Btrfs: crash recovery fixes
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/module.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25 *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_key *ins_key,
28 struct btrfs_path *path, int data_size);
29 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct buffer_head *dst, struct buffer_head
31 *src);
32 static int balance_node_right(struct btrfs_trans_handle *trans, struct
33 btrfs_root *root, struct buffer_head *dst_buf,
34 struct buffer_head *src_buf);
35 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
36 struct btrfs_path *path, int level, int slot);
37
38 inline void btrfs_init_path(struct btrfs_path *p)
39 {
40 memset(p, 0, sizeof(*p));
41 }
42
43 struct btrfs_path *btrfs_alloc_path(void)
44 {
45 struct btrfs_path *path;
46 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
47 if (path)
48 btrfs_init_path(path);
49 return path;
50 }
51
52 void btrfs_free_path(struct btrfs_path *p)
53 {
54 btrfs_release_path(NULL, p);
55 kmem_cache_free(btrfs_path_cachep, p);
56 }
57
58 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
59 {
60 int i;
61 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
62 if (!p->nodes[i])
63 break;
64 btrfs_block_release(root, p->nodes[i]);
65 }
66 memset(p, 0, sizeof(*p));
67 }
68
69 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
70 *root, struct buffer_head *buf, struct buffer_head
71 *parent, int parent_slot, struct buffer_head
72 **cow_ret)
73 {
74 struct buffer_head *cow;
75 struct btrfs_node *cow_node;
76 int ret;
77
78 WARN_ON(!buffer_uptodate(buf));
79 if (trans->transaction != root->fs_info->running_transaction) {
80 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
81 root->fs_info->running_transaction->transid);
82 WARN_ON(1);
83 }
84 if (trans->transid != root->fs_info->generation) {
85 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
86 root->fs_info->generation);
87 WARN_ON(1);
88 }
89 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
90 trans->transid) {
91 *cow_ret = buf;
92 return 0;
93 }
94 cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
95 if (IS_ERR(cow))
96 return PTR_ERR(cow);
97 cow_node = btrfs_buffer_node(cow);
98 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
99 WARN_ON(1);
100 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
101 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
102 btrfs_set_header_generation(&cow_node->header, trans->transid);
103 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
104 ret = btrfs_inc_ref(trans, root, buf);
105 if (ret)
106 return ret;
107 if (buf == root->node) {
108 root->node = cow;
109 get_bh(cow);
110 if (buf != root->commit_root) {
111 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
112 }
113 btrfs_block_release(root, buf);
114 } else {
115 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
116 bh_blocknr(cow));
117 btrfs_mark_buffer_dirty(parent);
118 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
119 }
120 btrfs_block_release(root, buf);
121 btrfs_mark_buffer_dirty(cow);
122 *cow_ret = cow;
123 return 0;
124 }
125
126 /*
127 * The leaf data grows from end-to-front in the node.
128 * this returns the address of the start of the last item,
129 * which is the stop of the leaf data stack
130 */
131 static inline unsigned int leaf_data_end(struct btrfs_root *root,
132 struct btrfs_leaf *leaf)
133 {
134 u32 nr = btrfs_header_nritems(&leaf->header);
135 if (nr == 0)
136 return BTRFS_LEAF_DATA_SIZE(root);
137 return btrfs_item_offset(leaf->items + nr - 1);
138 }
139
140 /*
141 * compare two keys in a memcmp fashion
142 */
143 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
144 {
145 struct btrfs_key k1;
146
147 btrfs_disk_key_to_cpu(&k1, disk);
148
149 if (k1.objectid > k2->objectid)
150 return 1;
151 if (k1.objectid < k2->objectid)
152 return -1;
153 if (k1.flags > k2->flags)
154 return 1;
155 if (k1.flags < k2->flags)
156 return -1;
157 if (k1.offset > k2->offset)
158 return 1;
159 if (k1.offset < k2->offset)
160 return -1;
161 return 0;
162 }
163
164 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
165 int level)
166 {
167 struct btrfs_node *parent = NULL;
168 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
169 int parent_slot;
170 int slot;
171 struct btrfs_key cpukey;
172 u32 nritems = btrfs_header_nritems(&node->header);
173
174 if (path->nodes[level + 1])
175 parent = btrfs_buffer_node(path->nodes[level + 1]);
176 parent_slot = path->slots[level + 1];
177 slot = path->slots[level];
178 BUG_ON(nritems == 0);
179 if (parent) {
180 struct btrfs_disk_key *parent_key;
181 parent_key = &parent->ptrs[parent_slot].key;
182 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
183 sizeof(struct btrfs_disk_key)));
184 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
185 btrfs_header_blocknr(&node->header));
186 }
187 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
188 if (slot != 0) {
189 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
190 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
191 }
192 if (slot < nritems - 1) {
193 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
194 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
195 }
196 return 0;
197 }
198
199 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
200 int level)
201 {
202 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
203 struct btrfs_node *parent = NULL;
204 int parent_slot;
205 int slot = path->slots[0];
206 struct btrfs_key cpukey;
207
208 u32 nritems = btrfs_header_nritems(&leaf->header);
209
210 if (path->nodes[level + 1])
211 parent = btrfs_buffer_node(path->nodes[level + 1]);
212 parent_slot = path->slots[level + 1];
213 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
214
215 if (nritems == 0)
216 return 0;
217
218 if (parent) {
219 struct btrfs_disk_key *parent_key;
220 parent_key = &parent->ptrs[parent_slot].key;
221 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
222 sizeof(struct btrfs_disk_key)));
223 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
224 btrfs_header_blocknr(&leaf->header));
225 }
226 if (slot != 0) {
227 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
228 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
229 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
230 btrfs_item_end(leaf->items + slot));
231 }
232 if (slot < nritems - 1) {
233 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
234 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
235 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
236 btrfs_item_end(leaf->items + slot + 1));
237 }
238 BUG_ON(btrfs_item_offset(leaf->items) +
239 btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
240 return 0;
241 }
242
243 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
244 int level)
245 {
246 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
247 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
248 sizeof(node->header.fsid)))
249 BUG();
250 if (level == 0)
251 return check_leaf(root, path, level);
252 return check_node(root, path, level);
253 }
254
255 /*
256 * search for key in the array p. items p are item_size apart
257 * and there are 'max' items in p
258 * the slot in the array is returned via slot, and it points to
259 * the place where you would insert key if it is not found in
260 * the array.
