Merge tag 'topic/drm-fixes-2015-07-04' of git://anongit.freedesktop.org/drm-intel
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136 }
137
138 /*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
219
220 spin_lock(&root->fs_info->trans_lock);
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
229 }
230 spin_unlock(&root->fs_info->trans_lock);
231 }
232
233 /*
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
237 */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243 struct extent_buffer *cow;
244 int ret = 0;
245 int level;
246 struct btrfs_disk_key disk_key;
247
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
252
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
258
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
261 if (IS_ERR(cow))
262 return PTR_ERR(cow);
263
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
274
275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 BTRFS_FSID_SIZE);
277
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0);
283
284 if (ret)
285 return ret;
286
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
290 }
291
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
300 };
301
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
305 };
306
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
310 };
311
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 u64 seq;
316 enum mod_log_op op;
317
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
320
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
323
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
327
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
330
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
333 };
334
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337 read_lock(&fs_info->tree_mod_log_lock);
338 }
339
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342 read_unlock(&fs_info->tree_mod_log_lock);
343 }
344
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347 write_lock(&fs_info->tree_mod_log_lock);
348 }
349
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352 write_unlock(&fs_info->tree_mod_log_lock);
353 }
354
355 /*
356 * Pull a new tree mod seq number for our operation.
357 */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362
363 /*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
373 {
374 tree_mod_log_write_lock(fs_info);
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 if (!elem->seq) {
377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379 }
380 spin_unlock(&fs_info->tree_mod_seq_lock);
381 tree_mod_log_write_unlock(fs_info);
382
383 return elem->seq;
384 }
385
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
388 {
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
396
397 if (!seq_putting)
398 return;
399
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
402 elem->seq = 0;
403
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 if (cur_elem->seq < min_seq) {
406 if (seq_putting > cur_elem->seq) {
407 /*
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
410 */
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
413 }
414 min_seq = cur_elem->seq;
415 }
416 }
417 spin_unlock(&fs_info->tree_mod_seq_lock);
418
419 /*
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
422 */
423 tree_mod_log_write_lock(fs_info);
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
428 if (tm->seq > min_seq)
429 continue;
430 rb_erase(node, tm_root);
431 kfree(tm);
432 }
433 tree_mod_log_write_unlock(fs_info);
434 }
435
436 /*
437 * key order of the log:
438 * index -> sequence
439 *
440 * the index is the shifted logical of the *new* root node for root replace
441 * operations, or the shifted logical of the affected block for all other
442 * operations.
443 *
444 * Note: must be called with write lock (tree_mod_log_write_lock).
445 */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
453
454 BUG_ON(!tm);
455
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
478 }
479
480 /*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
500 return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506 {
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
519 {
520 struct tree_mod_elem *tm;
521
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
525
526 tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
535
536 return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
543 {
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
563
564 return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
571 {
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
577
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
580
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582 if (!tm_list)
583 return -ENOMEM;
584
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
591 tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
619 }
620
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
626
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
638
639 return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
646 {
647 int i, j;
648 int ret;
649
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
658 }
659
660 return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
668 {
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
674
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
677
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
695
696 tm = kzalloc(sizeof(*tm), flags);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
701
702 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737 {
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742 u64 index = start >> PAGE_CACHE_SHIFT;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->index < index) {
750 node = node->rb_left;
751 } else if (cur->index > index) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775 }
776
777 /*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785 {
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788
789 /*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804 {
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869 }
870
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874 {
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884 {
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891 }
892
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938 }
939
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944 {
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949 }
950
951 /*
952 * check if the tree block can be shared by multiple trees
953 */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956 {
957 /*
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
975 }
976
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982 {
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_std_error(root->fs_info, ret);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret)
1163 return ret;
1164 }
1165
1166 if (buf == root->node) {
1167 WARN_ON(parent && parent != buf);
1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170 parent_start = buf->start;
1171 else
1172 parent_start = 0;
1173
1174 extent_buffer_get(cow);
1175 tree_mod_log_set_root_pointer(root, cow, 1);
1176 rcu_assign_pointer(root->node, cow);
1177
1178 btrfs_free_tree_block(trans, root, buf, parent_start,
1179 last_ref);
1180 free_extent_buffer(buf);
1181 add_root_to_dirty_list(root);
1182 } else {
1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184 parent_start = parent->start;
1185 else
1186 parent_start = 0;
1187
1188 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 btrfs_set_node_blockptr(parent, parent_slot,
1192 cow->start);
1193 btrfs_set_node_ptr_generation(parent, parent_slot,
1194 trans->transid);
1195 btrfs_mark_buffer_dirty(parent);
1196 if (last_ref) {
1197 ret = tree_mod_log_free_eb(root->fs_info, buf);
1198 if (ret) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 return ret;
1201 }
1202 }
1203 btrfs_free_tree_block(trans, root, buf, parent_start,
1204 last_ref);
1205 }
1206 if (unlock_orig)
1207 btrfs_tree_unlock(buf);
1208 free_extent_buffer_stale(buf);
1209 btrfs_mark_buffer_dirty(cow);
1210 *cow_ret = cow;
1211 return 0;
1212 }
1213
1214 /*
1215 * returns the logical address of the oldest predecessor of the given root.
1216 * entries older than time_seq are ignored.
1217 */
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220 struct extent_buffer *eb_root, u64 time_seq)
1221 {
1222 struct tree_mod_elem *tm;
1223 struct tree_mod_elem *found = NULL;
1224 u64 root_logical = eb_root->start;
1225 int looped = 0;
1226
1227 if (!time_seq)
1228 return NULL;
1229
1230 /*
1231 * the very last operation that's logged for a root is the replacement
1232 * operation (if it is replaced at all). this has the index of the *new*
1233 * root, making it the very first operation that's logged for this root.
1234 */
1235 while (1) {
1236 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237 time_seq);
1238 if (!looped && !tm)
1239 return NULL;
1240 /*
1241 * if there are no tree operation for the oldest root, we simply
1242 * return it. this should only happen if that (old) root is at
1243 * level 0.
1244 */
1245 if (!tm)
1246 break;
1247
1248 /*
1249 * if there's an operation that's not a root replacement, we
1250 * found the oldest version of our root. normally, we'll find a
1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1252 */
1253 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 break;
1255
1256 found = tm;
1257 root_logical = tm->old_root.logical;
1258 looped = 1;
1259 }
1260
1261 /* if there's no old root to return, return what we found instead */
1262 if (!found)
1263 found = tm;
1264
1265 return found;
1266 }
1267
1268 /*
1269 * tm is a pointer to the first operation to rewind within eb. then, all
1270 * previous operations will be rewinded (until we reach something older than
1271 * time_seq).
1272 */
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275 u64 time_seq, struct tree_mod_elem *first_tm)
1276 {
1277 u32 n;
1278 struct rb_node *next;
1279 struct tree_mod_elem *tm = first_tm;
1280 unsigned long o_dst;
1281 unsigned long o_src;
1282 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1283
1284 n = btrfs_header_nritems(eb);
1285 tree_mod_log_read_lock(fs_info);
1286 while (tm && tm->seq >= time_seq) {
1287 /*
1288 * all the operations are recorded with the operator used for
1289 * the modification. as we're going backwards, we do the
1290 * opposite of each operation here.
1291 */
1292 switch (tm->op) {
1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294 BUG_ON(tm->slot < n);
1295 /* Fallthrough */
1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297 case MOD_LOG_KEY_REMOVE:
1298 btrfs_set_node_key(eb, &tm->key, tm->slot);
1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300 btrfs_set_node_ptr_generation(eb, tm->slot,
1301 tm->generation);
1302 n++;
1303 break;
1304 case MOD_LOG_KEY_REPLACE:
1305 BUG_ON(tm->slot >= n);
1306 btrfs_set_node_key(eb, &tm->key, tm->slot);
1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308 btrfs_set_node_ptr_generation(eb, tm->slot,
1309 tm->generation);
1310 break;
1311 case MOD_LOG_KEY_ADD:
1312 /* if a move operation is needed it's in the log */
1313 n--;
1314 break;
1315 case MOD_LOG_MOVE_KEYS:
1316 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318 memmove_extent_buffer(eb, o_dst, o_src,
1319 tm->move.nr_items * p_size);
1320 break;
1321 case MOD_LOG_ROOT_REPLACE:
1322 /*
1323 * this operation is special. for roots, this must be
1324 * handled explicitly before rewinding.
1325 * for non-roots, this operation may exist if the node
1326 * was a root: root A -> child B; then A gets empty and
1327 * B is promoted to the new root. in the mod log, we'll
1328 * have a root-replace operation for B, a tree block
1329 * that is no root. we simply ignore that operation.
1330 */
1331 break;
1332 }
1333 next = rb_next(&tm->node);
1334 if (!next)
1335 break;
1336 tm = container_of(next, struct tree_mod_elem, node);
1337 if (tm->index != first_tm->index)
1338 break;
1339 }
1340 tree_mod_log_read_unlock(fs_info);
1341 btrfs_set_header_nritems(eb, n);
1342 }
1343
1344 /*
1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346 * is returned. If rewind operations happen, a fresh buffer is returned. The
1347 * returned buffer is always read-locked. If the returned buffer is not the
1348 * input buffer, the lock on the input buffer is released and the input buffer
1349 * is freed (its refcount is decremented).
1350 */
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353 struct extent_buffer *eb, u64 time_seq)
1354 {
1355 struct extent_buffer *eb_rewin;
1356 struct tree_mod_elem *tm;
1357
1358 if (!time_seq)
1359 return eb;
1360
1361 if (btrfs_header_level(eb) == 0)
1362 return eb;
1363
1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 if (!tm)
1366 return eb;
1367
1368 btrfs_set_path_blocking(path);
1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1370
1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372 BUG_ON(tm->slot != 0);
1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374 if (!eb_rewin) {
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1377 return NULL;
1378 }
1379 btrfs_set_header_bytenr(eb_rewin, eb->start);
1380 btrfs_set_header_backref_rev(eb_rewin,
1381 btrfs_header_backref_rev(eb));
1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384 } else {
1385 eb_rewin = btrfs_clone_extent_buffer(eb);
1386 if (!eb_rewin) {
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389 return NULL;
1390 }
1391 }
1392
1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394 btrfs_tree_read_unlock_blocking(eb);
1395 free_extent_buffer(eb);
1396
1397 extent_buffer_get(eb_rewin);
1398 btrfs_tree_read_lock(eb_rewin);
1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400 WARN_ON(btrfs_header_nritems(eb_rewin) >
1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1402
1403 return eb_rewin;
1404 }
1405
1406 /*
1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408 * value. If there are no changes, the current root->root_node is returned. If
1409 * anything changed in between, there's a fresh buffer allocated on which the
1410 * rewind operations are done. In any case, the returned buffer is read locked.
1411 * Returns NULL on error (with no locks held).
1412 */
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1415 {
1416 struct tree_mod_elem *tm;
1417 struct extent_buffer *eb = NULL;
1418 struct extent_buffer *eb_root;
1419 struct extent_buffer *old;
1420 struct tree_mod_root *old_root = NULL;
1421 u64 old_generation = 0;
1422 u64 logical;
1423
1424 eb_root = btrfs_read_lock_root_node(root);
1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426 if (!tm)
1427 return eb_root;
1428
1429 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430 old_root = &tm->old_root;
1431 old_generation = tm->generation;
1432 logical = old_root->logical;
1433 } else {
1434 logical = eb_root->start;
1435 }
1436
1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439 btrfs_tree_read_unlock(eb_root);
1440 free_extent_buffer(eb_root);
1441 old = read_tree_block(root, logical, 0);
1442 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1443 if (!IS_ERR(old))
1444 free_extent_buffer(old);
1445 btrfs_warn(root->fs_info,
1446 "failed to read tree block %llu from get_old_root", logical);
1447 } else {
1448 eb = btrfs_clone_extent_buffer(old);
1449 free_extent_buffer(old);
1450 }
1451 } else if (old_root) {
1452 btrfs_tree_read_unlock(eb_root);
1453 free_extent_buffer(eb_root);
1454 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1455 } else {
1456 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1457 eb = btrfs_clone_extent_buffer(eb_root);
1458 btrfs_tree_read_unlock_blocking(eb_root);
1459 free_extent_buffer(eb_root);
1460 }
1461
1462 if (!eb)
1463 return NULL;
1464 extent_buffer_get(eb);
1465 btrfs_tree_read_lock(eb);
1466 if (old_root) {
1467 btrfs_set_header_bytenr(eb, eb->start);
1468 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1469 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1470 btrfs_set_header_level(eb, old_root->level);
1471 btrfs_set_header_generation(eb, old_generation);
1472 }
1473 if (tm)
1474 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1475 else
1476 WARN_ON(btrfs_header_level(eb) != 0);
1477 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1478
1479 return eb;
1480 }
1481
1482 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 {
1484 struct tree_mod_elem *tm;
1485 int level;
1486 struct extent_buffer *eb_root = btrfs_root_node(root);
1487
1488 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1489 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1490 level = tm->old_root.level;
1491 } else {
1492 level = btrfs_header_level(eb_root);
1493 }
1494 free_extent_buffer(eb_root);
1495
1496 return level;
1497 }
1498
1499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1500 struct btrfs_root *root,
1501 struct extent_buffer *buf)
1502 {
1503 if (btrfs_test_is_dummy_root(root))
1504 return 0;
1505
1506 /* ensure we can see the force_cow */
1507 smp_rmb();
1508
1509 /*
1510 * We do not need to cow a block if
1511 * 1) this block is not created or changed in this transaction;
1512 * 2) this block does not belong to TREE_RELOC tree;
1513 * 3) the root is not forced COW.
1514 *
1515 * What is forced COW:
1516 * when we create snapshot during commiting the transaction,
1517 * after we've finished coping src root, we must COW the shared
1518 * block to ensure the metadata consistency.
1519 */
1520 if (btrfs_header_generation(buf) == trans->transid &&
1521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1525 return 0;
1526 return 1;
1527 }
1528
1529 /*
1530 * cows a single block, see __btrfs_cow_block for the real work.
1531 * This version of it has extra checks so that a block isn't cow'd more than
1532 * once per transaction, as long as it hasn't been written yet
1533 */
1534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1535 struct btrfs_root *root, struct extent_buffer *buf,
1536 struct extent_buffer *parent, int parent_slot,
1537 struct extent_buffer **cow_ret)
1538 {
1539 u64 search_start;
1540 int ret;
1541
1542 if (trans->transaction != root->fs_info->running_transaction)
1543 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1544 trans->transid,
1545 root->fs_info->running_transaction->transid);
1546
1547 if (trans->transid != root->fs_info->generation)
1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 trans->transid, root->fs_info->generation);
1550
1551 if (!should_cow_block(trans, root, buf)) {
1552 *cow_ret = buf;
1553 return 0;
1554 }
1555
1556 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1557
1558 if (parent)
1559 btrfs_set_lock_blocking(parent);
1560 btrfs_set_lock_blocking(buf);
1561
1562 ret = __btrfs_cow_block(trans, root, buf, parent,
1563 parent_slot, cow_ret, search_start, 0);
1564
1565 trace_btrfs_cow_block(root, buf, *cow_ret);
1566
1567 return ret;
1568 }
1569
1570 /*
1571 * helper function for defrag to decide if two blocks pointed to by a
1572 * node are actually close by
1573 */
1574 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1575 {
1576 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1577 return 1;
1578 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1579 return 1;
1580 return 0;
1581 }
1582
1583 /*
1584 * compare two keys in a memcmp fashion
1585 */
1586 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1587 {
1588 struct btrfs_key k1;
1589
1590 btrfs_disk_key_to_cpu(&k1, disk);
1591
1592 return btrfs_comp_cpu_keys(&k1, k2);
1593 }
1594
1595 /*
1596 * same as comp_keys only with two btrfs_key's
1597 */
1598 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1599 {
1600 if (k1->objectid > k2->objectid)
1601 return 1;
1602 if (k1->objectid < k2->objectid)
1603 return -1;
1604 if (k1->type > k2->type)
1605 return 1;
1606 if (k1->type < k2->type)
1607 return -1;
1608 if (k1->offset > k2->offset)
1609 return 1;
1610 if (k1->offset < k2->offset)
1611 return -1;
1612 return 0;
1613 }
1614
1615 /*
1616 * this is used by the defrag code to go through all the
1617 * leaves pointed to by a node and reallocate them so that
1618 * disk order is close to key order
1619 */
1620 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root, struct extent_buffer *parent,
1622 int start_slot, u64 *last_ret,
1623 struct btrfs_key *progress)
1624 {
1625 struct extent_buffer *cur;
1626 u64 blocknr;
1627 u64 gen;
1628 u64 search_start = *last_ret;
1629 u64 last_block = 0;
1630 u64 other;
1631 u32 parent_nritems;
1632 int end_slot;
1633 int i;
1634 int err = 0;
1635 int parent_level;
1636 int uptodate;
1637 u32 blocksize;
1638 int progress_passed = 0;
1639 struct btrfs_disk_key disk_key;
1640
1641 parent_level = btrfs_header_level(parent);
1642
1643 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1644 WARN_ON(trans->transid != root->fs_info->generation);
1645
1646 parent_nritems = btrfs_header_nritems(parent);
1647 blocksize = root->nodesize;
1648 end_slot = parent_nritems - 1;
1649
1650 if (parent_nritems <= 1)
1651 return 0;
1652
1653 btrfs_set_lock_blocking(parent);
1654
1655 for (i = start_slot; i <= end_slot; i++) {
1656 int close = 1;
1657
1658 btrfs_node_key(parent, &disk_key, i);
1659 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1660 continue;
1661
1662 progress_passed = 1;
1663 blocknr = btrfs_node_blockptr(parent, i);
1664 gen = btrfs_node_ptr_generation(parent, i);
1665 if (last_block == 0)
1666 last_block = blocknr;
1667
1668 if (i > 0) {
1669 other = btrfs_node_blockptr(parent, i - 1);
1670 close = close_blocks(blocknr, other, blocksize);
1671 }
1672 if (!close && i < end_slot) {
1673 other = btrfs_node_blockptr(parent, i + 1);
1674 close = close_blocks(blocknr, other, blocksize);
1675 }
1676 if (close) {
1677 last_block = blocknr;
1678 continue;
1679 }
1680
1681 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1682 if (cur)
1683 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1684 else
1685 uptodate = 0;
1686 if (!cur || !uptodate) {
1687 if (!cur) {
1688 cur = read_tree_block(root, blocknr, gen);
1689 if (IS_ERR(cur)) {
1690 return PTR_ERR(cur);
1691 } else if (!extent_buffer_uptodate(cur)) {
1692 free_extent_buffer(cur);
1693 return -EIO;
1694 }
1695 } else if (!uptodate) {
1696 err = btrfs_read_buffer(cur, gen);
1697 if (err) {
1698 free_extent_buffer(cur);
1699 return err;
1700 }
1701 }
1702 }
1703 if (search_start == 0)
1704 search_start = last_block;
1705
1706 btrfs_tree_lock(cur);
1707 btrfs_set_lock_blocking(cur);
1708 err = __btrfs_cow_block(trans, root, cur, parent, i,
1709 &cur, search_start,
1710 min(16 * blocksize,
1711 (end_slot - i) * blocksize));
1712 if (err) {
1713 btrfs_tree_unlock(cur);
1714 free_extent_buffer(cur);
1715 break;
1716 }
1717 search_start = cur->start;
1718 last_block = cur->start;
1719 *last_ret = search_start;
1720 btrfs_tree_unlock(cur);
1721 free_extent_buffer(cur);
1722 }
1723 return err;
1724 }
1725
1726 /*
1727 * The leaf data grows from end-to-front in the node.
