1175 tree_mod_log_set_root_pointer(root, cow, 1);
1176 rcu_assign_pointer(root->node, cow);
1177
1178 btrfs_free_tree_block(trans, root, buf, parent_start,
1179 last_ref);
1180 free_extent_buffer(buf);
1181 add_root_to_dirty_list(root);
1182 } else {
1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184 parent_start = parent->start;
1185 else
1186 parent_start = 0;
1187
1188 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 btrfs_set_node_blockptr(parent, parent_slot,
1192 cow->start);
1193 btrfs_set_node_ptr_generation(parent, parent_slot,
1194 trans->transid);
1195 btrfs_mark_buffer_dirty(parent);
1196 if (last_ref) {
1197 ret = tree_mod_log_free_eb(root->fs_info, buf);
1198 if (ret) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 return ret;
1201 }
1202 }
1203 btrfs_free_tree_block(trans, root, buf, parent_start,
1204 last_ref);
1205 }
1206 if (unlock_orig)
1207 btrfs_tree_unlock(buf);
1208 free_extent_buffer_stale(buf);
1209 btrfs_mark_buffer_dirty(cow);
1210 *cow_ret = cow;
1211 return 0;
1212 }
1213
1214 /*
1215 * returns the logical address of the oldest predecessor of the given root.
1216 * entries older than time_seq are ignored.
1217 */
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220 struct extent_buffer *eb_root, u64 time_seq)
1221 {
1222 struct tree_mod_elem *tm;
1223 struct tree_mod_elem *found = NULL;
1224 u64 root_logical = eb_root->start;
1225 int looped = 0;
1226
1227 if (!time_seq)
1228 return NULL;
1229
1230 /*
1231 * the very last operation that's logged for a root is the replacement
1232 * operation (if it is replaced at all). this has the index of the *new*
1233 * root, making it the very first operation that's logged for this root.
1234 */
1235 while (1) {
1236 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237 time_seq);
1238 if (!looped && !tm)
1239 return NULL;
1240 /*
1241 * if there are no tree operation for the oldest root, we simply
1242 * return it. this should only happen if that (old) root is at
1243 * level 0.
1244 */
1245 if (!tm)
1246 break;
1247
1248 /*
1249 * if there's an operation that's not a root replacement, we
1250 * found the oldest version of our root. normally, we'll find a
1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1252 */
1253 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 break;
1255
1256 found = tm;
1257 root_logical = tm->old_root.logical;
1258 looped = 1;
1259 }
1260
1261 /* if there's no old root to return, return what we found instead */
1262 if (!found)
1263 found = tm;
1264
1265 return found;
1266 }
1267
1268 /*
1269 * tm is a pointer to the first operation to rewind within eb. then, all
1270 * previous operations will be rewinded (until we reach something older than
1271 * time_seq).
1272 */
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275 u64 time_seq, struct tree_mod_elem *first_tm)
1276 {
1277 u32 n;
1278 struct rb_node *next;
1279 struct tree_mod_elem *tm = first_tm;
1280 unsigned long o_dst;
1281 unsigned long o_src;
1282 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1283
1284 n = btrfs_header_nritems(eb);
1285 tree_mod_log_read_lock(fs_info);
1286 while (tm && tm->seq >= time_seq) {
1287 /*
1288 * all the operations are recorded with the operator used for
1289 * the modification. as we're going backwards, we do the
1290 * opposite of each operation here.
1291 */
1292 switch (tm->op) {
1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294 BUG_ON(tm->slot < n);
1295 /* Fallthrough */
1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297 case MOD_LOG_KEY_REMOVE:
1298 btrfs_set_node_key(eb, &tm->key, tm->slot);
1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300 btrfs_set_node_ptr_generation(eb, tm->slot,
1301 tm->generation);
1302 n++;
1303 break;
1304 case MOD_LOG_KEY_REPLACE:
1305 BUG_ON(tm->slot >= n);
1306 btrfs_set_node_key(eb, &tm->key, tm->slot);
1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308 btrfs_set_node_ptr_generation(eb, tm->slot,
1309 tm->generation);
1310 break;
1311 case MOD_LOG_KEY_ADD:
1312 /* if a move operation is needed it's in the log */
1313 n--;
1314 break;
1315 case MOD_LOG_MOVE_KEYS:
1316 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318 memmove_extent_buffer(eb, o_dst, o_src,
1319 tm->move.nr_items * p_size);
1320 break;
1321 case MOD_LOG_ROOT_REPLACE:
1322 /*
1323 * this operation is special. for roots, this must be
1324 * handled explicitly before rewinding.
1325 * for non-roots, this operation may exist if the node
1326 * was a root: root A -> child B; then A gets empty and
1327 * B is promoted to the new root. in the mod log, we'll
1328 * have a root-replace operation for B, a tree block
1329 * that is no root. we simply ignore that operation.
1330 */
1331 break;
1332 }
1333 next = rb_next(&tm->node);
1334 if (!next)
1335 break;
1336 tm = container_of(next, struct tree_mod_elem, node);
1337 if (tm->index != first_tm->index)
1338 break;
1339 }
1340 tree_mod_log_read_unlock(fs_info);
1341 btrfs_set_header_nritems(eb, n);
1342 }
1343
1344 /*
1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346 * is returned. If rewind operations happen, a fresh buffer is returned. The
1347 * returned buffer is always read-locked. If the returned buffer is not the
1348 * input buffer, the lock on the input buffer is released and the input buffer
1349 * is freed (its refcount is decremented).
1350 */
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353 struct extent_buffer *eb, u64 time_seq)
1354 {
1355 struct extent_buffer *eb_rewin;
1356 struct tree_mod_elem *tm;
1357
1358 if (!time_seq)
1359 return eb;
1360
1361 if (btrfs_header_level(eb) == 0)
1362 return eb;
1363
1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 if (!tm)
1366 return eb;
1367
1368 btrfs_set_path_blocking(path);
1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1370
1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372 BUG_ON(tm->slot != 0);
1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374 if (!eb_rewin) {
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1377 return NULL;
1378 }
1379 btrfs_set_header_bytenr(eb_rewin, eb->start);
1380 btrfs_set_header_backref_rev(eb_rewin,
1381 btrfs_header_backref_rev(eb));
1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384 } else {
1385 eb_rewin = btrfs_clone_extent_buffer(eb);
1386 if (!eb_rewin) {
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389 return NULL;
1390 }
1391 }
1392
1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394 btrfs_tree_read_unlock_blocking(eb);
1395 free_extent_buffer(eb);
1396
1397 extent_buffer_get(eb_rewin);
1398 btrfs_tree_read_lock(eb_rewin);
1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400 WARN_ON(btrfs_header_nritems(eb_rewin) >
1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1402
1403 return eb_rewin;
1404 }
1405
1406 /*
1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408 * value. If there are no changes, the current root->root_node is returned. If
1409 * anything changed in between, there's a fresh buffer allocated on which the
1410 * rewind operations are done. In any case, the returned buffer is read locked.
1411 * Returns NULL on error (with no locks held).
1412 */
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1415 {
1416 struct tree_mod_elem *tm;
1417 struct extent_buffer *eb = NULL;
1418 struct extent_buffer *eb_root;
1419 struct extent_buffer *old;
1420 struct tree_mod_root *old_root = NULL;
1421 u64 old_generation = 0;
1422 u64 logical;
1423
1424 eb_root = btrfs_read_lock_root_node(root);
1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426 if (!tm)
1427 return eb_root;
1428
1429 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430 old_root = &tm->old_root;
1431 old_generation = tm->generation;
1432 logical = old_root->logical;
1433 } else {
1434 logical = eb_root->start;
1435 }
1436
1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439 btrfs_tree_read_unlock(eb_root);
1440 free_extent_buffer(eb_root);
1441 old = read_tree_block(root, logical, 0);
1442 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1443 free_extent_buffer(old);
1444 btrfs_warn(root->fs_info,
1445 "failed to read tree block %llu from get_old_root", logical);
1446 } else {
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
1449 }
1450 } else if (old_root) {
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
1453 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1454 } else {
1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 eb = btrfs_clone_extent_buffer(eb_root);
1457 btrfs_tree_read_unlock_blocking(eb_root);
1458 free_extent_buffer(eb_root);
1459 }
1460
1461 if (!eb)
1462 return NULL;
1463 extent_buffer_get(eb);
1464 btrfs_tree_read_lock(eb);
1465 if (old_root) {
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
1471 }
1472 if (tm)
1473 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1474 else
1475 WARN_ON(btrfs_header_level(eb) != 0);
1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1477
1478 return eb;
1479 }
1480
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1482 {
1483 struct tree_mod_elem *tm;
1484 int level;
1485 struct extent_buffer *eb_root = btrfs_root_node(root);
1486
1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1490 } else {
1491 level = btrfs_header_level(eb_root);
1492 }
1493 free_extent_buffer(eb_root);
1494
1495 return level;
1496 }
1497
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1501 {
1502 if (btrfs_test_is_dummy_root(root))
1503 return 0;
1504
1505 /* ensure we can see the force_cow */
1506 smp_rmb();
1507
1508 /*
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1513 *
1514 * What is forced COW:
1515 * when we create snapshot during commiting the transaction,
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1518 */
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1524 return 0;
1525 return 1;
1526 }
1527
1528 /*
1529 * cows a single block, see __btrfs_cow_block for the real work.
1530 * This version of it has extra checks so that a block isn't cow'd more than
1531 * once per transaction, as long as it hasn't been written yet
1532 */
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
1536 struct extent_buffer **cow_ret)
1537 {
1538 u64 search_start;
1539 int ret;
1540
1541 if (trans->transaction != root->fs_info->running_transaction)
1542 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543 trans->transid,
1544 root->fs_info->running_transaction->transid);
1545
1546 if (trans->transid != root->fs_info->generation)
1547 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1548 trans->transid, root->fs_info->generation);
1549
1550 if (!should_cow_block(trans, root, buf)) {
1551 *cow_ret = buf;
1552 return 0;
1553 }
1554
1555 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1556
1557 if (parent)
1558 btrfs_set_lock_blocking(parent);
1559 btrfs_set_lock_blocking(buf);
1560
1561 ret = __btrfs_cow_block(trans, root, buf, parent,
1562 parent_slot, cow_ret, search_start, 0);
1563
1564 trace_btrfs_cow_block(root, buf, *cow_ret);
1565
1566 return ret;
1567 }
1568
1569 /*
1570 * helper function for defrag to decide if two blocks pointed to by a
1571 * node are actually close by
1572 */
1573 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1574 {
1575 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1576 return 1;
1577 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1578 return 1;
1579 return 0;
1580 }
1581
1582 /*
1583 * compare two keys in a memcmp fashion
1584 */
1585 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1586 {
1587 struct btrfs_key k1;
1588
1589 btrfs_disk_key_to_cpu(&k1, disk);
1590
1591 return btrfs_comp_cpu_keys(&k1, k2);
1592 }
1593
1594 /*
1595 * same as comp_keys only with two btrfs_key's
1596 */
1597 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1598 {
1599 if (k1->objectid > k2->objectid)
1600 return 1;
1601 if (k1->objectid < k2->objectid)
1602 return -1;
1603 if (k1->type > k2->type)
1604 return 1;
1605 if (k1->type < k2->type)
1606 return -1;
1607 if (k1->offset > k2->offset)
1608 return 1;
1609 if (k1->offset < k2->offset)
1610 return -1;
1611 return 0;
1612 }
1613
1614 /*
1615 * this is used by the defrag code to go through all the
1616 * leaves pointed to by a node and reallocate them so that
1617 * disk order is close to key order
1618 */
1619 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root, struct extent_buffer *parent,
1621 int start_slot, u64 *last_ret,
1622 struct btrfs_key *progress)
1623 {
1624 struct extent_buffer *cur;
1625 u64 blocknr;
1626 u64 gen;
1627 u64 search_start = *last_ret;
1628 u64 last_block = 0;
1629 u64 other;
1630 u32 parent_nritems;
1631 int end_slot;
1632 int i;
1633 int err = 0;
1634 int parent_level;
1635 int uptodate;
1636 u32 blocksize;
1637 int progress_passed = 0;
1638 struct btrfs_disk_key disk_key;
1639
1640 parent_level = btrfs_header_level(parent);
1641
1642 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1643 WARN_ON(trans->transid != root->fs_info->generation);
1644
1645 parent_nritems = btrfs_header_nritems(parent);
1646 blocksize = root->nodesize;
1647 end_slot = parent_nritems - 1;
1648
1649 if (parent_nritems <= 1)
1650 return 0;
1651
1652 btrfs_set_lock_blocking(parent);
1653
1654 for (i = start_slot; i <= end_slot; i++) {
1655 int close = 1;
1656
1657 btrfs_node_key(parent, &disk_key, i);
1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 continue;
1660
1661 progress_passed = 1;
1662 blocknr = btrfs_node_blockptr(parent, i);
1663 gen = btrfs_node_ptr_generation(parent, i);
1664 if (last_block == 0)
1665 last_block = blocknr;
1666
1667 if (i > 0) {
1668 other = btrfs_node_blockptr(parent, i - 1);
1669 close = close_blocks(blocknr, other, blocksize);
1670 }
1671 if (!close && i < end_slot) {
1672 other = btrfs_node_blockptr(parent, i + 1);
1673 close = close_blocks(blocknr, other, blocksize);
1674 }
1675 if (close) {
1676 last_block = blocknr;
1677 continue;
1678 }
1679
1680 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1681 if (cur)
1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1683 else
1684 uptodate = 0;
1685 if (!cur || !uptodate) {
1686 if (!cur) {
1687 cur = read_tree_block(root, blocknr, gen);
1688 if (!cur || !extent_buffer_uptodate(cur)) {
1689 free_extent_buffer(cur);
1690 return -EIO;
1691 }
1692 } else if (!uptodate) {
1693 err = btrfs_read_buffer(cur, gen);
1694 if (err) {
1695 free_extent_buffer(cur);
1696 return err;
1697 }
1698 }
1699 }
1700 if (search_start == 0)
1701 search_start = last_block;
1702
1703 btrfs_tree_lock(cur);
1704 btrfs_set_lock_blocking(cur);
1705 err = __btrfs_cow_block(trans, root, cur, parent, i,
1706 &cur, search_start,
1707 min(16 * blocksize,
1708 (end_slot - i) * blocksize));
1709 if (err) {
1710 btrfs_tree_unlock(cur);
1711 free_extent_buffer(cur);
1712 break;
1713 }
1714 search_start = cur->start;
1715 last_block = cur->start;
1716 *last_ret = search_start;
1717 btrfs_tree_unlock(cur);
1718 free_extent_buffer(cur);
1719 }
1720 return err;
1721 }
1722
1723 /*
1724 * The leaf data grows from end-to-front in the node.
1725 * this returns the address of the start of the last item,
1726 * which is the stop of the leaf data stack
1727 */
1728 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1729 struct extent_buffer *leaf)
1730 {
1731 u32 nr = btrfs_header_nritems(leaf);
1732 if (nr == 0)
1733 return BTRFS_LEAF_DATA_SIZE(root);
1734 return btrfs_item_offset_nr(leaf, nr - 1);
1735 }
1736
1737
1738 /*
1739 * search for key in the extent_buffer. The items start at offset p,
1740 * and they are item_size apart. There are 'max' items in p.
1741 *
1742 * the slot in the array is returned via slot, and it points to
1743 * the place where you would insert key if it is not found in
1744 * the array.
1745 *
1746 * slot may point to max if the key is bigger than all of the keys
1747 */
1748 static noinline int generic_bin_search(struct extent_buffer *eb,
1749 unsigned long p,
1750 int item_size, struct btrfs_key *key,
1751 int max, int *slot)
1752 {
1753 int low = 0;
1754 int high = max;
1755 int mid;
1756 int ret;
1757 struct btrfs_disk_key *tmp = NULL;
1758 struct btrfs_disk_key unaligned;
1759 unsigned long offset;
1760 char *kaddr = NULL;
1761 unsigned long map_start = 0;
1762 unsigned long map_len = 0;
1763 int err;
1764
1765 while (low < high) {
1766 mid = (low + high) / 2;
1767 offset = p + mid * item_size;
1768
1769 if (!kaddr || offset < map_start ||
1770 (offset + sizeof(struct btrfs_disk_key)) >
1771 map_start + map_len) {
1772
1773 err = map_private_extent_buffer(eb, offset,
1774 sizeof(struct btrfs_disk_key),
1775 &kaddr, &map_start, &map_len);
1776
1777 if (!err) {
1778 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 map_start);
1780 } else {
1781 read_extent_buffer(eb, &unaligned,
1782 offset, sizeof(unaligned));
1783 tmp = &unaligned;
1784 }
1785
1786 } else {
1787 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788 map_start);
1789 }
1790 ret = comp_keys(tmp, key);
1791
1792 if (ret < 0)
1793 low = mid + 1;
1794 else if (ret > 0)
1795 high = mid;
1796 else {
1797 *slot = mid;
1798 return 0;
1799 }
1800 }
1801 *slot = low;
1802 return 1;
1803 }
1804
1805 /*
1806 * simple bin_search frontend that does the right thing for
1807 * leaves vs nodes
1808 */
1809 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1810 int level, int *slot)
1811 {
1812 if (level == 0)
1813 return generic_bin_search(eb,
1814 offsetof(struct btrfs_leaf, items),
1815 sizeof(struct btrfs_item),
1816 key, btrfs_header_nritems(eb),
1817 slot);
1818 else
1819 return generic_bin_search(eb,
1820 offsetof(struct btrfs_node, ptrs),
1821 sizeof(struct btrfs_key_ptr),
1822 key, btrfs_header_nritems(eb),
1823 slot);
1824 }
1825
1826 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1827 int level, int *slot)
1828 {
1829 return bin_search(eb, key, level, slot);
1830 }
1831
1832 static void root_add_used(struct btrfs_root *root, u32 size)
1833 {
1834 spin_lock(&root->accounting_lock);
1835 btrfs_set_root_used(&root->root_item,
1836 btrfs_root_used(&root->root_item) + size);
1837 spin_unlock(&root->accounting_lock);
1838 }
1839
1840 static void root_sub_used(struct btrfs_root *root, u32 size)
1841 {
1842 spin_lock(&root->accounting_lock);
1843 btrfs_set_root_used(&root->root_item,
1844 btrfs_root_used(&root->root_item) - size);
1845 spin_unlock(&root->accounting_lock);
1846 }
1847
1848 /* given a node and slot number, this reads the blocks it points to. The
1849 * extent buffer is returned with a reference taken (but unlocked).