261 *
262 * slot may point to max if the key is bigger than all of the keys
263 */
264 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
265 int max, int *slot)
266 {
267 int low = 0;
268 int high = max;
269 int mid;
270 int ret;
271 struct btrfs_disk_key *tmp;
272
273 while(low < high) {
274 mid = (low + high) / 2;
275 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
276 ret = comp_keys(tmp, key);
277
278 if (ret < 0)
279 low = mid + 1;
280 else if (ret > 0)
281 high = mid;
282 else {
283 *slot = mid;
284 return 0;
285 }
286 }
287 *slot = low;
288 return 1;
289 }
290
291 /*
292 * simple bin_search frontend that does the right thing for
293 * leaves vs nodes
294 */
295 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
296 {
297 if (btrfs_is_leaf(c)) {
298 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
299 return generic_bin_search((void *)l->items,
300 sizeof(struct btrfs_item),
301 key, btrfs_header_nritems(&c->header),
302 slot);
303 } else {
304 return generic_bin_search((void *)c->ptrs,
305 sizeof(struct btrfs_key_ptr),
306 key, btrfs_header_nritems(&c->header),
307 slot);
308 }
309 return -1;
310 }
311
312 static struct buffer_head *read_node_slot(struct btrfs_root *root,
313 struct buffer_head *parent_buf,
314 int slot)
315 {
316 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
317 if (slot < 0)
318 return NULL;
319 if (slot >= btrfs_header_nritems(&node->header))
320 return NULL;
321 return read_tree_block(root, btrfs_node_blockptr(node, slot));
322 }
323
324 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
325 *root, struct btrfs_path *path, int level)
326 {
327 struct buffer_head *right_buf;
328 struct buffer_head *mid_buf;
329 struct buffer_head *left_buf;
330 struct buffer_head *parent_buf = NULL;
331 struct btrfs_node *right = NULL;
332 struct btrfs_node *mid;
333 struct btrfs_node *left = NULL;
334 struct btrfs_node *parent = NULL;
335 int ret = 0;
336 int wret;
337 int pslot;
338 int orig_slot = path->slots[level];
339 int err_on_enospc = 0;
340 u64 orig_ptr;
341
342 if (level == 0)
343 return 0;
344
345 mid_buf = path->nodes[level];
346 mid = btrfs_buffer_node(mid_buf);
347 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
348
349 if (level < BTRFS_MAX_LEVEL - 1)
350 parent_buf = path->nodes[level + 1];
351 pslot = path->slots[level + 1];
352
353 /*
354 * deal with the case where there is only one pointer in the root
355 * by promoting the node below to a root
356 */
357 if (!parent_buf) {
358 struct buffer_head *child;
359 u64 blocknr = bh_blocknr(mid_buf);
360
361 if (btrfs_header_nritems(&mid->header) != 1)
362 return 0;
363
364 /* promote the child to a root */
365 child = read_node_slot(root, mid_buf, 0);
366 BUG_ON(!child);
367 root->node = child;
368 path->nodes[level] = NULL;
369 clean_tree_block(trans, root, mid_buf);
370 wait_on_buffer(mid_buf);
371 /* once for the path */
372 btrfs_block_release(root, mid_buf);
373 /* once for the root ptr */
374 btrfs_block_release(root, mid_buf);
375 return btrfs_free_extent(trans, root, blocknr, 1, 1);
376 }
377 parent = btrfs_buffer_node(parent_buf);
378
379 if (btrfs_header_nritems(&mid->header) >
380 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
381 return 0;
382
383 if (btrfs_header_nritems(&mid->header) < 2)
384 err_on_enospc = 1;
385
386 left_buf = read_node_slot(root, parent_buf, pslot - 1);
387 right_buf = read_node_slot(root, parent_buf, pslot + 1);
388
389 /* first, try to make some room in the middle buffer */
390 if (left_buf) {
391 wret = btrfs_cow_block(trans, root, left_buf,
392 parent_buf, pslot - 1, &left_buf);
393 if (wret) {
394 ret = wret;
395 goto enospc;
396 }
397 left = btrfs_buffer_node(left_buf);
398 orig_slot += btrfs_header_nritems(&left->header);
399 wret = push_node_left(trans, root, left_buf, mid_buf);
400 if (wret < 0)
401 ret = wret;
402 if (btrfs_header_nritems(&mid->header) < 2)
403 err_on_enospc = 1;
404 }
405
406 /*
407 * then try to empty the right most buffer into the middle
408 */
409 if (right_buf) {
410 wret = btrfs_cow_block(trans, root, right_buf,
411 parent_buf, pslot + 1, &right_buf);
412 if (wret) {
413 ret = wret;
414 goto enospc;
415 }
416
417 right = btrfs_buffer_node(right_buf);
418 wret = push_node_left(trans, root, mid_buf, right_buf);
419 if (wret < 0 && wret != -ENOSPC)
420 ret = wret;
421 if (btrfs_header_nritems(&right->header) == 0) {
422 u64 blocknr = bh_blocknr(right_buf);
423 clean_tree_block(trans, root, right_buf);
424 wait_on_buffer(right_buf);
425 btrfs_block_release(root, right_buf);
426 right_buf = NULL;
427 right = NULL;
428 wret = del_ptr(trans, root, path, level + 1, pslot +
429 1);
430 if (wret)
431 ret = wret;
432 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
433 if (wret)
434 ret = wret;
435 } else {
436 btrfs_memcpy(root, parent,
437 &parent->ptrs[pslot + 1].key,
438 &right->ptrs[0].key,
439 sizeof(struct btrfs_disk_key));
440 btrfs_mark_buffer_dirty(parent_buf);
441 }
442 }
443 if (btrfs_header_nritems(&mid->header) == 1) {
444 /*
445 * we're not allowed to leave a node with one item in the
446 * tree during a delete. A deletion from lower in the tree
447 * could try to delete the only pointer in this node.
448 * So, pull some keys from the left.
449 * There has to be a left pointer at this point because
450 * otherwise we would have pulled some pointers from the
451 * right
452 */
453 BUG_ON(!left_buf);
454 wret = balance_node_right(trans, root, mid_buf, left_buf);
455 if (wret < 0) {
456 ret = wret;
457 goto enospc;
458 }
459 BUG_ON(wret == 1);
460 }
461 if (btrfs_header_nritems(&mid->header) == 0) {
462 /* we've managed to empty the middle node, drop it */
463 u64 blocknr = bh_blocknr(mid_buf);
464 clean_tree_block(trans, root, mid_buf);
465 wait_on_buffer(mid_buf);
466 btrfs_block_release(root, mid_buf);
467 mid_buf = NULL;
468 mid = NULL;
469 wret = del_ptr(trans, root, path, level + 1, pslot);
470 if (wret)
471 ret = wret;
472 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
473 if (wret)
474 ret = wret;
475 } else {
476 /* update the parent key to reflect our changes */
477 btrfs_memcpy(root, parent,
478 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
479 sizeof(struct btrfs_disk_key));
480 btrfs_mark_buffer_dirty(parent_buf);
481 }
482
483 /* update the path */
484 if (left_buf) {
485 if (btrfs_header_nritems(&left->header) > orig_slot) {
486 get_bh(left_buf);
487 path->nodes[level] = left_buf;
488 path->slots[level + 1] -= 1;
489 path->slots[level] = orig_slot;
490 if (mid_buf)
491 btrfs_block_release(root, mid_buf);
492 } else {
493 orig_slot -= btrfs_header_nritems(&left->header);
494 path->slots[level] = orig_slot;
495 }
496 }
497 /* double check we haven't messed things up */
498 check_block(root, path, level);
499 if (orig_ptr !=
500 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
501 path->slots[level]))
502 BUG();
503 enospc:
504 if (right_buf)
505 btrfs_block_release(root, right_buf);
506 if (left_buf)
507 btrfs_block_release(root, left_buf);
508 return ret;
509 }
510
511 /* returns zero if the push worked, non-zero otherwise */
512 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
513 struct btrfs_root *root,
514 struct btrfs_path *path, int level)
515 {
