Btrfs: write barriers on commit, balance level before split
[deliverable/linux.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7 *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9 *root, struct btrfs_key *ins_key,
10 struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12 *root, struct buffer_head *dst, struct buffer_head
13 *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15 btrfs_root *root, struct buffer_head *dst_buf,
16 struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18 struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22 memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27 struct btrfs_path *path;
28 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29 if (path)
30 btrfs_init_path(path);
31 return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36 btrfs_release_path(NULL, p);
37 kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42 int i;
43 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44 if (!p->nodes[i])
45 break;
46 btrfs_block_release(root, p->nodes[i]);
47 }
48 memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52 *root, struct buffer_head *buf, struct buffer_head
53 *parent, int parent_slot, struct buffer_head
54 **cow_ret)
55 {
56 struct buffer_head *cow;
57 struct btrfs_node *cow_node;
58
59 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60 trans->transid) {
61 *cow_ret = buf;
62 return 0;
63 }
64 cow = btrfs_alloc_free_block(trans, root);
65 cow_node = btrfs_buffer_node(cow);
66 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67 WARN_ON(1);
68 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
70 btrfs_set_header_generation(&cow_node->header, trans->transid);
71 btrfs_inc_ref(trans, root, buf);
72 if (buf == root->node) {
73 root->node = cow;
74 get_bh(cow);
75 if (buf != root->commit_root) {
76 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
77 }
78 btrfs_block_release(root, buf);
79 } else {
80 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
81 bh_blocknr(cow));
82 btrfs_mark_buffer_dirty(parent);
83 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
84 }
85 btrfs_block_release(root, buf);
86 mark_buffer_dirty(cow);
87 *cow_ret = cow;
88 return 0;
89 }
90
91 /*
92 * The leaf data grows from end-to-front in the node.
93 * this returns the address of the start of the last item,
94 * which is the stop of the leaf data stack
95 */
96 static inline unsigned int leaf_data_end(struct btrfs_root *root,
97 struct btrfs_leaf *leaf)
98 {
99 u32 nr = btrfs_header_nritems(&leaf->header);
100 if (nr == 0)
101 return BTRFS_LEAF_DATA_SIZE(root);
102 return btrfs_item_offset(leaf->items + nr - 1);
103 }
104
105 /*
106 * compare two keys in a memcmp fashion
107 */
108 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
109 {
110 struct btrfs_key k1;
111
112 btrfs_disk_key_to_cpu(&k1, disk);
113
114 if (k1.objectid > k2->objectid)
115 return 1;
116 if (k1.objectid < k2->objectid)
117 return -1;
118 if (k1.flags > k2->flags)
119 return 1;
120 if (k1.flags < k2->flags)
121 return -1;
122 if (k1.offset > k2->offset)
123 return 1;
124 if (k1.offset < k2->offset)
125 return -1;
126 return 0;
127 }
128
129 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
130 int level)
131 {
132 int i;
133 struct btrfs_node *parent = NULL;
134 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
135 int parent_slot;
136 u32 nritems = btrfs_header_nritems(&node->header);
137
138 if (path->nodes[level + 1])
139 parent = btrfs_buffer_node(path->nodes[level + 1]);
140 parent_slot = path->slots[level + 1];
141 BUG_ON(nritems == 0);
142 if (parent) {
143 struct btrfs_disk_key *parent_key;
144 parent_key = &parent->ptrs[parent_slot].key;
145 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
146 sizeof(struct btrfs_disk_key)));
147 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
148 btrfs_header_blocknr(&node->header));
149 }
150 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
151 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
152 struct btrfs_key cpukey;
153 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
154 if (comp_keys(&node->ptrs[i].key, &cpukey) >= 0) {
155 struct btrfs_key bad;
156 btrfs_disk_key_to_cpu(&bad, &node->ptrs[i].key);
157 printk("check_node level %d i is %d bad comp %Lu %u %Lu, %Lu %u %Lu\n",level, i, bad.objectid, bad.flags, bad.offset, cpukey.objectid, cpukey.flags, cpukey.offset);
158 }
159 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
160 }
161 return 0;
162 }
163
164 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
165 int level)
166 {
167 int i;
168 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
169 struct btrfs_node *parent = NULL;
170 int parent_slot;
171 u32 nritems = btrfs_header_nritems(&leaf->header);
172
173 if (path->nodes[level + 1])
174 parent = btrfs_buffer_node(path->nodes[level + 1]);
175 parent_slot = path->slots[level + 1];
176 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
177
178 if (nritems == 0)
179 return 0;
180
181 if (parent) {
182 struct btrfs_disk_key *parent_key;
183 parent_key = &parent->ptrs[parent_slot].key;
184 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
185 sizeof(struct btrfs_disk_key)));
186 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
187 btrfs_header_blocknr(&leaf->header));
188 }
189 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
190 struct btrfs_key cpukey;
191 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
192 BUG_ON(comp_keys(&leaf->items[i].key,
193 &cpukey) >= 0);
194 BUG_ON(btrfs_item_offset(leaf->items + i) !=
195 btrfs_item_end(leaf->items + i + 1));
196 if (i == 0) {
197 BUG_ON(btrfs_item_offset(leaf->items + i) +
198 btrfs_item_size(leaf->items + i) !=
199 BTRFS_LEAF_DATA_SIZE(root));
200 }
201 }
202 return 0;
203 }
204
205 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
206 int level)
207 {
208 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
209 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
210 sizeof(node->header.fsid)))
211 BUG();
212 if (level == 0)
213 return check_leaf(root, path, level);
214 return check_node(root, path, level);
215 }
216
217 /*
218 * search for key in the array p. items p are item_size apart
219 * and there are 'max' items in p
220 * the slot in the array is returned via slot, and it points to
221 * the place where you would insert key if it is not found in
222 * the array.