1728 * this returns the address of the start of the last item,
1729 * which is the stop of the leaf data stack
1730 */
1731 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1732 struct extent_buffer *leaf)
1733 {
1734 u32 nr = btrfs_header_nritems(leaf);
1735 if (nr == 0)
1736 return BTRFS_LEAF_DATA_SIZE(root);
1737 return btrfs_item_offset_nr(leaf, nr - 1);
1738 }
1739
1740
1741 /*
1742 * search for key in the extent_buffer. The items start at offset p,
1743 * and they are item_size apart. There are 'max' items in p.
1744 *
1745 * the slot in the array is returned via slot, and it points to
1746 * the place where you would insert key if it is not found in
1747 * the array.
1748 *
1749 * slot may point to max if the key is bigger than all of the keys
1750 */
1751 static noinline int generic_bin_search(struct extent_buffer *eb,
1752 unsigned long p,
1753 int item_size, struct btrfs_key *key,
1754 int max, int *slot)
1755 {
1756 int low = 0;
1757 int high = max;
1758 int mid;
1759 int ret;
1760 struct btrfs_disk_key *tmp = NULL;
1761 struct btrfs_disk_key unaligned;
1762 unsigned long offset;
1763 char *kaddr = NULL;
1764 unsigned long map_start = 0;
1765 unsigned long map_len = 0;
1766 int err;
1767
1768 while (low < high) {
1769 mid = (low + high) / 2;
1770 offset = p + mid * item_size;
1771
1772 if (!kaddr || offset < map_start ||
1773 (offset + sizeof(struct btrfs_disk_key)) >
1774 map_start + map_len) {
1775
1776 err = map_private_extent_buffer(eb, offset,
1777 sizeof(struct btrfs_disk_key),
1778 &kaddr, &map_start, &map_len);
1779
1780 if (!err) {
1781 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1782 map_start);
1783 } else {
1784 read_extent_buffer(eb, &unaligned,
1785 offset, sizeof(unaligned));
1786 tmp = &unaligned;
1787 }
1788
1789 } else {
1790 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1791 map_start);
1792 }
1793 ret = comp_keys(tmp, key);
1794
1795 if (ret < 0)
1796 low = mid + 1;
1797 else if (ret > 0)
1798 high = mid;
1799 else {
1800 *slot = mid;
1801 return 0;
1802 }
1803 }
1804 *slot = low;
1805 return 1;
1806 }
1807
1808 /*
1809 * simple bin_search frontend that does the right thing for
1810 * leaves vs nodes
1811 */
1812 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1813 int level, int *slot)
1814 {
1815 if (level == 0)
1816 return generic_bin_search(eb,
1817 offsetof(struct btrfs_leaf, items),
1818 sizeof(struct btrfs_item),
1819 key, btrfs_header_nritems(eb),
1820 slot);
1821 else
1822 return generic_bin_search(eb,
1823 offsetof(struct btrfs_node, ptrs),
1824 sizeof(struct btrfs_key_ptr),
1825 key, btrfs_header_nritems(eb),
1826 slot);
1827 }
1828
1829 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1830 int level, int *slot)
1831 {
1832 return bin_search(eb, key, level, slot);
1833 }
1834
1835 static void root_add_used(struct btrfs_root *root, u32 size)
1836 {
1837 spin_lock(&root->accounting_lock);
1838 btrfs_set_root_used(&root->root_item,
1839 btrfs_root_used(&root->root_item) + size);
1840 spin_unlock(&root->accounting_lock);
1841 }
1842
1843 static void root_sub_used(struct btrfs_root *root, u32 size)
1844 {
1845 spin_lock(&root->accounting_lock);
1846 btrfs_set_root_used(&root->root_item,
1847 btrfs_root_used(&root->root_item) - size);
1848 spin_unlock(&root->accounting_lock);
1849 }
1850
1851 /* given a node and slot number, this reads the blocks it points to. The
1852 * extent buffer is returned with a reference taken (but unlocked).
1853 * NULL is returned on error.
1854 */
1855 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1856 struct extent_buffer *parent, int slot)
1857 {
1858 int level = btrfs_header_level(parent);
1859 struct extent_buffer *eb;
1860
1861 if (slot < 0)
1862 return NULL;
1863 if (slot >= btrfs_header_nritems(parent))
1864 return NULL;
1865
1866 BUG_ON(level == 0);
1867
1868 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1869 btrfs_node_ptr_generation(parent, slot));
1870 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1871 if (!IS_ERR(eb))
1872 free_extent_buffer(eb);
1873 eb = NULL;
1874 }
1875
1876 return eb;
1877 }
1878
1879 /*
1880 * node level balancing, used to make sure nodes are in proper order for
1881 * item deletion. We balance from the top down, so we have to make sure
1882 * that a deletion won't leave an node completely empty later on.
1883 */
1884 static noinline int balance_level(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_path *path, int level)
1887 {
1888 struct extent_buffer *right = NULL;
1889 struct extent_buffer *mid;
1890 struct extent_buffer *left = NULL;
1891 struct extent_buffer *parent = NULL;
1892 int ret = 0;
1893 int wret;
1894 int pslot;
1895 int orig_slot = path->slots[level];
1896 u64 orig_ptr;
1897
1898 if (level == 0)
1899 return 0;
1900
1901 mid = path->nodes[level];
1902
1903 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1904 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1905 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1906
1907 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1908
1909 if (level < BTRFS_MAX_LEVEL - 1) {
1910 parent = path->nodes[level + 1];
1911 pslot = path->slots[level + 1];
1912 }
1913
1914 /*
1915 * deal with the case where there is only one pointer in the root
1916 * by promoting the node below to a root
1917 */
1918 if (!parent) {
1919 struct extent_buffer *child;
1920
1921 if (btrfs_header_nritems(mid) != 1)
1922 return 0;
1923
1924 /* promote the child to a root */
1925 child = read_node_slot(root, mid, 0);
1926 if (!child) {
1927 ret = -EROFS;
1928 btrfs_std_error(root->fs_info, ret);
1929 goto enospc;
1930 }
1931
1932 btrfs_tree_lock(child);
1933 btrfs_set_lock_blocking(child);
1934 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1935 if (ret) {
1936 btrfs_tree_unlock(child);
1937 free_extent_buffer(child);
1938 goto enospc;
1939 }
1940
1941 tree_mod_log_set_root_pointer(root, child, 1);
1942 rcu_assign_pointer(root->node, child);
1943
1944 add_root_to_dirty_list(root);
1945 btrfs_tree_unlock(child);
1946
1947 path->locks[level] = 0;
1948 path->nodes[level] = NULL;
1949 clean_tree_block(trans, root->fs_info, mid);
1950 btrfs_tree_unlock(mid);
1951 /* once for the path */
1952 free_extent_buffer(mid);
1953
1954 root_sub_used(root, mid->len);
1955 btrfs_free_tree_block(trans, root, mid, 0, 1);
1956 /* once for the root ptr */
1957 free_extent_buffer_stale(mid);
1958 return 0;
1959 }
1960 if (btrfs_header_nritems(mid) >
1961 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1962 return 0;
1963
1964 left = read_node_slot(root, parent, pslot - 1);
1965 if (left) {
1966 btrfs_tree_lock(left);
1967 btrfs_set_lock_blocking(left);
1968 wret = btrfs_cow_block(trans, root, left,
1969 parent, pslot - 1, &left);
1970 if (wret) {
1971 ret = wret;
1972 goto enospc;
1973 }
1974 }
1975 right = read_node_slot(root, parent, pslot + 1);
1976 if (right) {
1977 btrfs_tree_lock(right);
1978 btrfs_set_lock_blocking(right);
1979 wret = btrfs_cow_block(trans, root, right,
1980 parent, pslot + 1, &right);
1981 if (wret) {
1982 ret = wret;
1983 goto enospc;
1984 }
1985 }
1986
1987 /* first, try to make some room in the middle buffer */
1988 if (left) {
1989 orig_slot += btrfs_header_nritems(left);
1990 wret = push_node_left(trans, root, left, mid, 1);
1991 if (wret < 0)
1992 ret = wret;
1993 }
1994
1995 /*
1996 * then try to empty the right most buffer into the middle
1997 */
1998 if (right) {
1999 wret = push_node_left(trans, root, mid, right, 1);
2000 if (wret < 0 && wret != -ENOSPC)
2001 ret = wret;
2002 if (btrfs_header_nritems(right) == 0) {
2003 clean_tree_block(trans, root->fs_info, right);
2004 btrfs_tree_unlock(right);
2005 del_ptr(root, path, level + 1, pslot + 1);
2006 root_sub_used(root, right->len);
2007 btrfs_free_tree_block(trans, root, right, 0, 1);
2008 free_extent_buffer_stale(right);
2009 right = NULL;
2010 } else {
2011 struct btrfs_disk_key right_key;
2012 btrfs_node_key(right, &right_key, 0);
2013 tree_mod_log_set_node_key(root->fs_info, parent,
2014 pslot + 1, 0);
2015 btrfs_set_node_key(parent, &right_key, pslot + 1);
2016 btrfs_mark_buffer_dirty(parent);
2017 }
2018 }
2019 if (btrfs_header_nritems(mid) == 1) {
2020 /*
2021 * we're not allowed to leave a node with one item in the
2022 * tree during a delete. A deletion from lower in the tree
2023 * could try to delete the only pointer in this node.
2024 * So, pull some keys from the left.
2025 * There has to be a left pointer at this point because
2026 * otherwise we would have pulled some pointers from the
2027 * right
2028 */
2029 if (!left) {
2030 ret = -EROFS;
2031 btrfs_std_error(root->fs_info, ret);
2032 goto enospc;
2033 }
2034 wret = balance_node_right(trans, root, mid, left);
2035 if (wret < 0) {
2036 ret = wret;
2037 goto enospc;
2038 }
2039 if (wret == 1) {
2040 wret = push_node_left(trans, root, left, mid, 1);
2041 if (wret < 0)
2042 ret = wret;
2043 }
2044 BUG_ON(wret == 1);
2045 }
2046 if (btrfs_header_nritems(mid) == 0) {
2047 clean_tree_block(trans, root->fs_info, mid);
2048 btrfs_tree_unlock(mid);
2049 del_ptr(root, path, level + 1, pslot);
2050 root_sub_used(root, mid->len);
2051 btrfs_free_tree_block(trans, root, mid, 0, 1);
2052 free_extent_buffer_stale(mid);
2053 mid = NULL;
2054 } else {
2055 /* update the parent key to reflect our changes */
2056 struct btrfs_disk_key mid_key;
2057 btrfs_node_key(mid, &mid_key, 0);
2058 tree_mod_log_set_node_key(root->fs_info, parent,
2059 pslot, 0);
2060 btrfs_set_node_key(parent, &mid_key, pslot);
2061 btrfs_mark_buffer_dirty(parent);
2062 }
2063
2064 /* update the path */
2065 if (left) {
2066 if (btrfs_header_nritems(left) > orig_slot) {
2067 extent_buffer_get(left);
2068 /* left was locked after cow */
2069 path->nodes[level] = left;
2070 path->slots[level + 1] -= 1;
2071 path->slots[level] = orig_slot;
2072 if (mid) {
2073 btrfs_tree_unlock(mid);
2074 free_extent_buffer(mid);
2075 }
2076 } else {
2077 orig_slot -= btrfs_header_nritems(left);
2078 path->slots[level] = orig_slot;
2079 }
2080 }
2081 /* double check we haven't messed things up */
2082 if (orig_ptr !=
2083 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2084 BUG();
2085 enospc:
2086 if (right) {
2087 btrfs_tree_unlock(right);
2088 free_extent_buffer(right);
2089 }
2090 if (left) {
2091 if (path->nodes[level] != left)
2092 btrfs_tree_unlock(left);
2093 free_extent_buffer(left);
2094 }
2095 return ret;
2096 }
2097
2098 /* Node balancing for insertion. Here we only split or push nodes around
2099 * when they are completely full. This is also done top down, so we
2100 * have to be pessimistic.
2101 */
2102 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2103 struct btrfs_root *root,
2104 struct btrfs_path *path, int level)
2105 {
2106 struct extent_buffer *right = NULL;
2107 struct extent_buffer *mid;
2108 struct extent_buffer *left = NULL;
2109 struct extent_buffer *parent = NULL;
2110 int ret = 0;
2111 int wret;
2112 int pslot;
2113 int orig_slot = path->slots[level];
2114
2115 if (level == 0)
2116 return 1;
2117
2118 mid = path->nodes[level];
2119 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2120
2121 if (level < BTRFS_MAX_LEVEL - 1) {
2122 parent = path->nodes[level + 1];
2123 pslot = path->slots[level + 1];
2124 }
2125
2126 if (!parent)
2127 return 1;
2128
2129 left = read_node_slot(root, parent, pslot - 1);
2130
2131 /* first, try to make some room in the middle buffer */
2132 if (left) {
2133 u32 left_nr;
2134
2135 btrfs_tree_lock(left);
2136 btrfs_set_lock_blocking(left);
2137
2138 left_nr = btrfs_header_nritems(left);
2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2140 wret = 1;
2141 } else {
2142 ret = btrfs_cow_block(trans, root, left, parent,
2143 pslot - 1, &left);
2144 if (ret)
2145 wret = 1;
2146 else {
2147 wret = push_node_left(trans, root,
2148 left, mid, 0);
2149 }
2150 }
2151 if (wret < 0)
2152 ret = wret;
2153 if (wret == 0) {
2154 struct btrfs_disk_key disk_key;
2155 orig_slot += left_nr;
2156 btrfs_node_key(mid, &disk_key, 0);
2157 tree_mod_log_set_node_key(root->fs_info, parent,
2158 pslot, 0);
2159 btrfs_set_node_key(parent, &disk_key, pslot);
2160 btrfs_mark_buffer_dirty(parent);
2161 if (btrfs_header_nritems(left) > orig_slot) {
2162 path->nodes[level] = left;
2163 path->slots[level + 1] -= 1;
2164 path->slots[level] = orig_slot;
2165 btrfs_tree_unlock(mid);
2166 free_extent_buffer(mid);
2167 } else {
2168 orig_slot -=
2169 btrfs_header_nritems(left);
2170 path->slots[level] = orig_slot;
2171 btrfs_tree_unlock(left);
2172 free_extent_buffer(left);
2173 }
2174 return 0;
2175 }
2176 btrfs_tree_unlock(left);
2177 free_extent_buffer(left);
2178 }
2179 right = read_node_slot(root, parent, pslot + 1);
2180
2181 /*
2182 * then try to empty the right most buffer into the middle
2183 */
2184 if (right) {
2185 u32 right_nr;
2186
2187 btrfs_tree_lock(right);
2188 btrfs_set_lock_blocking(right);
2189
2190 right_nr = btrfs_header_nritems(right);
2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2192 wret = 1;
2193 } else {
2194 ret = btrfs_cow_block(trans, root, right,
2195 parent, pslot + 1,
2196 &right);
2197 if (ret)
2198 wret = 1;
2199 else {
2200 wret = balance_node_right(trans, root,
2201 right, mid);
2202 }
2203 }
2204 if (wret < 0)
2205 ret = wret;
2206 if (wret == 0) {
2207 struct btrfs_disk_key disk_key;
2208
2209 btrfs_node_key(right, &disk_key, 0);
2210 tree_mod_log_set_node_key(root->fs_info, parent,
2211 pslot + 1, 0);
2212 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 btrfs_mark_buffer_dirty(parent);
2214
2215 if (btrfs_header_nritems(mid) <= orig_slot) {
2216 path->nodes[level] = right;
2217 path->slots[level + 1] += 1;
2218 path->slots[level] = orig_slot -
2219 btrfs_header_nritems(mid);
2220 btrfs_tree_unlock(mid);
2221 free_extent_buffer(mid);
2222 } else {
2223 btrfs_tree_unlock(right);
2224 free_extent_buffer(right);
2225 }
2226 return 0;
2227 }
2228 btrfs_tree_unlock(right);
2229 free_extent_buffer(right);
2230 }
2231 return 1;
2232 }
2233
2234 /*
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
2237 */
2238 static void reada_for_search(struct btrfs_root *root,
2239 struct btrfs_path *path,
2240 int level, int slot, u64 objectid)
2241 {
2242 struct extent_buffer *node;
2243 struct btrfs_disk_key disk_key;
2244 u32 nritems;
2245 u64 search;
2246 u64 target;
2247 u64 nread = 0;
2248 u64 gen;
2249 int direction = path->reada;
2250 struct extent_buffer *eb;
2251 u32 nr;
2252 u32 blocksize;
2253 u32 nscan = 0;
2254
2255 if (level != 1)
2256 return;
2257
2258 if (!path->nodes[level])
2259 return;
2260
2261 node = path->nodes[level];
2262
2263 search = btrfs_node_blockptr(node, slot);
2264 blocksize = root->nodesize;
2265 eb = btrfs_find_tree_block(root->fs_info, search);
2266 if (eb) {
2267 free_extent_buffer(eb);
2268 return;
2269 }
2270
2271 target = search;
2272
2273 nritems = btrfs_header_nritems(node);
2274 nr = slot;
2275
2276 while (1) {
2277 if (direction < 0) {
2278 if (nr == 0)
2279 break;
2280 nr--;
2281 } else if (direction > 0) {
2282 nr++;
2283 if (nr >= nritems)
2284 break;
2285 }
2286 if (path->reada < 0 && objectid) {
2287 btrfs_node_key(node, &disk_key, nr);
2288 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289 break;
2290 }
2291 search = btrfs_node_blockptr(node, nr);
2292 if ((search <= target && target - search <= 65536) ||
2293 (search > target && search - target <= 65536)) {
2294 gen = btrfs_node_ptr_generation(node, nr);
2295 readahead_tree_block(root, search);
2296 nread += blocksize;
2297 }
2298 nscan++;
2299 if ((nread > 65536 || nscan > 32))
2300 break;
2301 }
2302 }
2303
2304 static noinline void reada_for_balance(struct btrfs_root *root,
2305 struct btrfs_path *path, int level)
2306 {
2307 int slot;
2308 int nritems;
2309 struct extent_buffer *parent;
2310 struct extent_buffer *eb;
2311 u64 gen;
2312 u64 block1 = 0;
2313 u64 block2 = 0;
2314
2315 parent = path->nodes[level + 1];
2316 if (!parent)
2317 return;
2318
2319 nritems = btrfs_header_nritems(parent);
2320 slot = path->slots[level + 1];
2321
2322 if (slot > 0) {
2323 block1 = btrfs_node_blockptr(parent, slot - 1);
2324 gen = btrfs_node_ptr_generation(parent, slot - 1);
2325 eb = btrfs_find_tree_block(root->fs_info, block1);
2326 /*
2327 * if we get -eagain from btrfs_buffer_uptodate, we
2328 * don't want to return eagain here. That will loop
2329 * forever
2330 */
2331 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2332 block1 = 0;
2333 free_extent_buffer(eb);
2334 }
2335 if (slot + 1 < nritems) {
2336 block2 = btrfs_node_blockptr(parent, slot + 1);
2337 gen = btrfs_node_ptr_generation(parent, slot + 1);
2338 eb = btrfs_find_tree_block(root->fs_info, block2);
2339 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2340 block2 = 0;
2341 free_extent_buffer(eb);
2342 }
2343
2344 if (block1)
2345 readahead_tree_block(root, block1);
2346 if (block2)
2347 readahead_tree_block(root, block2);
2348 }
2349
2350
2351 /*
2352 * when we walk down the tree, it is usually safe to unlock the higher layers
2353 * in the tree. The exceptions are when our path goes through slot 0, because
2354 * operations on the tree might require changing key pointers higher up in the
2355 * tree.