516 struct buffer_head *right_buf;
517 struct buffer_head *mid_buf;
518 struct buffer_head *left_buf;
519 struct buffer_head *parent_buf = NULL;
520 struct btrfs_node *right = NULL;
521 struct btrfs_node *mid;
522 struct btrfs_node *left = NULL;
523 struct btrfs_node *parent = NULL;
524 int ret = 0;
525 int wret;
526 int pslot;
527 int orig_slot = path->slots[level];
528 u64 orig_ptr;
529
530 if (level == 0)
531 return 1;
532
533 mid_buf = path->nodes[level];
534 mid = btrfs_buffer_node(mid_buf);
535 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
536
537 if (level < BTRFS_MAX_LEVEL - 1)
538 parent_buf = path->nodes[level + 1];
539 pslot = path->slots[level + 1];
540
541 if (!parent_buf)
542 return 1;
543 parent = btrfs_buffer_node(parent_buf);
544
545 left_buf = read_node_slot(root, parent_buf, pslot - 1);
546
547 /* first, try to make some room in the middle buffer */
548 if (left_buf) {
549 u32 left_nr;
550 left = btrfs_buffer_node(left_buf);
551 left_nr = btrfs_header_nritems(&left->header);
552 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
553 wret = 1;
554 } else {
555 ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
556 pslot - 1, &left_buf);
557 if (ret)
558 wret = 1;
559 else {
560 left = btrfs_buffer_node(left_buf);
561 wret = push_node_left(trans, root,
562 left_buf, mid_buf);
563 }
564 }
565 if (wret < 0)
566 ret = wret;
567 if (wret == 0) {
568 orig_slot += left_nr;
569 btrfs_memcpy(root, parent,
570 &parent->ptrs[pslot].key,
571 &mid->ptrs[0].key,
572 sizeof(struct btrfs_disk_key));
573 btrfs_mark_buffer_dirty(parent_buf);
574 if (btrfs_header_nritems(&left->header) > orig_slot) {
575 path->nodes[level] = left_buf;
576 path->slots[level + 1] -= 1;
577 path->slots[level] = orig_slot;
578 btrfs_block_release(root, mid_buf);
579 } else {
580 orig_slot -=
581 btrfs_header_nritems(&left->header);
582 path->slots[level] = orig_slot;
583 btrfs_block_release(root, left_buf);
584 }
585 check_node(root, path, level);
586 return 0;
587 }
588 btrfs_block_release(root, left_buf);
589 }
590 right_buf = read_node_slot(root, parent_buf, pslot + 1);
591
592 /*
593 * then try to empty the right most buffer into the middle
594 */
595 if (right_buf) {
596 u32 right_nr;
597 right = btrfs_buffer_node(right_buf);
598 right_nr = btrfs_header_nritems(&right->header);
599 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
600 wret = 1;
601 } else {
602 ret = btrfs_cow_block(trans, root, right_buf,
603 parent_buf, pslot + 1,
604 &right_buf);
605 if (ret)
606 wret = 1;
607 else {
608 right = btrfs_buffer_node(right_buf);
609 wret = balance_node_right(trans, root,
610 right_buf, mid_buf);
611 }
612 }
613 if (wret < 0)
614 ret = wret;
615 if (wret == 0) {
616 btrfs_memcpy(root, parent,
617 &parent->ptrs[pslot + 1].key,
618 &right->ptrs[0].key,
619 sizeof(struct btrfs_disk_key));
620 btrfs_mark_buffer_dirty(parent_buf);
621 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
622 path->nodes[level] = right_buf;
623 path->slots[level + 1] += 1;
624 path->slots[level] = orig_slot -
625 btrfs_header_nritems(&mid->header);
626 btrfs_block_release(root, mid_buf);
627 } else {
628 btrfs_block_release(root, right_buf);
629 }
630 check_node(root, path, level);
631 return 0;
632 }
633 btrfs_block_release(root, right_buf);
634 }
635 check_node(root, path, level);
636 return 1;
637 }
638
639 /*
640 * look for key in the tree. path is filled in with nodes along the way
641 * if key is found, we return zero and you can find the item in the leaf
642 * level of the path (level 0)
643 *
644 * If the key isn't found, the path points to the slot where it should
645 * be inserted, and 1 is returned. If there are other errors during the
646 * search a negative error number is returned.
647 *
648 * if ins_len > 0, nodes and leaves will be split as we walk down the
649 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
650 * possible)
651 */
652 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
653 *root, struct btrfs_key *key, struct btrfs_path *p, int
654 ins_len, int cow)
655 {
656 struct buffer_head *b;
657 struct buffer_head *cow_buf;
658 struct btrfs_node *c;
659 int slot;
660 int ret;
661 int level;
662
663 WARN_ON(p->nodes[0] != NULL);
664 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
665 again:
666 b = root->node;
667 get_bh(b);
668 while (b) {
669 c = btrfs_buffer_node(b);
670 level = btrfs_header_level(&c->header);
671 if (cow) {
672 int wret;
673 wret = btrfs_cow_block(trans, root, b,
674 p->nodes[level + 1],
675 p->slots[level + 1],
676 &cow_buf);
677 if (wret) {
678 btrfs_block_release(root, cow_buf);
679 return wret;
680 }
681 b = cow_buf;
682 c = btrfs_buffer_node(b);
683 }
684 BUG_ON(!cow && ins_len);
685 if (level != btrfs_header_level(&c->header))
686 WARN_ON(1);
687 level = btrfs_header_level(&c->header);
688 p->nodes[level] = b;
689 ret = check_block(root, p, level);
690 if (ret)
691 return -1;
692 ret = bin_search(c, key, &slot);
693 if (!btrfs_is_leaf(c)) {
694 if (ret && slot > 0)
695 slot -= 1;
696 p->slots[level] = slot;
697 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
698 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
699 int sret = split_node(trans, root, p, level);
700 BUG_ON(sret > 0);
701 if (sret)
702 return sret;
703 b = p->nodes[level];
704 c = btrfs_buffer_node(b);
705 slot = p->slots[level];
706 } else if (ins_len < 0) {
707 int sret = balance_level(trans, root, p,
708 level);
709 if (sret)
710 return sret;
711 b = p->nodes[level];
712 if (!b)
713 goto again;
714 c = btrfs_buffer_node(b);
715 slot = p->slots[level];
716 BUG_ON(btrfs_header_nritems(&c->header) == 1);
717 }
718 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
719 } else {
720 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
721 p->slots[level] = slot;
722 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
723 sizeof(struct btrfs_item) + ins_len) {
724 int sret = split_leaf(trans, root, key,
725 p, ins_len);
726 BUG_ON(sret > 0);
727 if (sret)
728 return sret;
729 }
730 return ret;
731 }
732 }
733 return 1;
734 }
735
736 /*
737 * adjust the pointers going up the tree, starting at level
738 * making sure the right key of each node is points to 'key'.
739 * This is used after shifting pointers to the left, so it stops
740 * fixing up pointers when a given leaf/node is not in slot 0 of the
741 * higher levels
742 *
743 * If this fails to write a tree block, it returns -1, but continues
744 * fixing up the blocks in ram so the tree is consistent.
745 */
746 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
747 *root, struct btrfs_path *path, struct btrfs_disk_key
748 *key, int level)
749 {
750 int i;
751 int ret = 0;
752 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
753 struct btrfs_node *t;
754 int tslot = path->slots[i];
755 if (!path->nodes[i])
756 break;
757 t = btrfs_buffer_node(path->nodes[i]);
758 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
759 btrfs_mark_buffer_dirty(path->nodes[i]);
760 if (tslot != 0)
761 break;
762 }
763 return ret;
764 }
765
766 /*
767 * try to push data from one node into the next node left in the
768 * tree.
769 *
770 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
771 * error, and > 0 if there was no room in the left hand block.