1850 * NULL is returned on error.
1851 */
1852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1853 struct extent_buffer *parent, int slot)
1854 {
1855 int level = btrfs_header_level(parent);
1856 struct extent_buffer *eb;
1857
1858 if (slot < 0)
1859 return NULL;
1860 if (slot >= btrfs_header_nritems(parent))
1861 return NULL;
1862
1863 BUG_ON(level == 0);
1864
1865 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1866 btrfs_node_ptr_generation(parent, slot));
1867 if (eb && !extent_buffer_uptodate(eb)) {
1868 free_extent_buffer(eb);
1869 eb = NULL;
1870 }
1871
1872 return eb;
1873 }
1874
1875 /*
1876 * node level balancing, used to make sure nodes are in proper order for
1877 * item deletion. We balance from the top down, so we have to make sure
1878 * that a deletion won't leave an node completely empty later on.
1879 */
1880 static noinline int balance_level(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_path *path, int level)
1883 {
1884 struct extent_buffer *right = NULL;
1885 struct extent_buffer *mid;
1886 struct extent_buffer *left = NULL;
1887 struct extent_buffer *parent = NULL;
1888 int ret = 0;
1889 int wret;
1890 int pslot;
1891 int orig_slot = path->slots[level];
1892 u64 orig_ptr;
1893
1894 if (level == 0)
1895 return 0;
1896
1897 mid = path->nodes[level];
1898
1899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1902
1903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1904
1905 if (level < BTRFS_MAX_LEVEL - 1) {
1906 parent = path->nodes[level + 1];
1907 pslot = path->slots[level + 1];
1908 }
1909
1910 /*
1911 * deal with the case where there is only one pointer in the root
1912 * by promoting the node below to a root
1913 */
1914 if (!parent) {
1915 struct extent_buffer *child;
1916
1917 if (btrfs_header_nritems(mid) != 1)
1918 return 0;
1919
1920 /* promote the child to a root */
1921 child = read_node_slot(root, mid, 0);
1922 if (!child) {
1923 ret = -EROFS;
1924 btrfs_std_error(root->fs_info, ret);
1925 goto enospc;
1926 }
1927
1928 btrfs_tree_lock(child);
1929 btrfs_set_lock_blocking(child);
1930 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1931 if (ret) {
1932 btrfs_tree_unlock(child);
1933 free_extent_buffer(child);
1934 goto enospc;
1935 }
1936
1937 tree_mod_log_set_root_pointer(root, child, 1);
1938 rcu_assign_pointer(root->node, child);
1939
1940 add_root_to_dirty_list(root);
1941 btrfs_tree_unlock(child);
1942
1943 path->locks[level] = 0;
1944 path->nodes[level] = NULL;
1945 clean_tree_block(trans, root->fs_info, mid);
1946 btrfs_tree_unlock(mid);
1947 /* once for the path */
1948 free_extent_buffer(mid);
1949
1950 root_sub_used(root, mid->len);
1951 btrfs_free_tree_block(trans, root, mid, 0, 1);
1952 /* once for the root ptr */
1953 free_extent_buffer_stale(mid);
1954 return 0;
1955 }
1956 if (btrfs_header_nritems(mid) >
1957 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1958 return 0;
1959
1960 left = read_node_slot(root, parent, pslot - 1);
1961 if (left) {
1962 btrfs_tree_lock(left);
1963 btrfs_set_lock_blocking(left);
1964 wret = btrfs_cow_block(trans, root, left,
1965 parent, pslot - 1, &left);
1966 if (wret) {
1967 ret = wret;
1968 goto enospc;
1969 }
1970 }
1971 right = read_node_slot(root, parent, pslot + 1);
1972 if (right) {
1973 btrfs_tree_lock(right);
1974 btrfs_set_lock_blocking(right);
1975 wret = btrfs_cow_block(trans, root, right,
1976 parent, pslot + 1, &right);
1977 if (wret) {
1978 ret = wret;
1979 goto enospc;
1980 }
1981 }
1982
1983 /* first, try to make some room in the middle buffer */
1984 if (left) {
1985 orig_slot += btrfs_header_nritems(left);
1986 wret = push_node_left(trans, root, left, mid, 1);
1987 if (wret < 0)
1988 ret = wret;
1989 }
1990
1991 /*
1992 * then try to empty the right most buffer into the middle
1993 */
1994 if (right) {
1995 wret = push_node_left(trans, root, mid, right, 1);
1996 if (wret < 0 && wret != -ENOSPC)
1997 ret = wret;
1998 if (btrfs_header_nritems(right) == 0) {
1999 clean_tree_block(trans, root->fs_info, right);
2000 btrfs_tree_unlock(right);
2001 del_ptr(root, path, level + 1, pslot + 1);
2002 root_sub_used(root, right->len);
2003 btrfs_free_tree_block(trans, root, right, 0, 1);
2004 free_extent_buffer_stale(right);
2005 right = NULL;
2006 } else {
2007 struct btrfs_disk_key right_key;
2008 btrfs_node_key(right, &right_key, 0);
2009 tree_mod_log_set_node_key(root->fs_info, parent,
2010 pslot + 1, 0);
2011 btrfs_set_node_key(parent, &right_key, pslot + 1);
2012 btrfs_mark_buffer_dirty(parent);
2013 }
2014 }
2015 if (btrfs_header_nritems(mid) == 1) {
2016 /*
2017 * we're not allowed to leave a node with one item in the
2018 * tree during a delete. A deletion from lower in the tree
2019 * could try to delete the only pointer in this node.
2020 * So, pull some keys from the left.
2021 * There has to be a left pointer at this point because
2022 * otherwise we would have pulled some pointers from the
2023 * right
2024 */
2025 if (!left) {
2026 ret = -EROFS;
2027 btrfs_std_error(root->fs_info, ret);
2028 goto enospc;
2029 }
2030 wret = balance_node_right(trans, root, mid, left);
2031 if (wret < 0) {
2032 ret = wret;
2033 goto enospc;
2034 }
2035 if (wret == 1) {
2036 wret = push_node_left(trans, root, left, mid, 1);
2037 if (wret < 0)
2038 ret = wret;
2039 }
2040 BUG_ON(wret == 1);
2041 }
2042 if (btrfs_header_nritems(mid) == 0) {
2043 clean_tree_block(trans, root->fs_info, mid);
2044 btrfs_tree_unlock(mid);
2045 del_ptr(root, path, level + 1, pslot);
2046 root_sub_used(root, mid->len);
2047 btrfs_free_tree_block(trans, root, mid, 0, 1);
2048 free_extent_buffer_stale(mid);
2049 mid = NULL;
2050 } else {
2051 /* update the parent key to reflect our changes */
2052 struct btrfs_disk_key mid_key;
2053 btrfs_node_key(mid, &mid_key, 0);
2054 tree_mod_log_set_node_key(root->fs_info, parent,
2055 pslot, 0);
2056 btrfs_set_node_key(parent, &mid_key, pslot);
2057 btrfs_mark_buffer_dirty(parent);
2058 }
2059
2060 /* update the path */
2061 if (left) {
2062 if (btrfs_header_nritems(left) > orig_slot) {
2063 extent_buffer_get(left);
2064 /* left was locked after cow */
2065 path->nodes[level] = left;
2066 path->slots[level + 1] -= 1;
2067 path->slots[level] = orig_slot;
2068 if (mid) {
2069 btrfs_tree_unlock(mid);
2070 free_extent_buffer(mid);
2071 }
2072 } else {
2073 orig_slot -= btrfs_header_nritems(left);
2074 path->slots[level] = orig_slot;
2075 }
2076 }
2077 /* double check we haven't messed things up */
2078 if (orig_ptr !=
2079 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080 BUG();
2081 enospc:
2082 if (right) {
2083 btrfs_tree_unlock(right);
2084 free_extent_buffer(right);
2085 }
2086 if (left) {
2087 if (path->nodes[level] != left)
2088 btrfs_tree_unlock(left);
2089 free_extent_buffer(left);
2090 }
2091 return ret;
2092 }
2093
2094 /* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2097 */
2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root,
2100 struct btrfs_path *path, int level)
2101 {
2102 struct extent_buffer *right = NULL;
2103 struct extent_buffer *mid;
2104 struct extent_buffer *left = NULL;
2105 struct extent_buffer *parent = NULL;
2106 int ret = 0;
2107 int wret;
2108 int pslot;
2109 int orig_slot = path->slots[level];
2110
2111 if (level == 0)
2112 return 1;
2113
2114 mid = path->nodes[level];
2115 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2116
2117 if (level < BTRFS_MAX_LEVEL - 1) {
2118 parent = path->nodes[level + 1];
2119 pslot = path->slots[level + 1];
2120 }
2121
2122 if (!parent)
2123 return 1;
2124
2125 left = read_node_slot(root, parent, pslot - 1);
2126
2127 /* first, try to make some room in the middle buffer */
2128 if (left) {
2129 u32 left_nr;
2130
2131 btrfs_tree_lock(left);
2132 btrfs_set_lock_blocking(left);
2133
2134 left_nr = btrfs_header_nritems(left);
2135 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2136 wret = 1;
2137 } else {
2138 ret = btrfs_cow_block(trans, root, left, parent,
2139 pslot - 1, &left);
2140 if (ret)
2141 wret = 1;
2142 else {
2143 wret = push_node_left(trans, root,
2144 left, mid, 0);
2145 }
2146 }
2147 if (wret < 0)
2148 ret = wret;
2149 if (wret == 0) {
2150 struct btrfs_disk_key disk_key;
2151 orig_slot += left_nr;
2152 btrfs_node_key(mid, &disk_key, 0);
2153 tree_mod_log_set_node_key(root->fs_info, parent,
2154 pslot, 0);
2155 btrfs_set_node_key(parent, &disk_key, pslot);
2156 btrfs_mark_buffer_dirty(parent);
2157 if (btrfs_header_nritems(left) > orig_slot) {
2158 path->nodes[level] = left;
2159 path->slots[level + 1] -= 1;
2160 path->slots[level] = orig_slot;
2161 btrfs_tree_unlock(mid);
2162 free_extent_buffer(mid);
2163 } else {
2164 orig_slot -=
2165 btrfs_header_nritems(left);
2166 path->slots[level] = orig_slot;
2167 btrfs_tree_unlock(left);
2168 free_extent_buffer(left);
2169 }
2170 return 0;
2171 }
2172 btrfs_tree_unlock(left);
2173 free_extent_buffer(left);
2174 }
2175 right = read_node_slot(root, parent, pslot + 1);
2176
2177 /*
2178 * then try to empty the right most buffer into the middle
2179 */
2180 if (right) {
2181 u32 right_nr;
2182
2183 btrfs_tree_lock(right);
2184 btrfs_set_lock_blocking(right);
2185
2186 right_nr = btrfs_header_nritems(right);
2187 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2188 wret = 1;
2189 } else {
2190 ret = btrfs_cow_block(trans, root, right,
2191 parent, pslot + 1,
2192 &right);
2193 if (ret)
2194 wret = 1;
2195 else {
2196 wret = balance_node_right(trans, root,
2197 right, mid);
2198 }
2199 }
2200 if (wret < 0)
2201 ret = wret;
2202 if (wret == 0) {
2203 struct btrfs_disk_key disk_key;
2204
2205 btrfs_node_key(right, &disk_key, 0);
2206 tree_mod_log_set_node_key(root->fs_info, parent,
2207 pslot + 1, 0);
2208 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2209 btrfs_mark_buffer_dirty(parent);
2210
2211 if (btrfs_header_nritems(mid) <= orig_slot) {
2212 path->nodes[level] = right;
2213 path->slots[level + 1] += 1;
2214 path->slots[level] = orig_slot -
2215 btrfs_header_nritems(mid);
2216 btrfs_tree_unlock(mid);
2217 free_extent_buffer(mid);
2218 } else {
2219 btrfs_tree_unlock(right);
2220 free_extent_buffer(right);
2221 }
2222 return 0;
2223 }
2224 btrfs_tree_unlock(right);
2225 free_extent_buffer(right);
2226 }
2227 return 1;
2228 }
2229
2230 /*
2231 * readahead one full node of leaves, finding things that are close
2232 * to the block in 'slot', and triggering ra on them.
2233 */
2234 static void reada_for_search(struct btrfs_root *root,
2235 struct btrfs_path *path,
2236 int level, int slot, u64 objectid)
2237 {
2238 struct extent_buffer *node;
2239 struct btrfs_disk_key disk_key;
2240 u32 nritems;
2241 u64 search;
2242 u64 target;
2243 u64 nread = 0;
2244 u64 gen;
2245 int direction = path->reada;
2246 struct extent_buffer *eb;
2247 u32 nr;
2248 u32 blocksize;
2249 u32 nscan = 0;
2250
2251 if (level != 1)
2252 return;
2253
2254 if (!path->nodes[level])
2255 return;
2256
2257 node = path->nodes[level];
2258
2259 search = btrfs_node_blockptr(node, slot);
2260 blocksize = root->nodesize;
2261 eb = btrfs_find_tree_block(root->fs_info, search);
2262 if (eb) {
2263 free_extent_buffer(eb);
2264 return;
2265 }
2266
2267 target = search;
2268
2269 nritems = btrfs_header_nritems(node);
2270 nr = slot;
2271
2272 while (1) {
2273 if (direction < 0) {
2274 if (nr == 0)
2275 break;
2276 nr--;
2277 } else if (direction > 0) {
2278 nr++;
2279 if (nr >= nritems)
2280 break;
2281 }
2282 if (path->reada < 0 && objectid) {
2283 btrfs_node_key(node, &disk_key, nr);
2284 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2285 break;
2286 }
2287 search = btrfs_node_blockptr(node, nr);
2288 if ((search <= target && target - search <= 65536) ||
2289 (search > target && search - target <= 65536)) {
2290 gen = btrfs_node_ptr_generation(node, nr);
2291 readahead_tree_block(root, search);
2292 nread += blocksize;
2293 }
2294 nscan++;
2295 if ((nread > 65536 || nscan > 32))
2296 break;
2297 }
2298 }
2299
2300 static noinline void reada_for_balance(struct btrfs_root *root,
2301 struct btrfs_path *path, int level)
2302 {
2303 int slot;
2304 int nritems;
2305 struct extent_buffer *parent;
2306 struct extent_buffer *eb;
2307 u64 gen;
2308 u64 block1 = 0;
2309 u64 block2 = 0;
2310
2311 parent = path->nodes[level + 1];
2312 if (!parent)
2313 return;
2314
2315 nritems = btrfs_header_nritems(parent);
2316 slot = path->slots[level + 1];
2317
2318 if (slot > 0) {
2319 block1 = btrfs_node_blockptr(parent, slot - 1);
2320 gen = btrfs_node_ptr_generation(parent, slot - 1);
2321 eb = btrfs_find_tree_block(root->fs_info, block1);
2322 /*
2323 * if we get -eagain from btrfs_buffer_uptodate, we
2324 * don't want to return eagain here. That will loop
2325 * forever
2326 */
2327 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2328 block1 = 0;
2329 free_extent_buffer(eb);
2330 }
2331 if (slot + 1 < nritems) {
2332 block2 = btrfs_node_blockptr(parent, slot + 1);
2333 gen = btrfs_node_ptr_generation(parent, slot + 1);
2334 eb = btrfs_find_tree_block(root->fs_info, block2);
2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 block2 = 0;
2337 free_extent_buffer(eb);
2338 }
2339
2340 if (block1)
2341 readahead_tree_block(root, block1);
2342 if (block2)
2343 readahead_tree_block(root, block2);
2344 }
2345
2346
2347 /*
2348 * when we walk down the tree, it is usually safe to unlock the higher layers
2349 * in the tree. The exceptions are when our path goes through slot 0, because
2350 * operations on the tree might require changing key pointers higher up in the
2351 * tree.
2352 *
2353 * callers might also have set path->keep_locks, which tells this code to keep
2354 * the lock if the path points to the last slot in the block. This is part of
2355 * walking through the tree, and selecting the next slot in the higher block.
2356 *
2357 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2358 * if lowest_unlock is 1, level 0 won't be unlocked
2359 */
2360 static noinline void unlock_up(struct btrfs_path *path, int level,
2361 int lowest_unlock, int min_write_lock_level,
2362 int *write_lock_level)
2363 {
2364 int i;
2365 int skip_level = level;
2366 int no_skips = 0;
2367 struct extent_buffer *t;
2368
2369 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2370 if (!path->nodes[i])
2371 break;
2372 if (!path->locks[i])
2373 break;
2374 if (!no_skips && path->slots[i] == 0) {
2375 skip_level = i + 1;
2376 continue;
2377 }
2378 if (!no_skips && path->keep_locks) {
2379 u32 nritems;
2380 t = path->nodes[i];
2381 nritems = btrfs_header_nritems(t);
2382 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2383 skip_level = i + 1;
2384 continue;
2385 }
2386 }
2387 if (skip_level < i && i >= lowest_unlock)
2388 no_skips = 1;
2389
2390 t = path->nodes[i];
2391 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2392 btrfs_tree_unlock_rw(t, path->locks[i]);
2393 path->locks[i] = 0;
2394 if (write_lock_level &&
2395 i > min_write_lock_level &&
2396 i <= *write_lock_level) {
2397 *write_lock_level = i - 1;
2398 }
2399 }
2400 }
2401 }
2402
2403 /*
2404 * This releases any locks held in the path starting at level and
2405 * going all the way up to the root.
2406 *
2407 * btrfs_search_slot will keep the lock held on higher nodes in a few
2408 * corner cases, such as COW of the block at slot zero in the node. This
2409 * ignores those rules, and it should only be called when there are no
2410 * more updates to be done higher up in the tree.