2356 *
2357 * callers might also have set path->keep_locks, which tells this code to keep
2358 * the lock if the path points to the last slot in the block. This is part of
2359 * walking through the tree, and selecting the next slot in the higher block.
2360 *
2361 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2362 * if lowest_unlock is 1, level 0 won't be unlocked
2363 */
2364 static noinline void unlock_up(struct btrfs_path *path, int level,
2365 int lowest_unlock, int min_write_lock_level,
2366 int *write_lock_level)
2367 {
2368 int i;
2369 int skip_level = level;
2370 int no_skips = 0;
2371 struct extent_buffer *t;
2372
2373 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374 if (!path->nodes[i])
2375 break;
2376 if (!path->locks[i])
2377 break;
2378 if (!no_skips && path->slots[i] == 0) {
2379 skip_level = i + 1;
2380 continue;
2381 }
2382 if (!no_skips && path->keep_locks) {
2383 u32 nritems;
2384 t = path->nodes[i];
2385 nritems = btrfs_header_nritems(t);
2386 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2387 skip_level = i + 1;
2388 continue;
2389 }
2390 }
2391 if (skip_level < i && i >= lowest_unlock)
2392 no_skips = 1;
2393
2394 t = path->nodes[i];
2395 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2396 btrfs_tree_unlock_rw(t, path->locks[i]);
2397 path->locks[i] = 0;
2398 if (write_lock_level &&
2399 i > min_write_lock_level &&
2400 i <= *write_lock_level) {
2401 *write_lock_level = i - 1;
2402 }
2403 }
2404 }
2405 }
2406
2407 /*
2408 * This releases any locks held in the path starting at level and
2409 * going all the way up to the root.
2410 *
2411 * btrfs_search_slot will keep the lock held on higher nodes in a few
2412 * corner cases, such as COW of the block at slot zero in the node. This
2413 * ignores those rules, and it should only be called when there are no
2414 * more updates to be done higher up in the tree.
2415 */
2416 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2417 {
2418 int i;
2419
2420 if (path->keep_locks)
2421 return;
2422
2423 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2424 if (!path->nodes[i])
2425 continue;
2426 if (!path->locks[i])
2427 continue;
2428 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2429 path->locks[i] = 0;
2430 }
2431 }
2432
2433 /*
2434 * helper function for btrfs_search_slot. The goal is to find a block
2435 * in cache without setting the path to blocking. If we find the block
2436 * we return zero and the path is unchanged.
2437 *
2438 * If we can't find the block, we set the path blocking and do some
2439 * reada. -EAGAIN is returned and the search must be repeated.
2440 */
2441 static int
2442 read_block_for_search(struct btrfs_trans_handle *trans,
2443 struct btrfs_root *root, struct btrfs_path *p,
2444 struct extent_buffer **eb_ret, int level, int slot,
2445 struct btrfs_key *key, u64 time_seq)
2446 {
2447 u64 blocknr;
2448 u64 gen;
2449 struct extent_buffer *b = *eb_ret;
2450 struct extent_buffer *tmp;
2451 int ret;
2452
2453 blocknr = btrfs_node_blockptr(b, slot);
2454 gen = btrfs_node_ptr_generation(b, slot);
2455
2456 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2457 if (tmp) {
2458 /* first we do an atomic uptodate check */
2459 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2460 *eb_ret = tmp;
2461 return 0;
2462 }
2463
2464 /* the pages were up to date, but we failed
2465 * the generation number check. Do a full
2466 * read for the generation number that is correct.
2467 * We must do this without dropping locks so
2468 * we can trust our generation number
2469 */
2470 btrfs_set_path_blocking(p);
2471
2472 /* now we're allowed to do a blocking uptodate check */
2473 ret = btrfs_read_buffer(tmp, gen);
2474 if (!ret) {
2475 *eb_ret = tmp;
2476 return 0;
2477 }
2478 free_extent_buffer(tmp);
2479 btrfs_release_path(p);
2480 return -EIO;
2481 }
2482
2483 /*
2484 * reduce lock contention at high levels
2485 * of the btree by dropping locks before
2486 * we read. Don't release the lock on the current
2487 * level because we need to walk this node to figure
2488 * out which blocks to read.
2489 */
2490 btrfs_unlock_up_safe(p, level + 1);
2491 btrfs_set_path_blocking(p);
2492
2493 free_extent_buffer(tmp);
2494 if (p->reada)
2495 reada_for_search(root, p, level, slot, key->objectid);
2496
2497 btrfs_release_path(p);
2498
2499 ret = -EAGAIN;
2500 tmp = read_tree_block(root, blocknr, 0);
2501 if (!IS_ERR(tmp)) {
2502 /*
2503 * If the read above didn't mark this buffer up to date,
2504 * it will never end up being up to date. Set ret to EIO now
2505 * and give up so that our caller doesn't loop forever
2506 * on our EAGAINs.
2507 */
2508 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2509 ret = -EIO;
2510 free_extent_buffer(tmp);
2511 }
2512 return ret;
2513 }
2514
2515 /*
2516 * helper function for btrfs_search_slot. This does all of the checks
2517 * for node-level blocks and does any balancing required based on
2518 * the ins_len.
2519 *
2520 * If no extra work was required, zero is returned. If we had to
2521 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2522 * start over
2523 */
2524 static int
2525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root, struct btrfs_path *p,
2527 struct extent_buffer *b, int level, int ins_len,
2528 int *write_lock_level)
2529 {
2530 int ret;
2531 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2532 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2533 int sret;
2534
2535 if (*write_lock_level < level + 1) {
2536 *write_lock_level = level + 1;
2537 btrfs_release_path(p);
2538 goto again;
2539 }
2540
2541 btrfs_set_path_blocking(p);
2542 reada_for_balance(root, p, level);
2543 sret = split_node(trans, root, p, level);
2544 btrfs_clear_path_blocking(p, NULL, 0);
2545
2546 BUG_ON(sret > 0);
2547 if (sret) {
2548 ret = sret;
2549 goto done;
2550 }
2551 b = p->nodes[level];
2552 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2553 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2554 int sret;
2555
2556 if (*write_lock_level < level + 1) {
2557 *write_lock_level = level + 1;
2558 btrfs_release_path(p);
2559 goto again;
2560 }
2561
2562 btrfs_set_path_blocking(p);
2563 reada_for_balance(root, p, level);
2564 sret = balance_level(trans, root, p, level);
2565 btrfs_clear_path_blocking(p, NULL, 0);
2566
2567 if (sret) {
2568 ret = sret;
2569 goto done;
2570 }
2571 b = p->nodes[level];
2572 if (!b) {
2573 btrfs_release_path(p);
2574 goto again;
2575 }
2576 BUG_ON(btrfs_header_nritems(b) == 1);
2577 }
2578 return 0;
2579
2580 again:
2581 ret = -EAGAIN;
2582 done:
2583 return ret;
2584 }
2585
2586 static void key_search_validate(struct extent_buffer *b,
2587 struct btrfs_key *key,
2588 int level)
2589 {
2590 #ifdef CONFIG_BTRFS_ASSERT
2591 struct btrfs_disk_key disk_key;
2592
2593 btrfs_cpu_key_to_disk(&disk_key, key);
2594
2595 if (level == 0)
2596 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597 offsetof(struct btrfs_leaf, items[0].key),
2598 sizeof(disk_key)));
2599 else
2600 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2601 offsetof(struct btrfs_node, ptrs[0].key),
2602 sizeof(disk_key)));
2603 #endif
2604 }
2605
2606 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2607 int level, int *prev_cmp, int *slot)
2608 {
2609 if (*prev_cmp != 0) {
2610 *prev_cmp = bin_search(b, key, level, slot);
2611 return *prev_cmp;
2612 }
2613
2614 key_search_validate(b, key, level);
2615 *slot = 0;
2616
2617 return 0;
2618 }
2619
2620 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2621 u64 iobjectid, u64 ioff, u8 key_type,
2622 struct btrfs_key *found_key)
2623 {
2624 int ret;
2625 struct btrfs_key key;
2626 struct extent_buffer *eb;
2627
2628 ASSERT(path);
2629 ASSERT(found_key);
2630
2631 key.type = key_type;
2632 key.objectid = iobjectid;
2633 key.offset = ioff;
2634
2635 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2636 if (ret < 0)
2637 return ret;
2638
2639 eb = path->nodes[0];
2640 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2641 ret = btrfs_next_leaf(fs_root, path);
2642 if (ret)
2643 return ret;
2644 eb = path->nodes[0];
2645 }
2646
2647 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2648 if (found_key->type != key.type ||
2649 found_key->objectid != key.objectid)
2650 return 1;
2651
2652 return 0;
2653 }
2654
2655 /*
2656 * look for key in the tree. path is filled in with nodes along the way
2657 * if key is found, we return zero and you can find the item in the leaf
2658 * level of the path (level 0)
2659 *
2660 * If the key isn't found, the path points to the slot where it should
2661 * be inserted, and 1 is returned. If there are other errors during the
2662 * search a negative error number is returned.
2663 *
2664 * if ins_len > 0, nodes and leaves will be split as we walk down the
2665 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2666 * possible)
2667 */
2668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2669 *root, struct btrfs_key *key, struct btrfs_path *p, int
2670 ins_len, int cow)
2671 {
2672 struct extent_buffer *b;
2673 int slot;
2674 int ret;
2675 int err;
2676 int level;
2677 int lowest_unlock = 1;
2678 int root_lock;
2679 /* everything at write_lock_level or lower must be write locked */
2680 int write_lock_level = 0;
2681 u8 lowest_level = 0;
2682 int min_write_lock_level;
2683 int prev_cmp;
2684
2685 lowest_level = p->lowest_level;
2686 WARN_ON(lowest_level && ins_len > 0);
2687 WARN_ON(p->nodes[0] != NULL);
2688 BUG_ON(!cow && ins_len);
2689
2690 if (ins_len < 0) {
2691 lowest_unlock = 2;
2692
2693 /* when we are removing items, we might have to go up to level
2694 * two as we update tree pointers Make sure we keep write
2695 * for those levels as well
2696 */
2697 write_lock_level = 2;
2698 } else if (ins_len > 0) {
2699 /*
2700 * for inserting items, make sure we have a write lock on
2701 * level 1 so we can update keys
2702 */
2703 write_lock_level = 1;
2704 }
2705
2706 if (!cow)
2707 write_lock_level = -1;
2708
2709 if (cow && (p->keep_locks || p->lowest_level))
2710 write_lock_level = BTRFS_MAX_LEVEL;
2711
2712 min_write_lock_level = write_lock_level;
2713
2714 again:
2715 prev_cmp = -1;
2716 /*
2717 * we try very hard to do read locks on the root
2718 */
2719 root_lock = BTRFS_READ_LOCK;
2720 level = 0;
2721 if (p->search_commit_root) {
2722 /*
2723 * the commit roots are read only
2724 * so we always do read locks
2725 */
2726 if (p->need_commit_sem)
2727 down_read(&root->fs_info->commit_root_sem);
2728 b = root->commit_root;
2729 extent_buffer_get(b);
2730 level = btrfs_header_level(b);
2731 if (p->need_commit_sem)
2732 up_read(&root->fs_info->commit_root_sem);
2733 if (!p->skip_locking)
2734 btrfs_tree_read_lock(b);
2735 } else {
2736 if (p->skip_locking) {
2737 b = btrfs_root_node(root);
2738 level = btrfs_header_level(b);
2739 } else {
2740 /* we don't know the level of the root node
2741 * until we actually have it read locked
2742 */
2743 b = btrfs_read_lock_root_node(root);
2744 level = btrfs_header_level(b);
2745 if (level <= write_lock_level) {
2746 /* whoops, must trade for write lock */
2747 btrfs_tree_read_unlock(b);
2748 free_extent_buffer(b);
2749 b = btrfs_lock_root_node(root);
2750 root_lock = BTRFS_WRITE_LOCK;
2751
2752 /* the level might have changed, check again */
2753 level = btrfs_header_level(b);
2754 }
2755 }
2756 }
2757 p->nodes[level] = b;
2758 if (!p->skip_locking)
2759 p->locks[level] = root_lock;
2760
2761 while (b) {
2762 level = btrfs_header_level(b);
2763
2764 /*
2765 * setup the path here so we can release it under lock
2766 * contention with the cow code
2767 */
2768 if (cow) {
2769 /*
2770 * if we don't really need to cow this block
2771 * then we don't want to set the path blocking,
2772 * so we test it here
2773 */
2774 if (!should_cow_block(trans, root, b))
2775 goto cow_done;
2776
2777 /*
2778 * must have write locks on this node and the
2779 * parent
2780 */
2781 if (level > write_lock_level ||
2782 (level + 1 > write_lock_level &&
2783 level + 1 < BTRFS_MAX_LEVEL &&
2784 p->nodes[level + 1])) {
2785 write_lock_level = level + 1;
2786 btrfs_release_path(p);
2787 goto again;
2788 }
2789
2790 btrfs_set_path_blocking(p);
2791 err = btrfs_cow_block(trans, root, b,
2792 p->nodes[level + 1],
2793 p->slots[level + 1], &b);
2794 if (err) {
2795 ret = err;
2796 goto done;
2797 }
2798 }
2799 cow_done:
2800 p->nodes[level] = b;
2801 btrfs_clear_path_blocking(p, NULL, 0);
2802
2803 /*
2804 * we have a lock on b and as long as we aren't changing
2805 * the tree, there is no way to for the items in b to change.
2806 * It is safe to drop the lock on our parent before we
2807 * go through the expensive btree search on b.
2808 *
2809 * If we're inserting or deleting (ins_len != 0), then we might
2810 * be changing slot zero, which may require changing the parent.
2811 * So, we can't drop the lock until after we know which slot
2812 * we're operating on.
2813 */
2814 if (!ins_len && !p->keep_locks) {
2815 int u = level + 1;
2816
2817 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2818 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2819 p->locks[u] = 0;
2820 }
2821 }
2822
2823 ret = key_search(b, key, level, &prev_cmp, &slot);
2824
2825 if (level != 0) {
2826 int dec = 0;
2827 if (ret && slot > 0) {
2828 dec = 1;
2829 slot -= 1;
2830 }
2831 p->slots[level] = slot;
2832 err = setup_nodes_for_search(trans, root, p, b, level,
2833 ins_len, &write_lock_level);
2834 if (err == -EAGAIN)
2835 goto again;
2836 if (err) {
2837 ret = err;
2838 goto done;
2839 }
2840 b = p->nodes[level];
2841 slot = p->slots[level];
2842
2843 /*
2844 * slot 0 is special, if we change the key
2845 * we have to update the parent pointer
2846 * which means we must have a write lock
2847 * on the parent
2848 */
2849 if (slot == 0 && ins_len &&
2850 write_lock_level < level + 1) {
2851 write_lock_level = level + 1;
2852 btrfs_release_path(p);
2853 goto again;
2854 }
2855
2856 unlock_up(p, level, lowest_unlock,
2857 min_write_lock_level, &write_lock_level);
2858
2859 if (level == lowest_level) {
2860 if (dec)
2861 p->slots[level]++;
2862 goto done;
2863 }
2864
2865 err = read_block_for_search(trans, root, p,
2866 &b, level, slot, key, 0);
2867 if (err == -EAGAIN)
2868 goto again;
2869 if (err) {
2870 ret = err;
2871 goto done;
2872 }
2873
2874 if (!p->skip_locking) {
2875 level = btrfs_header_level(b);
2876 if (level <= write_lock_level) {
2877 err = btrfs_try_tree_write_lock(b);
2878 if (!err) {
2879 btrfs_set_path_blocking(p);
2880 btrfs_tree_lock(b);
2881 btrfs_clear_path_blocking(p, b,
2882 BTRFS_WRITE_LOCK);
2883 }
2884 p->locks[level] = BTRFS_WRITE_LOCK;
2885 } else {
2886 err = btrfs_tree_read_lock_atomic(b);
2887 if (!err) {
2888 btrfs_set_path_blocking(p);
2889 btrfs_tree_read_lock(b);
2890 btrfs_clear_path_blocking(p, b,
2891 BTRFS_READ_LOCK);
2892 }
2893 p->locks[level] = BTRFS_READ_LOCK;
2894 }
2895 p->nodes[level] = b;
2896 }
2897 } else {
2898 p->slots[level] = slot;
2899 if (ins_len > 0 &&
2900 btrfs_leaf_free_space(root, b) < ins_len) {
2901 if (write_lock_level < 1) {
2902 write_lock_level = 1;
2903 btrfs_release_path(p);
2904 goto again;
2905 }
2906
2907 btrfs_set_path_blocking(p);
2908 err = split_leaf(trans, root, key,
2909 p, ins_len, ret == 0);
2910 btrfs_clear_path_blocking(p, NULL, 0);
2911
2912 BUG_ON(err > 0);
2913 if (err) {
2914 ret = err;
2915 goto done;
2916 }
2917 }
2918 if (!p->search_for_split)
2919 unlock_up(p, level, lowest_unlock,
2920 min_write_lock_level, &write_lock_level);
2921 goto done;
2922 }
2923 }
2924 ret = 1;
2925 done:
2926 /*
2927 * we don't really know what they plan on doing with the path
2928 * from here on, so for now just mark it as blocking
2929 */
2930 if (!p->leave_spinning)
2931 btrfs_set_path_blocking(p);
2932 if (ret < 0 && !p->skip_release_on_error)
2933 btrfs_release_path(p);
2934 return ret;
2935 }
2936
2937 /*
2938 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2939 * current state of the tree together with the operations recorded in the tree
2940 * modification log to search for the key in a previous version of this tree, as
2941 * denoted by the time_seq parameter.
