Btrfs: Add BH_Defrag to mark buffers that are in need of defragging
[deliverable/linux.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22
23 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
24 *root, struct btrfs_path *path, int level);
25 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
26 *root, struct btrfs_key *ins_key,
27 struct btrfs_path *path, int data_size);
28 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct buffer_head *dst, struct buffer_head
30 *src);
31 static int balance_node_right(struct btrfs_trans_handle *trans, struct
32 btrfs_root *root, struct buffer_head *dst_buf,
33 struct buffer_head *src_buf);
34 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
35 struct btrfs_path *path, int level, int slot);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39 memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 struct btrfs_path *path;
45 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
46 if (path)
47 btrfs_init_path(path);
48 return path;
49 }
50
51 void btrfs_free_path(struct btrfs_path *p)
52 {
53 btrfs_release_path(NULL, p);
54 kmem_cache_free(btrfs_path_cachep, p);
55 }
56
57 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
58 {
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i])
62 break;
63 btrfs_block_release(root, p->nodes[i]);
64 }
65 memset(p, 0, sizeof(*p));
66 }
67
68 static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
69 *root, struct buffer_head *buf, struct buffer_head
70 *parent, int parent_slot, struct buffer_head
71 **cow_ret, u64 search_start, u64 empty_size)
72 {
73 struct buffer_head *cow;
74 struct btrfs_node *cow_node;
75 int ret = 0;
76 int different_trans = 0;
77
78 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
79 WARN_ON(!buffer_uptodate(buf));
80 cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
81 if (IS_ERR(cow))
82 return PTR_ERR(cow);
83
84 cow_node = btrfs_buffer_node(cow);
85 if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
86 WARN_ON(1);
87
88 memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
89 btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
90 btrfs_set_header_generation(&cow_node->header, trans->transid);
91 btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
92
93 WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
94 trans->transid);
95 if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
96 trans->transid) {
97 different_trans = 1;
98 ret = btrfs_inc_ref(trans, root, buf);
99 if (ret)
100 return ret;
101 } else {
102 clean_tree_block(trans, root, buf);
103 }
104
105 if (buf == root->node) {
106 root->node = cow;
107 get_bh(cow);
108 if (buf != root->commit_root) {
109 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
110 }
111 btrfs_block_release(root, buf);
112 } else {
113 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
114 bh_blocknr(cow));
115 btrfs_mark_buffer_dirty(parent);
116 WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
117 trans->transid);
118 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
119 }
120 btrfs_block_release(root, buf);
121 btrfs_mark_buffer_dirty(cow);
122 *cow_ret = cow;
123 return 0;
124 }
125
126 int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
127 *root, struct buffer_head *buf, struct buffer_head
128 *parent, int parent_slot, struct buffer_head
129 **cow_ret)
130 {
131 u64 search_start;
132 if (trans->transaction != root->fs_info->running_transaction) {
133 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
134 root->fs_info->running_transaction->transid);
135 WARN_ON(1);
136 }
137 if (trans->transid != root->fs_info->generation) {
138 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
139 root->fs_info->generation);
140 WARN_ON(1);
141 }
142 if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
143 trans->transid) {
144 *cow_ret = buf;
145 return 0;
146 }
147
148 search_start = bh_blocknr(buf) & ~((u64)65535);
149 return __btrfs_cow_block(trans, root, buf, parent,
150 parent_slot, cow_ret, search_start, 0);