2411 */
2412 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2413 {
2414 int i;
2415
2416 if (path->keep_locks)
2417 return;
2418
2419 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2420 if (!path->nodes[i])
2421 continue;
2422 if (!path->locks[i])
2423 continue;
2424 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2425 path->locks[i] = 0;
2426 }
2427 }
2428
2429 /*
2430 * helper function for btrfs_search_slot. The goal is to find a block
2431 * in cache without setting the path to blocking. If we find the block
2432 * we return zero and the path is unchanged.
2433 *
2434 * If we can't find the block, we set the path blocking and do some
2435 * reada. -EAGAIN is returned and the search must be repeated.
2436 */
2437 static int
2438 read_block_for_search(struct btrfs_trans_handle *trans,
2439 struct btrfs_root *root, struct btrfs_path *p,
2440 struct extent_buffer **eb_ret, int level, int slot,
2441 struct btrfs_key *key, u64 time_seq)
2442 {
2443 u64 blocknr;
2444 u64 gen;
2445 struct extent_buffer *b = *eb_ret;
2446 struct extent_buffer *tmp;
2447 int ret;
2448
2449 blocknr = btrfs_node_blockptr(b, slot);
2450 gen = btrfs_node_ptr_generation(b, slot);
2451
2452 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2453 if (tmp) {
2454 /* first we do an atomic uptodate check */
2455 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2456 *eb_ret = tmp;
2457 return 0;
2458 }
2459
2460 /* the pages were up to date, but we failed
2461 * the generation number check. Do a full
2462 * read for the generation number that is correct.
2463 * We must do this without dropping locks so
2464 * we can trust our generation number
2465 */
2466 btrfs_set_path_blocking(p);
2467
2468 /* now we're allowed to do a blocking uptodate check */
2469 ret = btrfs_read_buffer(tmp, gen);
2470 if (!ret) {
2471 *eb_ret = tmp;
2472 return 0;
2473 }
2474 free_extent_buffer(tmp);
2475 btrfs_release_path(p);
2476 return -EIO;
2477 }
2478
2479 /*
2480 * reduce lock contention at high levels
2481 * of the btree by dropping locks before
2482 * we read. Don't release the lock on the current
2483 * level because we need to walk this node to figure
2484 * out which blocks to read.
2485 */
2486 btrfs_unlock_up_safe(p, level + 1);
2487 btrfs_set_path_blocking(p);
2488
2489 free_extent_buffer(tmp);
2490 if (p->reada)
2491 reada_for_search(root, p, level, slot, key->objectid);
2492
2493 btrfs_release_path(p);
2494
2495 ret = -EAGAIN;
2496 tmp = read_tree_block(root, blocknr, 0);
2497 if (tmp) {
2498 /*
2499 * If the read above didn't mark this buffer up to date,
2500 * it will never end up being up to date. Set ret to EIO now
2501 * and give up so that our caller doesn't loop forever
2502 * on our EAGAINs.
2503 */
2504 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2505 ret = -EIO;
2506 free_extent_buffer(tmp);
2507 }
2508 return ret;
2509 }
2510
2511 /*
2512 * helper function for btrfs_search_slot. This does all of the checks
2513 * for node-level blocks and does any balancing required based on
2514 * the ins_len.
2515 *
2516 * If no extra work was required, zero is returned. If we had to
2517 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2518 * start over
2519 */
2520 static int
2521 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2522 struct btrfs_root *root, struct btrfs_path *p,
2523 struct extent_buffer *b, int level, int ins_len,
2524 int *write_lock_level)
2525 {
2526 int ret;
2527 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2528 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2529 int sret;
2530
2531 if (*write_lock_level < level + 1) {
2532 *write_lock_level = level + 1;
2533 btrfs_release_path(p);
2534 goto again;
2535 }
2536
2537 btrfs_set_path_blocking(p);
2538 reada_for_balance(root, p, level);
2539 sret = split_node(trans, root, p, level);
2540 btrfs_clear_path_blocking(p, NULL, 0);
2541
2542 BUG_ON(sret > 0);
2543 if (sret) {
2544 ret = sret;
2545 goto done;
2546 }
2547 b = p->nodes[level];
2548 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2549 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2550 int sret;
2551
2552 if (*write_lock_level < level + 1) {
2553 *write_lock_level = level + 1;
2554 btrfs_release_path(p);
2555 goto again;
2556 }
2557
2558 btrfs_set_path_blocking(p);
2559 reada_for_balance(root, p, level);
2560 sret = balance_level(trans, root, p, level);
2561 btrfs_clear_path_blocking(p, NULL, 0);
2562
2563 if (sret) {
2564 ret = sret;
2565 goto done;
2566 }
2567 b = p->nodes[level];
2568 if (!b) {
2569 btrfs_release_path(p);
2570 goto again;
2571 }
2572 BUG_ON(btrfs_header_nritems(b) == 1);
2573 }
2574 return 0;
2575
2576 again:
2577 ret = -EAGAIN;
2578 done:
2579 return ret;
2580 }
2581
2582 static void key_search_validate(struct extent_buffer *b,
2583 struct btrfs_key *key,
2584 int level)
2585 {
2586 #ifdef CONFIG_BTRFS_ASSERT
2587 struct btrfs_disk_key disk_key;
2588
2589 btrfs_cpu_key_to_disk(&disk_key, key);
2590
2591 if (level == 0)
2592 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2593 offsetof(struct btrfs_leaf, items[0].key),
2594 sizeof(disk_key)));
2595 else
2596 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597 offsetof(struct btrfs_node, ptrs[0].key),
2598 sizeof(disk_key)));
2599 #endif
2600 }
2601
2602 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2603 int level, int *prev_cmp, int *slot)
2604 {
2605 if (*prev_cmp != 0) {
2606 *prev_cmp = bin_search(b, key, level, slot);
2607 return *prev_cmp;
2608 }
2609
2610 key_search_validate(b, key, level);
2611 *slot = 0;
2612
2613 return 0;
2614 }
2615
2616 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2617 u64 iobjectid, u64 ioff, u8 key_type,
2618 struct btrfs_key *found_key)
2619 {
2620 int ret;
2621 struct btrfs_key key;
2622 struct extent_buffer *eb;
2623
2624 ASSERT(path);
2625 ASSERT(found_key);
2626
2627 key.type = key_type;
2628 key.objectid = iobjectid;
2629 key.offset = ioff;
2630
2631 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2632 if (ret < 0)
2633 return ret;
2634
2635 eb = path->nodes[0];
2636 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2637 ret = btrfs_next_leaf(fs_root, path);
2638 if (ret)
2639 return ret;
2640 eb = path->nodes[0];
2641 }
2642
2643 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2644 if (found_key->type != key.type ||
2645 found_key->objectid != key.objectid)
2646 return 1;
2647
2648 return 0;
2649 }
2650
2651 /*
2652 * look for key in the tree. path is filled in with nodes along the way
2653 * if key is found, we return zero and you can find the item in the leaf
2654 * level of the path (level 0)
2655 *
2656 * If the key isn't found, the path points to the slot where it should
2657 * be inserted, and 1 is returned. If there are other errors during the
2658 * search a negative error number is returned.
2659 *
2660 * if ins_len > 0, nodes and leaves will be split as we walk down the
2661 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2662 * possible)
2663 */
2664 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2665 *root, struct btrfs_key *key, struct btrfs_path *p, int
2666 ins_len, int cow)
2667 {
2668 struct extent_buffer *b;
2669 int slot;
2670 int ret;
2671 int err;
2672 int level;
2673 int lowest_unlock = 1;
2674 int root_lock;
2675 /* everything at write_lock_level or lower must be write locked */
2676 int write_lock_level = 0;
2677 u8 lowest_level = 0;
2678 int min_write_lock_level;
2679 int prev_cmp;
2680
2681 lowest_level = p->lowest_level;
2682 WARN_ON(lowest_level && ins_len > 0);
2683 WARN_ON(p->nodes[0] != NULL);
2684 BUG_ON(!cow && ins_len);
2685
2686 if (ins_len < 0) {
2687 lowest_unlock = 2;
2688
2689 /* when we are removing items, we might have to go up to level
2690 * two as we update tree pointers Make sure we keep write
2691 * for those levels as well
2692 */
2693 write_lock_level = 2;
2694 } else if (ins_len > 0) {
2695 /*
2696 * for inserting items, make sure we have a write lock on
2697 * level 1 so we can update keys
2698 */
2699 write_lock_level = 1;
2700 }
2701
2702 if (!cow)
2703 write_lock_level = -1;
2704
2705 if (cow && (p->keep_locks || p->lowest_level))
2706 write_lock_level = BTRFS_MAX_LEVEL;
2707
2708 min_write_lock_level = write_lock_level;
2709
2710 again:
2711 prev_cmp = -1;
2712 /*
2713 * we try very hard to do read locks on the root
2714 */
2715 root_lock = BTRFS_READ_LOCK;
2716 level = 0;
2717 if (p->search_commit_root) {
2718 /*
2719 * the commit roots are read only
2720 * so we always do read locks
2721 */
2722 if (p->need_commit_sem)
2723 down_read(&root->fs_info->commit_root_sem);
2724 b = root->commit_root;
2725 extent_buffer_get(b);
2726 level = btrfs_header_level(b);
2727 if (p->need_commit_sem)
2728 up_read(&root->fs_info->commit_root_sem);
2729 if (!p->skip_locking)
2730 btrfs_tree_read_lock(b);
2731 } else {
2732 if (p->skip_locking) {
2733 b = btrfs_root_node(root);
2734 level = btrfs_header_level(b);
2735 } else {
2736 /* we don't know the level of the root node
2737 * until we actually have it read locked
2738 */
2739 b = btrfs_read_lock_root_node(root);
2740 level = btrfs_header_level(b);
2741 if (level <= write_lock_level) {
2742 /* whoops, must trade for write lock */
2743 btrfs_tree_read_unlock(b);
2744 free_extent_buffer(b);
2745 b = btrfs_lock_root_node(root);
2746 root_lock = BTRFS_WRITE_LOCK;
2747
2748 /* the level might have changed, check again */
2749 level = btrfs_header_level(b);
2750 }
2751 }
2752 }
2753 p->nodes[level] = b;
2754 if (!p->skip_locking)
2755 p->locks[level] = root_lock;
2756
2757 while (b) {
2758 level = btrfs_header_level(b);
2759
2760 /*
2761 * setup the path here so we can release it under lock
2762 * contention with the cow code
2763 */
2764 if (cow) {
2765 /*
2766 * if we don't really need to cow this block
2767 * then we don't want to set the path blocking,
2768 * so we test it here
2769 */
2770 if (!should_cow_block(trans, root, b))
2771 goto cow_done;
2772
2773 /*
2774 * must have write locks on this node and the
2775 * parent
2776 */
2777 if (level > write_lock_level ||
2778 (level + 1 > write_lock_level &&
2779 level + 1 < BTRFS_MAX_LEVEL &&
2780 p->nodes[level + 1])) {
2781 write_lock_level = level + 1;
2782 btrfs_release_path(p);
2783 goto again;
2784 }
2785
2786 btrfs_set_path_blocking(p);
2787 err = btrfs_cow_block(trans, root, b,
2788 p->nodes[level + 1],
2789 p->slots[level + 1], &b);
2790 if (err) {
2791 ret = err;
2792 goto done;
2793 }
2794 }
2795 cow_done:
2796 p->nodes[level] = b;
2797 btrfs_clear_path_blocking(p, NULL, 0);
2798
2799 /*
2800 * we have a lock on b and as long as we aren't changing
2801 * the tree, there is no way to for the items in b to change.
2802 * It is safe to drop the lock on our parent before we
2803 * go through the expensive btree search on b.
2804 *
2805 * If we're inserting or deleting (ins_len != 0), then we might
2806 * be changing slot zero, which may require changing the parent.
2807 * So, we can't drop the lock until after we know which slot
2808 * we're operating on.
2809 */
2810 if (!ins_len && !p->keep_locks) {
2811 int u = level + 1;
2812
2813 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2814 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2815 p->locks[u] = 0;
2816 }
2817 }
2818
2819 ret = key_search(b, key, level, &prev_cmp, &slot);
2820
2821 if (level != 0) {
2822 int dec = 0;
2823 if (ret && slot > 0) {
2824 dec = 1;
2825 slot -= 1;
2826 }
2827 p->slots[level] = slot;
2828 err = setup_nodes_for_search(trans, root, p, b, level,
2829 ins_len, &write_lock_level);
2830 if (err == -EAGAIN)
2831 goto again;
2832 if (err) {
2833 ret = err;
2834 goto done;
2835 }
2836 b = p->nodes[level];
2837 slot = p->slots[level];
2838
2839 /*
2840 * slot 0 is special, if we change the key
2841 * we have to update the parent pointer
2842 * which means we must have a write lock
2843 * on the parent
2844 */
2845 if (slot == 0 && ins_len &&
2846 write_lock_level < level + 1) {
2847 write_lock_level = level + 1;
2848 btrfs_release_path(p);
2849 goto again;
2850 }
2851
2852 unlock_up(p, level, lowest_unlock,
2853 min_write_lock_level, &write_lock_level);
2854
2855 if (level == lowest_level) {
2856 if (dec)
2857 p->slots[level]++;
2858 goto done;
2859 }
2860
2861 err = read_block_for_search(trans, root, p,
2862 &b, level, slot, key, 0);
2863 if (err == -EAGAIN)
2864 goto again;
2865 if (err) {
2866 ret = err;
2867 goto done;
2868 }
2869
2870 if (!p->skip_locking) {
2871 level = btrfs_header_level(b);
2872 if (level <= write_lock_level) {
2873 err = btrfs_try_tree_write_lock(b);
2874 if (!err) {
2875 btrfs_set_path_blocking(p);
2876 btrfs_tree_lock(b);
2877 btrfs_clear_path_blocking(p, b,
2878 BTRFS_WRITE_LOCK);
2879 }
2880 p->locks[level] = BTRFS_WRITE_LOCK;
2881 } else {
2882 err = btrfs_tree_read_lock_atomic(b);
2883 if (!err) {
2884 btrfs_set_path_blocking(p);
2885 btrfs_tree_read_lock(b);
2886 btrfs_clear_path_blocking(p, b,
2887 BTRFS_READ_LOCK);
2888 }
2889 p->locks[level] = BTRFS_READ_LOCK;
2890 }
2891 p->nodes[level] = b;
2892 }
2893 } else {
2894 p->slots[level] = slot;
2895 if (ins_len > 0 &&
2896 btrfs_leaf_free_space(root, b) < ins_len) {
2897 if (write_lock_level < 1) {
2898 write_lock_level = 1;
2899 btrfs_release_path(p);
2900 goto again;
2901 }
2902
2903 btrfs_set_path_blocking(p);
2904 err = split_leaf(trans, root, key,
2905 p, ins_len, ret == 0);
2906 btrfs_clear_path_blocking(p, NULL, 0);
2907
2908 BUG_ON(err > 0);
2909 if (err) {
2910 ret = err;
2911 goto done;
2912 }
2913 }
2914 if (!p->search_for_split)
2915 unlock_up(p, level, lowest_unlock,
2916 min_write_lock_level, &write_lock_level);
2917 goto done;
2918 }
2919 }
2920 ret = 1;
2921 done:
2922 /*
2923 * we don't really know what they plan on doing with the path
2924 * from here on, so for now just mark it as blocking
2925 */
2926 if (!p->leave_spinning)
2927 btrfs_set_path_blocking(p);
2928 if (ret < 0 && !p->skip_release_on_error)
2929 btrfs_release_path(p);
2930 return ret;
2931 }
2932
2933 /*
2934 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935 * current state of the tree together with the operations recorded in the tree
2936 * modification log to search for the key in a previous version of this tree, as
2937 * denoted by the time_seq parameter.
2938 *
2939 * Naturally, there is no support for insert, delete or cow operations.
2940 *
2941 * The resulting path and return value will be set up as if we called
2942 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2943 */
2944 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2945 struct btrfs_path *p, u64 time_seq)
2946 {
2947 struct extent_buffer *b;
2948 int slot;
2949 int ret;
2950 int err;
2951 int level;
2952 int lowest_unlock = 1;
2953 u8 lowest_level = 0;
2954 int prev_cmp = -1;
2955
2956 lowest_level = p->lowest_level;
2957 WARN_ON(p->nodes[0] != NULL);
2958
2959 if (p->search_commit_root) {
2960 BUG_ON(time_seq);
2961 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962 }
2963
2964 again:
2965 b = get_old_root(root, time_seq);
2966 level = btrfs_header_level(b);
2967 p->locks[level] = BTRFS_READ_LOCK;
2968
2969 while (b) {
2970 level = btrfs_header_level(b);
2971 p->nodes[level] = b;
2972 btrfs_clear_path_blocking(p, NULL, 0);
2973
2974 /*
2975 * we have a lock on b and as long as we aren't changing
2976 * the tree, there is no way to for the items in b to change.
2977 * It is safe to drop the lock on our parent before we
2978 * go through the expensive btree search on b.
2979 */
2980 btrfs_unlock_up_safe(p, level + 1);
2981
2982 /*
2983 * Since we can unwind eb's we want to do a real search every
2984 * time.