223 *
224 * slot may point to max if the key is bigger than all of the keys
225 */
226 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
227 int max, int *slot)
228 {
229 int low = 0;
230 int high = max;
231 int mid;
232 int ret;
233 struct btrfs_disk_key *tmp;
234
235 while(low < high) {
236 mid = (low + high) / 2;
237 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
238 ret = comp_keys(tmp, key);
239
240 if (ret < 0)
241 low = mid + 1;
242 else if (ret > 0)
243 high = mid;
244 else {
245 *slot = mid;
246 return 0;
247 }
248 }
249 *slot = low;
250 return 1;
251 }
252
253 /*
254 * simple bin_search frontend that does the right thing for
255 * leaves vs nodes
256 */
257 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
258 {
259 if (btrfs_is_leaf(c)) {
260 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
261 return generic_bin_search((void *)l->items,
262 sizeof(struct btrfs_item),
263 key, btrfs_header_nritems(&c->header),
264 slot);
265 } else {
266 return generic_bin_search((void *)c->ptrs,
267 sizeof(struct btrfs_key_ptr),
268 key, btrfs_header_nritems(&c->header),
269 slot);
270 }
271 return -1;
272 }
273
274 static struct buffer_head *read_node_slot(struct btrfs_root *root,
275 struct buffer_head *parent_buf,
276 int slot)
277 {
278 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
279 if (slot < 0)
280 return NULL;
281 if (slot >= btrfs_header_nritems(&node->header))
282 return NULL;
283 return read_tree_block(root, btrfs_node_blockptr(node, slot));
284 }
285
286 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
287 *root, struct btrfs_path *path, int level)
288 {
289 struct buffer_head *right_buf;
290 struct buffer_head *mid_buf;
291 struct buffer_head *left_buf;
292 struct buffer_head *parent_buf = NULL;
293 struct btrfs_node *right = NULL;
294 struct btrfs_node *mid;
295 struct btrfs_node *left = NULL;
296 struct btrfs_node *parent = NULL;
297 int ret = 0;
298 int wret;
299 int pslot;
300 int orig_slot = path->slots[level];
301 u64 orig_ptr;
302
303 if (level == 0)
304 return 0;
305
306 mid_buf = path->nodes[level];
307 mid = btrfs_buffer_node(mid_buf);
308 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
309
310 if (level < BTRFS_MAX_LEVEL - 1)
311 parent_buf = path->nodes[level + 1];
312 pslot = path->slots[level + 1];
313
314 /*
315 * deal with the case where there is only one pointer in the root
316 * by promoting the node below to a root
317 */
318 if (!parent_buf) {
319 struct buffer_head *child;
320 u64 blocknr = bh_blocknr(mid_buf);
321
322 if (btrfs_header_nritems(&mid->header) != 1)
323 return 0;
324
325 /* promote the child to a root */
326 child = read_node_slot(root, mid_buf, 0);
327 BUG_ON(!child);
328 root->node = child;
329 path->nodes[level] = NULL;
330 clean_tree_block(trans, root, mid_buf);
331 wait_on_buffer(mid_buf);
332 /* once for the path */
333 btrfs_block_release(root, mid_buf);
334 /* once for the root ptr */
335 btrfs_block_release(root, mid_buf);
336 return btrfs_free_extent(trans, root, blocknr, 1, 1);
337 }
338 parent = btrfs_buffer_node(parent_buf);
339
340 if (btrfs_header_nritems(&mid->header) >
341 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
342 return 0;
343
344 left_buf = read_node_slot(root, parent_buf, pslot - 1);
345 right_buf = read_node_slot(root, parent_buf, pslot + 1);
346
347 /* first, try to make some room in the middle buffer */
348 if (left_buf) {
349 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
350 &left_buf);
351 left = btrfs_buffer_node(left_buf);
352 orig_slot += btrfs_header_nritems(&left->header);
353 wret = push_node_left(trans, root, left_buf, mid_buf);
354 if (wret < 0)
355 ret = wret;
356 }
357
358 /*
359 * then try to empty the right most buffer into the middle
360 */
361 if (right_buf) {
362 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
363 &right_buf);
364 right = btrfs_buffer_node(right_buf);
365 wret = push_node_left(trans, root, mid_buf, right_buf);
366 if (wret < 0)
367 ret = wret;
368 if (btrfs_header_nritems(&right->header) == 0) {
369 u64 blocknr = bh_blocknr(right_buf);
370 clean_tree_block(trans, root, right_buf);
371 wait_on_buffer(right_buf);
372 btrfs_block_release(root, right_buf);
373 right_buf = NULL;
374 right = NULL;
375 wret = del_ptr(trans, root, path, level + 1, pslot +
376 1);
377 if (wret)
378 ret = wret;
379 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
380 if (wret)
381 ret = wret;
382 } else {
383 btrfs_memcpy(root, parent,
384 &parent->ptrs[pslot + 1].key,
385 &right->ptrs[0].key,
386 sizeof(struct btrfs_disk_key));
387 btrfs_mark_buffer_dirty(parent_buf);
388 }
389 }
390 if (btrfs_header_nritems(&mid->header) == 1) {
391 /*
392 * we're not allowed to leave a node with one item in the
393 * tree during a delete. A deletion from lower in the tree
394 * could try to delete the only pointer in this node.
395 * So, pull some keys from the left.
396 * There has to be a left pointer at this point because
397 * otherwise we would have pulled some pointers from the
398 * right
399 */
400 BUG_ON(!left_buf);
401 wret = balance_node_right(trans, root, mid_buf, left_buf);
402 if (wret < 0)
403 ret = wret;
404 BUG_ON(wret == 1);
405 }
406 if (btrfs_header_nritems(&mid->header) == 0) {
407 /* we've managed to empty the middle node, drop it */
408 u64 blocknr = bh_blocknr(mid_buf);
409 clean_tree_block(trans, root, mid_buf);
410 wait_on_buffer(mid_buf);
411 btrfs_block_release(root, mid_buf);
412 mid_buf = NULL;
413 mid = NULL;
414 wret = del_ptr(trans, root, path, level + 1, pslot);
415 if (wret)
416 ret = wret;
417 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
418 if (wret)
419 ret = wret;
420 } else {
421 /* update the parent key to reflect our changes */
422 btrfs_memcpy(root, parent,
423 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
424 sizeof(struct btrfs_disk_key));
425 btrfs_mark_buffer_dirty(parent_buf);
426 }
427
428 /* update the path */
429 if (left_buf) {
430 if (btrfs_header_nritems(&left->header) > orig_slot) {
431 get_bh(left_buf);
432 path->nodes[level] = left_buf;
433 path->slots[level + 1] -= 1;
434 path->slots[level] = orig_slot;
435 if (mid_buf)
436 btrfs_block_release(root, mid_buf);
437 } else {
438 orig_slot -= btrfs_header_nritems(&left->header);
439 path->slots[level] = orig_slot;
440 }
441 }
442 /* double check we haven't messed things up */
443 check_block(root, path, level);
444 if (orig_ptr !=
445 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
446 path->slots[level]))
447 BUG();
448
449 if (right_buf)
450 btrfs_block_release(root, right_buf);
451 if (left_buf)
452 btrfs_block_release(root, left_buf);
453 return ret;
454 }
455
456 /* returns zero if the push worked, non-zero otherwise */
457 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
458 struct btrfs_root *root,
459 struct btrfs_path *path, int level)
460 {
461 struct buffer_head *right_buf;
462 struct buffer_head *mid_buf;
463 struct buffer_head *left_buf;
464 struct buffer_head *parent_buf = NULL;
465 struct btrfs_node *right = NULL;
466 struct btrfs_node *mid;
467 struct btrfs_node *left = NULL;
468 struct btrfs_node *parent = NULL;
469 int ret = 0;
470 int wret;
471 int pslot;
472 int orig_slot = path->slots[level];
473 u64 orig_ptr;
474
475 if (level == 0)
476 return 1;
477
478 mid_buf = path->nodes[level];
479 mid = btrfs_buffer_node(mid_buf);
480 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
481
482 if (level < BTRFS_MAX_LEVEL - 1)