2942 *
2943 * Naturally, there is no support for insert, delete or cow operations.
2944 *
2945 * The resulting path and return value will be set up as if we called
2946 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2947 */
2948 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2949 struct btrfs_path *p, u64 time_seq)
2950 {
2951 struct extent_buffer *b;
2952 int slot;
2953 int ret;
2954 int err;
2955 int level;
2956 int lowest_unlock = 1;
2957 u8 lowest_level = 0;
2958 int prev_cmp = -1;
2959
2960 lowest_level = p->lowest_level;
2961 WARN_ON(p->nodes[0] != NULL);
2962
2963 if (p->search_commit_root) {
2964 BUG_ON(time_seq);
2965 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2966 }
2967
2968 again:
2969 b = get_old_root(root, time_seq);
2970 level = btrfs_header_level(b);
2971 p->locks[level] = BTRFS_READ_LOCK;
2972
2973 while (b) {
2974 level = btrfs_header_level(b);
2975 p->nodes[level] = b;
2976 btrfs_clear_path_blocking(p, NULL, 0);
2977
2978 /*
2979 * we have a lock on b and as long as we aren't changing
2980 * the tree, there is no way to for the items in b to change.
2981 * It is safe to drop the lock on our parent before we
2982 * go through the expensive btree search on b.
2983 */
2984 btrfs_unlock_up_safe(p, level + 1);
2985
2986 /*
2987 * Since we can unwind eb's we want to do a real search every
2988 * time.
2989 */
2990 prev_cmp = -1;
2991 ret = key_search(b, key, level, &prev_cmp, &slot);
2992
2993 if (level != 0) {
2994 int dec = 0;
2995 if (ret && slot > 0) {
2996 dec = 1;
2997 slot -= 1;
2998 }
2999 p->slots[level] = slot;
3000 unlock_up(p, level, lowest_unlock, 0, NULL);
3001
3002 if (level == lowest_level) {
3003 if (dec)
3004 p->slots[level]++;
3005 goto done;
3006 }
3007
3008 err = read_block_for_search(NULL, root, p, &b, level,
3009 slot, key, time_seq);
3010 if (err == -EAGAIN)
3011 goto again;
3012 if (err) {
3013 ret = err;
3014 goto done;
3015 }
3016
3017 level = btrfs_header_level(b);
3018 err = btrfs_tree_read_lock_atomic(b);
3019 if (!err) {
3020 btrfs_set_path_blocking(p);
3021 btrfs_tree_read_lock(b);
3022 btrfs_clear_path_blocking(p, b,
3023 BTRFS_READ_LOCK);
3024 }
3025 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3026 if (!b) {
3027 ret = -ENOMEM;
3028 goto done;
3029 }
3030 p->locks[level] = BTRFS_READ_LOCK;
3031 p->nodes[level] = b;
3032 } else {
3033 p->slots[level] = slot;
3034 unlock_up(p, level, lowest_unlock, 0, NULL);
3035 goto done;
3036 }
3037 }
3038 ret = 1;
3039 done:
3040 if (!p->leave_spinning)
3041 btrfs_set_path_blocking(p);
3042 if (ret < 0)
3043 btrfs_release_path(p);
3044
3045 return ret;
3046 }
3047
3048 /*
3049 * helper to use instead of search slot if no exact match is needed but
3050 * instead the next or previous item should be returned.
3051 * When find_higher is true, the next higher item is returned, the next lower
3052 * otherwise.
3053 * When return_any and find_higher are both true, and no higher item is found,
3054 * return the next lower instead.
3055 * When return_any is true and find_higher is false, and no lower item is found,
3056 * return the next higher instead.
3057 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3058 * < 0 on error
3059 */
3060 int btrfs_search_slot_for_read(struct btrfs_root *root,
3061 struct btrfs_key *key, struct btrfs_path *p,
3062 int find_higher, int return_any)
3063 {
3064 int ret;
3065 struct extent_buffer *leaf;
3066
3067 again:
3068 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3069 if (ret <= 0)
3070 return ret;
3071 /*
3072 * a return value of 1 means the path is at the position where the
3073 * item should be inserted. Normally this is the next bigger item,
3074 * but in case the previous item is the last in a leaf, path points
3075 * to the first free slot in the previous leaf, i.e. at an invalid
3076 * item.
3077 */
3078 leaf = p->nodes[0];
3079
3080 if (find_higher) {
3081 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3082 ret = btrfs_next_leaf(root, p);
3083 if (ret <= 0)
3084 return ret;
3085 if (!return_any)
3086 return 1;
3087 /*
3088 * no higher item found, return the next
3089 * lower instead
3090 */
3091 return_any = 0;
3092 find_higher = 0;
3093 btrfs_release_path(p);
3094 goto again;
3095 }
3096 } else {
3097 if (p->slots[0] == 0) {
3098 ret = btrfs_prev_leaf(root, p);
3099 if (ret < 0)
3100 return ret;
3101 if (!ret) {
3102 leaf = p->nodes[0];
3103 if (p->slots[0] == btrfs_header_nritems(leaf))
3104 p->slots[0]--;
3105 return 0;
3106 }
3107 if (!return_any)
3108 return 1;
3109 /*
3110 * no lower item found, return the next
3111 * higher instead
3112 */
3113 return_any = 0;
3114 find_higher = 1;
3115 btrfs_release_path(p);
3116 goto again;
3117 } else {
3118 --p->slots[0];
3119 }
3120 }
3121 return 0;
3122 }
3123
3124 /*
3125 * adjust the pointers going up the tree, starting at level
3126 * making sure the right key of each node is points to 'key'.
3127 * This is used after shifting pointers to the left, so it stops
3128 * fixing up pointers when a given leaf/node is not in slot 0 of the
3129 * higher levels
3130 *
3131 */
3132 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3133 struct btrfs_path *path,
3134 struct btrfs_disk_key *key, int level)
3135 {
3136 int i;
3137 struct extent_buffer *t;
3138
3139 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3140 int tslot = path->slots[i];
3141 if (!path->nodes[i])
3142 break;
3143 t = path->nodes[i];
3144 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3145 btrfs_set_node_key(t, key, tslot);
3146 btrfs_mark_buffer_dirty(path->nodes[i]);
3147 if (tslot != 0)
3148 break;
3149 }
3150 }
3151
3152 /*
3153 * update item key.
3154 *
3155 * This function isn't completely safe. It's the caller's responsibility
3156 * that the new key won't break the order
3157 */
3158 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3159 struct btrfs_path *path,
3160 struct btrfs_key *new_key)
3161 {
3162 struct btrfs_disk_key disk_key;
3163 struct extent_buffer *eb;
3164 int slot;
3165
3166 eb = path->nodes[0];
3167 slot = path->slots[0];
3168 if (slot > 0) {
3169 btrfs_item_key(eb, &disk_key, slot - 1);
3170 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3171 }
3172 if (slot < btrfs_header_nritems(eb) - 1) {
3173 btrfs_item_key(eb, &disk_key, slot + 1);
3174 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3175 }
3176
3177 btrfs_cpu_key_to_disk(&disk_key, new_key);
3178 btrfs_set_item_key(eb, &disk_key, slot);
3179 btrfs_mark_buffer_dirty(eb);
3180 if (slot == 0)
3181 fixup_low_keys(fs_info, path, &disk_key, 1);
3182 }
3183
3184 /*
3185 * try to push data from one node into the next node left in the
3186 * tree.
3187 *
3188 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3189 * error, and > 0 if there was no room in the left hand block.
3190 */
3191 static int push_node_left(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root, struct extent_buffer *dst,
3193 struct extent_buffer *src, int empty)
3194 {
3195 int push_items = 0;
3196 int src_nritems;
3197 int dst_nritems;
3198 int ret = 0;
3199
3200 src_nritems = btrfs_header_nritems(src);
3201 dst_nritems = btrfs_header_nritems(dst);
3202 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3203 WARN_ON(btrfs_header_generation(src) != trans->transid);
3204 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3205
3206 if (!empty && src_nritems <= 8)
3207 return 1;
3208
3209 if (push_items <= 0)
3210 return 1;
3211
3212 if (empty) {
3213 push_items = min(src_nritems, push_items);
3214 if (push_items < src_nritems) {
3215 /* leave at least 8 pointers in the node if
3216 * we aren't going to empty it
3217 */
3218 if (src_nritems - push_items < 8) {
3219 if (push_items <= 8)
3220 return 1;
3221 push_items -= 8;
3222 }
3223 }
3224 } else
3225 push_items = min(src_nritems - 8, push_items);
3226
3227 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3228 push_items);
3229 if (ret) {
3230 btrfs_abort_transaction(trans, root, ret);
3231 return ret;
3232 }
3233 copy_extent_buffer(dst, src,
3234 btrfs_node_key_ptr_offset(dst_nritems),
3235 btrfs_node_key_ptr_offset(0),
3236 push_items * sizeof(struct btrfs_key_ptr));
3237
3238 if (push_items < src_nritems) {
3239 /*
3240 * don't call tree_mod_log_eb_move here, key removal was already
3241 * fully logged by tree_mod_log_eb_copy above.
3242 */
3243 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3244 btrfs_node_key_ptr_offset(push_items),
3245 (src_nritems - push_items) *
3246 sizeof(struct btrfs_key_ptr));
3247 }
3248 btrfs_set_header_nritems(src, src_nritems - push_items);
3249 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3250 btrfs_mark_buffer_dirty(src);
3251 btrfs_mark_buffer_dirty(dst);
3252
3253 return ret;
3254 }
3255
3256 /*
3257 * try to push data from one node into the next node right in the
3258 * tree.
3259 *
3260 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3261 * error, and > 0 if there was no room in the right hand block.
3262 *
3263 * this will only push up to 1/2 the contents of the left node over
3264 */
3265 static int balance_node_right(struct btrfs_trans_handle *trans,
3266 struct btrfs_root *root,
3267 struct extent_buffer *dst,
3268 struct extent_buffer *src)
3269 {
3270 int push_items = 0;
3271 int max_push;
3272 int src_nritems;
3273 int dst_nritems;
3274 int ret = 0;
3275
3276 WARN_ON(btrfs_header_generation(src) != trans->transid);
3277 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3278
3279 src_nritems = btrfs_header_nritems(src);
3280 dst_nritems = btrfs_header_nritems(dst);
3281 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3282 if (push_items <= 0)
3283 return 1;
3284
3285 if (src_nritems < 4)
3286 return 1;
3287
3288 max_push = src_nritems / 2 + 1;
3289 /* don't try to empty the node */
3290 if (max_push >= src_nritems)
3291 return 1;
3292
3293 if (max_push < push_items)
3294 push_items = max_push;
3295
3296 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3297 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3298 btrfs_node_key_ptr_offset(0),
3299 (dst_nritems) *
3300 sizeof(struct btrfs_key_ptr));
3301
3302 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3303 src_nritems - push_items, push_items);
3304 if (ret) {
3305 btrfs_abort_transaction(trans, root, ret);
3306 return ret;
3307 }
3308 copy_extent_buffer(dst, src,
3309 btrfs_node_key_ptr_offset(0),
3310 btrfs_node_key_ptr_offset(src_nritems - push_items),
3311 push_items * sizeof(struct btrfs_key_ptr));
3312
3313 btrfs_set_header_nritems(src, src_nritems - push_items);
3314 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315
3316 btrfs_mark_buffer_dirty(src);
3317 btrfs_mark_buffer_dirty(dst);
3318
3319 return ret;
3320 }
3321
3322 /*
3323 * helper function to insert a new root level in the tree.
3324 * A new node is allocated, and a single item is inserted to
3325 * point to the existing root
3326 *
3327 * returns zero on success or < 0 on failure.
3328 */
3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 struct btrfs_path *path, int level)
3332 {
3333 u64 lower_gen;
3334 struct extent_buffer *lower;
3335 struct extent_buffer *c;
3336 struct extent_buffer *old;
3337 struct btrfs_disk_key lower_key;
3338
3339 BUG_ON(path->nodes[level]);
3340 BUG_ON(path->nodes[level-1] != root->node);
3341
3342 lower = path->nodes[level-1];
3343 if (level == 1)
3344 btrfs_item_key(lower, &lower_key, 0);
3345 else
3346 btrfs_node_key(lower, &lower_key, 0);
3347
3348 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3349 &lower_key, level, root->node->start, 0);
3350 if (IS_ERR(c))
3351 return PTR_ERR(c);
3352
3353 root_add_used(root, root->nodesize);
3354
3355 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3356 btrfs_set_header_nritems(c, 1);
3357 btrfs_set_header_level(c, level);
3358 btrfs_set_header_bytenr(c, c->start);
3359 btrfs_set_header_generation(c, trans->transid);
3360 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3361 btrfs_set_header_owner(c, root->root_key.objectid);
3362
3363 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3364 BTRFS_FSID_SIZE);
3365
3366 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3367 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3368
3369 btrfs_set_node_key(c, &lower_key, 0);
3370 btrfs_set_node_blockptr(c, 0, lower->start);
3371 lower_gen = btrfs_header_generation(lower);
3372 WARN_ON(lower_gen != trans->transid);
3373
3374 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3375
3376 btrfs_mark_buffer_dirty(c);
3377
3378 old = root->node;
3379 tree_mod_log_set_root_pointer(root, c, 0);
3380 rcu_assign_pointer(root->node, c);
3381
3382 /* the super has an extra ref to root->node */
3383 free_extent_buffer(old);
3384
3385 add_root_to_dirty_list(root);
3386 extent_buffer_get(c);
3387 path->nodes[level] = c;
3388 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3389 path->slots[level] = 0;
3390 return 0;
3391 }
3392
3393 /*
3394 * worker function to insert a single pointer in a node.
3395 * the node should have enough room for the pointer already
3396 *
3397 * slot and level indicate where you want the key to go, and
3398 * blocknr is the block the key points to.
3399 */
3400 static void insert_ptr(struct btrfs_trans_handle *trans,
3401 struct btrfs_root *root, struct btrfs_path *path,
3402 struct btrfs_disk_key *key, u64 bytenr,
3403 int slot, int level)
3404 {
3405 struct extent_buffer *lower;
3406 int nritems;
3407 int ret;
3408
3409 BUG_ON(!path->nodes[level]);
3410 btrfs_assert_tree_locked(path->nodes[level]);
3411 lower = path->nodes[level];
3412 nritems = btrfs_header_nritems(lower);
3413 BUG_ON(slot > nritems);
3414 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3415 if (slot != nritems) {
3416 if (level)
3417 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3418 slot, nritems - slot);
3419 memmove_extent_buffer(lower,
3420 btrfs_node_key_ptr_offset(slot + 1),
3421 btrfs_node_key_ptr_offset(slot),
3422 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3423 }
3424 if (level) {
3425 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3426 MOD_LOG_KEY_ADD, GFP_NOFS);
3427 BUG_ON(ret < 0);
3428 }
3429 btrfs_set_node_key(lower, key, slot);
3430 btrfs_set_node_blockptr(lower, slot, bytenr);
3431 WARN_ON(trans->transid == 0);
3432 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3433 btrfs_set_header_nritems(lower, nritems + 1);
3434 btrfs_mark_buffer_dirty(lower);
3435 }
3436
3437 /*
3438 * split the node at the specified level in path in two.
3439 * The path is corrected to point to the appropriate node after the split
3440 *
3441 * Before splitting this tries to make some room in the node by pushing
3442 * left and right, if either one works, it returns right away.
3443 *
3444 * returns 0 on success and < 0 on failure
3445 */
3446 static noinline int split_node(struct btrfs_trans_handle *trans,
3447 struct btrfs_root *root,
3448 struct btrfs_path *path, int level)
3449 {
3450 struct extent_buffer *c;
3451 struct extent_buffer *split;
3452 struct btrfs_disk_key disk_key;
3453 int mid;
3454 int ret;
3455 u32 c_nritems;
3456
3457 c = path->nodes[level];
3458 WARN_ON(btrfs_header_generation(c) != trans->transid);
3459 if (c == root->node) {
3460 /*
3461 * trying to split the root, lets make a new one
3462 *
3463 * tree mod log: We don't log_removal old root in
3464 * insert_new_root, because that root buffer will be kept as a
3465 * normal node. We are going to log removal of half of the
3466 * elements below with tree_mod_log_eb_copy. We're holding a
3467 * tree lock on the buffer, which is why we cannot race with
3468 * other tree_mod_log users.