2985 */
2986 prev_cmp = -1;
2987 ret = key_search(b, key, level, &prev_cmp, &slot);
2988
2989 if (level != 0) {
2990 int dec = 0;
2991 if (ret && slot > 0) {
2992 dec = 1;
2993 slot -= 1;
2994 }
2995 p->slots[level] = slot;
2996 unlock_up(p, level, lowest_unlock, 0, NULL);
2997
2998 if (level == lowest_level) {
2999 if (dec)
3000 p->slots[level]++;
3001 goto done;
3002 }
3003
3004 err = read_block_for_search(NULL, root, p, &b, level,
3005 slot, key, time_seq);
3006 if (err == -EAGAIN)
3007 goto again;
3008 if (err) {
3009 ret = err;
3010 goto done;
3011 }
3012
3013 level = btrfs_header_level(b);
3014 err = btrfs_tree_read_lock_atomic(b);
3015 if (!err) {
3016 btrfs_set_path_blocking(p);
3017 btrfs_tree_read_lock(b);
3018 btrfs_clear_path_blocking(p, b,
3019 BTRFS_READ_LOCK);
3020 }
3021 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3022 if (!b) {
3023 ret = -ENOMEM;
3024 goto done;
3025 }
3026 p->locks[level] = BTRFS_READ_LOCK;
3027 p->nodes[level] = b;
3028 } else {
3029 p->slots[level] = slot;
3030 unlock_up(p, level, lowest_unlock, 0, NULL);
3031 goto done;
3032 }
3033 }
3034 ret = 1;
3035 done:
3036 if (!p->leave_spinning)
3037 btrfs_set_path_blocking(p);
3038 if (ret < 0)
3039 btrfs_release_path(p);
3040
3041 return ret;
3042 }
3043
3044 /*
3045 * helper to use instead of search slot if no exact match is needed but
3046 * instead the next or previous item should be returned.
3047 * When find_higher is true, the next higher item is returned, the next lower
3048 * otherwise.
3049 * When return_any and find_higher are both true, and no higher item is found,
3050 * return the next lower instead.
3051 * When return_any is true and find_higher is false, and no lower item is found,
3052 * return the next higher instead.
3053 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3054 * < 0 on error
3055 */
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 struct btrfs_key *key, struct btrfs_path *p,
3058 int find_higher, int return_any)
3059 {
3060 int ret;
3061 struct extent_buffer *leaf;
3062
3063 again:
3064 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3065 if (ret <= 0)
3066 return ret;
3067 /*
3068 * a return value of 1 means the path is at the position where the
3069 * item should be inserted. Normally this is the next bigger item,
3070 * but in case the previous item is the last in a leaf, path points
3071 * to the first free slot in the previous leaf, i.e. at an invalid
3072 * item.
3073 */
3074 leaf = p->nodes[0];
3075
3076 if (find_higher) {
3077 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078 ret = btrfs_next_leaf(root, p);
3079 if (ret <= 0)
3080 return ret;
3081 if (!return_any)
3082 return 1;
3083 /*
3084 * no higher item found, return the next
3085 * lower instead
3086 */
3087 return_any = 0;
3088 find_higher = 0;
3089 btrfs_release_path(p);
3090 goto again;
3091 }
3092 } else {
3093 if (p->slots[0] == 0) {
3094 ret = btrfs_prev_leaf(root, p);
3095 if (ret < 0)
3096 return ret;
3097 if (!ret) {
3098 leaf = p->nodes[0];
3099 if (p->slots[0] == btrfs_header_nritems(leaf))
3100 p->slots[0]--;
3101 return 0;
3102 }
3103 if (!return_any)
3104 return 1;
3105 /*
3106 * no lower item found, return the next
3107 * higher instead
3108 */
3109 return_any = 0;
3110 find_higher = 1;
3111 btrfs_release_path(p);
3112 goto again;
3113 } else {
3114 --p->slots[0];
3115 }
3116 }
3117 return 0;
3118 }
3119
3120 /*
3121 * adjust the pointers going up the tree, starting at level
3122 * making sure the right key of each node is points to 'key'.
3123 * This is used after shifting pointers to the left, so it stops
3124 * fixing up pointers when a given leaf/node is not in slot 0 of the
3125 * higher levels
3126 *
3127 */
3128 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3129 struct btrfs_path *path,
3130 struct btrfs_disk_key *key, int level)
3131 {
3132 int i;
3133 struct extent_buffer *t;
3134
3135 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3136 int tslot = path->slots[i];
3137 if (!path->nodes[i])
3138 break;
3139 t = path->nodes[i];
3140 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3141 btrfs_set_node_key(t, key, tslot);
3142 btrfs_mark_buffer_dirty(path->nodes[i]);
3143 if (tslot != 0)
3144 break;
3145 }
3146 }
3147
3148 /*
3149 * update item key.
3150 *
3151 * This function isn't completely safe. It's the caller's responsibility
3152 * that the new key won't break the order
3153 */
3154 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3155 struct btrfs_path *path,
3156 struct btrfs_key *new_key)
3157 {
3158 struct btrfs_disk_key disk_key;
3159 struct extent_buffer *eb;
3160 int slot;
3161
3162 eb = path->nodes[0];
3163 slot = path->slots[0];
3164 if (slot > 0) {
3165 btrfs_item_key(eb, &disk_key, slot - 1);
3166 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3167 }
3168 if (slot < btrfs_header_nritems(eb) - 1) {
3169 btrfs_item_key(eb, &disk_key, slot + 1);
3170 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3171 }
3172
3173 btrfs_cpu_key_to_disk(&disk_key, new_key);
3174 btrfs_set_item_key(eb, &disk_key, slot);
3175 btrfs_mark_buffer_dirty(eb);
3176 if (slot == 0)
3177 fixup_low_keys(fs_info, path, &disk_key, 1);
3178 }
3179
3180 /*
3181 * try to push data from one node into the next node left in the
3182 * tree.
3183 *
3184 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3185 * error, and > 0 if there was no room in the left hand block.
3186 */
3187 static int push_node_left(struct btrfs_trans_handle *trans,
3188 struct btrfs_root *root, struct extent_buffer *dst,
3189 struct extent_buffer *src, int empty)
3190 {
3191 int push_items = 0;
3192 int src_nritems;
3193 int dst_nritems;
3194 int ret = 0;
3195
3196 src_nritems = btrfs_header_nritems(src);
3197 dst_nritems = btrfs_header_nritems(dst);
3198 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3199 WARN_ON(btrfs_header_generation(src) != trans->transid);
3200 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3201
3202 if (!empty && src_nritems <= 8)
3203 return 1;
3204
3205 if (push_items <= 0)
3206 return 1;
3207
3208 if (empty) {
3209 push_items = min(src_nritems, push_items);
3210 if (push_items < src_nritems) {
3211 /* leave at least 8 pointers in the node if
3212 * we aren't going to empty it
3213 */
3214 if (src_nritems - push_items < 8) {
3215 if (push_items <= 8)
3216 return 1;
3217 push_items -= 8;
3218 }
3219 }
3220 } else
3221 push_items = min(src_nritems - 8, push_items);
3222
3223 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3224 push_items);
3225 if (ret) {
3226 btrfs_abort_transaction(trans, root, ret);
3227 return ret;
3228 }
3229 copy_extent_buffer(dst, src,
3230 btrfs_node_key_ptr_offset(dst_nritems),
3231 btrfs_node_key_ptr_offset(0),
3232 push_items * sizeof(struct btrfs_key_ptr));
3233
3234 if (push_items < src_nritems) {
3235 /*
3236 * don't call tree_mod_log_eb_move here, key removal was already
3237 * fully logged by tree_mod_log_eb_copy above.
3238 */
3239 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3240 btrfs_node_key_ptr_offset(push_items),
3241 (src_nritems - push_items) *
3242 sizeof(struct btrfs_key_ptr));
3243 }
3244 btrfs_set_header_nritems(src, src_nritems - push_items);
3245 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3246 btrfs_mark_buffer_dirty(src);
3247 btrfs_mark_buffer_dirty(dst);
3248
3249 return ret;
3250 }
3251
3252 /*
3253 * try to push data from one node into the next node right in the
3254 * tree.
3255 *
3256 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3257 * error, and > 0 if there was no room in the right hand block.
3258 *
3259 * this will only push up to 1/2 the contents of the left node over
3260 */
3261 static int balance_node_right(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *root,
3263 struct extent_buffer *dst,
3264 struct extent_buffer *src)
3265 {
3266 int push_items = 0;
3267 int max_push;
3268 int src_nritems;
3269 int dst_nritems;
3270 int ret = 0;
3271
3272 WARN_ON(btrfs_header_generation(src) != trans->transid);
3273 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3274
3275 src_nritems = btrfs_header_nritems(src);
3276 dst_nritems = btrfs_header_nritems(dst);
3277 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3278 if (push_items <= 0)
3279 return 1;
3280
3281 if (src_nritems < 4)
3282 return 1;
3283
3284 max_push = src_nritems / 2 + 1;
3285 /* don't try to empty the node */
3286 if (max_push >= src_nritems)
3287 return 1;
3288
3289 if (max_push < push_items)
3290 push_items = max_push;
3291
3292 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3293 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3294 btrfs_node_key_ptr_offset(0),
3295 (dst_nritems) *
3296 sizeof(struct btrfs_key_ptr));
3297
3298 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3299 src_nritems - push_items, push_items);
3300 if (ret) {
3301 btrfs_abort_transaction(trans, root, ret);
3302 return ret;
3303 }
3304 copy_extent_buffer(dst, src,
3305 btrfs_node_key_ptr_offset(0),
3306 btrfs_node_key_ptr_offset(src_nritems - push_items),
3307 push_items * sizeof(struct btrfs_key_ptr));
3308
3309 btrfs_set_header_nritems(src, src_nritems - push_items);
3310 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3311
3312 btrfs_mark_buffer_dirty(src);
3313 btrfs_mark_buffer_dirty(dst);
3314
3315 return ret;
3316 }
3317
3318 /*
3319 * helper function to insert a new root level in the tree.
3320 * A new node is allocated, and a single item is inserted to
3321 * point to the existing root
3322 *
3323 * returns zero on success or < 0 on failure.
3324 */
3325 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root,
3327 struct btrfs_path *path, int level)
3328 {
3329 u64 lower_gen;
3330 struct extent_buffer *lower;
3331 struct extent_buffer *c;
3332 struct extent_buffer *old;
3333 struct btrfs_disk_key lower_key;
3334
3335 BUG_ON(path->nodes[level]);
3336 BUG_ON(path->nodes[level-1] != root->node);
3337
3338 lower = path->nodes[level-1];
3339 if (level == 1)
3340 btrfs_item_key(lower, &lower_key, 0);
3341 else
3342 btrfs_node_key(lower, &lower_key, 0);
3343
3344 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3345 &lower_key, level, root->node->start, 0);
3346 if (IS_ERR(c))
3347 return PTR_ERR(c);
3348
3349 root_add_used(root, root->nodesize);
3350
3351 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3352 btrfs_set_header_nritems(c, 1);
3353 btrfs_set_header_level(c, level);
3354 btrfs_set_header_bytenr(c, c->start);
3355 btrfs_set_header_generation(c, trans->transid);
3356 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3357 btrfs_set_header_owner(c, root->root_key.objectid);
3358
3359 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3360 BTRFS_FSID_SIZE);
3361
3362 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3363 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3364
3365 btrfs_set_node_key(c, &lower_key, 0);
3366 btrfs_set_node_blockptr(c, 0, lower->start);
3367 lower_gen = btrfs_header_generation(lower);
3368 WARN_ON(lower_gen != trans->transid);
3369
3370 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3371
3372 btrfs_mark_buffer_dirty(c);
3373
3374 old = root->node;
3375 tree_mod_log_set_root_pointer(root, c, 0);
3376 rcu_assign_pointer(root->node, c);
3377
3378 /* the super has an extra ref to root->node */
3379 free_extent_buffer(old);
3380
3381 add_root_to_dirty_list(root);
3382 extent_buffer_get(c);
3383 path->nodes[level] = c;
3384 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3385 path->slots[level] = 0;
3386 return 0;
3387 }
3388
3389 /*
3390 * worker function to insert a single pointer in a node.
3391 * the node should have enough room for the pointer already
3392 *
3393 * slot and level indicate where you want the key to go, and
3394 * blocknr is the block the key points to.
3395 */
3396 static void insert_ptr(struct btrfs_trans_handle *trans,
3397 struct btrfs_root *root, struct btrfs_path *path,
3398 struct btrfs_disk_key *key, u64 bytenr,
3399 int slot, int level)
3400 {
3401 struct extent_buffer *lower;
3402 int nritems;
3403 int ret;
3404
3405 BUG_ON(!path->nodes[level]);
3406 btrfs_assert_tree_locked(path->nodes[level]);
3407 lower = path->nodes[level];
3408 nritems = btrfs_header_nritems(lower);
3409 BUG_ON(slot > nritems);
3410 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3411 if (slot != nritems) {
3412 if (level)
3413 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3414 slot, nritems - slot);
3415 memmove_extent_buffer(lower,
3416 btrfs_node_key_ptr_offset(slot + 1),
3417 btrfs_node_key_ptr_offset(slot),
3418 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3419 }
3420 if (level) {
3421 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3422 MOD_LOG_KEY_ADD, GFP_NOFS);
3423 BUG_ON(ret < 0);
3424 }
3425 btrfs_set_node_key(lower, key, slot);
3426 btrfs_set_node_blockptr(lower, slot, bytenr);
3427 WARN_ON(trans->transid == 0);
3428 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3429 btrfs_set_header_nritems(lower, nritems + 1);
3430 btrfs_mark_buffer_dirty(lower);
3431 }
3432
3433 /*
3434 * split the node at the specified level in path in two.
3435 * The path is corrected to point to the appropriate node after the split
3436 *
3437 * Before splitting this tries to make some room in the node by pushing
3438 * left and right, if either one works, it returns right away.
3439 *
3440 * returns 0 on success and < 0 on failure
3441 */
3442 static noinline int split_node(struct btrfs_trans_handle *trans,
3443 struct btrfs_root *root,
3444 struct btrfs_path *path, int level)
3445 {
3446 struct extent_buffer *c;
3447 struct extent_buffer *split;
3448 struct btrfs_disk_key disk_key;
3449 int mid;
3450 int ret;
3451 u32 c_nritems;
3452
3453 c = path->nodes[level];
3454 WARN_ON(btrfs_header_generation(c) != trans->transid);
3455 if (c == root->node) {
3456 /*
3457 * trying to split the root, lets make a new one
3458 *
3459 * tree mod log: We don't log_removal old root in
3460 * insert_new_root, because that root buffer will be kept as a
3461 * normal node. We are going to log removal of half of the
3462 * elements below with tree_mod_log_eb_copy. We're holding a
3463 * tree lock on the buffer, which is why we cannot race with
3464 * other tree_mod_log users.