483 parent_buf = path->nodes[level + 1];
484 pslot = path->slots[level + 1];
485
486 if (!parent_buf)
487 return 1;
488 parent = btrfs_buffer_node(parent_buf);
489
490 left_buf = read_node_slot(root, parent_buf, pslot - 1);
491
492 /* first, try to make some room in the middle buffer */
493 if (left_buf) {
494 u32 left_nr;
495 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
496 &left_buf);
497 left = btrfs_buffer_node(left_buf);
498 left_nr = btrfs_header_nritems(&left->header);
499 wret = push_node_left(trans, root, left_buf, mid_buf);
500 if (wret < 0)
501 ret = wret;
502 if (wret == 0) {
503 orig_slot += left_nr;
504 btrfs_memcpy(root, parent,
505 &parent->ptrs[pslot].key,
506 &mid->ptrs[0].key,
507 sizeof(struct btrfs_disk_key));
508 btrfs_mark_buffer_dirty(parent_buf);
509 if (btrfs_header_nritems(&left->header) > orig_slot) {
510 path->nodes[level] = left_buf;
511 path->slots[level + 1] -= 1;
512 path->slots[level] = orig_slot;
513 btrfs_block_release(root, mid_buf);
514 } else {
515 orig_slot -=
516 btrfs_header_nritems(&left->header);
517 path->slots[level] = orig_slot;
518 btrfs_block_release(root, left_buf);
519 }
520 check_node(root, path, level);
521 return 0;
522 }
523 btrfs_block_release(root, left_buf);
524 }
525 right_buf = read_node_slot(root, parent_buf, pslot + 1);
526
527 /*
528 * then try to empty the right most buffer into the middle
529 */
530 if (right_buf) {
531 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
532 &right_buf);
533 right = btrfs_buffer_node(right_buf);
534 wret = balance_node_right(trans, root, right_buf, mid_buf);
535 if (wret < 0)
536 ret = wret;
537 if (wret == 0) {
538 btrfs_memcpy(root, parent,
539 &parent->ptrs[pslot + 1].key,
540 &right->ptrs[0].key,
541 sizeof(struct btrfs_disk_key));
542 btrfs_mark_buffer_dirty(parent_buf);
543 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
544 path->nodes[level] = right_buf;
545 path->slots[level + 1] += 1;
546 path->slots[level] = orig_slot -
547 btrfs_header_nritems(&mid->header);
548 btrfs_block_release(root, mid_buf);
549 } else {
550 btrfs_block_release(root, right_buf);
551 }
552 check_node(root, path, level);
553 return 0;
554 }
555 btrfs_block_release(root, right_buf);
556 }
557 check_node(root, path, level);
558 return 1;
559 }
560
561 /*
562 * look for key in the tree. path is filled in with nodes along the way
563 * if key is found, we return zero and you can find the item in the leaf
564 * level of the path (level 0)
565 *
566 * If the key isn't found, the path points to the slot where it should
567 * be inserted, and 1 is returned. If there are other errors during the
568 * search a negative error number is returned.
569 *
570 * if ins_len > 0, nodes and leaves will be split as we walk down the
571 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
572 * possible)
573 */
574 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
575 *root, struct btrfs_key *key, struct btrfs_path *p, int
576 ins_len, int cow)
577 {
578 struct buffer_head *b;
579 struct buffer_head *cow_buf;
580 struct btrfs_node *c;
581 int slot;
582 int ret;
583 int level;
584
585 WARN_ON(p->nodes[0] != NULL);
586 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
587 again:
588 b = root->node;
589 get_bh(b);
590 while (b) {
591 c = btrfs_buffer_node(b);
592 level = btrfs_header_level(&c->header);
593 if (cow) {
594 int wret;
595 wret = btrfs_cow_block(trans, root, b,
596 p->nodes[level + 1],
597 p->slots[level + 1],
598 &cow_buf);
599 b = cow_buf;
600 c = btrfs_buffer_node(b);
601 }
602 BUG_ON(!cow && ins_len);
603 if (level != btrfs_header_level(&c->header))
604 WARN_ON(1);
605 level = btrfs_header_level(&c->header);
606 p->nodes[level] = b;
607 ret = check_block(root, p, level);
608 if (ret)
609 return -1;
610 ret = bin_search(c, key, &slot);
611 if (!btrfs_is_leaf(c)) {
612 if (ret && slot > 0)
613 slot -= 1;
614 p->slots[level] = slot;
615 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
616 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
617 int sret = split_node(trans, root, p, level);
618 BUG_ON(sret > 0);
619 if (sret)
620 return sret;
621 b = p->nodes[level];
622 c = btrfs_buffer_node(b);
623 slot = p->slots[level];
624 } else if (ins_len < 0) {
625 int sret = balance_level(trans, root, p,
626 level);
627 if (sret)
628 return sret;
629 b = p->nodes[level];
630 if (!b)
631 goto again;
632 c = btrfs_buffer_node(b);
633 slot = p->slots[level];
634 BUG_ON(btrfs_header_nritems(&c->header) == 1);
635 }
636 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
637 } else {
638 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
639 p->slots[level] = slot;
640 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
641 sizeof(struct btrfs_item) + ins_len) {
642 int sret = split_leaf(trans, root, key,
643 p, ins_len);
644 BUG_ON(sret > 0);
645 if (sret)
646 return sret;
647 }
648 return ret;
649 }
650 }
651 return 1;
652 }
653
654 /*
655 * adjust the pointers going up the tree, starting at level
656 * making sure the right key of each node is points to 'key'.
657 * This is used after shifting pointers to the left, so it stops
658 * fixing up pointers when a given leaf/node is not in slot 0 of the
659 * higher levels
660 *
661 * If this fails to write a tree block, it returns -1, but continues
662 * fixing up the blocks in ram so the tree is consistent.
663 */
664 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
665 *root, struct btrfs_path *path, struct btrfs_disk_key
666 *key, int level)
667 {
668 int i;
669 int ret = 0;
670 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
671 struct btrfs_node *t;
672 int tslot = path->slots[i];
673 if (!path->nodes[i])
674 break;
675 t = btrfs_buffer_node(path->nodes[i]);
676 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
677 btrfs_mark_buffer_dirty(path->nodes[i]);
678 if (tslot != 0)
679 break;
680 }
681 return ret;
682 }
683
684 /*
685 * try to push data from one node into the next node left in the
686 * tree.
687 *
688 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
689 * error, and > 0 if there was no room in the left hand block.
690 */
691 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
692 *root, struct buffer_head *dst_buf, struct
693 buffer_head *src_buf)
694 {
695 struct btrfs_node *src = btrfs_buffer_node(src_buf);
696 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
697 int push_items = 0;
698 int src_nritems;
699 int dst_nritems;
700 int ret = 0;
701
702 src_nritems = btrfs_header_nritems(&src->header);
703 dst_nritems = btrfs_header_nritems(&dst->header);
704 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
705 if (push_items <= 0) {
706 return 1;
707 }
708
709 if (src_nritems < push_items)
710 push_items = src_nritems;
711
712 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
713 push_items * sizeof(struct btrfs_key_ptr));
714 if (push_items < src_nritems) {
715 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
716 (src_nritems - push_items) *
717 sizeof(struct btrfs_key_ptr));
718 }
719 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
720 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
721 btrfs_mark_buffer_dirty(src_buf);
722 btrfs_mark_buffer_dirty(dst_buf);
723 return ret;
724 }
725
726 /*
727 * try to push data from one node into the next node right in the
728 * tree.
729 *
730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
731 * error, and > 0 if there was no room in the right hand block.