3469 */
3470 ret = insert_new_root(trans, root, path, level + 1);
3471 if (ret)
3472 return ret;
3473 } else {
3474 ret = push_nodes_for_insert(trans, root, path, level);
3475 c = path->nodes[level];
3476 if (!ret && btrfs_header_nritems(c) <
3477 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3478 return 0;
3479 if (ret < 0)
3480 return ret;
3481 }
3482
3483 c_nritems = btrfs_header_nritems(c);
3484 mid = (c_nritems + 1) / 2;
3485 btrfs_node_key(c, &disk_key, mid);
3486
3487 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3488 &disk_key, level, c->start, 0);
3489 if (IS_ERR(split))
3490 return PTR_ERR(split);
3491
3492 root_add_used(root, root->nodesize);
3493
3494 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3495 btrfs_set_header_level(split, btrfs_header_level(c));
3496 btrfs_set_header_bytenr(split, split->start);
3497 btrfs_set_header_generation(split, trans->transid);
3498 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3499 btrfs_set_header_owner(split, root->root_key.objectid);
3500 write_extent_buffer(split, root->fs_info->fsid,
3501 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3502 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3503 btrfs_header_chunk_tree_uuid(split),
3504 BTRFS_UUID_SIZE);
3505
3506 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3507 mid, c_nritems - mid);
3508 if (ret) {
3509 btrfs_abort_transaction(trans, root, ret);
3510 return ret;
3511 }
3512 copy_extent_buffer(split, c,
3513 btrfs_node_key_ptr_offset(0),
3514 btrfs_node_key_ptr_offset(mid),
3515 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3516 btrfs_set_header_nritems(split, c_nritems - mid);
3517 btrfs_set_header_nritems(c, mid);
3518 ret = 0;
3519
3520 btrfs_mark_buffer_dirty(c);
3521 btrfs_mark_buffer_dirty(split);
3522
3523 insert_ptr(trans, root, path, &disk_key, split->start,
3524 path->slots[level + 1] + 1, level + 1);
3525
3526 if (path->slots[level] >= mid) {
3527 path->slots[level] -= mid;
3528 btrfs_tree_unlock(c);
3529 free_extent_buffer(c);
3530 path->nodes[level] = split;
3531 path->slots[level + 1] += 1;
3532 } else {
3533 btrfs_tree_unlock(split);
3534 free_extent_buffer(split);
3535 }
3536 return ret;
3537 }
3538
3539 /*
3540 * how many bytes are required to store the items in a leaf. start
3541 * and nr indicate which items in the leaf to check. This totals up the
3542 * space used both by the item structs and the item data
3543 */
3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545 {
3546 struct btrfs_item *start_item;
3547 struct btrfs_item *end_item;
3548 struct btrfs_map_token token;
3549 int data_len;
3550 int nritems = btrfs_header_nritems(l);
3551 int end = min(nritems, start + nr) - 1;
3552
3553 if (!nr)
3554 return 0;
3555 btrfs_init_map_token(&token);
3556 start_item = btrfs_item_nr(start);
3557 end_item = btrfs_item_nr(end);
3558 data_len = btrfs_token_item_offset(l, start_item, &token) +
3559 btrfs_token_item_size(l, start_item, &token);
3560 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3561 data_len += sizeof(struct btrfs_item) * nr;
3562 WARN_ON(data_len < 0);
3563 return data_len;
3564 }
3565
3566 /*
3567 * The space between the end of the leaf items and
3568 * the start of the leaf data. IOW, how much room
3569 * the leaf has left for both items and data
3570 */
3571 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3572 struct extent_buffer *leaf)
3573 {
3574 int nritems = btrfs_header_nritems(leaf);
3575 int ret;
3576 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3577 if (ret < 0) {
3578 btrfs_crit(root->fs_info,
3579 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3580 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3581 leaf_space_used(leaf, 0, nritems), nritems);
3582 }
3583 return ret;
3584 }
3585
3586 /*
3587 * min slot controls the lowest index we're willing to push to the
3588 * right. We'll push up to and including min_slot, but no lower
3589 */
3590 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3591 struct btrfs_root *root,
3592 struct btrfs_path *path,
3593 int data_size, int empty,
3594 struct extent_buffer *right,
3595 int free_space, u32 left_nritems,
3596 u32 min_slot)
3597 {
3598 struct extent_buffer *left = path->nodes[0];
3599 struct extent_buffer *upper = path->nodes[1];
3600 struct btrfs_map_token token;
3601 struct btrfs_disk_key disk_key;
3602 int slot;
3603 u32 i;
3604 int push_space = 0;
3605 int push_items = 0;
3606 struct btrfs_item *item;
3607 u32 nr;
3608 u32 right_nritems;
3609 u32 data_end;
3610 u32 this_item_size;
3611
3612 btrfs_init_map_token(&token);
3613
3614 if (empty)
3615 nr = 0;
3616 else
3617 nr = max_t(u32, 1, min_slot);
3618
3619 if (path->slots[0] >= left_nritems)
3620 push_space += data_size;
3621
3622 slot = path->slots[1];
3623 i = left_nritems - 1;
3624 while (i >= nr) {
3625 item = btrfs_item_nr(i);
3626
3627 if (!empty && push_items > 0) {
3628 if (path->slots[0] > i)
3629 break;
3630 if (path->slots[0] == i) {
3631 int space = btrfs_leaf_free_space(root, left);
3632 if (space + push_space * 2 > free_space)
3633 break;
3634 }
3635 }
3636
3637 if (path->slots[0] == i)
3638 push_space += data_size;
3639
3640 this_item_size = btrfs_item_size(left, item);
3641 if (this_item_size + sizeof(*item) + push_space > free_space)
3642 break;
3643
3644 push_items++;
3645 push_space += this_item_size + sizeof(*item);
3646 if (i == 0)
3647 break;
3648 i--;
3649 }
3650
3651 if (push_items == 0)
3652 goto out_unlock;
3653
3654 WARN_ON(!empty && push_items == left_nritems);
3655
3656 /* push left to right */
3657 right_nritems = btrfs_header_nritems(right);
3658
3659 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3660 push_space -= leaf_data_end(root, left);
3661
3662 /* make room in the right data area */
3663 data_end = leaf_data_end(root, right);
3664 memmove_extent_buffer(right,
3665 btrfs_leaf_data(right) + data_end - push_space,
3666 btrfs_leaf_data(right) + data_end,
3667 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3668
3669 /* copy from the left data area */
3670 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3671 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3672 btrfs_leaf_data(left) + leaf_data_end(root, left),
3673 push_space);
3674
3675 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3676 btrfs_item_nr_offset(0),
3677 right_nritems * sizeof(struct btrfs_item));
3678
3679 /* copy the items from left to right */
3680 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3681 btrfs_item_nr_offset(left_nritems - push_items),
3682 push_items * sizeof(struct btrfs_item));
3683
3684 /* update the item pointers */
3685 right_nritems += push_items;
3686 btrfs_set_header_nritems(right, right_nritems);
3687 push_space = BTRFS_LEAF_DATA_SIZE(root);
3688 for (i = 0; i < right_nritems; i++) {
3689 item = btrfs_item_nr(i);
3690 push_space -= btrfs_token_item_size(right, item, &token);
3691 btrfs_set_token_item_offset(right, item, push_space, &token);
3692 }
3693
3694 left_nritems -= push_items;
3695 btrfs_set_header_nritems(left, left_nritems);
3696
3697 if (left_nritems)
3698 btrfs_mark_buffer_dirty(left);
3699 else
3700 clean_tree_block(trans, root->fs_info, left);
3701
3702 btrfs_mark_buffer_dirty(right);
3703
3704 btrfs_item_key(right, &disk_key, 0);
3705 btrfs_set_node_key(upper, &disk_key, slot + 1);
3706 btrfs_mark_buffer_dirty(upper);
3707
3708 /* then fixup the leaf pointer in the path */
3709 if (path->slots[0] >= left_nritems) {
3710 path->slots[0] -= left_nritems;
3711 if (btrfs_header_nritems(path->nodes[0]) == 0)
3712 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3713 btrfs_tree_unlock(path->nodes[0]);
3714 free_extent_buffer(path->nodes[0]);
3715 path->nodes[0] = right;
3716 path->slots[1] += 1;
3717 } else {
3718 btrfs_tree_unlock(right);
3719 free_extent_buffer(right);
3720 }
3721 return 0;
3722
3723 out_unlock:
3724 btrfs_tree_unlock(right);
3725 free_extent_buffer(right);
3726 return 1;
3727 }
3728
3729 /*
3730 * push some data in the path leaf to the right, trying to free up at
3731 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3732 *
3733 * returns 1 if the push failed because the other node didn't have enough
3734 * room, 0 if everything worked out and < 0 if there were major errors.
3735 *
3736 * this will push starting from min_slot to the end of the leaf. It won't
3737 * push any slot lower than min_slot
3738 */
3739 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3740 *root, struct btrfs_path *path,
3741 int min_data_size, int data_size,
3742 int empty, u32 min_slot)
3743 {
3744 struct extent_buffer *left = path->nodes[0];
3745 struct extent_buffer *right;
3746 struct extent_buffer *upper;
3747 int slot;
3748 int free_space;
3749 u32 left_nritems;
3750 int ret;
3751
3752 if (!path->nodes[1])
3753 return 1;
3754
3755 slot = path->slots[1];
3756 upper = path->nodes[1];
3757 if (slot >= btrfs_header_nritems(upper) - 1)
3758 return 1;
3759
3760 btrfs_assert_tree_locked(path->nodes[1]);
3761
3762 right = read_node_slot(root, upper, slot + 1);
3763 if (right == NULL)
3764 return 1;
3765
3766 btrfs_tree_lock(right);
3767 btrfs_set_lock_blocking(right);
3768
3769 free_space = btrfs_leaf_free_space(root, right);
3770 if (free_space < data_size)
3771 goto out_unlock;
3772
3773 /* cow and double check */
3774 ret = btrfs_cow_block(trans, root, right, upper,
3775 slot + 1, &right);
3776 if (ret)
3777 goto out_unlock;
3778
3779 free_space = btrfs_leaf_free_space(root, right);
3780 if (free_space < data_size)
3781 goto out_unlock;
3782
3783 left_nritems = btrfs_header_nritems(left);
3784 if (left_nritems == 0)
3785 goto out_unlock;
3786
3787 if (path->slots[0] == left_nritems && !empty) {
3788 /* Key greater than all keys in the leaf, right neighbor has
3789 * enough room for it and we're not emptying our leaf to delete
3790 * it, therefore use right neighbor to insert the new item and
3791 * no need to touch/dirty our left leaft. */
3792 btrfs_tree_unlock(left);
3793 free_extent_buffer(left);
3794 path->nodes[0] = right;
3795 path->slots[0] = 0;
3796 path->slots[1]++;
3797 return 0;
3798 }
3799
3800 return __push_leaf_right(trans, root, path, min_data_size, empty,
3801 right, free_space, left_nritems, min_slot);
3802 out_unlock:
3803 btrfs_tree_unlock(right);
3804 free_extent_buffer(right);
3805 return 1;
3806 }
3807
3808 /*
3809 * push some data in the path leaf to the left, trying to free up at
3810 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3811 *
3812 * max_slot can put a limit on how far into the leaf we'll push items. The
3813 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3814 * items
3815 */
3816 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3817 struct btrfs_root *root,
3818 struct btrfs_path *path, int data_size,
3819 int empty, struct extent_buffer *left,
3820 int free_space, u32 right_nritems,
3821 u32 max_slot)
3822 {
3823 struct btrfs_disk_key disk_key;
3824 struct extent_buffer *right = path->nodes[0];
3825 int i;
3826 int push_space = 0;
3827 int push_items = 0;
3828 struct btrfs_item *item;
3829 u32 old_left_nritems;
3830 u32 nr;
3831 int ret = 0;
3832 u32 this_item_size;
3833 u32 old_left_item_size;
3834 struct btrfs_map_token token;
3835
3836 btrfs_init_map_token(&token);
3837
3838 if (empty)
3839 nr = min(right_nritems, max_slot);
3840 else
3841 nr = min(right_nritems - 1, max_slot);
3842
3843 for (i = 0; i < nr; i++) {
3844 item = btrfs_item_nr(i);
3845
3846 if (!empty && push_items > 0) {
3847 if (path->slots[0] < i)
3848 break;
3849 if (path->slots[0] == i) {
3850 int space = btrfs_leaf_free_space(root, right);
3851 if (space + push_space * 2 > free_space)
3852 break;
3853 }
3854 }
3855
3856 if (path->slots[0] == i)
3857 push_space += data_size;
3858
3859 this_item_size = btrfs_item_size(right, item);
3860 if (this_item_size + sizeof(*item) + push_space > free_space)
3861 break;
3862
3863 push_items++;
3864 push_space += this_item_size + sizeof(*item);
3865 }
3866
3867 if (push_items == 0) {
3868 ret = 1;
3869 goto out;
3870 }
3871 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3872
3873 /* push data from right to left */
3874 copy_extent_buffer(left, right,
3875 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3876 btrfs_item_nr_offset(0),
3877 push_items * sizeof(struct btrfs_item));
3878
3879 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3880 btrfs_item_offset_nr(right, push_items - 1);
3881
3882 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3883 leaf_data_end(root, left) - push_space,
3884 btrfs_leaf_data(right) +
3885 btrfs_item_offset_nr(right, push_items - 1),
3886 push_space);
3887 old_left_nritems = btrfs_header_nritems(left);
3888 BUG_ON(old_left_nritems <= 0);
3889
3890 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3891 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3892 u32 ioff;
3893
3894 item = btrfs_item_nr(i);
3895
3896 ioff = btrfs_token_item_offset(left, item, &token);
3897 btrfs_set_token_item_offset(left, item,
3898 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3899 &token);
3900 }
3901 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3902
3903 /* fixup right node */
3904 if (push_items > right_nritems)
3905 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3906 right_nritems);
3907
3908 if (push_items < right_nritems) {
3909 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3910 leaf_data_end(root, right);
3911 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3912 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3913 btrfs_leaf_data(right) +
3914 leaf_data_end(root, right), push_space);
3915
3916 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3917 btrfs_item_nr_offset(push_items),
3918 (btrfs_header_nritems(right) - push_items) *
3919 sizeof(struct btrfs_item));
3920 }
3921 right_nritems -= push_items;
3922 btrfs_set_header_nritems(right, right_nritems);
3923 push_space = BTRFS_LEAF_DATA_SIZE(root);
3924 for (i = 0; i < right_nritems; i++) {
3925 item = btrfs_item_nr(i);
3926
3927 push_space = push_space - btrfs_token_item_size(right,
3928 item, &token);
3929 btrfs_set_token_item_offset(right, item, push_space, &token);
3930 }
3931
3932 btrfs_mark_buffer_dirty(left);
3933 if (right_nritems)
3934 btrfs_mark_buffer_dirty(right);
3935 else
3936 clean_tree_block(trans, root->fs_info, right);
3937
3938 btrfs_item_key(right, &disk_key, 0);
3939 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3940
3941 /* then fixup the leaf pointer in the path */
3942 if (path->slots[0] < push_items) {
3943 path->slots[0] += old_left_nritems;
3944 btrfs_tree_unlock(path->nodes[0]);
3945 free_extent_buffer(path->nodes[0]);
3946 path->nodes[0] = left;
3947 path->slots[1] -= 1;
3948 } else {
3949 btrfs_tree_unlock(left);
3950 free_extent_buffer(left);
3951 path->slots[0] -= push_items;
3952 }
3953 BUG_ON(path->slots[0] < 0);
3954 return ret;
3955 out:
3956 btrfs_tree_unlock(left);
3957 free_extent_buffer(left);
3958 return ret;
3959 }
3960
3961 /*
3962 * push some data in the path leaf to the left, trying to free up at
3963 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3964 *
3965 * max_slot can put a limit on how far into the leaf we'll push items. The
3966 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3967 * items
3968 */
3969 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3970 *root, struct btrfs_path *path, int min_data_size,
3971 int data_size, int empty, u32 max_slot)
3972 {
3973 struct extent_buffer *right = path->nodes[0];
3974 struct extent_buffer *left;
3975 int slot;
3976 int free_space;
3977 u32 right_nritems;
3978 int ret = 0;
3979
3980 slot = path->slots[1];
3981 if (slot == 0)
3982 return 1;
3983 if (!path->nodes[1])
3984 return 1;
3985
3986 right_nritems = btrfs_header_nritems(right);
3987 if (right_nritems == 0)
3988 return 1;
3989
3990 btrfs_assert_tree_locked(path->nodes[1]);
3991
3992 left = read_node_slot(root, path->nodes[1], slot - 1);
3993 if (left == NULL)
3994 return 1;
3995
3996 btrfs_tree_lock(left);
3997 btrfs_set_lock_blocking(left);
3998
3999 free_space = btrfs_leaf_free_space(root, left);
4000 if (free_space < data_size) {
4001 ret = 1;
4002 goto out;
4003 }
4004
4005 /* cow and double check */
4006 ret = btrfs_cow_block(trans, root, left,
4007 path->nodes[1], slot - 1, &left);
4008 if (ret) {
4009 /* we hit -ENOSPC, but it isn't fatal here */
4010 if (ret == -ENOSPC)
4011 ret = 1;
4012 goto out;
4013 }
4014
4015 free_space = btrfs_leaf_free_space(root, left);
4016 if (free_space < data_size) {
4017 ret = 1;
4018 goto out;
4019 }
4020
4021 return __push_leaf_left(trans, root, path, min_data_size,
4022 empty, left, free_space, right_nritems,
4023 max_slot);
4024 out:
4025 btrfs_tree_unlock(left);
4026 free_extent_buffer(left);
4027 return ret;
4028 }
4029
4030 /*
4031 * split the path's leaf in two, making sure there is at least data_size
4032 * available for the resulting leaf level of the path.
4033 */
4034 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4035 struct btrfs_root *root,
4036 struct btrfs_path *path,
4037 struct extent_buffer *l,
4038 struct extent_buffer *right,
4039 int slot, int mid, int nritems)
4040 {
4041 int data_copy_size;
4042 int rt_data_off;
4043 int i;
4044 struct btrfs_disk_key disk_key;
4045 struct btrfs_map_token token;
4046
4047 btrfs_init_map_token(&token);
4048
4049 nritems = nritems - mid;
4050 btrfs_set_header_nritems(right, nritems);
4051 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4052
4053 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4054 btrfs_item_nr_offset(mid),
4055 nritems * sizeof(struct btrfs_item));
4056
4057 copy_extent_buffer(right, l,
4058 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4059 data_copy_size, btrfs_leaf_data(l) +
4060 leaf_data_end(root, l), data_copy_size);
4061
4062 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4063 btrfs_item_end_nr(l, mid);
4064
4065 for (i = 0; i < nritems; i++) {
4066 struct btrfs_item *item = btrfs_item_nr(i);
4067 u32 ioff;
4068
4069 ioff = btrfs_token_item_offset(right, item, &token);
4070 btrfs_set_token_item_offset(right, item,
4071 ioff + rt_data_off, &token);
4072 }
4073
4074 btrfs_set_header_nritems(l, mid);
4075 btrfs_item_key(right, &disk_key, 0);
4076 insert_ptr(trans, root, path, &disk_key, right->start,
4077 path->slots[1] + 1, 1);
4078
4079 btrfs_mark_buffer_dirty(right);
4080 btrfs_mark_buffer_dirty(l);
4081 BUG_ON(path->slots[0] != slot);
4082
4083 if (mid <= slot) {
4084 btrfs_tree_unlock(path->nodes[0]);
4085 free_extent_buffer(path->nodes[0]);
4086 path->nodes[0] = right;
4087 path->slots[0] -= mid;
4088 path->slots[1] += 1;
4089 } else {
4090 btrfs_tree_unlock(right);
4091 free_extent_buffer(right);
4092 }
4093
4094 BUG_ON(path->slots[0] < 0);
4095 }
4096
4097 /*
4098 * double splits happen when we need to insert a big item in the middle
4099 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4100 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4101 * A B C
4102 *
4103 * We avoid this by trying to push the items on either side of our target
4104 * into the adjacent leaves. If all goes well we can avoid the double split
4105 * completely.