3465 */
3466 ret = insert_new_root(trans, root, path, level + 1);
3467 if (ret)
3468 return ret;
3469 } else {
3470 ret = push_nodes_for_insert(trans, root, path, level);
3471 c = path->nodes[level];
3472 if (!ret && btrfs_header_nritems(c) <
3473 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3474 return 0;
3475 if (ret < 0)
3476 return ret;
3477 }
3478
3479 c_nritems = btrfs_header_nritems(c);
3480 mid = (c_nritems + 1) / 2;
3481 btrfs_node_key(c, &disk_key, mid);
3482
3483 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3484 &disk_key, level, c->start, 0);
3485 if (IS_ERR(split))
3486 return PTR_ERR(split);
3487
3488 root_add_used(root, root->nodesize);
3489
3490 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3491 btrfs_set_header_level(split, btrfs_header_level(c));
3492 btrfs_set_header_bytenr(split, split->start);
3493 btrfs_set_header_generation(split, trans->transid);
3494 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3495 btrfs_set_header_owner(split, root->root_key.objectid);
3496 write_extent_buffer(split, root->fs_info->fsid,
3497 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3498 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3499 btrfs_header_chunk_tree_uuid(split),
3500 BTRFS_UUID_SIZE);
3501
3502 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3503 mid, c_nritems - mid);
3504 if (ret) {
3505 btrfs_abort_transaction(trans, root, ret);
3506 return ret;
3507 }
3508 copy_extent_buffer(split, c,
3509 btrfs_node_key_ptr_offset(0),
3510 btrfs_node_key_ptr_offset(mid),
3511 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3512 btrfs_set_header_nritems(split, c_nritems - mid);
3513 btrfs_set_header_nritems(c, mid);
3514 ret = 0;
3515
3516 btrfs_mark_buffer_dirty(c);
3517 btrfs_mark_buffer_dirty(split);
3518
3519 insert_ptr(trans, root, path, &disk_key, split->start,
3520 path->slots[level + 1] + 1, level + 1);
3521
3522 if (path->slots[level] >= mid) {
3523 path->slots[level] -= mid;
3524 btrfs_tree_unlock(c);
3525 free_extent_buffer(c);
3526 path->nodes[level] = split;
3527 path->slots[level + 1] += 1;
3528 } else {
3529 btrfs_tree_unlock(split);
3530 free_extent_buffer(split);
3531 }
3532 return ret;
3533 }
3534
3535 /*
3536 * how many bytes are required to store the items in a leaf. start
3537 * and nr indicate which items in the leaf to check. This totals up the
3538 * space used both by the item structs and the item data
3539 */
3540 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3541 {
3542 struct btrfs_item *start_item;
3543 struct btrfs_item *end_item;
3544 struct btrfs_map_token token;
3545 int data_len;
3546 int nritems = btrfs_header_nritems(l);
3547 int end = min(nritems, start + nr) - 1;
3548
3549 if (!nr)
3550 return 0;
3551 btrfs_init_map_token(&token);
3552 start_item = btrfs_item_nr(start);
3553 end_item = btrfs_item_nr(end);
3554 data_len = btrfs_token_item_offset(l, start_item, &token) +
3555 btrfs_token_item_size(l, start_item, &token);
3556 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3557 data_len += sizeof(struct btrfs_item) * nr;
3558 WARN_ON(data_len < 0);
3559 return data_len;
3560 }
3561
3562 /*
3563 * The space between the end of the leaf items and
3564 * the start of the leaf data. IOW, how much room
3565 * the leaf has left for both items and data
3566 */
3567 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3568 struct extent_buffer *leaf)
3569 {
3570 int nritems = btrfs_header_nritems(leaf);
3571 int ret;
3572 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3573 if (ret < 0) {
3574 btrfs_crit(root->fs_info,
3575 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3576 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3577 leaf_space_used(leaf, 0, nritems), nritems);
3578 }
3579 return ret;
3580 }
3581
3582 /*
3583 * min slot controls the lowest index we're willing to push to the
3584 * right. We'll push up to and including min_slot, but no lower
3585 */
3586 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3587 struct btrfs_root *root,
3588 struct btrfs_path *path,
3589 int data_size, int empty,
3590 struct extent_buffer *right,
3591 int free_space, u32 left_nritems,
3592 u32 min_slot)
3593 {
3594 struct extent_buffer *left = path->nodes[0];
3595 struct extent_buffer *upper = path->nodes[1];
3596 struct btrfs_map_token token;
3597 struct btrfs_disk_key disk_key;
3598 int slot;
3599 u32 i;
3600 int push_space = 0;
3601 int push_items = 0;
3602 struct btrfs_item *item;
3603 u32 nr;
3604 u32 right_nritems;
3605 u32 data_end;
3606 u32 this_item_size;
3607
3608 btrfs_init_map_token(&token);
3609
3610 if (empty)
3611 nr = 0;
3612 else
3613 nr = max_t(u32, 1, min_slot);
3614
3615 if (path->slots[0] >= left_nritems)
3616 push_space += data_size;
3617
3618 slot = path->slots[1];
3619 i = left_nritems - 1;
3620 while (i >= nr) {
3621 item = btrfs_item_nr(i);
3622
3623 if (!empty && push_items > 0) {
3624 if (path->slots[0] > i)
3625 break;
3626 if (path->slots[0] == i) {
3627 int space = btrfs_leaf_free_space(root, left);
3628 if (space + push_space * 2 > free_space)
3629 break;
3630 }
3631 }
3632
3633 if (path->slots[0] == i)
3634 push_space += data_size;
3635
3636 this_item_size = btrfs_item_size(left, item);
3637 if (this_item_size + sizeof(*item) + push_space > free_space)
3638 break;
3639
3640 push_items++;
3641 push_space += this_item_size + sizeof(*item);
3642 if (i == 0)
3643 break;
3644 i--;
3645 }
3646
3647 if (push_items == 0)
3648 goto out_unlock;
3649
3650 WARN_ON(!empty && push_items == left_nritems);
3651
3652 /* push left to right */
3653 right_nritems = btrfs_header_nritems(right);
3654
3655 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3656 push_space -= leaf_data_end(root, left);
3657
3658 /* make room in the right data area */
3659 data_end = leaf_data_end(root, right);
3660 memmove_extent_buffer(right,
3661 btrfs_leaf_data(right) + data_end - push_space,
3662 btrfs_leaf_data(right) + data_end,
3663 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3664
3665 /* copy from the left data area */
3666 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3667 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3668 btrfs_leaf_data(left) + leaf_data_end(root, left),
3669 push_space);
3670
3671 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3672 btrfs_item_nr_offset(0),
3673 right_nritems * sizeof(struct btrfs_item));
3674
3675 /* copy the items from left to right */
3676 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3677 btrfs_item_nr_offset(left_nritems - push_items),
3678 push_items * sizeof(struct btrfs_item));
3679
3680 /* update the item pointers */
3681 right_nritems += push_items;
3682 btrfs_set_header_nritems(right, right_nritems);
3683 push_space = BTRFS_LEAF_DATA_SIZE(root);
3684 for (i = 0; i < right_nritems; i++) {
3685 item = btrfs_item_nr(i);
3686 push_space -= btrfs_token_item_size(right, item, &token);
3687 btrfs_set_token_item_offset(right, item, push_space, &token);
3688 }
3689
3690 left_nritems -= push_items;
3691 btrfs_set_header_nritems(left, left_nritems);
3692
3693 if (left_nritems)
3694 btrfs_mark_buffer_dirty(left);
3695 else
3696 clean_tree_block(trans, root->fs_info, left);
3697
3698 btrfs_mark_buffer_dirty(right);
3699
3700 btrfs_item_key(right, &disk_key, 0);
3701 btrfs_set_node_key(upper, &disk_key, slot + 1);
3702 btrfs_mark_buffer_dirty(upper);
3703
3704 /* then fixup the leaf pointer in the path */
3705 if (path->slots[0] >= left_nritems) {
3706 path->slots[0] -= left_nritems;
3707 if (btrfs_header_nritems(path->nodes[0]) == 0)
3708 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3709 btrfs_tree_unlock(path->nodes[0]);
3710 free_extent_buffer(path->nodes[0]);
3711 path->nodes[0] = right;
3712 path->slots[1] += 1;
3713 } else {
3714 btrfs_tree_unlock(right);
3715 free_extent_buffer(right);
3716 }
3717 return 0;
3718
3719 out_unlock:
3720 btrfs_tree_unlock(right);
3721 free_extent_buffer(right);
3722 return 1;
3723 }
3724
3725 /*
3726 * push some data in the path leaf to the right, trying to free up at
3727 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3728 *
3729 * returns 1 if the push failed because the other node didn't have enough
3730 * room, 0 if everything worked out and < 0 if there were major errors.
3731 *
3732 * this will push starting from min_slot to the end of the leaf. It won't
3733 * push any slot lower than min_slot
3734 */
3735 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3736 *root, struct btrfs_path *path,
3737 int min_data_size, int data_size,
3738 int empty, u32 min_slot)
3739 {
3740 struct extent_buffer *left = path->nodes[0];
3741 struct extent_buffer *right;
3742 struct extent_buffer *upper;
3743 int slot;
3744 int free_space;
3745 u32 left_nritems;
3746 int ret;
3747
3748 if (!path->nodes[1])
3749 return 1;
3750
3751 slot = path->slots[1];
3752 upper = path->nodes[1];
3753 if (slot >= btrfs_header_nritems(upper) - 1)
3754 return 1;
3755
3756 btrfs_assert_tree_locked(path->nodes[1]);
3757
3758 right = read_node_slot(root, upper, slot + 1);
3759 if (right == NULL)
3760 return 1;
3761
3762 btrfs_tree_lock(right);
3763 btrfs_set_lock_blocking(right);
3764
3765 free_space = btrfs_leaf_free_space(root, right);
3766 if (free_space < data_size)
3767 goto out_unlock;
3768
3769 /* cow and double check */
3770 ret = btrfs_cow_block(trans, root, right, upper,
3771 slot + 1, &right);
3772 if (ret)
3773 goto out_unlock;
3774
3775 free_space = btrfs_leaf_free_space(root, right);
3776 if (free_space < data_size)
3777 goto out_unlock;
3778
3779 left_nritems = btrfs_header_nritems(left);
3780 if (left_nritems == 0)
3781 goto out_unlock;
3782
3783 if (path->slots[0] == left_nritems && !empty) {
3784 /* Key greater than all keys in the leaf, right neighbor has
3785 * enough room for it and we're not emptying our leaf to delete
3786 * it, therefore use right neighbor to insert the new item and
3787 * no need to touch/dirty our left leaft. */
3788 btrfs_tree_unlock(left);
3789 free_extent_buffer(left);
3790 path->nodes[0] = right;
3791 path->slots[0] = 0;
3792 path->slots[1]++;
3793 return 0;
3794 }
3795
3796 return __push_leaf_right(trans, root, path, min_data_size, empty,
3797 right, free_space, left_nritems, min_slot);
3798 out_unlock:
3799 btrfs_tree_unlock(right);
3800 free_extent_buffer(right);
3801 return 1;
3802 }
3803
3804 /*
3805 * push some data in the path leaf to the left, trying to free up at
3806 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3807 *
3808 * max_slot can put a limit on how far into the leaf we'll push items. The
3809 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3810 * items
3811 */
3812 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3813 struct btrfs_root *root,
3814 struct btrfs_path *path, int data_size,
3815 int empty, struct extent_buffer *left,
3816 int free_space, u32 right_nritems,
3817 u32 max_slot)
3818 {
3819 struct btrfs_disk_key disk_key;
3820 struct extent_buffer *right = path->nodes[0];
3821 int i;
3822 int push_space = 0;
3823 int push_items = 0;
3824 struct btrfs_item *item;
3825 u32 old_left_nritems;
3826 u32 nr;
3827 int ret = 0;
3828 u32 this_item_size;
3829 u32 old_left_item_size;
3830 struct btrfs_map_token token;
3831
3832 btrfs_init_map_token(&token);
3833
3834 if (empty)
3835 nr = min(right_nritems, max_slot);
3836 else
3837 nr = min(right_nritems - 1, max_slot);
3838
3839 for (i = 0; i < nr; i++) {
3840 item = btrfs_item_nr(i);
3841
3842 if (!empty && push_items > 0) {
3843 if (path->slots[0] < i)
3844 break;
3845 if (path->slots[0] == i) {
3846 int space = btrfs_leaf_free_space(root, right);
3847 if (space + push_space * 2 > free_space)
3848 break;
3849 }
3850 }
3851
3852 if (path->slots[0] == i)
3853 push_space += data_size;
3854
3855 this_item_size = btrfs_item_size(right, item);
3856 if (this_item_size + sizeof(*item) + push_space > free_space)
3857 break;
3858
3859 push_items++;
3860 push_space += this_item_size + sizeof(*item);
3861 }
3862
3863 if (push_items == 0) {
3864 ret = 1;
3865 goto out;
3866 }
3867 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3868
3869 /* push data from right to left */
3870 copy_extent_buffer(left, right,
3871 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3872 btrfs_item_nr_offset(0),
3873 push_items * sizeof(struct btrfs_item));
3874
3875 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3876 btrfs_item_offset_nr(right, push_items - 1);
3877
3878 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3879 leaf_data_end(root, left) - push_space,
3880 btrfs_leaf_data(right) +
3881 btrfs_item_offset_nr(right, push_items - 1),
3882 push_space);
3883 old_left_nritems = btrfs_header_nritems(left);
3884 BUG_ON(old_left_nritems <= 0);
3885
3886 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3887 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3888 u32 ioff;
3889
3890 item = btrfs_item_nr(i);
3891
3892 ioff = btrfs_token_item_offset(left, item, &token);
3893 btrfs_set_token_item_offset(left, item,
3894 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3895 &token);
3896 }
3897 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3898
3899 /* fixup right node */
3900 if (push_items > right_nritems)
3901 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3902 right_nritems);
3903
3904 if (push_items < right_nritems) {
3905 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3906 leaf_data_end(root, right);
3907 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3908 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3909 btrfs_leaf_data(right) +
3910 leaf_data_end(root, right), push_space);
3911
3912 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3913 btrfs_item_nr_offset(push_items),
3914 (btrfs_header_nritems(right) - push_items) *
3915 sizeof(struct btrfs_item));
3916 }
3917 right_nritems -= push_items;
3918 btrfs_set_header_nritems(right, right_nritems);
3919 push_space = BTRFS_LEAF_DATA_SIZE(root);
3920 for (i = 0; i < right_nritems; i++) {
3921 item = btrfs_item_nr(i);
3922
3923 push_space = push_space - btrfs_token_item_size(right,
3924 item, &token);
3925 btrfs_set_token_item_offset(right, item, push_space, &token);
3926 }
3927
3928 btrfs_mark_buffer_dirty(left);
3929 if (right_nritems)
3930 btrfs_mark_buffer_dirty(right);
3931 else
3932 clean_tree_block(trans, root->fs_info, right);
3933
3934 btrfs_item_key(right, &disk_key, 0);
3935 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3936
3937 /* then fixup the leaf pointer in the path */
3938 if (path->slots[0] < push_items) {
3939 path->slots[0] += old_left_nritems;
3940 btrfs_tree_unlock(path->nodes[0]);
3941 free_extent_buffer(path->nodes[0]);
3942 path->nodes[0] = left;
3943 path->slots[1] -= 1;
3944 } else {
3945 btrfs_tree_unlock(left);
3946 free_extent_buffer(left);
3947 path->slots[0] -= push_items;
3948 }
3949 BUG_ON(path->slots[0] < 0);
3950 return ret;
3951 out:
3952 btrfs_tree_unlock(left);
3953 free_extent_buffer(left);
3954 return ret;
3955 }
3956
3957 /*
3958 * push some data in the path leaf to the left, trying to free up at
3959 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3960 *
3961 * max_slot can put a limit on how far into the leaf we'll push items. The
3962 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3963 * items
3964 */
3965 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3966 *root, struct btrfs_path *path, int min_data_size,
3967 int data_size, int empty, u32 max_slot)
3968 {
3969 struct extent_buffer *right = path->nodes[0];
3970 struct extent_buffer *left;
3971 int slot;
3972 int free_space;
3973 u32 right_nritems;
3974 int ret = 0;
3975
3976 slot = path->slots[1];
3977 if (slot == 0)
3978 return 1;
3979 if (!path->nodes[1])
3980 return 1;
3981
3982 right_nritems = btrfs_header_nritems(right);
3983 if (right_nritems == 0)
3984 return 1;
3985
3986 btrfs_assert_tree_locked(path->nodes[1]);
3987
3988 left = read_node_slot(root, path->nodes[1], slot - 1);
3989 if (left == NULL)
3990 return 1;
3991
3992 btrfs_tree_lock(left);
3993 btrfs_set_lock_blocking(left);
3994
3995 free_space = btrfs_leaf_free_space(root, left);
3996 if (free_space < data_size) {
3997 ret = 1;
3998 goto out;
3999 }
4000
4001 /* cow and double check */
4002 ret = btrfs_cow_block(trans, root, left,
4003 path->nodes[1], slot - 1, &left);
4004 if (ret) {
4005 /* we hit -ENOSPC, but it isn't fatal here */
4006 if (ret == -ENOSPC)
4007 ret = 1;
4008 goto out;
4009 }
4010
4011 free_space = btrfs_leaf_free_space(root, left);
4012 if (free_space < data_size) {
4013 ret = 1;
4014 goto out;
4015 }
4016
4017 return __push_leaf_left(trans, root, path, min_data_size,
4018 empty, left, free_space, right_nritems,
4019 max_slot);
4020 out:
4021 btrfs_tree_unlock(left);
4022 free_extent_buffer(left);
4023 return ret;
4024 }
4025
4026 /*
4027 * split the path's leaf in two, making sure there is at least data_size
4028 * available for the resulting leaf level of the path.
4029 */
4030 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4031 struct btrfs_root *root,
4032 struct btrfs_path *path,
4033 struct extent_buffer *l,
4034 struct extent_buffer *right,
4035 int slot, int mid, int nritems)
4036 {
4037 int data_copy_size;
4038 int rt_data_off;
4039 int i;
4040 struct btrfs_disk_key disk_key;
4041 struct btrfs_map_token token;
4042
4043 btrfs_init_map_token(&token);
4044
4045 nritems = nritems - mid;
4046 btrfs_set_header_nritems(right, nritems);
4047 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4048
4049 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4050 btrfs_item_nr_offset(mid),
4051 nritems * sizeof(struct btrfs_item));
4052
4053 copy_extent_buffer(right, l,
4054 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4055 data_copy_size, btrfs_leaf_data(l) +
4056 leaf_data_end(root, l), data_copy_size);
4057
4058 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4059 btrfs_item_end_nr(l, mid);
4060
4061 for (i = 0; i < nritems; i++) {
4062 struct btrfs_item *item = btrfs_item_nr(i);
4063 u32 ioff;
4064
4065 ioff = btrfs_token_item_offset(right, item, &token);
4066 btrfs_set_token_item_offset(right, item,
4067 ioff + rt_data_off, &token);
4068 }
4069
4070 btrfs_set_header_nritems(l, mid);
4071 btrfs_item_key(right, &disk_key, 0);
4072 insert_ptr(trans, root, path, &disk_key, right->start,
4073 path->slots[1] + 1, 1);
4074
4075 btrfs_mark_buffer_dirty(right);
4076 btrfs_mark_buffer_dirty(l);
4077 BUG_ON(path->slots[0] != slot);
4078
4079 if (mid <= slot) {
4080 btrfs_tree_unlock(path->nodes[0]);
4081 free_extent_buffer(path->nodes[0]);
4082 path->nodes[0] = right;
4083 path->slots[0] -= mid;
4084 path->slots[1] += 1;
4085 } else {
4086 btrfs_tree_unlock(right);
4087 free_extent_buffer(right);
4088 }
4089
4090 BUG_ON(path->slots[0] < 0);
4091 }
4092
4093 /*
4094 * double splits happen when we need to insert a big item in the middle
4095 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4096 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4097 * A B C
4098 *
4099 * We avoid this by trying to push the items on either side of our target
4100 * into the adjacent leaves. If all goes well we can avoid the double split
4101 * completely.
4102 */
4103 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4104 struct btrfs_root *root,
4105 struct btrfs_path *path,
4106 int data_size)
4107 {
4108 int ret;
4109 int progress = 0;
4110 int slot;
4111 u32 nritems;
4112 int space_needed = data_size;
4113
4114 slot = path->slots[0];
4115 if (slot < btrfs_header_nritems(path->nodes[0]))
4116 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4117
4118 /*
4119 * try to push all the items after our slot into the
4120 * right leaf
4121 */
4122 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4123 if (ret < 0)
4124 return ret;
4125
4126 if (ret == 0)
4127 progress++;
4128
4129 nritems = btrfs_header_nritems(path->nodes[0]);
4130 /*
4131 * our goal is to get our slot at the start or end of a leaf. If
4132 * we've done so we're done
4133 */
4134 if (path->slots[0] == 0 || path->slots[0] == nritems)
4135 return 0;
4136
4137 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4138 return 0;
4139
4140 /* try to push all the items before our slot into the next leaf */
4141 slot = path->slots[0];
4142 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4143 if (ret < 0)
4144 return ret;
4145
4146 if (ret == 0)
4147 progress++;
4148
4149 if (progress)
4150 return 0;
4151 return 1;
4152 }
4153
4154 /*
4155 * split the path's leaf in two, making sure there is at least data_size
4156 * available for the resulting leaf level of the path.
4157 *
4158 * returns 0 if all went well and < 0 on failure.