732 *
733 * this will only push up to 1/2 the contents of the left node over
734 */
735 static int balance_node_right(struct btrfs_trans_handle *trans, struct
736 btrfs_root *root, struct buffer_head *dst_buf,
737 struct buffer_head *src_buf)
738 {
739 struct btrfs_node *src = btrfs_buffer_node(src_buf);
740 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
741 int push_items = 0;
742 int max_push;
743 int src_nritems;
744 int dst_nritems;
745 int ret = 0;
746
747 src_nritems = btrfs_header_nritems(&src->header);
748 dst_nritems = btrfs_header_nritems(&dst->header);
749 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
750 if (push_items <= 0) {
751 return 1;
752 }
753
754 max_push = src_nritems / 2 + 1;
755 /* don't try to empty the node */
756 if (max_push > src_nritems)
757 return 1;
758 if (max_push < push_items)
759 push_items = max_push;
760
761 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
762 dst_nritems * sizeof(struct btrfs_key_ptr));
763
764 btrfs_memcpy(root, dst, dst->ptrs,
765 src->ptrs + src_nritems - push_items,
766 push_items * sizeof(struct btrfs_key_ptr));
767
768 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
769 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
770
771 btrfs_mark_buffer_dirty(src_buf);
772 btrfs_mark_buffer_dirty(dst_buf);
773 return ret;
774 }
775
776 /*
777 * helper function to insert a new root level in the tree.
778 * A new node is allocated, and a single item is inserted to
779 * point to the existing root
780 *
781 * returns zero on success or < 0 on failure.
782 */
783 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
784 *root, struct btrfs_path *path, int level)
785 {
786 struct buffer_head *t;
787 struct btrfs_node *lower;
788 struct btrfs_node *c;
789 struct btrfs_disk_key *lower_key;
790
791 BUG_ON(path->nodes[level]);
792 BUG_ON(path->nodes[level-1] != root->node);
793
794 t = btrfs_alloc_free_block(trans, root);
795 c = btrfs_buffer_node(t);
796 memset(c, 0, root->blocksize);
797 btrfs_set_header_nritems(&c->header, 1);
798 btrfs_set_header_level(&c->header, level);
799 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
800 btrfs_set_header_generation(&c->header, trans->transid);
801 lower = btrfs_buffer_node(path->nodes[level-1]);
802 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
803 sizeof(c->header.fsid));
804 if (btrfs_is_leaf(lower))
805 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
806 else
807 lower_key = &lower->ptrs[0].key;
808 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
809 sizeof(struct btrfs_disk_key));
810 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
811
812 btrfs_mark_buffer_dirty(t);
813
814 /* the super has an extra ref to root->node */
815 btrfs_block_release(root, root->node);
816 root->node = t;
817 get_bh(t);
818 path->nodes[level] = t;
819 path->slots[level] = 0;
820 return 0;
821 }
822
823 /*
824 * worker function to insert a single pointer in a node.
825 * the node should have enough room for the pointer already
826 *
827 * slot and level indicate where you want the key to go, and
828 * blocknr is the block the key points to.
829 *
830 * returns zero on success and < 0 on any error
831 */
832 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
833 *root, struct btrfs_path *path, struct btrfs_disk_key
834 *key, u64 blocknr, int slot, int level)
835 {
836 struct btrfs_node *lower;
837 int nritems;
838
839 BUG_ON(!path->nodes[level]);
840 lower = btrfs_buffer_node(path->nodes[level]);
841 nritems = btrfs_header_nritems(&lower->header);
842 if (slot > nritems)
843 BUG();
844 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
845 BUG();
846 if (slot != nritems) {
847 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
848 lower->ptrs + slot,
849 (nritems - slot) * sizeof(struct btrfs_key_ptr));
850 }
851 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
852 key, sizeof(struct btrfs_disk_key));
853 btrfs_set_node_blockptr(lower, slot, blocknr);
854 btrfs_set_header_nritems(&lower->header, nritems + 1);
855 btrfs_mark_buffer_dirty(path->nodes[level]);
856 return 0;
857 }
858
859 /*
860 * split the node at the specified level in path in two.
861 * The path is corrected to point to the appropriate node after the split
862 *
863 * Before splitting this tries to make some room in the node by pushing
864 * left and right, if either one works, it returns right away.
865 *
866 * returns 0 on success and < 0 on failure
867 */
868 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
869 *root, struct btrfs_path *path, int level)
870 {
871 struct buffer_head *t;
872 struct btrfs_node *c;
873 struct buffer_head *split_buffer;
874 struct btrfs_node *split;
875 int mid;
876 int ret;
877 int wret;
878 u32 c_nritems;
879
880 t = path->nodes[level];
881 c = btrfs_buffer_node(t);
882 if (t == root->node) {
883 /* trying to split the root, lets make a new one */
884 ret = insert_new_root(trans, root, path, level + 1);
885 if (ret)
886 return ret;
887 } else {
888 ret = push_nodes_for_insert(trans, root, path, level);
889 t = path->nodes[level];
890 c = btrfs_buffer_node(t);
891 if (!ret &&
892 btrfs_header_nritems(&c->header) <
893 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
894 return 0;
895 }
896
897 c_nritems = btrfs_header_nritems(&c->header);
898 split_buffer = btrfs_alloc_free_block(trans, root);
899 split = btrfs_buffer_node(split_buffer);
900 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
901 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
902 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
903 btrfs_set_header_generation(&split->header, trans->transid);
904 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
905 sizeof(split->header.fsid));
906 mid = (c_nritems + 1) / 2;
907 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
908 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
909 btrfs_set_header_nritems(&split->header, c_nritems - mid);
910 btrfs_set_header_nritems(&c->header, mid);
911 ret = 0;
912
913 btrfs_mark_buffer_dirty(t);
914 btrfs_mark_buffer_dirty(split_buffer);
915 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
916 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
917 level + 1);
918 if (wret)
919 ret = wret;
920
921 if (path->slots[level] >= mid) {
922 path->slots[level] -= mid;
923 btrfs_block_release(root, t);
924 path->nodes[level] = split_buffer;
925 path->slots[level + 1] += 1;
926 } else {
927 btrfs_block_release(root, split_buffer);
928 }
929 return ret;
930 }
931
932 /*
933 * how many bytes are required to store the items in a leaf. start
934 * and nr indicate which items in the leaf to check. This totals up the
935 * space used both by the item structs and the item data
936 */
937 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
938 {
939 int data_len;
940 int nritems = btrfs_header_nritems(&l->header);
941 int end = min(nritems, start + nr) - 1;
942
943 if (!nr)
944 return 0;
945 data_len = btrfs_item_end(l->items + start);
946 data_len = data_len - btrfs_item_offset(l->items + end);
947 data_len += sizeof(struct btrfs_item) * nr;
948 WARN_ON(data_len < 0);
949 return data_len;
950 }
951
952 /*
953 * The space between the end of the leaf items and
954 * the start of the leaf data. IOW, how much room
955 * the leaf has left for both items and data
956 */
957 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
958 {
959 int nritems = btrfs_header_nritems(&leaf->header);
960 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
961 }
962
963 /*
964 * push some data in the path leaf to the right, trying to free up at
965 * least data_size bytes. returns zero if the push worked, nonzero otherwise
966 *
967 * returns 1 if the push failed because the other node didn't have enough
968 * room, 0 if everything worked out and < 0 if there were major errors.