4106 */
4107 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4108 struct btrfs_root *root,
4109 struct btrfs_path *path,
4110 int data_size)
4111 {
4112 int ret;
4113 int progress = 0;
4114 int slot;
4115 u32 nritems;
4116 int space_needed = data_size;
4117
4118 slot = path->slots[0];
4119 if (slot < btrfs_header_nritems(path->nodes[0]))
4120 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4121
4122 /*
4123 * try to push all the items after our slot into the
4124 * right leaf
4125 */
4126 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4127 if (ret < 0)
4128 return ret;
4129
4130 if (ret == 0)
4131 progress++;
4132
4133 nritems = btrfs_header_nritems(path->nodes[0]);
4134 /*
4135 * our goal is to get our slot at the start or end of a leaf. If
4136 * we've done so we're done
4137 */
4138 if (path->slots[0] == 0 || path->slots[0] == nritems)
4139 return 0;
4140
4141 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4142 return 0;
4143
4144 /* try to push all the items before our slot into the next leaf */
4145 slot = path->slots[0];
4146 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4147 if (ret < 0)
4148 return ret;
4149
4150 if (ret == 0)
4151 progress++;
4152
4153 if (progress)
4154 return 0;
4155 return 1;
4156 }
4157
4158 /*
4159 * split the path's leaf in two, making sure there is at least data_size
4160 * available for the resulting leaf level of the path.
4161 *
4162 * returns 0 if all went well and < 0 on failure.
4163 */
4164 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *root,
4166 struct btrfs_key *ins_key,
4167 struct btrfs_path *path, int data_size,
4168 int extend)
4169 {
4170 struct btrfs_disk_key disk_key;
4171 struct extent_buffer *l;
4172 u32 nritems;
4173 int mid;
4174 int slot;
4175 struct extent_buffer *right;
4176 struct btrfs_fs_info *fs_info = root->fs_info;
4177 int ret = 0;
4178 int wret;
4179 int split;
4180 int num_doubles = 0;
4181 int tried_avoid_double = 0;
4182
4183 l = path->nodes[0];
4184 slot = path->slots[0];
4185 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4186 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4187 return -EOVERFLOW;
4188
4189 /* first try to make some room by pushing left and right */
4190 if (data_size && path->nodes[1]) {
4191 int space_needed = data_size;
4192
4193 if (slot < btrfs_header_nritems(l))
4194 space_needed -= btrfs_leaf_free_space(root, l);
4195
4196 wret = push_leaf_right(trans, root, path, space_needed,
4197 space_needed, 0, 0);
4198 if (wret < 0)
4199 return wret;
4200 if (wret) {
4201 wret = push_leaf_left(trans, root, path, space_needed,
4202 space_needed, 0, (u32)-1);
4203 if (wret < 0)
4204 return wret;
4205 }
4206 l = path->nodes[0];
4207
4208 /* did the pushes work? */
4209 if (btrfs_leaf_free_space(root, l) >= data_size)
4210 return 0;
4211 }
4212
4213 if (!path->nodes[1]) {
4214 ret = insert_new_root(trans, root, path, 1);
4215 if (ret)
4216 return ret;
4217 }
4218 again:
4219 split = 1;
4220 l = path->nodes[0];
4221 slot = path->slots[0];
4222 nritems = btrfs_header_nritems(l);
4223 mid = (nritems + 1) / 2;
4224
4225 if (mid <= slot) {
4226 if (nritems == 1 ||
4227 leaf_space_used(l, mid, nritems - mid) + data_size >
4228 BTRFS_LEAF_DATA_SIZE(root)) {
4229 if (slot >= nritems) {
4230 split = 0;
4231 } else {
4232 mid = slot;
4233 if (mid != nritems &&
4234 leaf_space_used(l, mid, nritems - mid) +
4235 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4236 if (data_size && !tried_avoid_double)
4237 goto push_for_double;
4238 split = 2;
4239 }
4240 }
4241 }
4242 } else {
4243 if (leaf_space_used(l, 0, mid) + data_size >
4244 BTRFS_LEAF_DATA_SIZE(root)) {
4245 if (!extend && data_size && slot == 0) {
4246 split = 0;
4247 } else if ((extend || !data_size) && slot == 0) {
4248 mid = 1;
4249 } else {
4250 mid = slot;
4251 if (mid != nritems &&
4252 leaf_space_used(l, mid, nritems - mid) +
4253 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4254 if (data_size && !tried_avoid_double)
4255 goto push_for_double;
4256 split = 2;
4257 }
4258 }
4259 }
4260 }
4261
4262 if (split == 0)
4263 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4264 else
4265 btrfs_item_key(l, &disk_key, mid);
4266
4267 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4268 &disk_key, 0, l->start, 0);
4269 if (IS_ERR(right))
4270 return PTR_ERR(right);
4271
4272 root_add_used(root, root->nodesize);
4273
4274 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4275 btrfs_set_header_bytenr(right, right->start);
4276 btrfs_set_header_generation(right, trans->transid);
4277 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4278 btrfs_set_header_owner(right, root->root_key.objectid);
4279 btrfs_set_header_level(right, 0);
4280 write_extent_buffer(right, fs_info->fsid,
4281 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4282
4283 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4284 btrfs_header_chunk_tree_uuid(right),
4285 BTRFS_UUID_SIZE);
4286
4287 if (split == 0) {
4288 if (mid <= slot) {
4289 btrfs_set_header_nritems(right, 0);
4290 insert_ptr(trans, root, path, &disk_key, right->start,
4291 path->slots[1] + 1, 1);
4292 btrfs_tree_unlock(path->nodes[0]);
4293 free_extent_buffer(path->nodes[0]);
4294 path->nodes[0] = right;
4295 path->slots[0] = 0;
4296 path->slots[1] += 1;
4297 } else {
4298 btrfs_set_header_nritems(right, 0);
4299 insert_ptr(trans, root, path, &disk_key, right->start,
4300 path->slots[1], 1);
4301 btrfs_tree_unlock(path->nodes[0]);
4302 free_extent_buffer(path->nodes[0]);
4303 path->nodes[0] = right;
4304 path->slots[0] = 0;
4305 if (path->slots[1] == 0)
4306 fixup_low_keys(fs_info, path, &disk_key, 1);
4307 }
4308 btrfs_mark_buffer_dirty(right);
4309 return ret;
4310 }
4311
4312 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4313
4314 if (split == 2) {
4315 BUG_ON(num_doubles != 0);
4316 num_doubles++;
4317 goto again;
4318 }
4319
4320 return 0;
4321
4322 push_for_double:
4323 push_for_double_split(trans, root, path, data_size);
4324 tried_avoid_double = 1;
4325 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4326 return 0;
4327 goto again;
4328 }
4329
4330 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4331 struct btrfs_root *root,
4332 struct btrfs_path *path, int ins_len)
4333 {
4334 struct btrfs_key key;
4335 struct extent_buffer *leaf;
4336 struct btrfs_file_extent_item *fi;
4337 u64 extent_len = 0;
4338 u32 item_size;
4339 int ret;
4340
4341 leaf = path->nodes[0];
4342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4343
4344 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4345 key.type != BTRFS_EXTENT_CSUM_KEY);
4346
4347 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4348 return 0;
4349
4350 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4351 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4352 fi = btrfs_item_ptr(leaf, path->slots[0],
4353 struct btrfs_file_extent_item);
4354 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4355 }
4356 btrfs_release_path(path);
4357
4358 path->keep_locks = 1;
4359 path->search_for_split = 1;
4360 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4361 path->search_for_split = 0;
4362 if (ret > 0)
4363 ret = -EAGAIN;
4364 if (ret < 0)
4365 goto err;
4366
4367 ret = -EAGAIN;
4368 leaf = path->nodes[0];
4369 /* if our item isn't there, return now */
4370 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4371 goto err;
4372
4373 /* the leaf has changed, it now has room. return now */
4374 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4375 goto err;
4376
4377 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4378 fi = btrfs_item_ptr(leaf, path->slots[0],
4379 struct btrfs_file_extent_item);
4380 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4381 goto err;
4382 }
4383
4384 btrfs_set_path_blocking(path);
4385 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4386 if (ret)
4387 goto err;
4388
4389 path->keep_locks = 0;
4390 btrfs_unlock_up_safe(path, 1);
4391 return 0;
4392 err:
4393 path->keep_locks = 0;
4394 return ret;
4395 }
4396
4397 static noinline int split_item(struct btrfs_trans_handle *trans,
4398 struct btrfs_root *root,
4399 struct btrfs_path *path,
4400 struct btrfs_key *new_key,
4401 unsigned long split_offset)
4402 {
4403 struct extent_buffer *leaf;
4404 struct btrfs_item *item;
4405 struct btrfs_item *new_item;
4406 int slot;
4407 char *buf;
4408 u32 nritems;
4409 u32 item_size;
4410 u32 orig_offset;
4411 struct btrfs_disk_key disk_key;
4412
4413 leaf = path->nodes[0];
4414 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4415
4416 btrfs_set_path_blocking(path);
4417
4418 item = btrfs_item_nr(path->slots[0]);
4419 orig_offset = btrfs_item_offset(leaf, item);
4420 item_size = btrfs_item_size(leaf, item);
4421
4422 buf = kmalloc(item_size, GFP_NOFS);
4423 if (!buf)
4424 return -ENOMEM;
4425
4426 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4427 path->slots[0]), item_size);
4428
4429 slot = path->slots[0] + 1;
4430 nritems = btrfs_header_nritems(leaf);
4431 if (slot != nritems) {
4432 /* shift the items */
4433 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4434 btrfs_item_nr_offset(slot),
4435 (nritems - slot) * sizeof(struct btrfs_item));
4436 }
4437
4438 btrfs_cpu_key_to_disk(&disk_key, new_key);
4439 btrfs_set_item_key(leaf, &disk_key, slot);
4440
4441 new_item = btrfs_item_nr(slot);
4442
4443 btrfs_set_item_offset(leaf, new_item, orig_offset);
4444 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4445
4446 btrfs_set_item_offset(leaf, item,
4447 orig_offset + item_size - split_offset);
4448 btrfs_set_item_size(leaf, item, split_offset);
4449
4450 btrfs_set_header_nritems(leaf, nritems + 1);
4451
4452 /* write the data for the start of the original item */
4453 write_extent_buffer(leaf, buf,
4454 btrfs_item_ptr_offset(leaf, path->slots[0]),
4455 split_offset);
4456
4457 /* write the data for the new item */
4458 write_extent_buffer(leaf, buf + split_offset,
4459 btrfs_item_ptr_offset(leaf, slot),
4460 item_size - split_offset);
4461 btrfs_mark_buffer_dirty(leaf);
4462
4463 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4464 kfree(buf);
4465 return 0;
4466 }
4467
4468 /*
4469 * This function splits a single item into two items,
4470 * giving 'new_key' to the new item and splitting the
4471 * old one at split_offset (from the start of the item).
4472 *
4473 * The path may be released by this operation. After
4474 * the split, the path is pointing to the old item. The
4475 * new item is going to be in the same node as the old one.
4476 *
4477 * Note, the item being split must be smaller enough to live alone on
4478 * a tree block with room for one extra struct btrfs_item
4479 *
4480 * This allows us to split the item in place, keeping a lock on the
4481 * leaf the entire time.
4482 */
4483 int btrfs_split_item(struct btrfs_trans_handle *trans,
4484 struct btrfs_root *root,
4485 struct btrfs_path *path,
4486 struct btrfs_key *new_key,
4487 unsigned long split_offset)
4488 {
4489 int ret;
4490 ret = setup_leaf_for_split(trans, root, path,
4491 sizeof(struct btrfs_item));
4492 if (ret)
4493 return ret;
4494
4495 ret = split_item(trans, root, path, new_key, split_offset);
4496 return ret;
4497 }
4498
4499 /*
4500 * This function duplicate a item, giving 'new_key' to the new item.
4501 * It guarantees both items live in the same tree leaf and the new item
4502 * is contiguous with the original item.
4503 *
4504 * This allows us to split file extent in place, keeping a lock on the
4505 * leaf the entire time.
4506 */
4507 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct btrfs_path *path,
4510 struct btrfs_key *new_key)
4511 {
4512 struct extent_buffer *leaf;
4513 int ret;
4514 u32 item_size;
4515
4516 leaf = path->nodes[0];
4517 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4518 ret = setup_leaf_for_split(trans, root, path,
4519 item_size + sizeof(struct btrfs_item));
4520 if (ret)
4521 return ret;
4522
4523 path->slots[0]++;
4524 setup_items_for_insert(root, path, new_key, &item_size,
4525 item_size, item_size +
4526 sizeof(struct btrfs_item), 1);
4527 leaf = path->nodes[0];
4528 memcpy_extent_buffer(leaf,
4529 btrfs_item_ptr_offset(leaf, path->slots[0]),
4530 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4531 item_size);
4532 return 0;
4533 }
4534
4535 /*
4536 * make the item pointed to by the path smaller. new_size indicates
4537 * how small to make it, and from_end tells us if we just chop bytes
4538 * off the end of the item or if we shift the item to chop bytes off
4539 * the front.
4540 */
4541 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4542 u32 new_size, int from_end)
4543 {
4544 int slot;
4545 struct extent_buffer *leaf;
4546 struct btrfs_item *item;
4547 u32 nritems;
4548 unsigned int data_end;
4549 unsigned int old_data_start;
4550 unsigned int old_size;
4551 unsigned int size_diff;
4552 int i;
4553 struct btrfs_map_token token;
4554
4555 btrfs_init_map_token(&token);
4556
4557 leaf = path->nodes[0];
4558 slot = path->slots[0];
4559
4560 old_size = btrfs_item_size_nr(leaf, slot);
4561 if (old_size == new_size)
4562 return;
4563
4564 nritems = btrfs_header_nritems(leaf);
4565 data_end = leaf_data_end(root, leaf);
4566
4567 old_data_start = btrfs_item_offset_nr(leaf, slot);
4568
4569 size_diff = old_size - new_size;
4570
4571 BUG_ON(slot < 0);
4572 BUG_ON(slot >= nritems);
4573
4574 /*
4575 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4576 */
4577 /* first correct the data pointers */
4578 for (i = slot; i < nritems; i++) {
4579 u32 ioff;
4580 item = btrfs_item_nr(i);
4581
4582 ioff = btrfs_token_item_offset(leaf, item, &token);
4583 btrfs_set_token_item_offset(leaf, item,
4584 ioff + size_diff, &token);
4585 }
4586
4587 /* shift the data */
4588 if (from_end) {
4589 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4590 data_end + size_diff, btrfs_leaf_data(leaf) +
4591 data_end, old_data_start + new_size - data_end);
4592 } else {
4593 struct btrfs_disk_key disk_key;
4594 u64 offset;
4595
4596 btrfs_item_key(leaf, &disk_key, slot);
4597
4598 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4599 unsigned long ptr;
4600 struct btrfs_file_extent_item *fi;
4601
4602 fi = btrfs_item_ptr(leaf, slot,
4603 struct btrfs_file_extent_item);
4604 fi = (struct btrfs_file_extent_item *)(
4605 (unsigned long)fi - size_diff);
4606
4607 if (btrfs_file_extent_type(leaf, fi) ==
4608 BTRFS_FILE_EXTENT_INLINE) {
4609 ptr = btrfs_item_ptr_offset(leaf, slot);
4610 memmove_extent_buffer(leaf, ptr,
4611 (unsigned long)fi,
4612 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4613 }
4614 }
4615
4616 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4617 data_end + size_diff, btrfs_leaf_data(leaf) +
4618 data_end, old_data_start - data_end);
4619
4620 offset = btrfs_disk_key_offset(&disk_key);
4621 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4622 btrfs_set_item_key(leaf, &disk_key, slot);
4623 if (slot == 0)
4624 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4625 }
4626
4627 item = btrfs_item_nr(slot);
4628 btrfs_set_item_size(leaf, item, new_size);
4629 btrfs_mark_buffer_dirty(leaf);
4630
4631 if (btrfs_leaf_free_space(root, leaf) < 0) {
4632 btrfs_print_leaf(root, leaf);
4633 BUG();
4634 }
4635 }
4636
4637 /*
4638 * make the item pointed to by the path bigger, data_size is the added size.
4639 */
4640 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4641 u32 data_size)
4642 {
4643 int slot;
4644 struct extent_buffer *leaf;
4645 struct btrfs_item *item;
4646 u32 nritems;
4647 unsigned int data_end;
4648 unsigned int old_data;
4649 unsigned int old_size;
4650 int i;
4651 struct btrfs_map_token token;
4652
4653 btrfs_init_map_token(&token);
4654
4655 leaf = path->nodes[0];
4656
4657 nritems = btrfs_header_nritems(leaf);
4658 data_end = leaf_data_end(root, leaf);
4659
4660 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4661 btrfs_print_leaf(root, leaf);
4662 BUG();
4663 }
4664 slot = path->slots[0];
4665 old_data = btrfs_item_end_nr(leaf, slot);
4666
4667 BUG_ON(slot < 0);
4668 if (slot >= nritems) {
4669 btrfs_print_leaf(root, leaf);
4670 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4671 slot, nritems);
4672 BUG_ON(1);
4673 }
4674
4675 /*
4676 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4677 */
4678 /* first correct the data pointers */
4679 for (i = slot; i < nritems; i++) {
4680 u32 ioff;
4681 item = btrfs_item_nr(i);
4682
4683 ioff = btrfs_token_item_offset(leaf, item, &token);
4684 btrfs_set_token_item_offset(leaf, item,
4685 ioff - data_size, &token);
4686 }
4687
4688 /* shift the data */
4689 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4690 data_end - data_size, btrfs_leaf_data(leaf) +
4691 data_end, old_data - data_end);
4692
4693 data_end = old_data;
4694 old_size = btrfs_item_size_nr(leaf, slot);
4695 item = btrfs_item_nr(slot);
4696 btrfs_set_item_size(leaf, item, old_size + data_size);
4697 btrfs_mark_buffer_dirty(leaf);
4698
4699 if (btrfs_leaf_free_space(root, leaf) < 0) {
4700 btrfs_print_leaf(root, leaf);
4701 BUG();
4702 }
4703 }
4704
4705 /*
4706 * this is a helper for btrfs_insert_empty_items, the main goal here is
4707 * to save stack depth by doing the bulk of the work in a function
4708 * that doesn't call btrfs_search_slot
4709 */
4710 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4711 struct btrfs_key *cpu_key, u32 *data_size,
4712 u32 total_data, u32 total_size, int nr)
4713 {
4714 struct btrfs_item *item;
4715 int i;
4716 u32 nritems;
4717 unsigned int data_end;
4718 struct btrfs_disk_key disk_key;
4719 struct extent_buffer *leaf;
4720 int slot;
4721 struct btrfs_map_token token;
4722
4723 if (path->slots[0] == 0) {
4724 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4725 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4726 }
4727 btrfs_unlock_up_safe(path, 1);
4728
4729 btrfs_init_map_token(&token);
4730
4731 leaf = path->nodes[0];
4732 slot = path->slots[0];
4733
4734 nritems = btrfs_header_nritems(leaf);
4735 data_end = leaf_data_end(root, leaf);
4736
4737 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4738 btrfs_print_leaf(root, leaf);
4739 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4740 total_size, btrfs_leaf_free_space(root, leaf));
4741 BUG();
4742 }
4743
4744 if (slot != nritems) {
4745 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4746
4747 if (old_data < data_end) {
4748 btrfs_print_leaf(root, leaf);
4749 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4750 slot, old_data, data_end);
4751 BUG_ON(1);
4752 }
4753 /*
4754 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4755 */
4756 /* first correct the data pointers */
4757 for (i = slot; i < nritems; i++) {
4758 u32 ioff;
4759
4760 item = btrfs_item_nr( i);
4761 ioff = btrfs_token_item_offset(leaf, item, &token);
4762 btrfs_set_token_item_offset(leaf, item,
4763 ioff - total_data, &token);
4764 }
4765 /* shift the items */
4766 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4767 btrfs_item_nr_offset(slot),
4768 (nritems - slot) * sizeof(struct btrfs_item));
4769
4770 /* shift the data */
4771 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4772 data_end - total_data, btrfs_leaf_data(leaf) +
4773 data_end, old_data - data_end);
4774 data_end = old_data;
4775 }
4776
4777 /* setup the item for the new data */
4778 for (i = 0; i < nr; i++) {
4779 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4780 btrfs_set_item_key(leaf, &disk_key, slot + i);
4781 item = btrfs_item_nr(slot + i);
4782 btrfs_set_token_item_offset(leaf, item,
4783 data_end - data_size[i], &token);
4784 data_end -= data_size[i];
4785 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4786 }
4787
4788 btrfs_set_header_nritems(leaf, nritems + nr);
4789 btrfs_mark_buffer_dirty(leaf);
4790
4791 if (btrfs_leaf_free_space(root, leaf) < 0) {
4792 btrfs_print_leaf(root, leaf);
4793 BUG();
4794 }
4795 }
4796
4797 /*
4798 * Given a key and some data, insert items into the tree.