4159 */
4160 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4161 struct btrfs_root *root,
4162 struct btrfs_key *ins_key,
4163 struct btrfs_path *path, int data_size,
4164 int extend)
4165 {
4166 struct btrfs_disk_key disk_key;
4167 struct extent_buffer *l;
4168 u32 nritems;
4169 int mid;
4170 int slot;
4171 struct extent_buffer *right;
4172 struct btrfs_fs_info *fs_info = root->fs_info;
4173 int ret = 0;
4174 int wret;
4175 int split;
4176 int num_doubles = 0;
4177 int tried_avoid_double = 0;
4178
4179 l = path->nodes[0];
4180 slot = path->slots[0];
4181 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4182 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4183 return -EOVERFLOW;
4184
4185 /* first try to make some room by pushing left and right */
4186 if (data_size && path->nodes[1]) {
4187 int space_needed = data_size;
4188
4189 if (slot < btrfs_header_nritems(l))
4190 space_needed -= btrfs_leaf_free_space(root, l);
4191
4192 wret = push_leaf_right(trans, root, path, space_needed,
4193 space_needed, 0, 0);
4194 if (wret < 0)
4195 return wret;
4196 if (wret) {
4197 wret = push_leaf_left(trans, root, path, space_needed,
4198 space_needed, 0, (u32)-1);
4199 if (wret < 0)
4200 return wret;
4201 }
4202 l = path->nodes[0];
4203
4204 /* did the pushes work? */
4205 if (btrfs_leaf_free_space(root, l) >= data_size)
4206 return 0;
4207 }
4208
4209 if (!path->nodes[1]) {
4210 ret = insert_new_root(trans, root, path, 1);
4211 if (ret)
4212 return ret;
4213 }
4214 again:
4215 split = 1;
4216 l = path->nodes[0];
4217 slot = path->slots[0];
4218 nritems = btrfs_header_nritems(l);
4219 mid = (nritems + 1) / 2;
4220
4221 if (mid <= slot) {
4222 if (nritems == 1 ||
4223 leaf_space_used(l, mid, nritems - mid) + data_size >
4224 BTRFS_LEAF_DATA_SIZE(root)) {
4225 if (slot >= nritems) {
4226 split = 0;
4227 } else {
4228 mid = slot;
4229 if (mid != nritems &&
4230 leaf_space_used(l, mid, nritems - mid) +
4231 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4232 if (data_size && !tried_avoid_double)
4233 goto push_for_double;
4234 split = 2;
4235 }
4236 }
4237 }
4238 } else {
4239 if (leaf_space_used(l, 0, mid) + data_size >
4240 BTRFS_LEAF_DATA_SIZE(root)) {
4241 if (!extend && data_size && slot == 0) {
4242 split = 0;
4243 } else if ((extend || !data_size) && slot == 0) {
4244 mid = 1;
4245 } else {
4246 mid = slot;
4247 if (mid != nritems &&
4248 leaf_space_used(l, mid, nritems - mid) +
4249 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4250 if (data_size && !tried_avoid_double)
4251 goto push_for_double;
4252 split = 2;
4253 }
4254 }
4255 }
4256 }
4257
4258 if (split == 0)
4259 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4260 else
4261 btrfs_item_key(l, &disk_key, mid);
4262
4263 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4264 &disk_key, 0, l->start, 0);
4265 if (IS_ERR(right))
4266 return PTR_ERR(right);
4267
4268 root_add_used(root, root->nodesize);
4269
4270 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4271 btrfs_set_header_bytenr(right, right->start);
4272 btrfs_set_header_generation(right, trans->transid);
4273 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4274 btrfs_set_header_owner(right, root->root_key.objectid);
4275 btrfs_set_header_level(right, 0);
4276 write_extent_buffer(right, fs_info->fsid,
4277 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4278
4279 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4280 btrfs_header_chunk_tree_uuid(right),
4281 BTRFS_UUID_SIZE);
4282
4283 if (split == 0) {
4284 if (mid <= slot) {
4285 btrfs_set_header_nritems(right, 0);
4286 insert_ptr(trans, root, path, &disk_key, right->start,
4287 path->slots[1] + 1, 1);
4288 btrfs_tree_unlock(path->nodes[0]);
4289 free_extent_buffer(path->nodes[0]);
4290 path->nodes[0] = right;
4291 path->slots[0] = 0;
4292 path->slots[1] += 1;
4293 } else {
4294 btrfs_set_header_nritems(right, 0);
4295 insert_ptr(trans, root, path, &disk_key, right->start,
4296 path->slots[1], 1);
4297 btrfs_tree_unlock(path->nodes[0]);
4298 free_extent_buffer(path->nodes[0]);
4299 path->nodes[0] = right;
4300 path->slots[0] = 0;
4301 if (path->slots[1] == 0)
4302 fixup_low_keys(fs_info, path, &disk_key, 1);
4303 }
4304 btrfs_mark_buffer_dirty(right);
4305 return ret;
4306 }
4307
4308 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4309
4310 if (split == 2) {
4311 BUG_ON(num_doubles != 0);
4312 num_doubles++;
4313 goto again;
4314 }
4315
4316 return 0;
4317
4318 push_for_double:
4319 push_for_double_split(trans, root, path, data_size);
4320 tried_avoid_double = 1;
4321 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4322 return 0;
4323 goto again;
4324 }
4325
4326 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4327 struct btrfs_root *root,
4328 struct btrfs_path *path, int ins_len)
4329 {
4330 struct btrfs_key key;
4331 struct extent_buffer *leaf;
4332 struct btrfs_file_extent_item *fi;
4333 u64 extent_len = 0;
4334 u32 item_size;
4335 int ret;
4336
4337 leaf = path->nodes[0];
4338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4339
4340 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4341 key.type != BTRFS_EXTENT_CSUM_KEY);
4342
4343 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4344 return 0;
4345
4346 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4347 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4348 fi = btrfs_item_ptr(leaf, path->slots[0],
4349 struct btrfs_file_extent_item);
4350 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4351 }
4352 btrfs_release_path(path);
4353
4354 path->keep_locks = 1;
4355 path->search_for_split = 1;
4356 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4357 path->search_for_split = 0;
4358 if (ret > 0)
4359 ret = -EAGAIN;
4360 if (ret < 0)
4361 goto err;
4362
4363 ret = -EAGAIN;
4364 leaf = path->nodes[0];
4365 /* if our item isn't there, return now */
4366 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4367 goto err;
4368
4369 /* the leaf has changed, it now has room. return now */
4370 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4371 goto err;
4372
4373 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374 fi = btrfs_item_ptr(leaf, path->slots[0],
4375 struct btrfs_file_extent_item);
4376 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4377 goto err;
4378 }
4379
4380 btrfs_set_path_blocking(path);
4381 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4382 if (ret)
4383 goto err;
4384
4385 path->keep_locks = 0;
4386 btrfs_unlock_up_safe(path, 1);
4387 return 0;
4388 err:
4389 path->keep_locks = 0;
4390 return ret;
4391 }
4392
4393 static noinline int split_item(struct btrfs_trans_handle *trans,
4394 struct btrfs_root *root,
4395 struct btrfs_path *path,
4396 struct btrfs_key *new_key,
4397 unsigned long split_offset)
4398 {
4399 struct extent_buffer *leaf;
4400 struct btrfs_item *item;
4401 struct btrfs_item *new_item;
4402 int slot;
4403 char *buf;
4404 u32 nritems;
4405 u32 item_size;
4406 u32 orig_offset;
4407 struct btrfs_disk_key disk_key;
4408
4409 leaf = path->nodes[0];
4410 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4411
4412 btrfs_set_path_blocking(path);
4413
4414 item = btrfs_item_nr(path->slots[0]);
4415 orig_offset = btrfs_item_offset(leaf, item);
4416 item_size = btrfs_item_size(leaf, item);
4417
4418 buf = kmalloc(item_size, GFP_NOFS);
4419 if (!buf)
4420 return -ENOMEM;
4421
4422 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4423 path->slots[0]), item_size);
4424
4425 slot = path->slots[0] + 1;
4426 nritems = btrfs_header_nritems(leaf);
4427 if (slot != nritems) {
4428 /* shift the items */
4429 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4430 btrfs_item_nr_offset(slot),
4431 (nritems - slot) * sizeof(struct btrfs_item));
4432 }
4433
4434 btrfs_cpu_key_to_disk(&disk_key, new_key);
4435 btrfs_set_item_key(leaf, &disk_key, slot);
4436
4437 new_item = btrfs_item_nr(slot);
4438
4439 btrfs_set_item_offset(leaf, new_item, orig_offset);
4440 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4441
4442 btrfs_set_item_offset(leaf, item,
4443 orig_offset + item_size - split_offset);
4444 btrfs_set_item_size(leaf, item, split_offset);
4445
4446 btrfs_set_header_nritems(leaf, nritems + 1);
4447
4448 /* write the data for the start of the original item */
4449 write_extent_buffer(leaf, buf,
4450 btrfs_item_ptr_offset(leaf, path->slots[0]),
4451 split_offset);
4452
4453 /* write the data for the new item */
4454 write_extent_buffer(leaf, buf + split_offset,
4455 btrfs_item_ptr_offset(leaf, slot),
4456 item_size - split_offset);
4457 btrfs_mark_buffer_dirty(leaf);
4458
4459 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4460 kfree(buf);
4461 return 0;
4462 }
4463
4464 /*
4465 * This function splits a single item into two items,
4466 * giving 'new_key' to the new item and splitting the
4467 * old one at split_offset (from the start of the item).
4468 *
4469 * The path may be released by this operation. After
4470 * the split, the path is pointing to the old item. The
4471 * new item is going to be in the same node as the old one.
4472 *
4473 * Note, the item being split must be smaller enough to live alone on
4474 * a tree block with room for one extra struct btrfs_item
4475 *
4476 * This allows us to split the item in place, keeping a lock on the
4477 * leaf the entire time.
4478 */
4479 int btrfs_split_item(struct btrfs_trans_handle *trans,
4480 struct btrfs_root *root,
4481 struct btrfs_path *path,
4482 struct btrfs_key *new_key,
4483 unsigned long split_offset)
4484 {
4485 int ret;
4486 ret = setup_leaf_for_split(trans, root, path,
4487 sizeof(struct btrfs_item));
4488 if (ret)
4489 return ret;
4490
4491 ret = split_item(trans, root, path, new_key, split_offset);
4492 return ret;
4493 }
4494
4495 /*
4496 * This function duplicate a item, giving 'new_key' to the new item.
4497 * It guarantees both items live in the same tree leaf and the new item
4498 * is contiguous with the original item.
4499 *
4500 * This allows us to split file extent in place, keeping a lock on the
4501 * leaf the entire time.
4502 */
4503 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4504 struct btrfs_root *root,
4505 struct btrfs_path *path,
4506 struct btrfs_key *new_key)
4507 {
4508 struct extent_buffer *leaf;
4509 int ret;
4510 u32 item_size;
4511
4512 leaf = path->nodes[0];
4513 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4514 ret = setup_leaf_for_split(trans, root, path,
4515 item_size + sizeof(struct btrfs_item));
4516 if (ret)
4517 return ret;
4518
4519 path->slots[0]++;
4520 setup_items_for_insert(root, path, new_key, &item_size,
4521 item_size, item_size +
4522 sizeof(struct btrfs_item), 1);
4523 leaf = path->nodes[0];
4524 memcpy_extent_buffer(leaf,
4525 btrfs_item_ptr_offset(leaf, path->slots[0]),
4526 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4527 item_size);
4528 return 0;
4529 }
4530
4531 /*
4532 * make the item pointed to by the path smaller. new_size indicates
4533 * how small to make it, and from_end tells us if we just chop bytes
4534 * off the end of the item or if we shift the item to chop bytes off
4535 * the front.
4536 */
4537 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4538 u32 new_size, int from_end)
4539 {
4540 int slot;
4541 struct extent_buffer *leaf;
4542 struct btrfs_item *item;
4543 u32 nritems;
4544 unsigned int data_end;
4545 unsigned int old_data_start;
4546 unsigned int old_size;
4547 unsigned int size_diff;
4548 int i;
4549 struct btrfs_map_token token;
4550
4551 btrfs_init_map_token(&token);
4552
4553 leaf = path->nodes[0];
4554 slot = path->slots[0];
4555
4556 old_size = btrfs_item_size_nr(leaf, slot);
4557 if (old_size == new_size)
4558 return;
4559
4560 nritems = btrfs_header_nritems(leaf);
4561 data_end = leaf_data_end(root, leaf);
4562
4563 old_data_start = btrfs_item_offset_nr(leaf, slot);
4564
4565 size_diff = old_size - new_size;
4566
4567 BUG_ON(slot < 0);
4568 BUG_ON(slot >= nritems);
4569
4570 /*
4571 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4572 */
4573 /* first correct the data pointers */
4574 for (i = slot; i < nritems; i++) {
4575 u32 ioff;
4576 item = btrfs_item_nr(i);
4577
4578 ioff = btrfs_token_item_offset(leaf, item, &token);
4579 btrfs_set_token_item_offset(leaf, item,
4580 ioff + size_diff, &token);
4581 }
4582
4583 /* shift the data */
4584 if (from_end) {
4585 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4586 data_end + size_diff, btrfs_leaf_data(leaf) +
4587 data_end, old_data_start + new_size - data_end);
4588 } else {
4589 struct btrfs_disk_key disk_key;
4590 u64 offset;
4591
4592 btrfs_item_key(leaf, &disk_key, slot);
4593
4594 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4595 unsigned long ptr;
4596 struct btrfs_file_extent_item *fi;
4597
4598 fi = btrfs_item_ptr(leaf, slot,
4599 struct btrfs_file_extent_item);
4600 fi = (struct btrfs_file_extent_item *)(
4601 (unsigned long)fi - size_diff);
4602
4603 if (btrfs_file_extent_type(leaf, fi) ==
4604 BTRFS_FILE_EXTENT_INLINE) {
4605 ptr = btrfs_item_ptr_offset(leaf, slot);
4606 memmove_extent_buffer(leaf, ptr,
4607 (unsigned long)fi,
4608 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4609 }
4610 }
4611
4612 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4613 data_end + size_diff, btrfs_leaf_data(leaf) +
4614 data_end, old_data_start - data_end);
4615
4616 offset = btrfs_disk_key_offset(&disk_key);
4617 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4618 btrfs_set_item_key(leaf, &disk_key, slot);
4619 if (slot == 0)
4620 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4621 }
4622
4623 item = btrfs_item_nr(slot);
4624 btrfs_set_item_size(leaf, item, new_size);
4625 btrfs_mark_buffer_dirty(leaf);
4626
4627 if (btrfs_leaf_free_space(root, leaf) < 0) {
4628 btrfs_print_leaf(root, leaf);
4629 BUG();
4630 }
4631 }
4632
4633 /*
4634 * make the item pointed to by the path bigger, data_size is the added size.
4635 */
4636 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4637 u32 data_size)
4638 {
4639 int slot;
4640 struct extent_buffer *leaf;
4641 struct btrfs_item *item;
4642 u32 nritems;
4643 unsigned int data_end;
4644 unsigned int old_data;
4645 unsigned int old_size;
4646 int i;
4647 struct btrfs_map_token token;
4648
4649 btrfs_init_map_token(&token);
4650
4651 leaf = path->nodes[0];
4652
4653 nritems = btrfs_header_nritems(leaf);
4654 data_end = leaf_data_end(root, leaf);
4655
4656 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4657 btrfs_print_leaf(root, leaf);
4658 BUG();
4659 }
4660 slot = path->slots[0];
4661 old_data = btrfs_item_end_nr(leaf, slot);
4662
4663 BUG_ON(slot < 0);
4664 if (slot >= nritems) {
4665 btrfs_print_leaf(root, leaf);
4666 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4667 slot, nritems);
4668 BUG_ON(1);
4669 }
4670
4671 /*
4672 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4673 */
4674 /* first correct the data pointers */
4675 for (i = slot; i < nritems; i++) {
4676 u32 ioff;
4677 item = btrfs_item_nr(i);
4678
4679 ioff = btrfs_token_item_offset(leaf, item, &token);
4680 btrfs_set_token_item_offset(leaf, item,
4681 ioff - data_size, &token);
4682 }
4683
4684 /* shift the data */
4685 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4686 data_end - data_size, btrfs_leaf_data(leaf) +
4687 data_end, old_data - data_end);
4688
4689 data_end = old_data;
4690 old_size = btrfs_item_size_nr(leaf, slot);
4691 item = btrfs_item_nr(slot);
4692 btrfs_set_item_size(leaf, item, old_size + data_size);
4693 btrfs_mark_buffer_dirty(leaf);
4694
4695 if (btrfs_leaf_free_space(root, leaf) < 0) {
4696 btrfs_print_leaf(root, leaf);
4697 BUG();
4698 }
4699 }
4700
4701 /*
4702 * this is a helper for btrfs_insert_empty_items, the main goal here is
4703 * to save stack depth by doing the bulk of the work in a function
4704 * that doesn't call btrfs_search_slot
4705 */
4706 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4707 struct btrfs_key *cpu_key, u32 *data_size,
4708 u32 total_data, u32 total_size, int nr)
4709 {
4710 struct btrfs_item *item;
4711 int i;
4712 u32 nritems;
4713 unsigned int data_end;
4714 struct btrfs_disk_key disk_key;
4715 struct extent_buffer *leaf;
4716 int slot;
4717 struct btrfs_map_token token;
4718
4719 if (path->slots[0] == 0) {
4720 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4721 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4722 }
4723 btrfs_unlock_up_safe(path, 1);
4724
4725 btrfs_init_map_token(&token);
4726
4727 leaf = path->nodes[0];
4728 slot = path->slots[0];
4729
4730 nritems = btrfs_header_nritems(leaf);
4731 data_end = leaf_data_end(root, leaf);
4732
4733 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4734 btrfs_print_leaf(root, leaf);
4735 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4736 total_size, btrfs_leaf_free_space(root, leaf));
4737 BUG();
4738 }
4739
4740 if (slot != nritems) {
4741 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4742
4743 if (old_data < data_end) {
4744 btrfs_print_leaf(root, leaf);
4745 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4746 slot, old_data, data_end);
4747 BUG_ON(1);
4748 }
4749 /*
4750 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4751 */
4752 /* first correct the data pointers */
4753 for (i = slot; i < nritems; i++) {
4754 u32 ioff;
4755
4756 item = btrfs_item_nr( i);
4757 ioff = btrfs_token_item_offset(leaf, item, &token);
4758 btrfs_set_token_item_offset(leaf, item,
4759 ioff - total_data, &token);
4760 }
4761 /* shift the items */
4762 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4763 btrfs_item_nr_offset(slot),
4764 (nritems - slot) * sizeof(struct btrfs_item));
4765
4766 /* shift the data */
4767 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4768 data_end - total_data, btrfs_leaf_data(leaf) +
4769 data_end, old_data - data_end);
4770 data_end = old_data;
4771 }
4772
4773 /* setup the item for the new data */
4774 for (i = 0; i < nr; i++) {
4775 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4776 btrfs_set_item_key(leaf, &disk_key, slot + i);
4777 item = btrfs_item_nr(slot + i);
4778 btrfs_set_token_item_offset(leaf, item,
4779 data_end - data_size[i], &token);
4780 data_end -= data_size[i];
4781 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4782 }
4783
4784 btrfs_set_header_nritems(leaf, nritems + nr);
4785 btrfs_mark_buffer_dirty(leaf);
4786
4787 if (btrfs_leaf_free_space(root, leaf) < 0) {
4788 btrfs_print_leaf(root, leaf);
4789 BUG();
4790 }
4791 }
4792
4793 /*
4794 * Given a key and some data, insert items into the tree.