969 */
970 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
971 *root, struct btrfs_path *path, int data_size)
972 {
973 struct buffer_head *left_buf = path->nodes[0];
974 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
975 struct btrfs_leaf *right;
976 struct buffer_head *right_buf;
977 struct buffer_head *upper;
978 struct btrfs_node *upper_node;
979 int slot;
980 int i;
981 int free_space;
982 int push_space = 0;
983 int push_items = 0;
984 struct btrfs_item *item;
985 u32 left_nritems;
986 u32 right_nritems;
987
988 slot = path->slots[1];
989 if (!path->nodes[1]) {
990 return 1;
991 }
992 upper = path->nodes[1];
993 upper_node = btrfs_buffer_node(upper);
994 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
995 return 1;
996 }
997 right_buf = read_tree_block(root,
998 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
999 right = btrfs_buffer_leaf(right_buf);
1000 free_space = btrfs_leaf_free_space(root, right);
1001 if (free_space < data_size + sizeof(struct btrfs_item)) {
1002 btrfs_block_release(root, right_buf);
1003 return 1;
1004 }
1005 /* cow and double check */
1006 btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
1007 right = btrfs_buffer_leaf(right_buf);
1008 free_space = btrfs_leaf_free_space(root, right);
1009 if (free_space < data_size + sizeof(struct btrfs_item)) {
1010 btrfs_block_release(root, right_buf);
1011 return 1;
1012 }
1013
1014 left_nritems = btrfs_header_nritems(&left->header);
1015 if (left_nritems == 0) {
1016 btrfs_block_release(root, right_buf);
1017 return 1;
1018 }
1019 for (i = left_nritems - 1; i >= 1; i--) {
1020 item = left->items + i;
1021 if (path->slots[0] == i)
1022 push_space += data_size + sizeof(*item);
1023 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1024 free_space)
1025 break;
1026 push_items++;
1027 push_space += btrfs_item_size(item) + sizeof(*item);
1028 }
1029 if (push_items == 0) {
1030 btrfs_block_release(root, right_buf);
1031 return 1;
1032 }
1033 if (push_items == left_nritems)
1034 WARN_ON(1);
1035 right_nritems = btrfs_header_nritems(&right->header);
1036 /* push left to right */
1037 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1038 push_space -= leaf_data_end(root, left);
1039 /* make room in the right data area */
1040 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1041 leaf_data_end(root, right) - push_space,
1042 btrfs_leaf_data(right) +
1043 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1044 leaf_data_end(root, right));
1045 /* copy from the left data area */
1046 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1047 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1048 btrfs_leaf_data(left) + leaf_data_end(root, left),
1049 push_space);
1050 btrfs_memmove(root, right, right->items + push_items, right->items,
1051 right_nritems * sizeof(struct btrfs_item));
1052 /* copy the items from left to right */
1053 btrfs_memcpy(root, right, right->items, left->items +
1054 left_nritems - push_items,
1055 push_items * sizeof(struct btrfs_item));
1056
1057 /* update the item pointers */
1058 right_nritems += push_items;
1059 btrfs_set_header_nritems(&right->header, right_nritems);
1060 push_space = BTRFS_LEAF_DATA_SIZE(root);
1061 for (i = 0; i < right_nritems; i++) {
1062 btrfs_set_item_offset(right->items + i, push_space -
1063 btrfs_item_size(right->items + i));
1064 push_space = btrfs_item_offset(right->items + i);
1065 }
1066 left_nritems -= push_items;
1067 btrfs_set_header_nritems(&left->header, left_nritems);
1068
1069 btrfs_mark_buffer_dirty(left_buf);
1070 btrfs_mark_buffer_dirty(right_buf);
1071
1072 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1073 &right->items[0].key, sizeof(struct btrfs_disk_key));
1074 btrfs_mark_buffer_dirty(upper);
1075
1076 /* then fixup the leaf pointer in the path */
1077 if (path->slots[0] >= left_nritems) {
1078 path->slots[0] -= left_nritems;
1079 btrfs_block_release(root, path->nodes[0]);
1080 path->nodes[0] = right_buf;
1081 path->slots[1] += 1;
1082 } else {
1083 btrfs_block_release(root, right_buf);
1084 }
1085 return 0;
1086 }
1087 /*
1088 * push some data in the path leaf to the left, trying to free up at
1089 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1090 */
1091 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1092 *root, struct btrfs_path *path, int data_size)
1093 {
1094 struct buffer_head *right_buf = path->nodes[0];
1095 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1096 struct buffer_head *t;
1097 struct btrfs_leaf *left;
1098 int slot;
1099 int i;
1100 int free_space;
1101 int push_space = 0;
1102 int push_items = 0;
1103 struct btrfs_item *item;
1104 u32 old_left_nritems;
1105 int ret = 0;
1106 int wret;
1107
1108 slot = path->slots[1];
1109 if (slot == 0) {
1110 return 1;
1111 }
1112 if (!path->nodes[1]) {
1113 return 1;
1114 }
1115 t = read_tree_block(root,
1116 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1117 left = btrfs_buffer_leaf(t);
1118 free_space = btrfs_leaf_free_space(root, left);
1119 if (free_space < data_size + sizeof(struct btrfs_item)) {
1120 btrfs_block_release(root, t);
1121 return 1;
1122 }
1123
1124 /* cow and double check */
1125 btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1126 left = btrfs_buffer_leaf(t);
1127 free_space = btrfs_leaf_free_space(root, left);
1128 if (free_space < data_size + sizeof(struct btrfs_item)) {
1129 btrfs_block_release(root, t);
1130 return 1;
1131 }
1132
1133 if (btrfs_header_nritems(&right->header) == 0) {
1134 btrfs_block_release(root, t);
1135 return 1;
1136 }
1137
1138 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1139 item = right->items + i;
1140 if (path->slots[0] == i)
1141 push_space += data_size + sizeof(*item);
1142 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1143 free_space)
1144 break;
1145 push_items++;
1146 push_space += btrfs_item_size(item) + sizeof(*item);
1147 }
1148 if (push_items == 0) {
1149 btrfs_block_release(root, t);
1150 return 1;
1151 }
1152 if (push_items == btrfs_header_nritems(&right->header))
1153 WARN_ON(1);
1154 /* push data from right to left */
1155 btrfs_memcpy(root, left, left->items +
1156 btrfs_header_nritems(&left->header),
1157 right->items, push_items * sizeof(struct btrfs_item));
1158 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1159 btrfs_item_offset(right->items + push_items -1);
1160 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1161 leaf_data_end(root, left) - push_space,
1162 btrfs_leaf_data(right) +
1163 btrfs_item_offset(right->items + push_items - 1),
1164 push_space);
1165 old_left_nritems = btrfs_header_nritems(&left->header);
1166 BUG_ON(old_left_nritems < 0);
1167
1168 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1169 u32 ioff = btrfs_item_offset(left->items + i);
1170 btrfs_set_item_offset(left->items + i, ioff -
1171 (BTRFS_LEAF_DATA_SIZE(root) -
1172 btrfs_item_offset(left->items +
1173 old_left_nritems - 1)));
1174 }
1175 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1176
1177 /* fixup right node */
1178 push_space = btrfs_item_offset(right->items + push_items - 1) -
1179 leaf_data_end(root, right);
1180 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1181 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1182 btrfs_leaf_data(right) +
1183 leaf_data_end(root, right), push_space);
1184 btrfs_memmove(root, right, right->items, right->items + push_items,
1185 (btrfs_header_nritems(&right->header) - push_items) *
1186 sizeof(struct btrfs_item));
1187 btrfs_set_header_nritems(&right->header,
1188 btrfs_header_nritems(&right->header) -
1189 push_items);
1190 push_space = BTRFS_LEAF_DATA_SIZE(root);
1191
1192 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1193 btrfs_set_item_offset(right->items + i, push_space -
1194 btrfs_item_size(right->items + i));
1195 push_space = btrfs_item_offset(right->items + i);
1196 }
1197
1198 btrfs_mark_buffer_dirty(t);
1199 btrfs_mark_buffer_dirty(right_buf);
1200 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1201 if (wret)
1202 ret = wret;
1203
1204 /* then fixup the leaf pointer in the path */
1205 if (path->slots[0] < push_items) {
1206 path->slots[0] += old_left_nritems;
1207 btrfs_block_release(root, path->nodes[0]);
1208 path->nodes[0] = t;
1209 path->slots[1] -= 1;
1210 } else {
1211 btrfs_block_release(root, t);
1212 path->slots[0] -= push_items;
1213 }
1214 BUG_ON(path->slots[0] < 0);
1215 return ret;
1216 }
1217
1218 /*
1219 * split the path's leaf in two, making sure there is at least data_size
1220 * available for the resulting leaf level of the path.