4799 * This does all the path init required, making room in the tree if needed.
4800 */
4801 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4802 struct btrfs_root *root,
4803 struct btrfs_path *path,
4804 struct btrfs_key *cpu_key, u32 *data_size,
4805 int nr)
4806 {
4807 int ret = 0;
4808 int slot;
4809 int i;
4810 u32 total_size = 0;
4811 u32 total_data = 0;
4812
4813 for (i = 0; i < nr; i++)
4814 total_data += data_size[i];
4815
4816 total_size = total_data + (nr * sizeof(struct btrfs_item));
4817 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4818 if (ret == 0)
4819 return -EEXIST;
4820 if (ret < 0)
4821 return ret;
4822
4823 slot = path->slots[0];
4824 BUG_ON(slot < 0);
4825
4826 setup_items_for_insert(root, path, cpu_key, data_size,
4827 total_data, total_size, nr);
4828 return 0;
4829 }
4830
4831 /*
4832 * Given a key and some data, insert an item into the tree.
4833 * This does all the path init required, making room in the tree if needed.
4834 */
4835 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4836 *root, struct btrfs_key *cpu_key, void *data, u32
4837 data_size)
4838 {
4839 int ret = 0;
4840 struct btrfs_path *path;
4841 struct extent_buffer *leaf;
4842 unsigned long ptr;
4843
4844 path = btrfs_alloc_path();
4845 if (!path)
4846 return -ENOMEM;
4847 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4848 if (!ret) {
4849 leaf = path->nodes[0];
4850 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4851 write_extent_buffer(leaf, data, ptr, data_size);
4852 btrfs_mark_buffer_dirty(leaf);
4853 }
4854 btrfs_free_path(path);
4855 return ret;
4856 }
4857
4858 /*
4859 * delete the pointer from a given node.
4860 *
4861 * the tree should have been previously balanced so the deletion does not
4862 * empty a node.
4863 */
4864 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4865 int level, int slot)
4866 {
4867 struct extent_buffer *parent = path->nodes[level];
4868 u32 nritems;
4869 int ret;
4870
4871 nritems = btrfs_header_nritems(parent);
4872 if (slot != nritems - 1) {
4873 if (level)
4874 tree_mod_log_eb_move(root->fs_info, parent, slot,
4875 slot + 1, nritems - slot - 1);
4876 memmove_extent_buffer(parent,
4877 btrfs_node_key_ptr_offset(slot),
4878 btrfs_node_key_ptr_offset(slot + 1),
4879 sizeof(struct btrfs_key_ptr) *
4880 (nritems - slot - 1));
4881 } else if (level) {
4882 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4883 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4884 BUG_ON(ret < 0);
4885 }
4886
4887 nritems--;
4888 btrfs_set_header_nritems(parent, nritems);
4889 if (nritems == 0 && parent == root->node) {
4890 BUG_ON(btrfs_header_level(root->node) != 1);
4891 /* just turn the root into a leaf and break */
4892 btrfs_set_header_level(root->node, 0);
4893 } else if (slot == 0) {
4894 struct btrfs_disk_key disk_key;
4895
4896 btrfs_node_key(parent, &disk_key, 0);
4897 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4898 }
4899 btrfs_mark_buffer_dirty(parent);
4900 }
4901
4902 /*
4903 * a helper function to delete the leaf pointed to by path->slots[1] and
4904 * path->nodes[1].
4905 *
4906 * This deletes the pointer in path->nodes[1] and frees the leaf
4907 * block extent. zero is returned if it all worked out, < 0 otherwise.
4908 *
4909 * The path must have already been setup for deleting the leaf, including
4910 * all the proper balancing. path->nodes[1] must be locked.
4911 */
4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4913 struct btrfs_root *root,
4914 struct btrfs_path *path,
4915 struct extent_buffer *leaf)
4916 {
4917 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4918 del_ptr(root, path, 1, path->slots[1]);
4919
4920 /*
4921 * btrfs_free_extent is expensive, we want to make sure we
4922 * aren't holding any locks when we call it
4923 */
4924 btrfs_unlock_up_safe(path, 0);
4925
4926 root_sub_used(root, leaf->len);
4927
4928 extent_buffer_get(leaf);
4929 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4930 free_extent_buffer_stale(leaf);
4931 }
4932 /*
4933 * delete the item at the leaf level in path. If that empties
4934 * the leaf, remove it from the tree
4935 */
4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4937 struct btrfs_path *path, int slot, int nr)
4938 {
4939 struct extent_buffer *leaf;
4940 struct btrfs_item *item;
4941 int last_off;
4942 int dsize = 0;
4943 int ret = 0;
4944 int wret;
4945 int i;
4946 u32 nritems;
4947 struct btrfs_map_token token;
4948
4949 btrfs_init_map_token(&token);
4950
4951 leaf = path->nodes[0];
4952 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4953
4954 for (i = 0; i < nr; i++)
4955 dsize += btrfs_item_size_nr(leaf, slot + i);
4956
4957 nritems = btrfs_header_nritems(leaf);
4958
4959 if (slot + nr != nritems) {
4960 int data_end = leaf_data_end(root, leaf);
4961
4962 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4963 data_end + dsize,
4964 btrfs_leaf_data(leaf) + data_end,
4965 last_off - data_end);
4966
4967 for (i = slot + nr; i < nritems; i++) {
4968 u32 ioff;
4969
4970 item = btrfs_item_nr(i);
4971 ioff = btrfs_token_item_offset(leaf, item, &token);
4972 btrfs_set_token_item_offset(leaf, item,
4973 ioff + dsize, &token);
4974 }
4975
4976 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4977 btrfs_item_nr_offset(slot + nr),
4978 sizeof(struct btrfs_item) *
4979 (nritems - slot - nr));
4980 }
4981 btrfs_set_header_nritems(leaf, nritems - nr);
4982 nritems -= nr;
4983
4984 /* delete the leaf if we've emptied it */
4985 if (nritems == 0) {
4986 if (leaf == root->node) {
4987 btrfs_set_header_level(leaf, 0);
4988 } else {
4989 btrfs_set_path_blocking(path);
4990 clean_tree_block(trans, root->fs_info, leaf);
4991 btrfs_del_leaf(trans, root, path, leaf);
4992 }
4993 } else {
4994 int used = leaf_space_used(leaf, 0, nritems);
4995 if (slot == 0) {
4996 struct btrfs_disk_key disk_key;
4997
4998 btrfs_item_key(leaf, &disk_key, 0);
4999 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5000 }
5001
5002 /* delete the leaf if it is mostly empty */
5003 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5004 /* push_leaf_left fixes the path.
5005 * make sure the path still points to our leaf
5006 * for possible call to del_ptr below
5007 */
5008 slot = path->slots[1];
5009 extent_buffer_get(leaf);
5010
5011 btrfs_set_path_blocking(path);
5012 wret = push_leaf_left(trans, root, path, 1, 1,
5013 1, (u32)-1);
5014 if (wret < 0 && wret != -ENOSPC)
5015 ret = wret;
5016
5017 if (path->nodes[0] == leaf &&
5018 btrfs_header_nritems(leaf)) {
5019 wret = push_leaf_right(trans, root, path, 1,
5020 1, 1, 0);
5021 if (wret < 0 && wret != -ENOSPC)
5022 ret = wret;
5023 }
5024
5025 if (btrfs_header_nritems(leaf) == 0) {
5026 path->slots[1] = slot;
5027 btrfs_del_leaf(trans, root, path, leaf);
5028 free_extent_buffer(leaf);
5029 ret = 0;
5030 } else {
5031 /* if we're still in the path, make sure
5032 * we're dirty. Otherwise, one of the
5033 * push_leaf functions must have already
5034 * dirtied this buffer
5035 */
5036 if (path->nodes[0] == leaf)
5037 btrfs_mark_buffer_dirty(leaf);
5038 free_extent_buffer(leaf);
5039 }
5040 } else {
5041 btrfs_mark_buffer_dirty(leaf);
5042 }
5043 }
5044 return ret;
5045 }
5046
5047 /*
5048 * search the tree again to find a leaf with lesser keys
5049 * returns 0 if it found something or 1 if there are no lesser leaves.
5050 * returns < 0 on io errors.
5051 *
5052 * This may release the path, and so you may lose any locks held at the
5053 * time you call it.
5054 */
5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 {
5057 struct btrfs_key key;
5058 struct btrfs_disk_key found_key;
5059 int ret;
5060
5061 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062
5063 if (key.offset > 0) {
5064 key.offset--;
5065 } else if (key.type > 0) {
5066 key.type--;
5067 key.offset = (u64)-1;
5068 } else if (key.objectid > 0) {
5069 key.objectid--;
5070 key.type = (u8)-1;
5071 key.offset = (u64)-1;
5072 } else {
5073 return 1;
5074 }
5075
5076 btrfs_release_path(path);
5077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078 if (ret < 0)
5079 return ret;
5080 btrfs_item_key(path->nodes[0], &found_key, 0);
5081 ret = comp_keys(&found_key, &key);
5082 /*
5083 * We might have had an item with the previous key in the tree right
5084 * before we released our path. And after we released our path, that
5085 * item might have been pushed to the first slot (0) of the leaf we
5086 * were holding due to a tree balance. Alternatively, an item with the
5087 * previous key can exist as the only element of a leaf (big fat item).
5088 * Therefore account for these 2 cases, so that our callers (like
5089 * btrfs_previous_item) don't miss an existing item with a key matching
5090 * the previous key we computed above.
5091 */
5092 if (ret <= 0)
5093 return 0;
5094 return 1;
5095 }
5096
5097 /*
5098 * A helper function to walk down the tree starting at min_key, and looking
5099 * for nodes or leaves that are have a minimum transaction id.
5100 * This is used by the btree defrag code, and tree logging
5101 *
5102 * This does not cow, but it does stuff the starting key it finds back
5103 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5104 * key and get a writable path.
5105 *
5106 * This does lock as it descends, and path->keep_locks should be set
5107 * to 1 by the caller.
5108 *
5109 * This honors path->lowest_level to prevent descent past a given level
5110 * of the tree.
5111 *
5112 * min_trans indicates the oldest transaction that you are interested
5113 * in walking through. Any nodes or leaves older than min_trans are
5114 * skipped over (without reading them).
5115 *
5116 * returns zero if something useful was found, < 0 on error and 1 if there
5117 * was nothing in the tree that matched the search criteria.
5118 */
5119 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5120 struct btrfs_path *path,
5121 u64 min_trans)
5122 {
5123 struct extent_buffer *cur;
5124 struct btrfs_key found_key;
5125 int slot;
5126 int sret;
5127 u32 nritems;
5128 int level;
5129 int ret = 1;
5130 int keep_locks = path->keep_locks;
5131
5132 path->keep_locks = 1;
5133 again:
5134 cur = btrfs_read_lock_root_node(root);
5135 level = btrfs_header_level(cur);
5136 WARN_ON(path->nodes[level]);
5137 path->nodes[level] = cur;
5138 path->locks[level] = BTRFS_READ_LOCK;
5139
5140 if (btrfs_header_generation(cur) < min_trans) {
5141 ret = 1;
5142 goto out;
5143 }
5144 while (1) {
5145 nritems = btrfs_header_nritems(cur);
5146 level = btrfs_header_level(cur);
5147 sret = bin_search(cur, min_key, level, &slot);
5148
5149 /* at the lowest level, we're done, setup the path and exit */
5150 if (level == path->lowest_level) {
5151 if (slot >= nritems)
5152 goto find_next_key;
5153 ret = 0;
5154 path->slots[level] = slot;
5155 btrfs_item_key_to_cpu(cur, &found_key, slot);
5156 goto out;
5157 }
5158 if (sret && slot > 0)
5159 slot--;
5160 /*
5161 * check this node pointer against the min_trans parameters.
5162 * If it is too old, old, skip to the next one.
5163 */
5164 while (slot < nritems) {
5165 u64 gen;
5166
5167 gen = btrfs_node_ptr_generation(cur, slot);
5168 if (gen < min_trans) {
5169 slot++;
5170 continue;
5171 }
5172 break;
5173 }
5174 find_next_key:
5175 /*
5176 * we didn't find a candidate key in this node, walk forward
5177 * and find another one
5178 */
5179 if (slot >= nritems) {
5180 path->slots[level] = slot;
5181 btrfs_set_path_blocking(path);
5182 sret = btrfs_find_next_key(root, path, min_key, level,
5183 min_trans);
5184 if (sret == 0) {
5185 btrfs_release_path(path);
5186 goto again;
5187 } else {
5188 goto out;
5189 }
5190 }
5191 /* save our key for returning back */
5192 btrfs_node_key_to_cpu(cur, &found_key, slot);
5193 path->slots[level] = slot;
5194 if (level == path->lowest_level) {
5195 ret = 0;
5196 goto out;
5197 }
5198 btrfs_set_path_blocking(path);
5199 cur = read_node_slot(root, cur, slot);
5200 BUG_ON(!cur); /* -ENOMEM */
5201
5202 btrfs_tree_read_lock(cur);
5203
5204 path->locks[level - 1] = BTRFS_READ_LOCK;
5205 path->nodes[level - 1] = cur;
5206 unlock_up(path, level, 1, 0, NULL);
5207 btrfs_clear_path_blocking(path, NULL, 0);
5208 }
5209 out:
5210 path->keep_locks = keep_locks;
5211 if (ret == 0) {
5212 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5213 btrfs_set_path_blocking(path);
5214 memcpy(min_key, &found_key, sizeof(found_key));
5215 }
5216 return ret;
5217 }
5218
5219 static void tree_move_down(struct btrfs_root *root,
5220 struct btrfs_path *path,
5221 int *level, int root_level)
5222 {
5223 BUG_ON(*level == 0);
5224 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5225 path->slots[*level]);
5226 path->slots[*level - 1] = 0;
5227 (*level)--;
5228 }
5229
5230 static int tree_move_next_or_upnext(struct btrfs_root *root,
5231 struct btrfs_path *path,
5232 int *level, int root_level)
5233 {
5234 int ret = 0;
5235 int nritems;
5236 nritems = btrfs_header_nritems(path->nodes[*level]);
5237
5238 path->slots[*level]++;
5239
5240 while (path->slots[*level] >= nritems) {
5241 if (*level == root_level)
5242 return -1;
5243
5244 /* move upnext */
5245 path->slots[*level] = 0;
5246 free_extent_buffer(path->nodes[*level]);
5247 path->nodes[*level] = NULL;
5248 (*level)++;
5249 path->slots[*level]++;
5250
5251 nritems = btrfs_header_nritems(path->nodes[*level]);
5252 ret = 1;
5253 }
5254 return ret;
5255 }
5256
5257 /*
5258 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5259 * or down.
5260 */
5261 static int tree_advance(struct btrfs_root *root,
5262 struct btrfs_path *path,
5263 int *level, int root_level,
5264 int allow_down,
5265 struct btrfs_key *key)
5266 {
5267 int ret;
5268
5269 if (*level == 0 || !allow_down) {
5270 ret = tree_move_next_or_upnext(root, path, level, root_level);
5271 } else {
5272 tree_move_down(root, path, level, root_level);
5273 ret = 0;
5274 }
5275 if (ret >= 0) {
5276 if (*level == 0)
5277 btrfs_item_key_to_cpu(path->nodes[*level], key,
5278 path->slots[*level]);
5279 else
5280 btrfs_node_key_to_cpu(path->nodes[*level], key,
5281 path->slots[*level]);
5282 }
5283 return ret;
5284 }
5285
5286 static int tree_compare_item(struct btrfs_root *left_root,
5287 struct btrfs_path *left_path,
5288 struct btrfs_path *right_path,
5289 char *tmp_buf)
5290 {
5291 int cmp;
5292 int len1, len2;
5293 unsigned long off1, off2;
5294
5295 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5296 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5297 if (len1 != len2)
5298 return 1;
5299
5300 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5301 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5302 right_path->slots[0]);
5303
5304 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5305
5306 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5307 if (cmp)
5308 return 1;
5309 return 0;
5310 }
5311
5312 #define ADVANCE 1
5313 #define ADVANCE_ONLY_NEXT -1
5314
5315 /*
5316 * This function compares two trees and calls the provided callback for
5317 * every changed/new/deleted item it finds.
5318 * If shared tree blocks are encountered, whole subtrees are skipped, making
5319 * the compare pretty fast on snapshotted subvolumes.