4795 * This does all the path init required, making room in the tree if needed.
4796 */
4797 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4798 struct btrfs_root *root,
4799 struct btrfs_path *path,
4800 struct btrfs_key *cpu_key, u32 *data_size,
4801 int nr)
4802 {
4803 int ret = 0;
4804 int slot;
4805 int i;
4806 u32 total_size = 0;
4807 u32 total_data = 0;
4808
4809 for (i = 0; i < nr; i++)
4810 total_data += data_size[i];
4811
4812 total_size = total_data + (nr * sizeof(struct btrfs_item));
4813 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4814 if (ret == 0)
4815 return -EEXIST;
4816 if (ret < 0)
4817 return ret;
4818
4819 slot = path->slots[0];
4820 BUG_ON(slot < 0);
4821
4822 setup_items_for_insert(root, path, cpu_key, data_size,
4823 total_data, total_size, nr);
4824 return 0;
4825 }
4826
4827 /*
4828 * Given a key and some data, insert an item into the tree.
4829 * This does all the path init required, making room in the tree if needed.
4830 */
4831 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4832 *root, struct btrfs_key *cpu_key, void *data, u32
4833 data_size)
4834 {
4835 int ret = 0;
4836 struct btrfs_path *path;
4837 struct extent_buffer *leaf;
4838 unsigned long ptr;
4839
4840 path = btrfs_alloc_path();
4841 if (!path)
4842 return -ENOMEM;
4843 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4844 if (!ret) {
4845 leaf = path->nodes[0];
4846 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4847 write_extent_buffer(leaf, data, ptr, data_size);
4848 btrfs_mark_buffer_dirty(leaf);
4849 }
4850 btrfs_free_path(path);
4851 return ret;
4852 }
4853
4854 /*
4855 * delete the pointer from a given node.
4856 *
4857 * the tree should have been previously balanced so the deletion does not
4858 * empty a node.
4859 */
4860 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4861 int level, int slot)
4862 {
4863 struct extent_buffer *parent = path->nodes[level];
4864 u32 nritems;
4865 int ret;
4866
4867 nritems = btrfs_header_nritems(parent);
4868 if (slot != nritems - 1) {
4869 if (level)
4870 tree_mod_log_eb_move(root->fs_info, parent, slot,
4871 slot + 1, nritems - slot - 1);
4872 memmove_extent_buffer(parent,
4873 btrfs_node_key_ptr_offset(slot),
4874 btrfs_node_key_ptr_offset(slot + 1),
4875 sizeof(struct btrfs_key_ptr) *
4876 (nritems - slot - 1));
4877 } else if (level) {
4878 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4879 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4880 BUG_ON(ret < 0);
4881 }
4882
4883 nritems--;
4884 btrfs_set_header_nritems(parent, nritems);
4885 if (nritems == 0 && parent == root->node) {
4886 BUG_ON(btrfs_header_level(root->node) != 1);
4887 /* just turn the root into a leaf and break */
4888 btrfs_set_header_level(root->node, 0);
4889 } else if (slot == 0) {
4890 struct btrfs_disk_key disk_key;
4891
4892 btrfs_node_key(parent, &disk_key, 0);
4893 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4894 }
4895 btrfs_mark_buffer_dirty(parent);
4896 }
4897
4898 /*
4899 * a helper function to delete the leaf pointed to by path->slots[1] and
4900 * path->nodes[1].
4901 *
4902 * This deletes the pointer in path->nodes[1] and frees the leaf
4903 * block extent. zero is returned if it all worked out, < 0 otherwise.
4904 *
4905 * The path must have already been setup for deleting the leaf, including
4906 * all the proper balancing. path->nodes[1] must be locked.
4907 */
4908 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4909 struct btrfs_root *root,
4910 struct btrfs_path *path,
4911 struct extent_buffer *leaf)
4912 {
4913 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4914 del_ptr(root, path, 1, path->slots[1]);
4915
4916 /*
4917 * btrfs_free_extent is expensive, we want to make sure we
4918 * aren't holding any locks when we call it
4919 */
4920 btrfs_unlock_up_safe(path, 0);
4921
4922 root_sub_used(root, leaf->len);
4923
4924 extent_buffer_get(leaf);
4925 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4926 free_extent_buffer_stale(leaf);
4927 }
4928 /*
4929 * delete the item at the leaf level in path. If that empties
4930 * the leaf, remove it from the tree
4931 */
4932 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4933 struct btrfs_path *path, int slot, int nr)
4934 {
4935 struct extent_buffer *leaf;
4936 struct btrfs_item *item;
4937 int last_off;
4938 int dsize = 0;
4939 int ret = 0;
4940 int wret;
4941 int i;
4942 u32 nritems;
4943 struct btrfs_map_token token;
4944
4945 btrfs_init_map_token(&token);
4946
4947 leaf = path->nodes[0];
4948 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4949
4950 for (i = 0; i < nr; i++)
4951 dsize += btrfs_item_size_nr(leaf, slot + i);
4952
4953 nritems = btrfs_header_nritems(leaf);
4954
4955 if (slot + nr != nritems) {
4956 int data_end = leaf_data_end(root, leaf);
4957
4958 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4959 data_end + dsize,
4960 btrfs_leaf_data(leaf) + data_end,
4961 last_off - data_end);
4962
4963 for (i = slot + nr; i < nritems; i++) {
4964 u32 ioff;
4965
4966 item = btrfs_item_nr(i);
4967 ioff = btrfs_token_item_offset(leaf, item, &token);
4968 btrfs_set_token_item_offset(leaf, item,
4969 ioff + dsize, &token);
4970 }
4971
4972 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4973 btrfs_item_nr_offset(slot + nr),
4974 sizeof(struct btrfs_item) *
4975 (nritems - slot - nr));
4976 }
4977 btrfs_set_header_nritems(leaf, nritems - nr);
4978 nritems -= nr;
4979
4980 /* delete the leaf if we've emptied it */
4981 if (nritems == 0) {
4982 if (leaf == root->node) {
4983 btrfs_set_header_level(leaf, 0);
4984 } else {
4985 btrfs_set_path_blocking(path);
4986 clean_tree_block(trans, root->fs_info, leaf);
4987 btrfs_del_leaf(trans, root, path, leaf);
4988 }
4989 } else {
4990 int used = leaf_space_used(leaf, 0, nritems);
4991 if (slot == 0) {
4992 struct btrfs_disk_key disk_key;
4993
4994 btrfs_item_key(leaf, &disk_key, 0);
4995 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4996 }
4997
4998 /* delete the leaf if it is mostly empty */
4999 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5000 /* push_leaf_left fixes the path.
5001 * make sure the path still points to our leaf
5002 * for possible call to del_ptr below
5003 */
5004 slot = path->slots[1];
5005 extent_buffer_get(leaf);
5006
5007 btrfs_set_path_blocking(path);
5008 wret = push_leaf_left(trans, root, path, 1, 1,
5009 1, (u32)-1);
5010 if (wret < 0 && wret != -ENOSPC)
5011 ret = wret;
5012
5013 if (path->nodes[0] == leaf &&
5014 btrfs_header_nritems(leaf)) {
5015 wret = push_leaf_right(trans, root, path, 1,
5016 1, 1, 0);
5017 if (wret < 0 && wret != -ENOSPC)
5018 ret = wret;
5019 }
5020
5021 if (btrfs_header_nritems(leaf) == 0) {
5022 path->slots[1] = slot;
5023 btrfs_del_leaf(trans, root, path, leaf);
5024 free_extent_buffer(leaf);
5025 ret = 0;
5026 } else {
5027 /* if we're still in the path, make sure
5028 * we're dirty. Otherwise, one of the
5029 * push_leaf functions must have already
5030 * dirtied this buffer
5031 */
5032 if (path->nodes[0] == leaf)
5033 btrfs_mark_buffer_dirty(leaf);
5034 free_extent_buffer(leaf);
5035 }
5036 } else {
5037 btrfs_mark_buffer_dirty(leaf);
5038 }
5039 }
5040 return ret;
5041 }
5042
5043 /*
5044 * search the tree again to find a leaf with lesser keys
5045 * returns 0 if it found something or 1 if there are no lesser leaves.
5046 * returns < 0 on io errors.
5047 *
5048 * This may release the path, and so you may lose any locks held at the
5049 * time you call it.
5050 */
5051 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5052 {
5053 struct btrfs_key key;
5054 struct btrfs_disk_key found_key;
5055 int ret;
5056
5057 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5058
5059 if (key.offset > 0) {
5060 key.offset--;
5061 } else if (key.type > 0) {
5062 key.type--;
5063 key.offset = (u64)-1;
5064 } else if (key.objectid > 0) {
5065 key.objectid--;
5066 key.type = (u8)-1;
5067 key.offset = (u64)-1;
5068 } else {
5069 return 1;
5070 }
5071
5072 btrfs_release_path(path);
5073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5074 if (ret < 0)
5075 return ret;
5076 btrfs_item_key(path->nodes[0], &found_key, 0);
5077 ret = comp_keys(&found_key, &key);
5078 /*
5079 * We might have had an item with the previous key in the tree right
5080 * before we released our path. And after we released our path, that
5081 * item might have been pushed to the first slot (0) of the leaf we
5082 * were holding due to a tree balance. Alternatively, an item with the
5083 * previous key can exist as the only element of a leaf (big fat item).
5084 * Therefore account for these 2 cases, so that our callers (like
5085 * btrfs_previous_item) don't miss an existing item with a key matching
5086 * the previous key we computed above.
5087 */
5088 if (ret <= 0)
5089 return 0;
5090 return 1;
5091 }
5092
5093 /*
5094 * A helper function to walk down the tree starting at min_key, and looking
5095 * for nodes or leaves that are have a minimum transaction id.
5096 * This is used by the btree defrag code, and tree logging
5097 *
5098 * This does not cow, but it does stuff the starting key it finds back
5099 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5100 * key and get a writable path.
5101 *
5102 * This does lock as it descends, and path->keep_locks should be set
5103 * to 1 by the caller.
5104 *
5105 * This honors path->lowest_level to prevent descent past a given level
5106 * of the tree.
5107 *
5108 * min_trans indicates the oldest transaction that you are interested
5109 * in walking through. Any nodes or leaves older than min_trans are
5110 * skipped over (without reading them).
5111 *
5112 * returns zero if something useful was found, < 0 on error and 1 if there
5113 * was nothing in the tree that matched the search criteria.
5114 */
5115 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116 struct btrfs_path *path,
5117 u64 min_trans)
5118 {
5119 struct extent_buffer *cur;
5120 struct btrfs_key found_key;
5121 int slot;
5122 int sret;
5123 u32 nritems;
5124 int level;
5125 int ret = 1;
5126 int keep_locks = path->keep_locks;
5127
5128 path->keep_locks = 1;
5129 again:
5130 cur = btrfs_read_lock_root_node(root);
5131 level = btrfs_header_level(cur);
5132 WARN_ON(path->nodes[level]);
5133 path->nodes[level] = cur;
5134 path->locks[level] = BTRFS_READ_LOCK;
5135
5136 if (btrfs_header_generation(cur) < min_trans) {
5137 ret = 1;
5138 goto out;
5139 }
5140 while (1) {
5141 nritems = btrfs_header_nritems(cur);
5142 level = btrfs_header_level(cur);
5143 sret = bin_search(cur, min_key, level, &slot);
5144
5145 /* at the lowest level, we're done, setup the path and exit */
5146 if (level == path->lowest_level) {
5147 if (slot >= nritems)
5148 goto find_next_key;
5149 ret = 0;
5150 path->slots[level] = slot;
5151 btrfs_item_key_to_cpu(cur, &found_key, slot);
5152 goto out;
5153 }
5154 if (sret && slot > 0)
5155 slot--;
5156 /*
5157 * check this node pointer against the min_trans parameters.
5158 * If it is too old, old, skip to the next one.
5159 */
5160 while (slot < nritems) {
5161 u64 gen;
5162
5163 gen = btrfs_node_ptr_generation(cur, slot);
5164 if (gen < min_trans) {
5165 slot++;
5166 continue;
5167 }
5168 break;
5169 }
5170 find_next_key:
5171 /*
5172 * we didn't find a candidate key in this node, walk forward
5173 * and find another one
5174 */
5175 if (slot >= nritems) {
5176 path->slots[level] = slot;
5177 btrfs_set_path_blocking(path);
5178 sret = btrfs_find_next_key(root, path, min_key, level,
5179 min_trans);
5180 if (sret == 0) {
5181 btrfs_release_path(path);
5182 goto again;
5183 } else {
5184 goto out;
5185 }
5186 }
5187 /* save our key for returning back */
5188 btrfs_node_key_to_cpu(cur, &found_key, slot);
5189 path->slots[level] = slot;
5190 if (level == path->lowest_level) {
5191 ret = 0;
5192 goto out;
5193 }
5194 btrfs_set_path_blocking(path);
5195 cur = read_node_slot(root, cur, slot);
5196 BUG_ON(!cur); /* -ENOMEM */
5197
5198 btrfs_tree_read_lock(cur);
5199
5200 path->locks[level - 1] = BTRFS_READ_LOCK;
5201 path->nodes[level - 1] = cur;
5202 unlock_up(path, level, 1, 0, NULL);
5203 btrfs_clear_path_blocking(path, NULL, 0);
5204 }
5205 out:
5206 path->keep_locks = keep_locks;
5207 if (ret == 0) {
5208 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5209 btrfs_set_path_blocking(path);
5210 memcpy(min_key, &found_key, sizeof(found_key));
5211 }
5212 return ret;
5213 }
5214
5215 static void tree_move_down(struct btrfs_root *root,
5216 struct btrfs_path *path,
5217 int *level, int root_level)
5218 {
5219 BUG_ON(*level == 0);
5220 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5221 path->slots[*level]);
5222 path->slots[*level - 1] = 0;
5223 (*level)--;
5224 }
5225
5226 static int tree_move_next_or_upnext(struct btrfs_root *root,
5227 struct btrfs_path *path,
5228 int *level, int root_level)
5229 {
5230 int ret = 0;
5231 int nritems;
5232 nritems = btrfs_header_nritems(path->nodes[*level]);
5233
5234 path->slots[*level]++;
5235
5236 while (path->slots[*level] >= nritems) {
5237 if (*level == root_level)
5238 return -1;
5239
5240 /* move upnext */
5241 path->slots[*level] = 0;
5242 free_extent_buffer(path->nodes[*level]);
5243 path->nodes[*level] = NULL;
5244 (*level)++;
5245 path->slots[*level]++;
5246
5247 nritems = btrfs_header_nritems(path->nodes[*level]);
5248 ret = 1;
5249 }
5250 return ret;
5251 }
5252
5253 /*
5254 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5255 * or down.
5256 */
5257 static int tree_advance(struct btrfs_root *root,
5258 struct btrfs_path *path,
5259 int *level, int root_level,
5260 int allow_down,
5261 struct btrfs_key *key)
5262 {
5263 int ret;
5264
5265 if (*level == 0 || !allow_down) {
5266 ret = tree_move_next_or_upnext(root, path, level, root_level);
5267 } else {
5268 tree_move_down(root, path, level, root_level);
5269 ret = 0;
5270 }
5271 if (ret >= 0) {
5272 if (*level == 0)
5273 btrfs_item_key_to_cpu(path->nodes[*level], key,
5274 path->slots[*level]);
5275 else
5276 btrfs_node_key_to_cpu(path->nodes[*level], key,
5277 path->slots[*level]);
5278 }
5279 return ret;
5280 }
5281
5282 static int tree_compare_item(struct btrfs_root *left_root,
5283 struct btrfs_path *left_path,
5284 struct btrfs_path *right_path,
5285 char *tmp_buf)
5286 {
5287 int cmp;
5288 int len1, len2;
5289 unsigned long off1, off2;
5290
5291 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5292 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5293 if (len1 != len2)
5294 return 1;
5295
5296 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5297 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5298 right_path->slots[0]);
5299
5300 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5301
5302 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5303 if (cmp)
5304 return 1;
5305 return 0;
5306 }
5307
5308 #define ADVANCE 1
5309 #define ADVANCE_ONLY_NEXT -1
5310
5311 /*
5312 * This function compares two trees and calls the provided callback for
5313 * every changed/new/deleted item it finds.
5314 * If shared tree blocks are encountered, whole subtrees are skipped, making
5315 * the compare pretty fast on snapshotted subvolumes.
5316 *
5317 * This currently works on commit roots only. As commit roots are read only,
5318 * we don't do any locking. The commit roots are protected with transactions.
5319 * Transactions are ended and rejoined when a commit is tried in between.
5320 *
5321 * This function checks for modifications done to the trees while comparing.
5322 * If it detects a change, it aborts immediately.