772 */
773 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
774 *root, struct buffer_head *dst_buf, struct
775 buffer_head *src_buf)
776 {
777 struct btrfs_node *src = btrfs_buffer_node(src_buf);
778 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
779 int push_items = 0;
780 int src_nritems;
781 int dst_nritems;
782 int ret = 0;
783
784 src_nritems = btrfs_header_nritems(&src->header);
785 dst_nritems = btrfs_header_nritems(&dst->header);
786 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
787
788 if (push_items <= 0) {
789 return 1;
790 }
791
792 if (src_nritems < push_items)
793 push_items = src_nritems;
794
795 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
796 push_items * sizeof(struct btrfs_key_ptr));
797 if (push_items < src_nritems) {
798 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
799 (src_nritems - push_items) *
800 sizeof(struct btrfs_key_ptr));
801 }
802 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
803 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
804 btrfs_mark_buffer_dirty(src_buf);
805 btrfs_mark_buffer_dirty(dst_buf);
806 return ret;
807 }
808
809 /*
810 * try to push data from one node into the next node right in the
811 * tree.
812 *
813 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
814 * error, and > 0 if there was no room in the right hand block.
815 *
816 * this will only push up to 1/2 the contents of the left node over
817 */
818 static int balance_node_right(struct btrfs_trans_handle *trans, struct
819 btrfs_root *root, struct buffer_head *dst_buf,
820 struct buffer_head *src_buf)
821 {
822 struct btrfs_node *src = btrfs_buffer_node(src_buf);
823 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
824 int push_items = 0;
825 int max_push;
826 int src_nritems;
827 int dst_nritems;
828 int ret = 0;
829
830 src_nritems = btrfs_header_nritems(&src->header);
831 dst_nritems = btrfs_header_nritems(&dst->header);
832 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
833 if (push_items <= 0) {
834 return 1;
835 }
836
837 max_push = src_nritems / 2 + 1;
838 /* don't try to empty the node */
839 if (max_push > src_nritems)
840 return 1;
841 if (max_push < push_items)
842 push_items = max_push;
843
844 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
845 dst_nritems * sizeof(struct btrfs_key_ptr));
846
847 btrfs_memcpy(root, dst, dst->ptrs,
848 src->ptrs + src_nritems - push_items,
849 push_items * sizeof(struct btrfs_key_ptr));
850
851 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
852 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
853
854 btrfs_mark_buffer_dirty(src_buf);
855 btrfs_mark_buffer_dirty(dst_buf);
856 return ret;
857 }
858
859 /*
860 * helper function to insert a new root level in the tree.
861 * A new node is allocated, and a single item is inserted to
862 * point to the existing root
863 *
864 * returns zero on success or < 0 on failure.
865 */
866 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
867 *root, struct btrfs_path *path, int level)
868 {
869 struct buffer_head *t;
870 struct btrfs_node *lower;
871 struct btrfs_node *c;
872 struct btrfs_disk_key *lower_key;
873
874 BUG_ON(path->nodes[level]);
875 BUG_ON(path->nodes[level-1] != root->node);
876
877 t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
878 if (IS_ERR(t))
879 return PTR_ERR(t);
880 c = btrfs_buffer_node(t);
881 memset(c, 0, root->blocksize);
882 btrfs_set_header_nritems(&c->header, 1);
883 btrfs_set_header_level(&c->header, level);
884 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
885 btrfs_set_header_generation(&c->header, trans->transid);
886 btrfs_set_header_owner(&c->header, root->root_key.objectid);
887 lower = btrfs_buffer_node(path->nodes[level-1]);
888 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
889 sizeof(c->header.fsid));
890 if (btrfs_is_leaf(lower))
891 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
892 else
893 lower_key = &lower->ptrs[0].key;
894 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
895 sizeof(struct btrfs_disk_key));
896 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
897
898 btrfs_mark_buffer_dirty(t);
899
900 /* the super has an extra ref to root->node */
901 btrfs_block_release(root, root->node);
902 root->node = t;
903 get_bh(t);
904 path->nodes[level] = t;
905 path->slots[level] = 0;
906 return 0;
907 }
908
909 /*
910 * worker function to insert a single pointer in a node.
911 * the node should have enough room for the pointer already
912 *
913 * slot and level indicate where you want the key to go, and
914 * blocknr is the block the key points to.
915 *
916 * returns zero on success and < 0 on any error
917 */
918 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
919 *root, struct btrfs_path *path, struct btrfs_disk_key
920 *key, u64 blocknr, int slot, int level)
921 {
922 struct btrfs_node *lower;
923 int nritems;
924
925 BUG_ON(!path->nodes[level]);
926 lower = btrfs_buffer_node(path->nodes[level]);
927 nritems = btrfs_header_nritems(&lower->header);
928 if (slot > nritems)
929 BUG();
930 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
931 BUG();
932 if (slot != nritems) {
933 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
934 lower->ptrs + slot,
935 (nritems - slot) * sizeof(struct btrfs_key_ptr));
936 }
937 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
938 key, sizeof(struct btrfs_disk_key));
939 btrfs_set_node_blockptr(lower, slot, blocknr);
940 btrfs_set_header_nritems(&lower->header, nritems + 1);
941 btrfs_mark_buffer_dirty(path->nodes[level]);
942 check_node(root, path, level);
943 return 0;
944 }
945
946 /*
947 * split the node at the specified level in path in two.
948 * The path is corrected to point to the appropriate node after the split
949 *
950 * Before splitting this tries to make some room in the node by pushing
951 * left and right, if either one works, it returns right away.
952 *
953 * returns 0 on success and < 0 on failure
954 */
955 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
956 *root, struct btrfs_path *path, int level)
957 {
958 struct buffer_head *t;
959 struct btrfs_node *c;
960 struct buffer_head *split_buffer;
961 struct btrfs_node *split;
962 int mid;
963 int ret;
964 int wret;
965 u32 c_nritems;
966
967 t = path->nodes[level];
968 c = btrfs_buffer_node(t);
969 if (t == root->node) {
970 /* trying to split the root, lets make a new one */
971 ret = insert_new_root(trans, root, path, level + 1);
972 if (ret)
973 return ret;
974 } else {
975 ret = push_nodes_for_insert(trans, root, path, level);
976 t = path->nodes[level];
977 c = btrfs_buffer_node(t);
978 if (!ret &&
979 btrfs_header_nritems(&c->header) <
980 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
981 return 0;
982 if (ret < 0)
983 return ret;
984 }
985
986 c_nritems = btrfs_header_nritems(&c->header);
987 split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
988 if (IS_ERR(split_buffer))
989 return PTR_ERR(split_buffer);
990
991 split = btrfs_buffer_node(split_buffer);
992 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
993 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
994 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
995 btrfs_set_header_generation(&split->header, trans->transid);
996 btrfs_set_header_owner(&split->header, root->root_key.objectid);
997 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
998 sizeof(split->header.fsid));
999 mid = (c_nritems + 1) / 2;
1000 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1001 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1002 btrfs_set_header_nritems(&split->header, c_nritems - mid);
1003 btrfs_set_header_nritems(&c->header, mid);
1004 ret = 0;
1005
1006 btrfs_mark_buffer_dirty(t);
1007 btrfs_mark_buffer_dirty(split_buffer);
1008 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1009 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1010 level + 1);
1011 if (wret)
1012 ret = wret;
1013
1014 if (path->slots[level] >= mid) {
1015 path->slots[level] -= mid;
1016 btrfs_block_release(root, t);
1017 path->nodes[level] = split_buffer;
1018 path->slots[level + 1] += 1;
1019 } else {
1020 btrfs_block_release(root, split_buffer);
1021 }
1022 return ret;
1023 }
1024
1025 /*
1026 * how many bytes are required to store the items in a leaf. start
1027 * and nr indicate which items in the leaf to check. This totals up the
1028 * space used both by the item structs and the item data
1029 */
1030 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1031 {
1032 int data_len;
1033 int nritems = btrfs_header_nritems(&l->header);
1034 int end = min(nritems, start + nr) - 1;
1035
1036 if (!nr)
1037 return 0;
1038 data_len = btrfs_item_end(l->items + start);
1039 data_len = data_len - btrfs_item_offset(l->items + end);
1040 data_len += sizeof(struct btrfs_item) * nr;
1041 WARN_ON(data_len < 0);
1042 return data_len;
1043 }
1044
1045 /*
1046 * The space between the end of the leaf items and
1047 * the start of the leaf data. IOW, how much room
1048 * the leaf has left for both items and data
1049 */
1050 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1051 {
1052 int nritems = btrfs_header_nritems(&leaf->header);
1053 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1054 }
1055
1056 /*
1057 * push some data in the path leaf to the right, trying to free up at
1058 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1059 *
1060 * returns 1 if the push failed because the other node didn't have enough
1061 * room, 0 if everything worked out and < 0 if there were major errors.