1221 *
1222 * returns 0 if all went well and < 0 on failure.
1223 */
1224 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1225 *root, struct btrfs_key *ins_key,
1226 struct btrfs_path *path, int data_size)
1227 {
1228 struct buffer_head *l_buf;
1229 struct btrfs_leaf *l;
1230 u32 nritems;
1231 int mid;
1232 int slot;
1233 struct btrfs_leaf *right;
1234 struct buffer_head *right_buffer;
1235 int space_needed = data_size + sizeof(struct btrfs_item);
1236 int data_copy_size;
1237 int rt_data_off;
1238 int i;
1239 int ret = 0;
1240 int wret;
1241 int double_split = 0;
1242 struct btrfs_disk_key disk_key;
1243
1244 /* first try to make some room by pushing left and right */
1245 wret = push_leaf_left(trans, root, path, data_size);
1246 if (wret < 0)
1247 return wret;
1248 if (wret) {
1249 wret = push_leaf_right(trans, root, path, data_size);
1250 if (wret < 0)
1251 return wret;
1252 }
1253 l_buf = path->nodes[0];
1254 l = btrfs_buffer_leaf(l_buf);
1255
1256 /* did the pushes work? */
1257 if (btrfs_leaf_free_space(root, l) >=
1258 sizeof(struct btrfs_item) + data_size)
1259 return 0;
1260
1261 if (!path->nodes[1]) {
1262 ret = insert_new_root(trans, root, path, 1);
1263 if (ret)
1264 return ret;
1265 }
1266 slot = path->slots[0];
1267 nritems = btrfs_header_nritems(&l->header);
1268 mid = (nritems + 1)/ 2;
1269 right_buffer = btrfs_alloc_free_block(trans, root);
1270 BUG_ON(!right_buffer);
1271 right = btrfs_buffer_leaf(right_buffer);
1272 memset(&right->header, 0, sizeof(right->header));
1273 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1274 btrfs_set_header_generation(&right->header, trans->transid);
1275 btrfs_set_header_level(&right->header, 0);
1276 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1277 sizeof(right->header.fsid));
1278 if (mid <= slot) {
1279 if (nritems == 1 ||
1280 leaf_space_used(l, mid, nritems - mid) + space_needed >
1281 BTRFS_LEAF_DATA_SIZE(root)) {
1282 if (slot >= nritems) {
1283 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1284 btrfs_set_header_nritems(&right->header, 0);
1285 wret = insert_ptr(trans, root, path,
1286 &disk_key,
1287 bh_blocknr(right_buffer),
1288 path->slots[1] + 1, 1);
1289 if (wret)
1290 ret = wret;
1291 btrfs_block_release(root, path->nodes[0]);
1292 path->nodes[0] = right_buffer;
1293 path->slots[0] = 0;
1294 path->slots[1] += 1;
1295 return ret;
1296 }
1297 mid = slot;
1298 double_split = 1;
1299 }
1300 } else {
1301 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1302 BTRFS_LEAF_DATA_SIZE(root)) {
1303 if (slot == 0) {
1304 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1305 btrfs_set_header_nritems(&right->header, 0);
1306 wret = insert_ptr(trans, root, path,
1307 &disk_key,
1308 bh_blocknr(right_buffer),
1309 path->slots[1] - 1, 1);
1310 if (wret)
1311 ret = wret;
1312 btrfs_block_release(root, path->nodes[0]);
1313 path->nodes[0] = right_buffer;
1314 path->slots[0] = 0;
1315 path->slots[1] -= 1;
1316 if (path->slots[1] == 0) {
1317 wret = fixup_low_keys(trans, root,
1318 path, &disk_key, 1);
1319 if (wret)
1320 ret = wret;
1321 }
1322 return ret;
1323 }
1324 mid = slot;
1325 double_split = 1;
1326 }
1327 }
1328 btrfs_set_header_nritems(&right->header, nritems - mid);
1329 data_copy_size = btrfs_item_end(l->items + mid) -
1330 leaf_data_end(root, l);
1331 btrfs_memcpy(root, right, right->items, l->items + mid,
1332 (nritems - mid) * sizeof(struct btrfs_item));
1333 btrfs_memcpy(root, right,
1334 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1335 data_copy_size, btrfs_leaf_data(l) +
1336 leaf_data_end(root, l), data_copy_size);
1337 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1338 btrfs_item_end(l->items + mid);
1339
1340 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1341 u32 ioff = btrfs_item_offset(right->items + i);
1342 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1343 }
1344
1345 btrfs_set_header_nritems(&l->header, mid);
1346 ret = 0;
1347 wret = insert_ptr(trans, root, path, &right->items[0].key,
1348 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1349 if (wret)
1350 ret = wret;
1351 btrfs_mark_buffer_dirty(right_buffer);
1352 btrfs_mark_buffer_dirty(l_buf);
1353 BUG_ON(path->slots[0] != slot);
1354 if (mid <= slot) {
1355 btrfs_block_release(root, path->nodes[0]);
1356 path->nodes[0] = right_buffer;
1357 path->slots[0] -= mid;
1358 path->slots[1] += 1;
1359 } else
1360 btrfs_block_release(root, right_buffer);
1361 BUG_ON(path->slots[0] < 0);
1362
1363 if (!double_split)
1364 return ret;
1365 right_buffer = btrfs_alloc_free_block(trans, root);
1366 BUG_ON(!right_buffer);
1367 right = btrfs_buffer_leaf(right_buffer);
1368 memset(&right->header, 0, sizeof(right->header));
1369 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1370 btrfs_set_header_generation(&right->header, trans->transid);
1371 btrfs_set_header_level(&right->header, 0);
1372 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1373 sizeof(right->header.fsid));
1374 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1375 btrfs_set_header_nritems(&right->header, 0);
1376 wret = insert_ptr(trans, root, path,
1377 &disk_key,
1378 bh_blocknr(right_buffer),
1379 path->slots[1], 1);
1380 if (wret)
1381 ret = wret;
1382 if (path->slots[1] == 0) {
1383 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1384 if (wret)
1385 ret = wret;
1386 }
1387 btrfs_block_release(root, path->nodes[0]);
1388 path->nodes[0] = right_buffer;
1389 path->slots[0] = 0;
1390 check_node(root, path, 1);
1391 check_leaf(root, path, 0);
1392 return ret;
1393 }
1394
1395 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u32 new_size)
1399 {
1400 int ret = 0;
1401 int slot;