5323 */
5324 int btrfs_compare_trees(struct btrfs_root *left_root,
5325 struct btrfs_root *right_root,
5326 btrfs_changed_cb_t changed_cb, void *ctx)
5327 {
5328 int ret;
5329 int cmp;
5330 struct btrfs_path *left_path = NULL;
5331 struct btrfs_path *right_path = NULL;
5332 struct btrfs_key left_key;
5333 struct btrfs_key right_key;
5334 char *tmp_buf = NULL;
5335 int left_root_level;
5336 int right_root_level;
5337 int left_level;
5338 int right_level;
5339 int left_end_reached;
5340 int right_end_reached;
5341 int advance_left;
5342 int advance_right;
5343 u64 left_blockptr;
5344 u64 right_blockptr;
5345 u64 left_gen;
5346 u64 right_gen;
5347
5348 left_path = btrfs_alloc_path();
5349 if (!left_path) {
5350 ret = -ENOMEM;
5351 goto out;
5352 }
5353 right_path = btrfs_alloc_path();
5354 if (!right_path) {
5355 ret = -ENOMEM;
5356 goto out;
5357 }
5358
5359 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5360 if (!tmp_buf) {
5361 ret = -ENOMEM;
5362 goto out;
5363 }
5364
5365 left_path->search_commit_root = 1;
5366 left_path->skip_locking = 1;
5367 right_path->search_commit_root = 1;
5368 right_path->skip_locking = 1;
5369
5370 /*
5371 * Strategy: Go to the first items of both trees. Then do
5372 *
5373 * If both trees are at level 0
5374 * Compare keys of current items
5375 * If left < right treat left item as new, advance left tree
5376 * and repeat
5377 * If left > right treat right item as deleted, advance right tree
5378 * and repeat
5379 * If left == right do deep compare of items, treat as changed if
5380 * needed, advance both trees and repeat
5381 * If both trees are at the same level but not at level 0
5382 * Compare keys of current nodes/leafs
5383 * If left < right advance left tree and repeat
5384 * If left > right advance right tree and repeat
5385 * If left == right compare blockptrs of the next nodes/leafs
5386 * If they match advance both trees but stay at the same level
5387 * and repeat
5388 * If they don't match advance both trees while allowing to go
5389 * deeper and repeat
5390 * If tree levels are different
5391 * Advance the tree that needs it and repeat
5392 *
5393 * Advancing a tree means:
5394 * If we are at level 0, try to go to the next slot. If that's not
5395 * possible, go one level up and repeat. Stop when we found a level
5396 * where we could go to the next slot. We may at this point be on a
5397 * node or a leaf.
5398 *
5399 * If we are not at level 0 and not on shared tree blocks, go one
5400 * level deeper.
5401 *
5402 * If we are not at level 0 and on shared tree blocks, go one slot to
5403 * the right if possible or go up and right.
5404 */
5405
5406 down_read(&left_root->fs_info->commit_root_sem);
5407 left_level = btrfs_header_level(left_root->commit_root);
5408 left_root_level = left_level;
5409 left_path->nodes[left_level] = left_root->commit_root;
5410 extent_buffer_get(left_path->nodes[left_level]);
5411
5412 right_level = btrfs_header_level(right_root->commit_root);
5413 right_root_level = right_level;
5414 right_path->nodes[right_level] = right_root->commit_root;
5415 extent_buffer_get(right_path->nodes[right_level]);
5416 up_read(&left_root->fs_info->commit_root_sem);
5417
5418 if (left_level == 0)
5419 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5420 &left_key, left_path->slots[left_level]);
5421 else
5422 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5423 &left_key, left_path->slots[left_level]);
5424 if (right_level == 0)
5425 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5426 &right_key, right_path->slots[right_level]);
5427 else
5428 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5429 &right_key, right_path->slots[right_level]);
5430
5431 left_end_reached = right_end_reached = 0;
5432 advance_left = advance_right = 0;
5433
5434 while (1) {
5435 if (advance_left && !left_end_reached) {
5436 ret = tree_advance(left_root, left_path, &left_level,
5437 left_root_level,
5438 advance_left != ADVANCE_ONLY_NEXT,
5439 &left_key);
5440 if (ret < 0)
5441 left_end_reached = ADVANCE;
5442 advance_left = 0;
5443 }
5444 if (advance_right && !right_end_reached) {
5445 ret = tree_advance(right_root, right_path, &right_level,
5446 right_root_level,
5447 advance_right != ADVANCE_ONLY_NEXT,
5448 &right_key);
5449 if (ret < 0)
5450 right_end_reached = ADVANCE;
5451 advance_right = 0;
5452 }
5453
5454 if (left_end_reached && right_end_reached) {
5455 ret = 0;
5456 goto out;
5457 } else if (left_end_reached) {
5458 if (right_level == 0) {
5459 ret = changed_cb(left_root, right_root,
5460 left_path, right_path,
5461 &right_key,
5462 BTRFS_COMPARE_TREE_DELETED,
5463 ctx);
5464 if (ret < 0)
5465 goto out;
5466 }
5467 advance_right = ADVANCE;
5468 continue;
5469 } else if (right_end_reached) {
5470 if (left_level == 0) {
5471 ret = changed_cb(left_root, right_root,
5472 left_path, right_path,
5473 &left_key,
5474 BTRFS_COMPARE_TREE_NEW,
5475 ctx);
5476 if (ret < 0)
5477 goto out;
5478 }
5479 advance_left = ADVANCE;
5480 continue;
5481 }
5482
5483 if (left_level == 0 && right_level == 0) {
5484 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5485 if (cmp < 0) {
5486 ret = changed_cb(left_root, right_root,
5487 left_path, right_path,
5488 &left_key,
5489 BTRFS_COMPARE_TREE_NEW,
5490 ctx);
5491 if (ret < 0)
5492 goto out;
5493 advance_left = ADVANCE;
5494 } else if (cmp > 0) {
5495 ret = changed_cb(left_root, right_root,
5496 left_path, right_path,
5497 &right_key,
5498 BTRFS_COMPARE_TREE_DELETED,
5499 ctx);
5500 if (ret < 0)
5501 goto out;
5502 advance_right = ADVANCE;
5503 } else {
5504 enum btrfs_compare_tree_result result;
5505
5506 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5507 ret = tree_compare_item(left_root, left_path,
5508 right_path, tmp_buf);
5509 if (ret)
5510 result = BTRFS_COMPARE_TREE_CHANGED;
5511 else
5512 result = BTRFS_COMPARE_TREE_SAME;
5513 ret = changed_cb(left_root, right_root,
5514 left_path, right_path,
5515 &left_key, result, ctx);
5516 if (ret < 0)
5517 goto out;
5518 advance_left = ADVANCE;
5519 advance_right = ADVANCE;
5520 }
5521 } else if (left_level == right_level) {
5522 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5523 if (cmp < 0) {
5524 advance_left = ADVANCE;
5525 } else if (cmp > 0) {
5526 advance_right = ADVANCE;
5527 } else {
5528 left_blockptr = btrfs_node_blockptr(
5529 left_path->nodes[left_level],
5530 left_path->slots[left_level]);
5531 right_blockptr = btrfs_node_blockptr(
5532 right_path->nodes[right_level],
5533 right_path->slots[right_level]);
5534 left_gen = btrfs_node_ptr_generation(
5535 left_path->nodes[left_level],
5536 left_path->slots[left_level]);
5537 right_gen = btrfs_node_ptr_generation(
5538 right_path->nodes[right_level],
5539 right_path->slots[right_level]);
5540 if (left_blockptr == right_blockptr &&
5541 left_gen == right_gen) {
5542 /*
5543 * As we're on a shared block, don't
5544 * allow to go deeper.
5545 */
5546 advance_left = ADVANCE_ONLY_NEXT;
5547 advance_right = ADVANCE_ONLY_NEXT;
5548 } else {
5549 advance_left = ADVANCE;
5550 advance_right = ADVANCE;
5551 }
5552 }
5553 } else if (left_level < right_level) {
5554 advance_right = ADVANCE;
5555 } else {
5556 advance_left = ADVANCE;
5557 }
5558 }
5559
5560 out:
5561 btrfs_free_path(left_path);
5562 btrfs_free_path(right_path);
5563 kfree(tmp_buf);
5564 return ret;
5565 }
5566
5567 /*
5568 * this is similar to btrfs_next_leaf, but does not try to preserve
5569 * and fixup the path. It looks for and returns the next key in the
5570 * tree based on the current path and the min_trans parameters.
5571 *
5572 * 0 is returned if another key is found, < 0 if there are any errors
5573 * and 1 is returned if there are no higher keys in the tree
5574 *
5575 * path->keep_locks should be set to 1 on the search made before
5576 * calling this function.
5577 */
5578 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5579 struct btrfs_key *key, int level, u64 min_trans)
5580 {
5581 int slot;
5582 struct extent_buffer *c;
5583
5584 WARN_ON(!path->keep_locks);
5585 while (level < BTRFS_MAX_LEVEL) {
5586 if (!path->nodes[level])
5587 return 1;
5588
5589 slot = path->slots[level] + 1;
5590 c = path->nodes[level];
5591 next:
5592 if (slot >= btrfs_header_nritems(c)) {
5593 int ret;
5594 int orig_lowest;
5595 struct btrfs_key cur_key;
5596 if (level + 1 >= BTRFS_MAX_LEVEL ||
5597 !path->nodes[level + 1])
5598 return 1;
5599
5600 if (path->locks[level + 1]) {
5601 level++;
5602 continue;
5603 }
5604
5605 slot = btrfs_header_nritems(c) - 1;
5606 if (level == 0)
5607 btrfs_item_key_to_cpu(c, &cur_key, slot);
5608 else
5609 btrfs_node_key_to_cpu(c, &cur_key, slot);
5610
5611 orig_lowest = path->lowest_level;
5612 btrfs_release_path(path);
5613 path->lowest_level = level;
5614 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5615 0, 0);
5616 path->lowest_level = orig_lowest;
5617 if (ret < 0)
5618 return ret;
5619
5620 c = path->nodes[level];
5621 slot = path->slots[level];
5622 if (ret == 0)
5623 slot++;
5624 goto next;
5625 }
5626
5627 if (level == 0)
5628 btrfs_item_key_to_cpu(c, key, slot);
5629 else {
5630 u64 gen = btrfs_node_ptr_generation(c, slot);
5631
5632 if (gen < min_trans) {
5633 slot++;
5634 goto next;
5635 }
5636 btrfs_node_key_to_cpu(c, key, slot);
5637 }
5638 return 0;
5639 }
5640 return 1;
5641 }
5642
5643 /*
5644 * search the tree again to find a leaf with greater keys
5645 * returns 0 if it found something or 1 if there are no greater leaves.
5646 * returns < 0 on io errors.
5647 */
5648 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5649 {
5650 return btrfs_next_old_leaf(root, path, 0);
5651 }
5652
5653 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5654 u64 time_seq)
5655 {
5656 int slot;
5657 int level;
5658 struct extent_buffer *c;
5659 struct extent_buffer *next;
5660 struct btrfs_key key;
5661 u32 nritems;
5662 int ret;
5663 int old_spinning = path->leave_spinning;
5664 int next_rw_lock = 0;
5665
5666 nritems = btrfs_header_nritems(path->nodes[0]);
5667 if (nritems == 0)
5668 return 1;
5669
5670 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5671 again:
5672 level = 1;
5673 next = NULL;
5674 next_rw_lock = 0;
5675 btrfs_release_path(path);
5676
5677 path->keep_locks = 1;
5678 path->leave_spinning = 1;
5679
5680 if (time_seq)
5681 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5682 else
5683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5684 path->keep_locks = 0;
5685
5686 if (ret < 0)
5687 return ret;
5688
5689 nritems = btrfs_header_nritems(path->nodes[0]);
5690 /*
5691 * by releasing the path above we dropped all our locks. A balance
5692 * could have added more items next to the key that used to be
5693 * at the very end of the block. So, check again here and
5694 * advance the path if there are now more items available.
5695 */
5696 if (nritems > 0 && path->slots[0] < nritems - 1) {
5697 if (ret == 0)
5698 path->slots[0]++;
5699 ret = 0;
5700 goto done;
5701 }
5702 /*
5703 * So the above check misses one case:
5704 * - after releasing the path above, someone has removed the item that
5705 * used to be at the very end of the block, and balance between leafs
5706 * gets another one with bigger key.offset to replace it.
5707 *
5708 * This one should be returned as well, or we can get leaf corruption
5709 * later(esp. in __btrfs_drop_extents()).
5710 *
5711 * And a bit more explanation about this check,
5712 * with ret > 0, the key isn't found, the path points to the slot
5713 * where it should be inserted, so the path->slots[0] item must be the
5714 * bigger one.
5715 */
5716 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5717 ret = 0;
5718 goto done;
5719 }
5720
5721 while (level < BTRFS_MAX_LEVEL) {
5722 if (!path->nodes[level]) {
5723 ret = 1;
5724 goto done;
5725 }
5726
5727 slot = path->slots[level] + 1;
5728 c = path->nodes[level];
5729 if (slot >= btrfs_header_nritems(c)) {
5730 level++;
5731 if (level == BTRFS_MAX_LEVEL) {
5732 ret = 1;
5733 goto done;
5734 }
5735 continue;
5736 }
5737
5738 if (next) {
5739 btrfs_tree_unlock_rw(next, next_rw_lock);
5740 free_extent_buffer(next);
5741 }
5742
5743 next = c;
5744 next_rw_lock = path->locks[level];
5745 ret = read_block_for_search(NULL, root, path, &next, level,
5746 slot, &key, 0);
5747 if (ret == -EAGAIN)
5748 goto again;
5749
5750 if (ret < 0) {
5751 btrfs_release_path(path);
5752 goto done;
5753 }
5754
5755 if (!path->skip_locking) {
5756 ret = btrfs_try_tree_read_lock(next);
5757 if (!ret && time_seq) {
5758 /*
5759 * If we don't get the lock, we may be racing
5760 * with push_leaf_left, holding that lock while
5761 * itself waiting for the leaf we've currently
5762 * locked. To solve this situation, we give up
5763 * on our lock and cycle.
5764 */
5765 free_extent_buffer(next);
5766 btrfs_release_path(path);
5767 cond_resched();
5768 goto again;
5769 }
5770 if (!ret) {
5771 btrfs_set_path_blocking(path);
5772 btrfs_tree_read_lock(next);
5773 btrfs_clear_path_blocking(path, next,
5774 BTRFS_READ_LOCK);
5775 }
5776 next_rw_lock = BTRFS_READ_LOCK;
5777 }
5778 break;
5779 }
5780 path->slots[level] = slot;
5781 while (1) {
5782 level--;
5783 c = path->nodes[level];
5784 if (path->locks[level])
5785 btrfs_tree_unlock_rw(c, path->locks[level]);
5786
5787 free_extent_buffer(c);
5788 path->nodes[level] = next;
5789 path->slots[level] = 0;
5790 if (!path->skip_locking)
5791 path->locks[level] = next_rw_lock;
5792 if (!level)
5793 break;
5794
5795 ret = read_block_for_search(NULL, root, path, &next, level,
5796 0, &key, 0);
5797 if (ret == -EAGAIN)
5798 goto again;
5799
5800 if (ret < 0) {
5801 btrfs_release_path(path);
5802 goto done;
5803 }
5804
5805 if (!path->skip_locking) {
5806 ret = btrfs_try_tree_read_lock(next);
5807 if (!ret) {
5808 btrfs_set_path_blocking(path);
5809 btrfs_tree_read_lock(next);
5810 btrfs_clear_path_blocking(path, next,
5811 BTRFS_READ_LOCK);
5812 }
5813 next_rw_lock = BTRFS_READ_LOCK;
5814 }
5815 }
5816 ret = 0;
5817 done:
5818 unlock_up(path, 0, 1, 0, NULL);
5819 path->leave_spinning = old_spinning;
5820 if (!old_spinning)
5821 btrfs_set_path_blocking(path);
5822
5823 return ret;
5824 }
5825
5826 /*
5827 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5828 * searching until it gets past min_objectid or finds an item of 'type'
5829 *
5830 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5831 */
5832 int btrfs_previous_item(struct btrfs_root *root,
5833 struct btrfs_path *path, u64 min_objectid,
5834 int type)
5835 {
5836 struct btrfs_key found_key;
5837 struct extent_buffer *leaf;
5838 u32 nritems;
5839 int ret;
5840
5841 while (1) {
5842 if (path->slots[0] == 0) {
5843 btrfs_set_path_blocking(path);
5844 ret = btrfs_prev_leaf(root, path);
5845 if (ret != 0)
5846 return ret;
5847 } else {
5848 path->slots[0]--;
5849 }
5850 leaf = path->nodes[0];
5851 nritems = btrfs_header_nritems(leaf);
5852 if (nritems == 0)
5853 return 1;
5854 if (path->slots[0] == nritems)
5855 path->slots[0]--;
5856
5857 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5858 if (found_key.objectid < min_objectid)
5859 break;
5860 if (found_key.type == type)
5861 return 0;
5862 if (found_key.objectid == min_objectid &&
5863 found_key.type < type)
5864 break;
5865 }
5866 return 1;
5867 }
5868
5869 /*
5870 * search in extent tree to find a previous Metadata/Data extent item with
5871 * min objecitd.
5872 *
5873 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5874 */
5875 int btrfs_previous_extent_item(struct btrfs_root *root,
5876 struct btrfs_path *path, u64 min_objectid)
5877 {
5878 struct btrfs_key found_key;
5879 struct extent_buffer *leaf;
5880 u32 nritems;
5881 int ret;
5882
5883 while (1) {
5884 if (path->slots[0] == 0) {
5885 btrfs_set_path_blocking(path);
5886 ret = btrfs_prev_leaf(root, path);
5887 if (ret != 0)
5888 return ret;
5889 } else {
5890 path->slots[0]--;
5891 }
5892 leaf = path->nodes[0];
5893 nritems = btrfs_header_nritems(leaf);
5894 if (nritems == 0)
5895 return 1;
5896 if (path->slots[0] == nritems)
5897 path->slots[0]--;
5898
5899 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900 if (found_key.objectid < min_objectid)
5901 break;
5902 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5903 found_key.type == BTRFS_METADATA_ITEM_KEY)
5904 return 0;
5905 if (found_key.objectid == min_objectid &&
5906 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5907 break;
5908 }
5909 return 1;
5910 }
This page took 0.208422 seconds and 6 git commands to generate.