1062 */
1063 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1064 *root, struct btrfs_path *path, int data_size)
1065 {
1066 struct buffer_head *left_buf = path->nodes[0];
1067 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1068 struct btrfs_leaf *right;
1069 struct buffer_head *right_buf;
1070 struct buffer_head *upper;
1071 struct btrfs_node *upper_node;
1072 int slot;
1073 int i;
1074 int free_space;
1075 int push_space = 0;
1076 int push_items = 0;
1077 struct btrfs_item *item;
1078 u32 left_nritems;
1079 u32 right_nritems;
1080 int ret;
1081
1082 slot = path->slots[1];
1083 if (!path->nodes[1]) {
1084 return 1;
1085 }
1086 upper = path->nodes[1];
1087 upper_node = btrfs_buffer_node(upper);
1088 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1089 return 1;
1090 }
1091 right_buf = read_tree_block(root,
1092 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1093 right = btrfs_buffer_leaf(right_buf);
1094 free_space = btrfs_leaf_free_space(root, right);
1095 if (free_space < data_size + sizeof(struct btrfs_item)) {
1096 btrfs_block_release(root, right_buf);
1097 return 1;
1098 }
1099 /* cow and double check */
1100 ret = btrfs_cow_block(trans, root, right_buf, upper,
1101 slot + 1, &right_buf);
1102 if (ret) {
1103 btrfs_block_release(root, right_buf);
1104 return 1;
1105 }
1106 right = btrfs_buffer_leaf(right_buf);
1107 free_space = btrfs_leaf_free_space(root, right);
1108 if (free_space < data_size + sizeof(struct btrfs_item)) {
1109 btrfs_block_release(root, right_buf);
1110 return 1;
1111 }
1112
1113 left_nritems = btrfs_header_nritems(&left->header);
1114 if (left_nritems == 0) {
1115 btrfs_block_release(root, right_buf);
1116 return 1;
1117 }
1118 for (i = left_nritems - 1; i >= 1; i--) {
1119 item = left->items + i;
1120 if (path->slots[0] == i)
1121 push_space += data_size + sizeof(*item);
1122 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1123 free_space)
1124 break;
1125 push_items++;
1126 push_space += btrfs_item_size(item) + sizeof(*item);
1127 }
1128 if (push_items == 0) {
1129 btrfs_block_release(root, right_buf);
1130 return 1;
1131 }
1132 if (push_items == left_nritems)
1133 WARN_ON(1);
1134 right_nritems = btrfs_header_nritems(&right->header);
1135 /* push left to right */
1136 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1137 push_space -= leaf_data_end(root, left);
1138 /* make room in the right data area */
1139 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1140 leaf_data_end(root, right) - push_space,
1141 btrfs_leaf_data(right) +
1142 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1143 leaf_data_end(root, right));
1144 /* copy from the left data area */
1145 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1146 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1147 btrfs_leaf_data(left) + leaf_data_end(root, left),
1148 push_space);
1149 btrfs_memmove(root, right, right->items + push_items, right->items,
1150 right_nritems * sizeof(struct btrfs_item));
1151 /* copy the items from left to right */
1152 btrfs_memcpy(root, right, right->items, left->items +
1153 left_nritems - push_items,
1154 push_items * sizeof(struct btrfs_item));
1155
1156 /* update the item pointers */
1157 right_nritems += push_items;
1158 btrfs_set_header_nritems(&right->header, right_nritems);
1159 push_space = BTRFS_LEAF_DATA_SIZE(root);
1160 for (i = 0; i < right_nritems; i++) {
1161 btrfs_set_item_offset(right->items + i, push_space -
1162 btrfs_item_size(right->items + i));
1163 push_space = btrfs_item_offset(right->items + i);
1164 }
1165 left_nritems -= push_items;
1166 btrfs_set_header_nritems(&left->header, left_nritems);
1167
1168 btrfs_mark_buffer_dirty(left_buf);
1169 btrfs_mark_buffer_dirty(right_buf);
1170
1171 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1172 &right->items[0].key, sizeof(struct btrfs_disk_key));
1173 btrfs_mark_buffer_dirty(upper);
1174
1175 /* then fixup the leaf pointer in the path */
1176 if (path->slots[0] >= left_nritems) {
1177 path->slots[0] -= left_nritems;
1178 btrfs_block_release(root, path->nodes[0]);
1179 path->nodes[0] = right_buf;
1180 path->slots[1] += 1;
1181 } else {
1182 btrfs_block_release(root, right_buf);
1183 }
1184 if (path->nodes[1])
1185 check_node(root, path, 1);
1186 return 0;
1187 }
1188 /*
1189 * push some data in the path leaf to the left, trying to free up at
1190 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1191 */
1192 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1193 *root, struct btrfs_path *path, int data_size)
1194 {
1195 struct buffer_head *right_buf = path->nodes[0];
1196 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1197 struct buffer_head *t;
1198 struct btrfs_leaf *left;
1199 int slot;
1200 int i;
1201 int free_space;
1202 int push_space = 0;
1203 int push_items = 0;
1204 struct btrfs_item *item;
1205 u32 old_left_nritems;
1206 int ret = 0;
1207 int wret;
1208
1209 slot = path->slots[1];
1210 if (slot == 0) {
1211 return 1;
1212 }
1213 if (!path->nodes[1]) {
1214 return 1;
1215 }
1216 t = read_tree_block(root,
1217 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1218 left = btrfs_buffer_leaf(t);
1219 free_space = btrfs_leaf_free_space(root, left);
1220 if (free_space < data_size + sizeof(struct btrfs_item)) {
1221 btrfs_block_release(root, t);
1222 return 1;
1223 }
1224
1225 /* cow and double check */
1226 ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1227 if (ret) {
1228 /* we hit -ENOSPC, but it isn't fatal here */
1229 return 1;
1230 }
1231 left = btrfs_buffer_leaf(t);
1232 free_space = btrfs_leaf_free_space(root, left);
1233 if (free_space < data_size + sizeof(struct btrfs_item)) {
1234 btrfs_block_release(root, t);
1235 return 1;
1236 }
1237
1238 if (btrfs_header_nritems(&right->header) == 0) {
1239 btrfs_block_release(root, t);
1240 return 1;
1241 }
1242
1243 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1244 item = right->items + i;
1245 if (path->slots[0] == i)
1246 push_space += data_size + sizeof(*item);
1247 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1248 free_space)
1249 break;
1250 push_items++;
1251 push_space += btrfs_item_size(item) + sizeof(*item);
1252 }
1253 if (push_items == 0) {
1254 btrfs_block_release(root, t);
1255 return 1;
1256 }
1257 if (push_items == btrfs_header_nritems(&right->header))
1258 WARN_ON(1);
1259 /* push data from right to left */
1260 btrfs_memcpy(root, left, left->items +
1261 btrfs_header_nritems(&left->header),
1262 right->items, push_items * sizeof(struct btrfs_item));
1263 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1264 btrfs_item_offset(right->items + push_items -1);
1265 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1266 leaf_data_end(root, left) - push_space,
1267 btrfs_leaf_data(right) +
1268 btrfs_item_offset(right->items + push_items - 1),