1402 int slot_orig;
1403 struct btrfs_leaf *leaf;
1404 struct buffer_head *leaf_buf;
1405 u32 nritems;
1406 unsigned int data_end;
1407 unsigned int old_data_start;
1408 unsigned int old_size;
1409 unsigned int size_diff;
1410 int i;
1411
1412 slot_orig = path->slots[0];
1413 leaf_buf = path->nodes[0];
1414 leaf = btrfs_buffer_leaf(leaf_buf);
1415
1416 nritems = btrfs_header_nritems(&leaf->header);
1417 data_end = leaf_data_end(root, leaf);
1418
1419 slot = path->slots[0];
1420 old_data_start = btrfs_item_offset(leaf->items + slot);
1421 old_size = btrfs_item_size(leaf->items + slot);
1422 BUG_ON(old_size <= new_size);
1423 size_diff = old_size - new_size;
1424
1425 BUG_ON(slot < 0);
1426 BUG_ON(slot >= nritems);
1427
1428 /*
1429 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1430 */
1431 /* first correct the data pointers */
1432 for (i = slot; i < nritems; i++) {
1433 u32 ioff = btrfs_item_offset(leaf->items + i);
1434 btrfs_set_item_offset(leaf->items + i,
1435 ioff + size_diff);
1436 }
1437 /* shift the data */
1438 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1439 data_end + size_diff, btrfs_leaf_data(leaf) +
1440 data_end, old_data_start + new_size - data_end);
1441 btrfs_set_item_size(leaf->items + slot, new_size);
1442 btrfs_mark_buffer_dirty(leaf_buf);
1443
1444 ret = 0;
1445 if (btrfs_leaf_free_space(root, leaf) < 0)
1446 BUG();
1447 check_leaf(root, path, 0);
1448 return ret;
1449 }
1450
1451 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1452 *root, struct btrfs_path *path, u32 data_size)
1453 {
1454 int ret = 0;
1455 int slot;
1456 int slot_orig;
1457 struct btrfs_leaf *leaf;
1458 struct buffer_head *leaf_buf;
1459 u32 nritems;
1460 unsigned int data_end;
1461 unsigned int old_data;
1462 unsigned int old_size;
1463 int i;
1464
1465 slot_orig = path->slots[0];
1466 leaf_buf = path->nodes[0];
1467 leaf = btrfs_buffer_leaf(leaf_buf);
1468
1469 nritems = btrfs_header_nritems(&leaf->header);
1470 data_end = leaf_data_end(root, leaf);
1471
1472 if (btrfs_leaf_free_space(root, leaf) < data_size)
1473 BUG();
1474 slot = path->slots[0];
1475 old_data = btrfs_item_end(leaf->items + slot);
1476
1477 BUG_ON(slot < 0);
1478 BUG_ON(slot >= nritems);
1479
1480 /*
1481 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1482 */
1483 /* first correct the data pointers */
1484 for (i = slot; i < nritems; i++) {
1485 u32 ioff = btrfs_item_offset(leaf->items + i);
1486 btrfs_set_item_offset(leaf->items + i,
1487 ioff - data_size);
1488 }
1489 /* shift the data */
1490 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1491 data_end - data_size, btrfs_leaf_data(leaf) +
1492 data_end, old_data - data_end);
1493 data_end = old_data;
1494 old_size = btrfs_item_size(leaf->items + slot);
1495 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1496 btrfs_mark_buffer_dirty(leaf_buf);
1497
1498 ret = 0;
1499 if (btrfs_leaf_free_space(root, leaf) < 0)
1500 BUG();
1501 check_leaf(root, path, 0);
1502 return ret;
1503 }
1504
1505 /*
1506 * Given a key and some data, insert an item into the tree.
1507 * This does all the path init required, making room in the tree if needed.
1508 */
1509 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1510 *root, struct btrfs_path *path, struct btrfs_key
1511 *cpu_key, u32 data_size)
1512 {
1513 int ret = 0;
1514 int slot;
1515 int slot_orig;
1516 struct btrfs_leaf *leaf;
1517 struct buffer_head *leaf_buf;
1518 u32 nritems;
1519 unsigned int data_end;
1520 struct btrfs_disk_key disk_key;
1521
1522 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1523
1524 /* create a root if there isn't one */
1525 if (!root->node)
1526 BUG();
1527 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1528 if (ret == 0) {
1529 return -EEXIST;
1530 }
1531 if (ret < 0)
1532 goto out;
1533
1534 slot_orig = path->slots[0];
1535 leaf_buf = path->nodes[0];
1536 leaf = btrfs_buffer_leaf(leaf_buf);
1537
1538 nritems = btrfs_header_nritems(&leaf->header);
1539 data_end = leaf_data_end(root, leaf);
1540
1541 if (btrfs_leaf_free_space(root, leaf) <
1542 sizeof(struct btrfs_item) + data_size) {
1543 BUG();
1544 }
1545 slot = path->slots[0];
1546 BUG_ON(slot < 0);
1547 if (slot != nritems) {
1548 int i;
1549 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1550
1551 /*
1552 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1553 */
1554 /* first correct the data pointers */
1555 for (i = slot; i < nritems; i++) {
1556 u32 ioff = btrfs_item_offset(leaf->items + i);
1557 btrfs_set_item_offset(leaf->items + i,
1558 ioff - data_size);
1559 }
1560
1561 /* shift the items */
1562 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1563 leaf->items + slot,
1564 (nritems - slot) * sizeof(struct btrfs_item));
1565
1566 /* shift the data */
1567 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1568 data_end - data_size, btrfs_leaf_data(leaf) +
1569 data_end, old_data - data_end);
1570 data_end = old_data;
1571 }
1572 /* setup the item for the new data */
1573 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1574 sizeof(struct btrfs_disk_key));
1575 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1576 btrfs_set_item_size(leaf->items + slot, data_size);
1577 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1578 btrfs_mark_buffer_dirty(leaf_buf);
1579
1580 ret = 0;
1581 if (slot == 0)
1582 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1583
1584 if (btrfs_leaf_free_space(root, leaf) < 0)
1585 BUG();
1586 check_leaf(root, path, 0);
1587 out:
1588 return ret;
1589 }
1590
1591 /*
1592 * Given a key and some data, insert an item into the tree.
1593 * This does all the path init required, making room in the tree if needed.