5320 *
5321 * This currently works on commit roots only. As commit roots are read only,
5322 * we don't do any locking. The commit roots are protected with transactions.
5323 * Transactions are ended and rejoined when a commit is tried in between.
5324 *
5325 * This function checks for modifications done to the trees while comparing.
5326 * If it detects a change, it aborts immediately.
5327 */
5328 int btrfs_compare_trees(struct btrfs_root *left_root,
5329 struct btrfs_root *right_root,
5330 btrfs_changed_cb_t changed_cb, void *ctx)
5331 {
5332 int ret;
5333 int cmp;
5334 struct btrfs_path *left_path = NULL;
5335 struct btrfs_path *right_path = NULL;
5336 struct btrfs_key left_key;
5337 struct btrfs_key right_key;
5338 char *tmp_buf = NULL;
5339 int left_root_level;
5340 int right_root_level;
5341 int left_level;
5342 int right_level;
5343 int left_end_reached;
5344 int right_end_reached;
5345 int advance_left;
5346 int advance_right;
5347 u64 left_blockptr;
5348 u64 right_blockptr;
5349 u64 left_gen;
5350 u64 right_gen;
5351
5352 left_path = btrfs_alloc_path();
5353 if (!left_path) {
5354 ret = -ENOMEM;
5355 goto out;
5356 }
5357 right_path = btrfs_alloc_path();
5358 if (!right_path) {
5359 ret = -ENOMEM;
5360 goto out;
5361 }
5362
5363 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5364 if (!tmp_buf) {
5365 ret = -ENOMEM;
5366 goto out;
5367 }
5368
5369 left_path->search_commit_root = 1;
5370 left_path->skip_locking = 1;
5371 right_path->search_commit_root = 1;
5372 right_path->skip_locking = 1;
5373
5374 /*
5375 * Strategy: Go to the first items of both trees. Then do
5376 *
5377 * If both trees are at level 0
5378 * Compare keys of current items
5379 * If left < right treat left item as new, advance left tree
5380 * and repeat
5381 * If left > right treat right item as deleted, advance right tree
5382 * and repeat
5383 * If left == right do deep compare of items, treat as changed if
5384 * needed, advance both trees and repeat
5385 * If both trees are at the same level but not at level 0
5386 * Compare keys of current nodes/leafs
5387 * If left < right advance left tree and repeat
5388 * If left > right advance right tree and repeat
5389 * If left == right compare blockptrs of the next nodes/leafs
5390 * If they match advance both trees but stay at the same level
5391 * and repeat
5392 * If they don't match advance both trees while allowing to go
5393 * deeper and repeat
5394 * If tree levels are different
5395 * Advance the tree that needs it and repeat
5396 *
5397 * Advancing a tree means:
5398 * If we are at level 0, try to go to the next slot. If that's not
5399 * possible, go one level up and repeat. Stop when we found a level
5400 * where we could go to the next slot. We may at this point be on a
5401 * node or a leaf.
5402 *
5403 * If we are not at level 0 and not on shared tree blocks, go one
5404 * level deeper.
5405 *
5406 * If we are not at level 0 and on shared tree blocks, go one slot to
5407 * the right if possible or go up and right.
5408 */
5409
5410 down_read(&left_root->fs_info->commit_root_sem);
5411 left_level = btrfs_header_level(left_root->commit_root);
5412 left_root_level = left_level;
5413 left_path->nodes[left_level] = left_root->commit_root;
5414 extent_buffer_get(left_path->nodes[left_level]);
5415
5416 right_level = btrfs_header_level(right_root->commit_root);
5417 right_root_level = right_level;
5418 right_path->nodes[right_level] = right_root->commit_root;
5419 extent_buffer_get(right_path->nodes[right_level]);
5420 up_read(&left_root->fs_info->commit_root_sem);
5421
5422 if (left_level == 0)
5423 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5424 &left_key, left_path->slots[left_level]);
5425 else
5426 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5427 &left_key, left_path->slots[left_level]);
5428 if (right_level == 0)
5429 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5430 &right_key, right_path->slots[right_level]);
5431 else
5432 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5433 &right_key, right_path->slots[right_level]);
5434
5435 left_end_reached = right_end_reached = 0;
5436 advance_left = advance_right = 0;
5437
5438 while (1) {
5439 if (advance_left && !left_end_reached) {
5440 ret = tree_advance(left_root, left_path, &left_level,
5441 left_root_level,
5442 advance_left != ADVANCE_ONLY_NEXT,
5443 &left_key);
5444 if (ret < 0)
5445 left_end_reached = ADVANCE;
5446 advance_left = 0;
5447 }
5448 if (advance_right && !right_end_reached) {
5449 ret = tree_advance(right_root, right_path, &right_level,
5450 right_root_level,
5451 advance_right != ADVANCE_ONLY_NEXT,
5452 &right_key);
5453 if (ret < 0)
5454 right_end_reached = ADVANCE;
5455 advance_right = 0;
5456 }
5457
5458 if (left_end_reached && right_end_reached) {
5459 ret = 0;
5460 goto out;
5461 } else if (left_end_reached) {
5462 if (right_level == 0) {
5463 ret = changed_cb(left_root, right_root,
5464 left_path, right_path,
5465 &right_key,
5466 BTRFS_COMPARE_TREE_DELETED,
5467 ctx);
5468 if (ret < 0)
5469 goto out;
5470 }
5471 advance_right = ADVANCE;
5472 continue;
5473 } else if (right_end_reached) {
5474 if (left_level == 0) {
5475 ret = changed_cb(left_root, right_root,
5476 left_path, right_path,
5477 &left_key,
5478 BTRFS_COMPARE_TREE_NEW,
5479 ctx);
5480 if (ret < 0)
5481 goto out;
5482 }
5483 advance_left = ADVANCE;
5484 continue;
5485 }
5486
5487 if (left_level == 0 && right_level == 0) {
5488 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5489 if (cmp < 0) {
5490 ret = changed_cb(left_root, right_root,
5491 left_path, right_path,
5492 &left_key,
5493 BTRFS_COMPARE_TREE_NEW,
5494 ctx);
5495 if (ret < 0)
5496 goto out;
5497 advance_left = ADVANCE;
5498 } else if (cmp > 0) {
5499 ret = changed_cb(left_root, right_root,
5500 left_path, right_path,
5501 &right_key,
5502 BTRFS_COMPARE_TREE_DELETED,
5503 ctx);
5504 if (ret < 0)
5505 goto out;
5506 advance_right = ADVANCE;
5507 } else {
5508 enum btrfs_compare_tree_result result;
5509
5510 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5511 ret = tree_compare_item(left_root, left_path,
5512 right_path, tmp_buf);
5513 if (ret)
5514 result = BTRFS_COMPARE_TREE_CHANGED;
5515 else
5516 result = BTRFS_COMPARE_TREE_SAME;
5517 ret = changed_cb(left_root, right_root,
5518 left_path, right_path,
5519 &left_key, result, ctx);
5520 if (ret < 0)
5521 goto out;
5522 advance_left = ADVANCE;
5523 advance_right = ADVANCE;
5524 }
5525 } else if (left_level == right_level) {
5526 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527 if (cmp < 0) {
5528 advance_left = ADVANCE;
5529 } else if (cmp > 0) {
5530 advance_right = ADVANCE;
5531 } else {
5532 left_blockptr = btrfs_node_blockptr(
5533 left_path->nodes[left_level],
5534 left_path->slots[left_level]);
5535 right_blockptr = btrfs_node_blockptr(
5536 right_path->nodes[right_level],
5537 right_path->slots[right_level]);
5538 left_gen = btrfs_node_ptr_generation(
5539 left_path->nodes[left_level],
5540 left_path->slots[left_level]);
5541 right_gen = btrfs_node_ptr_generation(
5542 right_path->nodes[right_level],
5543 right_path->slots[right_level]);
5544 if (left_blockptr == right_blockptr &&
5545 left_gen == right_gen) {
5546 /*
5547 * As we're on a shared block, don't
5548 * allow to go deeper.
5549 */
5550 advance_left = ADVANCE_ONLY_NEXT;
5551 advance_right = ADVANCE_ONLY_NEXT;
5552 } else {
5553 advance_left = ADVANCE;
5554 advance_right = ADVANCE;
5555 }
5556 }
5557 } else if (left_level < right_level) {
5558 advance_right = ADVANCE;
5559 } else {
5560 advance_left = ADVANCE;
5561 }
5562 }
5563
5564 out:
5565 btrfs_free_path(left_path);
5566 btrfs_free_path(right_path);
5567 kfree(tmp_buf);
5568 return ret;
5569 }
5570
5571 /*
5572 * this is similar to btrfs_next_leaf, but does not try to preserve
5573 * and fixup the path. It looks for and returns the next key in the
5574 * tree based on the current path and the min_trans parameters.
5575 *
5576 * 0 is returned if another key is found, < 0 if there are any errors
5577 * and 1 is returned if there are no higher keys in the tree
5578 *
5579 * path->keep_locks should be set to 1 on the search made before
5580 * calling this function.
5581 */
5582 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5583 struct btrfs_key *key, int level, u64 min_trans)
5584 {
5585 int slot;
5586 struct extent_buffer *c;
5587
5588 WARN_ON(!path->keep_locks);
5589 while (level < BTRFS_MAX_LEVEL) {
5590 if (!path->nodes[level])
5591 return 1;
5592
5593 slot = path->slots[level] + 1;
5594 c = path->nodes[level];
5595 next:
5596 if (slot >= btrfs_header_nritems(c)) {
5597 int ret;
5598 int orig_lowest;
5599 struct btrfs_key cur_key;
5600 if (level + 1 >= BTRFS_MAX_LEVEL ||
5601 !path->nodes[level + 1])
5602 return 1;
5603
5604 if (path->locks[level + 1]) {
5605 level++;
5606 continue;
5607 }
5608
5609 slot = btrfs_header_nritems(c) - 1;
5610 if (level == 0)
5611 btrfs_item_key_to_cpu(c, &cur_key, slot);
5612 else
5613 btrfs_node_key_to_cpu(c, &cur_key, slot);
5614
5615 orig_lowest = path->lowest_level;
5616 btrfs_release_path(path);
5617 path->lowest_level = level;
5618 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5619 0, 0);
5620 path->lowest_level = orig_lowest;
5621 if (ret < 0)
5622 return ret;
5623
5624 c = path->nodes[level];
5625 slot = path->slots[level];
5626 if (ret == 0)
5627 slot++;
5628 goto next;
5629 }
5630
5631 if (level == 0)
5632 btrfs_item_key_to_cpu(c, key, slot);
5633 else {
5634 u64 gen = btrfs_node_ptr_generation(c, slot);
5635
5636 if (gen < min_trans) {
5637 slot++;
5638 goto next;
5639 }
5640 btrfs_node_key_to_cpu(c, key, slot);
5641 }
5642 return 0;
5643 }
5644 return 1;
5645 }
5646
5647 /*
5648 * search the tree again to find a leaf with greater keys
5649 * returns 0 if it found something or 1 if there are no greater leaves.
5650 * returns < 0 on io errors.
5651 */
5652 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5653 {
5654 return btrfs_next_old_leaf(root, path, 0);
5655 }
5656
5657 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5658 u64 time_seq)
5659 {
5660 int slot;
5661 int level;
5662 struct extent_buffer *c;
5663 struct extent_buffer *next;
5664 struct btrfs_key key;
5665 u32 nritems;
5666 int ret;
5667 int old_spinning = path->leave_spinning;
5668 int next_rw_lock = 0;
5669
5670 nritems = btrfs_header_nritems(path->nodes[0]);
5671 if (nritems == 0)
5672 return 1;
5673
5674 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5675 again:
5676 level = 1;
5677 next = NULL;
5678 next_rw_lock = 0;
5679 btrfs_release_path(path);
5680
5681 path->keep_locks = 1;
5682 path->leave_spinning = 1;
5683
5684 if (time_seq)
5685 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5686 else
5687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5688 path->keep_locks = 0;
5689
5690 if (ret < 0)
5691 return ret;
5692
5693 nritems = btrfs_header_nritems(path->nodes[0]);
5694 /*
5695 * by releasing the path above we dropped all our locks. A balance
5696 * could have added more items next to the key that used to be
5697 * at the very end of the block. So, check again here and
5698 * advance the path if there are now more items available.
5699 */
5700 if (nritems > 0 && path->slots[0] < nritems - 1) {
5701 if (ret == 0)
5702 path->slots[0]++;
5703 ret = 0;
5704 goto done;
5705 }
5706 /*
5707 * So the above check misses one case:
5708 * - after releasing the path above, someone has removed the item that
5709 * used to be at the very end of the block, and balance between leafs
5710 * gets another one with bigger key.offset to replace it.
5711 *
5712 * This one should be returned as well, or we can get leaf corruption
5713 * later(esp. in __btrfs_drop_extents()).
5714 *
5715 * And a bit more explanation about this check,
5716 * with ret > 0, the key isn't found, the path points to the slot
5717 * where it should be inserted, so the path->slots[0] item must be the
5718 * bigger one.
5719 */
5720 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5721 ret = 0;
5722 goto done;
5723 }
5724
5725 while (level < BTRFS_MAX_LEVEL) {
5726 if (!path->nodes[level]) {
5727 ret = 1;
5728 goto done;
5729 }
5730
5731 slot = path->slots[level] + 1;
5732 c = path->nodes[level];
5733 if (slot >= btrfs_header_nritems(c)) {
5734 level++;
5735 if (level == BTRFS_MAX_LEVEL) {
5736 ret = 1;
5737 goto done;
5738 }
5739 continue;
5740 }
5741
5742 if (next) {
5743 btrfs_tree_unlock_rw(next, next_rw_lock);
5744 free_extent_buffer(next);
5745 }
5746
5747 next = c;
5748 next_rw_lock = path->locks[level];
5749 ret = read_block_for_search(NULL, root, path, &next, level,
5750 slot, &key, 0);
5751 if (ret == -EAGAIN)
5752 goto again;
5753
5754 if (ret < 0) {
5755 btrfs_release_path(path);
5756 goto done;
5757 }
5758
5759 if (!path->skip_locking) {
5760 ret = btrfs_try_tree_read_lock(next);
5761 if (!ret && time_seq) {
5762 /*
5763 * If we don't get the lock, we may be racing
5764 * with push_leaf_left, holding that lock while
5765 * itself waiting for the leaf we've currently
5766 * locked. To solve this situation, we give up
5767 * on our lock and cycle.
5768 */
5769 free_extent_buffer(next);
5770 btrfs_release_path(path);
5771 cond_resched();
5772 goto again;
5773 }
5774 if (!ret) {
5775 btrfs_set_path_blocking(path);
5776 btrfs_tree_read_lock(next);
5777 btrfs_clear_path_blocking(path, next,
5778 BTRFS_READ_LOCK);
5779 }
5780 next_rw_lock = BTRFS_READ_LOCK;
5781 }
5782 break;
5783 }
5784 path->slots[level] = slot;
5785 while (1) {
5786 level--;
5787 c = path->nodes[level];
5788 if (path->locks[level])
5789 btrfs_tree_unlock_rw(c, path->locks[level]);
5790
5791 free_extent_buffer(c);
5792 path->nodes[level] = next;
5793 path->slots[level] = 0;
5794 if (!path->skip_locking)
5795 path->locks[level] = next_rw_lock;
5796 if (!level)
5797 break;
5798
5799 ret = read_block_for_search(NULL, root, path, &next, level,
5800 0, &key, 0);
5801 if (ret == -EAGAIN)
5802 goto again;
5803
5804 if (ret < 0) {
5805 btrfs_release_path(path);
5806 goto done;
5807 }
5808
5809 if (!path->skip_locking) {
5810 ret = btrfs_try_tree_read_lock(next);
5811 if (!ret) {
5812 btrfs_set_path_blocking(path);
5813 btrfs_tree_read_lock(next);
5814 btrfs_clear_path_blocking(path, next,
5815 BTRFS_READ_LOCK);
5816 }
5817 next_rw_lock = BTRFS_READ_LOCK;
5818 }
5819 }
5820 ret = 0;
5821 done:
5822 unlock_up(path, 0, 1, 0, NULL);
5823 path->leave_spinning = old_spinning;
5824 if (!old_spinning)
5825 btrfs_set_path_blocking(path);
5826
5827 return ret;
5828 }
5829
5830 /*
5831 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5832 * searching until it gets past min_objectid or finds an item of 'type'
5833 *
5834 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5835 */
5836 int btrfs_previous_item(struct btrfs_root *root,
5837 struct btrfs_path *path, u64 min_objectid,
5838 int type)
5839 {
5840 struct btrfs_key found_key;
5841 struct extent_buffer *leaf;
5842 u32 nritems;
5843 int ret;
5844
5845 while (1) {
5846 if (path->slots[0] == 0) {
5847 btrfs_set_path_blocking(path);
5848 ret = btrfs_prev_leaf(root, path);
5849 if (ret != 0)
5850 return ret;
5851 } else {
5852 path->slots[0]--;
5853 }
5854 leaf = path->nodes[0];
5855 nritems = btrfs_header_nritems(leaf);
5856 if (nritems == 0)
5857 return 1;
5858 if (path->slots[0] == nritems)
5859 path->slots[0]--;
5860
5861 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5862 if (found_key.objectid < min_objectid)
5863 break;
5864 if (found_key.type == type)
5865 return 0;
5866 if (found_key.objectid == min_objectid &&
5867 found_key.type < type)
5868 break;
5869 }
5870 return 1;
5871 }
5872
5873 /*
5874 * search in extent tree to find a previous Metadata/Data extent item with
5875 * min objecitd.
5876 *
5877 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878 */
5879 int btrfs_previous_extent_item(struct btrfs_root *root,
5880 struct btrfs_path *path, u64 min_objectid)
5881 {
5882 struct btrfs_key found_key;
5883 struct extent_buffer *leaf;
5884 u32 nritems;
5885 int ret;
5886
5887 while (1) {
5888 if (path->slots[0] == 0) {
5889 btrfs_set_path_blocking(path);
5890 ret = btrfs_prev_leaf(root, path);
5891 if (ret != 0)
5892 return ret;
5893 } else {
5894 path->slots[0]--;
5895 }
5896 leaf = path->nodes[0];
5897 nritems = btrfs_header_nritems(leaf);
5898 if (nritems == 0)
5899 return 1;
5900 if (path->slots[0] == nritems)
5901 path->slots[0]--;
5902
5903 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904 if (found_key.objectid < min_objectid)
5905 break;
5906 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5907 found_key.type == BTRFS_METADATA_ITEM_KEY)
5908 return 0;
5909 if (found_key.objectid == min_objectid &&
5910 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5911 break;
5912 }
5913 return 1;
5914 }
This page took 0.232155 seconds and 6 git commands to generate.