1269 push_space);
1270 old_left_nritems = btrfs_header_nritems(&left->header);
1271 BUG_ON(old_left_nritems < 0);
1272
1273 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1274 u32 ioff = btrfs_item_offset(left->items + i);
1275 btrfs_set_item_offset(left->items + i, ioff -
1276 (BTRFS_LEAF_DATA_SIZE(root) -
1277 btrfs_item_offset(left->items +
1278 old_left_nritems - 1)));
1279 }
1280 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1281
1282 /* fixup right node */
1283 push_space = btrfs_item_offset(right->items + push_items - 1) -
1284 leaf_data_end(root, right);
1285 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1286 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1287 btrfs_leaf_data(right) +
1288 leaf_data_end(root, right), push_space);
1289 btrfs_memmove(root, right, right->items, right->items + push_items,
1290 (btrfs_header_nritems(&right->header) - push_items) *
1291 sizeof(struct btrfs_item));
1292 btrfs_set_header_nritems(&right->header,
1293 btrfs_header_nritems(&right->header) -
1294 push_items);
1295 push_space = BTRFS_LEAF_DATA_SIZE(root);
1296
1297 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1298 btrfs_set_item_offset(right->items + i, push_space -
1299 btrfs_item_size(right->items + i));
1300 push_space = btrfs_item_offset(right->items + i);
1301 }
1302
1303 btrfs_mark_buffer_dirty(t);
1304 btrfs_mark_buffer_dirty(right_buf);
1305
1306 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1307 if (wret)
1308 ret = wret;
1309
1310 /* then fixup the leaf pointer in the path */
1311 if (path->slots[0] < push_items) {
1312 path->slots[0] += old_left_nritems;
1313 btrfs_block_release(root, path->nodes[0]);
1314 path->nodes[0] = t;
1315 path->slots[1] -= 1;
1316 } else {
1317 btrfs_block_release(root, t);
1318 path->slots[0] -= push_items;
1319 }
1320 BUG_ON(path->slots[0] < 0);
1321 if (path->nodes[1])
1322 check_node(root, path, 1);
1323 return ret;
1324 }
1325
1326 /*
1327 * split the path's leaf in two, making sure there is at least data_size
1328 * available for the resulting leaf level of the path.
1329 *
1330 * returns 0 if all went well and < 0 on failure.
1331 */
1332 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1333 *root, struct btrfs_key *ins_key,
1334 struct btrfs_path *path, int data_size)
1335 {
1336 struct buffer_head *l_buf;
1337 struct btrfs_leaf *l;
1338 u32 nritems;
1339 int mid;
1340 int slot;
1341 struct btrfs_leaf *right;
1342 struct buffer_head *right_buffer;
1343 int space_needed = data_size + sizeof(struct btrfs_item);
1344 int data_copy_size;
1345 int rt_data_off;
1346 int i;
1347 int ret = 0;
1348 int wret;
1349 int double_split = 0;
1350 struct btrfs_disk_key disk_key;
1351
1352 /* first try to make some room by pushing left and right */
1353 wret = push_leaf_left(trans, root, path, data_size);
1354 if (wret < 0)
1355 return wret;
1356 if (wret) {
1357 wret = push_leaf_right(trans, root, path, data_size);
1358 if (wret < 0)
1359 return wret;
1360 }
1361 l_buf = path->nodes[0];
1362 l = btrfs_buffer_leaf(l_buf);
1363
1364 /* did the pushes work? */
1365 if (btrfs_leaf_free_space(root, l) >=
1366 sizeof(struct btrfs_item) + data_size)
1367 return 0;
1368
1369 if (!path->nodes[1]) {
1370 ret = insert_new_root(trans, root, path, 1);
1371 if (ret)
1372 return ret;
1373 }
1374 slot = path->slots[0];
1375 nritems = btrfs_header_nritems(&l->header);
1376 mid = (nritems + 1)/ 2;
1377
1378 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1379 if (IS_ERR(right_buffer))
1380 return PTR_ERR(right_buffer);
1381
1382 right = btrfs_buffer_leaf(right_buffer);
1383 memset(&right->header, 0, sizeof(right->header));
1384 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1385 btrfs_set_header_generation(&right->header, trans->transid);
1386 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1387 btrfs_set_header_level(&right->header, 0);
1388 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1389 sizeof(right->header.fsid));
1390 if (mid <= slot) {
1391 if (nritems == 1 ||
1392 leaf_space_used(l, mid, nritems - mid) + space_needed >
1393 BTRFS_LEAF_DATA_SIZE(root)) {
1394 if (slot >= nritems) {
1395 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1396 btrfs_set_header_nritems(&right->header, 0);
1397 wret = insert_ptr(trans, root, path,
1398 &disk_key,
1399 bh_blocknr(right_buffer),
1400 path->slots[1] + 1, 1);
1401 if (wret)
1402 ret = wret;
1403 btrfs_block_release(root, path->nodes[0]);
1404 path->nodes[0] = right_buffer;
1405 path->slots[0] = 0;
1406 path->slots[1] += 1;
1407 return ret;
1408 }
1409 mid = slot;
1410 double_split = 1;
1411 }
1412 } else {
1413 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1414 BTRFS_LEAF_DATA_SIZE(root)) {
1415 if (slot == 0) {
1416 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1417 btrfs_set_header_nritems(&right->header, 0);
1418 wret = insert_ptr(trans, root, path,
1419 &disk_key,
1420 bh_blocknr(right_buffer),
1421 path->slots[1], 1);
1422 if (wret)
1423 ret = wret;
1424 btrfs_block_release(root, path->nodes[0]);
1425 path->nodes[0] = right_buffer;
1426 path->slots[0] = 0;
1427 if (path->slots[1] == 0) {
1428 wret = fixup_low_keys(trans, root,
1429 path, &disk_key, 1);
1430 if (wret)
1431 ret = wret;
1432 }
1433 return ret;
1434 }
1435 mid = slot;
1436 double_split = 1;
1437 }
1438 }
1439 btrfs_set_header_nritems(&right->header, nritems - mid);
1440 data_copy_size = btrfs_item_end(l->items + mid) -
1441 leaf_data_end(root, l);
1442 btrfs_memcpy(root, right, right->items, l->items + mid,
1443 (nritems - mid) * sizeof(struct btrfs_item));
1444 btrfs_memcpy(root, right,
1445 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1446 data_copy_size, btrfs_leaf_data(l) +
1447 leaf_data_end(root, l), data_copy_size);
1448 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1449 btrfs_item_end(l->items + mid);
1450
1451 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1452 u32 ioff = btrfs_item_offset(right->items + i);
1453 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1454 }
1455
1456 btrfs_set_header_nritems(&l->header, mid);
1457 ret = 0;
1458 wret = insert_ptr(trans, root, path, &right->items[0].key,
1459 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1460 if (wret)
1461 ret = wret;
1462 btrfs_mark_buffer_dirty(right_buffer);
1463 btrfs_mark_buffer_dirty(l_buf);
1464 BUG_ON(path->slots[0] != slot);
1465 if (mid <= slot) {
1466 btrfs_block_release(root, path->nodes[0]);
1467 path->nodes[0] = right_buffer;
1468 path->slots[0] -= mid;
1469 path->slots[1] += 1;
1470 } else
1471 btrfs_block_release(root, right_buffer);
1472 BUG_ON(path->slots[0] < 0);
1473 check_node(root, path, 1);
1474
1475 if (!double_split)
1476 return ret;
1477 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1478 if (IS_ERR(right_buffer))