1594 */
1595 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1596 *root, struct btrfs_key *cpu_key, void *data, u32
1597 data_size)
1598 {
1599 int ret = 0;
1600 struct btrfs_path *path;
1601 u8 *ptr;
1602
1603 path = btrfs_alloc_path();
1604 BUG_ON(!path);
1605 btrfs_init_path(path);
1606 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1607 if (!ret) {
1608 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1609 path->slots[0], u8);
1610 btrfs_memcpy(root, path->nodes[0]->b_data,
1611 ptr, data, data_size);
1612 btrfs_mark_buffer_dirty(path->nodes[0]);
1613 }
1614 btrfs_release_path(root, path);
1615 btrfs_free_path(path);
1616 return ret;
1617 }
1618
1619 /*
1620 * delete the pointer from a given node.
1621 *
1622 * If the delete empties a node, the node is removed from the tree,
1623 * continuing all the way the root if required. The root is converted into
1624 * a leaf if all the nodes are emptied.
1625 */
1626 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1627 struct btrfs_path *path, int level, int slot)
1628 {
1629 struct btrfs_node *node;
1630 struct buffer_head *parent = path->nodes[level];
1631 u32 nritems;
1632 int ret = 0;
1633 int wret;
1634
1635 node = btrfs_buffer_node(parent);
1636 nritems = btrfs_header_nritems(&node->header);
1637 if (slot != nritems -1) {
1638 btrfs_memmove(root, node, node->ptrs + slot,
1639 node->ptrs + slot + 1,
1640 sizeof(struct btrfs_key_ptr) *
1641 (nritems - slot - 1));
1642 }
1643 nritems--;
1644 btrfs_set_header_nritems(&node->header, nritems);
1645 if (nritems == 0 && parent == root->node) {
1646 struct btrfs_header *header = btrfs_buffer_header(root->node);
1647 BUG_ON(btrfs_header_level(header) != 1);
1648 /* just turn the root into a leaf and break */
1649 btrfs_set_header_level(header, 0);
1650 } else if (slot == 0) {
1651 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1652 level + 1);
1653 if (wret)
1654 ret = wret;
1655 }
1656 btrfs_mark_buffer_dirty(parent);
1657 return ret;
1658 }
1659
1660 /*
1661 * delete the item at the leaf level in path. If that empties
1662 * the leaf, remove it from the tree
1663 */
1664 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1665 struct btrfs_path *path)
1666 {
1667 int slot;
1668 struct btrfs_leaf *leaf;
1669 struct buffer_head *leaf_buf;
1670 int doff;
1671 int dsize;
1672 int ret = 0;
1673 int wret;
1674 u32 nritems;
1675
1676 leaf_buf = path->nodes[0];
1677 leaf = btrfs_buffer_leaf(leaf_buf);
1678 slot = path->slots[0];
1679 doff = btrfs_item_offset(leaf->items + slot);
1680 dsize = btrfs_item_size(leaf->items + slot);
1681 nritems = btrfs_header_nritems(&leaf->header);
1682
1683 if (slot != nritems - 1) {
1684 int i;
1685 int data_end = leaf_data_end(root, leaf);
1686 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1687 data_end + dsize,
1688 btrfs_leaf_data(leaf) + data_end,
1689 doff - data_end);
1690 for (i = slot + 1; i < nritems; i++) {
1691 u32 ioff = btrfs_item_offset(leaf->items + i);
1692 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1693 }
1694 btrfs_memmove(root, leaf, leaf->items + slot,
1695 leaf->items + slot + 1,
1696 sizeof(struct btrfs_item) *
1697 (nritems - slot - 1));
1698 }
1699 btrfs_set_header_nritems(&leaf->header, nritems - 1);
1700 nritems--;
1701 /* delete the leaf if we've emptied it */
1702 if (nritems == 0) {
1703 if (leaf_buf == root->node) {
1704 btrfs_set_header_level(&leaf->header, 0);
1705 } else {
1706 clean_tree_block(trans, root, leaf_buf);
1707 wait_on_buffer(leaf_buf);
1708 wret = del_ptr(trans, root, path, 1, path->slots[1]);
1709 if (wret)
1710 ret = wret;
1711 wret = btrfs_free_extent(trans, root,
1712 bh_blocknr(leaf_buf), 1, 1);
1713 if (wret)
1714 ret = wret;
1715 }
1716 } else {
1717 int used = leaf_space_used(leaf, 0, nritems);
1718 if (slot == 0) {
1719 wret = fixup_low_keys(trans, root, path,
1720 &leaf->items[0].key, 1);
1721 if (wret)
1722 ret = wret;
1723 }
1724
1725 /* delete the leaf if it is mostly empty */
1726 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1727 /* push_leaf_left fixes the path.
1728 * make sure the path still points to our leaf
1729 * for possible call to del_ptr below
1730 */
1731 slot = path->slots[1];
1732 get_bh(leaf_buf);
1733 wret = push_leaf_left(trans, root, path, 1);
1734 if (wret < 0)
1735 ret = wret;
1736 if (path->nodes[0] == leaf_buf &&
1737 btrfs_header_nritems(&leaf->header)) {
1738 wret = push_leaf_right(trans, root, path, 1);
1739 if (wret < 0)
1740 ret = wret;
1741 }
1742 if (btrfs_header_nritems(&leaf->header) == 0) {
1743 u64 blocknr = bh_blocknr(leaf_buf);
1744 clean_tree_block(trans, root, leaf_buf);
1745 wait_on_buffer(leaf_buf);
1746 wret = del_ptr(trans, root, path, 1, slot);
1747 if (wret)
1748 ret = wret;
1749 btrfs_block_release(root, leaf_buf);
1750 wret = btrfs_free_extent(trans, root, blocknr,
1751 1, 1);
1752 if (wret)
1753 ret = wret;
1754 } else {
1755 btrfs_mark_buffer_dirty(leaf_buf);
1756 btrfs_block_release(root, leaf_buf);
1757 }
1758 } else {
1759 btrfs_mark_buffer_dirty(leaf_buf);
1760 }
1761 }
1762 return ret;
1763 }
1764
1765 /*
1766 * walk up the tree as far as required to find the next leaf.
1767 * returns 0 if it found something or 1 if there are no greater leaves.
1768 * returns < 0 on io errors.
1769 */
1770 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1771 {
1772 int slot;
1773 int level = 1;
1774 u64 blocknr;
1775 struct buffer_head *c;
1776 struct btrfs_node *c_node;
1777 struct buffer_head *next = NULL;
1778
1779 while(level < BTRFS_MAX_LEVEL) {
1780 if (!path->nodes[level])
1781 return 1;
1782 slot = path->slots[level] + 1;
1783 c = path->nodes[level];
1784 c_node = btrfs_buffer_node(c);
1785 if (slot >= btrfs_header_nritems(&c_node->header)) {
1786 level++;
1787 continue;
1788 }
1789 blocknr = btrfs_node_blockptr(c_node, slot);
1790 if (next)
1791 btrfs_block_release(root, next);
1792 next = read_tree_block(root, blocknr);
1793 break;
1794 }
1795 path->slots[level] = slot;
1796 while(1) {
1797 level--;
1798 c = path->nodes[level];
1799 btrfs_block_release(root, c);
1800 path->nodes[level] = next;
1801 path->slots[level] = 0;
1802 if (!level)
1803 break;
1804 next = read_tree_block(root,
1805 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1806 }
1807 return 0;
1808 }
This page took 0.090609 seconds and 6 git commands to generate.