1479 return PTR_ERR(right_buffer);
1480
1481 right = btrfs_buffer_leaf(right_buffer);
1482 memset(&right->header, 0, sizeof(right->header));
1483 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1484 btrfs_set_header_generation(&right->header, trans->transid);
1485 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1486 btrfs_set_header_level(&right->header, 0);
1487 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1488 sizeof(right->header.fsid));
1489 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1490 btrfs_set_header_nritems(&right->header, 0);
1491 wret = insert_ptr(trans, root, path,
1492 &disk_key,
1493 bh_blocknr(right_buffer),
1494 path->slots[1], 1);
1495 if (wret)
1496 ret = wret;
1497 if (path->slots[1] == 0) {
1498 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1499 if (wret)
1500 ret = wret;
1501 }
1502 btrfs_block_release(root, path->nodes[0]);
1503 path->nodes[0] = right_buffer;
1504 path->slots[0] = 0;
1505 check_node(root, path, 1);
1506 check_leaf(root, path, 0);
1507 return ret;
1508 }
1509
1510 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root,
1512 struct btrfs_path *path,
1513 u32 new_size)
1514 {
1515 int ret = 0;
1516 int slot;
1517 int slot_orig;
1518 struct btrfs_leaf *leaf;
1519 struct buffer_head *leaf_buf;
1520 u32 nritems;
1521 unsigned int data_end;
1522 unsigned int old_data_start;
1523 unsigned int old_size;
1524 unsigned int size_diff;
1525 int i;
1526
1527 slot_orig = path->slots[0];
1528 leaf_buf = path->nodes[0];
1529 leaf = btrfs_buffer_leaf(leaf_buf);
1530
1531 nritems = btrfs_header_nritems(&leaf->header);
1532 data_end = leaf_data_end(root, leaf);
1533
1534 slot = path->slots[0];
1535 old_data_start = btrfs_item_offset(leaf->items + slot);
1536 old_size = btrfs_item_size(leaf->items + slot);
1537 BUG_ON(old_size <= new_size);
1538 size_diff = old_size - new_size;
1539
1540 BUG_ON(slot < 0);
1541 BUG_ON(slot >= nritems);
1542
1543 /*
1544 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1545 */
1546 /* first correct the data pointers */
1547 for (i = slot; i < nritems; i++) {
1548 u32 ioff = btrfs_item_offset(leaf->items + i);
1549 btrfs_set_item_offset(leaf->items + i,
1550 ioff + size_diff);
1551 }
1552 /* shift the data */
1553 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1554 data_end + size_diff, btrfs_leaf_data(leaf) +
1555 data_end, old_data_start + new_size - data_end);
1556 btrfs_set_item_size(leaf->items + slot, new_size);
1557 btrfs_mark_buffer_dirty(leaf_buf);
1558
1559 ret = 0;
1560 if (btrfs_leaf_free_space(root, leaf) < 0)
1561 BUG();
1562 check_leaf(root, path, 0);
1563 return ret;
1564 }
1565
1566 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1567 *root, struct btrfs_path *path, u32 data_size)
1568 {
1569 int ret = 0;
1570 int slot;
1571 int slot_orig;
1572 struct btrfs_leaf *leaf;
1573 struct buffer_head *leaf_buf;
1574 u32 nritems;
1575 unsigned int data_end;
1576 unsigned int old_data;
1577 unsigned int old_size;
1578 int i;
1579
1580 slot_orig = path->slots[0];
1581 leaf_buf = path->nodes[0];
1582 leaf = btrfs_buffer_leaf(leaf_buf);
1583
1584 nritems = btrfs_header_nritems(&leaf->header);
1585 data_end = leaf_data_end(root, leaf);
1586
1587 if (btrfs_leaf_free_space(root, leaf) < data_size)
1588 BUG();
1589 slot = path->slots[0];
1590 old_data = btrfs_item_end(leaf->items + slot);
1591
1592 BUG_ON(slot < 0);
1593 BUG_ON(slot >= nritems);
1594
1595 /*
1596 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1597 */
1598 /* first correct the data pointers */
1599 for (i = slot; i < nritems; i++) {
1600 u32 ioff = btrfs_item_offset(leaf->items + i);
1601 btrfs_set_item_offset(leaf->items + i,
1602 ioff - data_size);
1603 }
1604 /* shift the data */
1605 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1606 data_end - data_size, btrfs_leaf_data(leaf) +
1607 data_end, old_data - data_end);
1608 data_end = old_data;
1609 old_size = btrfs_item_size(leaf->items + slot);
1610 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1611 btrfs_mark_buffer_dirty(leaf_buf);
1612
1613 ret = 0;
1614 if (btrfs_leaf_free_space(root, leaf) < 0)
1615 BUG();
1616 check_leaf(root, path, 0);
1617 return ret;
1618 }
1619
1620 /*
1621 * Given a key and some data, insert an item into the tree.
1622 * This does all the path init required, making room in the tree if needed.
1623 */
1624 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1625 *root, struct btrfs_path *path, struct btrfs_key
1626 *cpu_key, u32 data_size)
1627 {
1628 int ret = 0;
1629 int slot;
1630 int slot_orig;
1631 struct btrfs_leaf *leaf;
1632 struct buffer_head *leaf_buf;
1633 u32 nritems;
1634 unsigned int data_end;
1635 struct btrfs_disk_key disk_key;
1636
1637 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1638
1639 /* create a root if there isn't one */
1640 if (!root->node)
1641 BUG();
1642 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1643 if (ret == 0) {
1644 return -EEXIST;
1645 }
1646 if (ret < 0)
1647 goto out;
1648
1649 slot_orig = path->slots[0];
1650 leaf_buf = path->nodes[0];
1651 leaf = btrfs_buffer_leaf(leaf_buf);
1652
1653 nritems = btrfs_header_nritems(&leaf->header);
1654 data_end = leaf_data_end(root, leaf);
1655
1656 if (btrfs_leaf_free_space(root, leaf) <
1657 sizeof(struct btrfs_item) + data_size) {
1658 BUG();
1659 }
1660 slot = path->slots[0];
1661 BUG_ON(slot < 0);
1662 if (slot != nritems) {
1663 int i;
1664 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1665
1666 /*
1667 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1668 */
1669 /* first correct the data pointers */
1670 for (i = slot; i < nritems; i++) {
1671 u32 ioff = btrfs_item_offset(leaf->items + i);
1672 btrfs_set_item_offset(leaf->items + i,
1673 ioff - data_size);
1674 }
1675
1676 /* shift the items */
1677 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1678 leaf->items + slot,
1679 (nritems - slot) * sizeof(struct btrfs_item));
1680
1681 /* shift the data */
1682 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1683 data_end - data_size, btrfs_leaf_data(leaf) +
1684 data_end, old_data - data_end);
1685 data_end = old_data;
1686 }
1687 /* setup the item for the new data */
1688 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1689 sizeof(struct btrfs_disk_key));
1690 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1691 btrfs_set_item_size(leaf->items + slot, data_size);
1692 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1693 btrfs_mark_buffer_dirty(leaf_buf);
1694
1695 ret = 0;
1696 if (slot == 0)
1697 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1698
1699 if (btrfs_leaf_free_space(root, leaf) < 0)
1700 BUG();
1701 check_leaf(root, path, 0);
1702 out:
1703 return ret;
1704 }
1705
1706 /*
1707 * Given a key and some data, insert an item into the tree.
1708 * This does all the path init required, making room in the tree if needed.
1709 */
1710 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1711 *root, struct btrfs_key *cpu_key, void *data, u32
1712 data_size)
1713 {
1714 int ret = 0;
1715 struct btrfs_path *path;
1716 u8 *ptr;
1717
1718 path = btrfs_alloc_path();
1719 BUG_ON(!path);
1720 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1721 if (!ret) {
1722 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1723 path->slots[0], u8);
1724 btrfs_memcpy(root, path->nodes[0]->b_data,
1725 ptr, data, data_size);
1726 btrfs_mark_buffer_dirty(path->nodes[0]);
1727 }
1728 btrfs_free_path(path);
1729 return ret;
1730 }
1731
1732 /*
1733 * delete the pointer from a given node.
1734 *
1735 * If the delete empties a node, the node is removed from the tree,
1736 * continuing all the way the root if required. The root is converted into
1737 * a leaf if all the nodes are emptied.
1738 */
1739 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1740 struct btrfs_path *path, int level, int slot)
1741 {
1742 struct btrfs_node *node;
1743 struct buffer_head *parent = path->nodes[level];
1744 u32 nritems;
1745 int ret = 0;
1746 int wret;
1747
1748 node = btrfs_buffer_node(parent);
1749 nritems = btrfs_header_nritems(&node->header);
1750 if (slot != nritems -1) {
1751 btrfs_memmove(root, node, node->ptrs + slot,
1752 node->ptrs + slot + 1,
1753 sizeof(struct btrfs_key_ptr) *
1754 (nritems - slot - 1));
1755 }
1756 nritems--;
1757 btrfs_set_header_nritems(&node->header, nritems);
1758 if (nritems == 0 && parent == root->node) {
1759 struct btrfs_header *header = btrfs_buffer_header(root->node);
1760 BUG_ON(btrfs_header_level(header) != 1);
1761 /* just turn the root into a leaf and break */
1762 btrfs_set_header_level(header, 0);
1763 } else if (slot == 0) {
1764 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1765 level + 1);
1766 if (wret)
1767 ret = wret;
1768 }
1769 btrfs_mark_buffer_dirty(parent);
1770 return ret;
1771 }
1772
1773 /*
1774 * delete the item at the leaf level in path. If that empties
1775 * the leaf, remove it from the tree
1776 */
1777 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1778 struct btrfs_path *path)
1779 {
1780 int slot;
1781 struct btrfs_leaf *leaf;
1782 struct buffer_head *leaf_buf;
1783 int doff;
1784 int dsize;
1785 int ret = 0;
1786 int wret;
1787 u32 nritems;
1788
1789 leaf_buf = path->nodes[0];
1790 leaf = btrfs_buffer_leaf(leaf_buf);
1791 slot = path->slots[0];
1792 doff = btrfs_item_offset(leaf->items + slot);
1793 dsize = btrfs_item_size(leaf->items + slot);
1794 nritems = btrfs_header_nritems(&leaf->header);
1795
1796 if (slot != nritems - 1) {
1797 int i;
1798 int data_end = leaf_data_end(root, leaf);
1799 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1800 data_end + dsize,
1801 btrfs_leaf_data(leaf) + data_end,
1802 doff - data_end);
1803 for (i = slot + 1; i < nritems; i++) {
1804 u32 ioff = btrfs_item_offset(leaf->items + i);
1805 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1806 }
1807 btrfs_memmove(root, leaf, leaf->items + slot,
1808 leaf->items + slot + 1,
1809 sizeof(struct btrfs_item) *
1810 (nritems - slot - 1));
1811 }
1812 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1813 nritems--;
1814 /* delete the leaf if we've emptied it */
1815 if (nritems == 0) {
1816 if (leaf_buf == root->node) {
1817 btrfs_set_header_level(&leaf->header, 0);
1818 } else {
1819 clean_tree_block(trans, root, leaf_buf);
1820 wait_on_buffer(leaf_buf);
1821 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1822 if (wret)
1823 ret = wret;
1824 wret = btrfs_free_extent(trans, root,
1825 bh_blocknr(leaf_buf), 1, 1);
1826 if (wret)
1827 ret = wret;
1828 }
1829 } else {
1830 int used = leaf_space_used(leaf, 0, nritems);
1831 if (slot == 0) {
1832 wret = fixup_low_keys(trans, root, path,
1833 &leaf->items[0].key, 1);
1834 if (wret)
1835 ret = wret;
1836 }
1837
1838 /* delete the leaf if it is mostly empty */
1839 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1840 /* push_leaf_left fixes the path.
1841 * make sure the path still points to our leaf
1842 * for possible call to del_ptr below
1843 */
1844 slot = path->slots[1];
1845 get_bh(leaf_buf);
1846 wret = push_leaf_left(trans, root, path, 1);
1847 if (wret < 0 && wret != -ENOSPC)
1848 ret = wret;
1849 if (path->nodes[0] == leaf_buf &&
1850 btrfs_header_nritems(&leaf->header)) {
1851 wret = push_leaf_right(trans, root, path, 1);
1852 if (wret < 0 && wret != -ENOSPC)
1853 ret = wret;
1854 }
1855 if (btrfs_header_nritems(&leaf->header) == 0) {
1856 u64 blocknr = bh_blocknr(leaf_buf);
1857 clean_tree_block(trans, root, leaf_buf);
1858 wait_on_buffer(leaf_buf);
1859 wret = del_ptr(trans, root, path, 1, slot);
1860 if (wret)
1861 ret = wret;
1862 btrfs_block_release(root, leaf_buf);
1863 wret = btrfs_free_extent(trans, root, blocknr,
1864 1, 1);
1865 if (wret)
1866 ret = wret;
1867 } else {
1868 btrfs_mark_buffer_dirty(leaf_buf);
1869 btrfs_block_release(root, leaf_buf);
1870 }
1871 } else {
1872 btrfs_mark_buffer_dirty(leaf_buf);
1873 }
1874 }
1875 return ret;
1876 }
1877
1878 /*
1879 * walk up the tree as far as required to find the next leaf.
1880 * returns 0 if it found something or 1 if there are no greater leaves.
1881 * returns < 0 on io errors.
1882 */
1883 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1884 {
1885 int slot;
1886 int level = 1;
1887 u64 blocknr;
1888 struct buffer_head *c;
1889 struct btrfs_node *c_node;
1890 struct buffer_head *next = NULL;
1891
1892 while(level < BTRFS_MAX_LEVEL) {
1893 if (!path->nodes[level])
1894 return 1;
1895 slot = path->slots[level] + 1;
1896 c = path->nodes[level];
1897 c_node = btrfs_buffer_node(c);
1898 if (slot >= btrfs_header_nritems(&c_node->header)) {
1899 level++;
1900 continue;
1901 }
1902 blocknr = btrfs_node_blockptr(c_node, slot);
1903 if (next)
1904 btrfs_block_release(root, next);
1905 next = read_tree_block(root, blocknr);
1906 break;
1907 }
1908 path->slots[level] = slot;
1909 while(1) {
1910 level--;
1911 c = path->nodes[level];
1912 btrfs_block_release(root, c);
1913 path->nodes[level] = next;
1914 path->slots[level] = 0;
1915 if (!level)
1916 break;
1917 next = read_tree_block(root,
1918 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1919 }
1920 return 0;
1921 }
This page took 0.070056 seconds and 6 git commands to generate.