151 }
152
153 static int close_blocks(u64 blocknr, u64 other)
154 {
155 if (blocknr < other && other - blocknr < 8)
156 return 1;
157 if (blocknr > other && blocknr - other < 8)
158 return 1;
159 return 0;
160 }
161
162 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
163 struct btrfs_root *root, struct buffer_head *parent,
164 int cache_only, u64 *last_ret)
165 {
166 struct btrfs_node *parent_node;
167 struct buffer_head *cur_bh;
168 struct buffer_head *tmp_bh;
169 u64 blocknr;
170 u64 search_start = *last_ret;
171 u64 last_block = 0;
172 u64 other;
173 u32 parent_nritems;
174 int start_slot;
175 int end_slot;
176 int i;
177 int err = 0;
178 int parent_level;
179
180 if (trans->transaction != root->fs_info->running_transaction) {
181 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
182 root->fs_info->running_transaction->transid);
183 WARN_ON(1);
184 }
185 if (trans->transid != root->fs_info->generation) {
186 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
187 root->fs_info->generation);
188 WARN_ON(1);
189 }
190 parent_node = btrfs_buffer_node(parent);
191 parent_nritems = btrfs_header_nritems(&parent_node->header);
192 parent_level = btrfs_header_level(&parent_node->header);
193
194 start_slot = 0;
195 end_slot = parent_nritems;
196
197 if (parent_nritems == 1)
198 return 0;
199
200 for (i = start_slot; i < end_slot; i++) {
201 int close = 1;
202 blocknr = btrfs_node_blockptr(parent_node, i);
203 if (last_block == 0)
204 last_block = blocknr;
205 if (i > 0) {
206 other = btrfs_node_blockptr(parent_node, i - 1);
207 close = close_blocks(blocknr, other);
208 }
209 if (close && i < end_slot - 1) {
210 other = btrfs_node_blockptr(parent_node, i + 1);
211 close = close_blocks(blocknr, other);
212 }
213 if (close) {
214 last_block = blocknr;
215 continue;
216 }
217
218 cur_bh = btrfs_find_tree_block(root, blocknr);
219 if (!cur_bh || !buffer_uptodate(cur_bh) ||
220 buffer_locked(cur_bh) || !buffer_defrag(cur_bh)) {
221 if (cache_only) {
222 brelse(cur_bh);
223 continue;
224 }
225 if (!cur_bh || !buffer_uptodate(cur_bh) ||
226 buffer_locked(cur_bh)) {
227 brelse(cur_bh);
228 cur_bh = read_tree_block(root, blocknr);
229 }
230 }
231 if (search_start == 0)
232 search_start = last_block & ~((u64)65535);
233
234 err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
235 &tmp_bh, search_start,
236 min(8, end_slot - i));
237 if (err)
238 break;
239 search_start = bh_blocknr(tmp_bh);
240 *last_ret = search_start;
241 if (parent_level == 1)
242 clear_buffer_defrag(tmp_bh);
243 brelse(tmp_bh);
244 }
245 return err;
246 }
247
248 /*
249 * The leaf data grows from end-to-front in the node.
250 * this returns the address of the start of the last item,
251 * which is the stop of the leaf data stack
252 */
253 static inline unsigned int leaf_data_end(struct btrfs_root *root,
254 struct btrfs_leaf *leaf)
255 {
256 u32 nr = btrfs_header_nritems(&leaf->header);
257 if (nr == 0)
258 return BTRFS_LEAF_DATA_SIZE(root);
259 return btrfs_item_offset(leaf->items + nr - 1);
260 }
261
262 /*
263 * compare two keys in a memcmp fashion
264 */
265 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
266 {
267 struct btrfs_key k1;
268
269 btrfs_disk_key_to_cpu(&k1, disk);
270
271 if (k1.objectid > k2->objectid)
272 return 1;
273 if (k1.objectid < k2->objectid)
274 return -1;
275 if (k1.flags > k2->flags)
276 return 1;
277 if (k1.flags < k2->flags)
278 return -1;
279 if (k1.offset > k2->offset)
280 return 1;
281 if (k1.offset < k2->offset)
282 return -1;
283 return 0;
284 }
285
286 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
287 int level)
288 {
289 struct btrfs_node *parent = NULL;
290 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
291 int parent_slot;
292 int slot;
293 struct btrfs_key cpukey;
294 u32 nritems = btrfs_header_nritems(&node->header);
295
296 if (path->nodes[level + 1])
297 parent = btrfs_buffer_node(path->nodes[level + 1]);
298
299 slot = path->slots[level];
300 BUG_ON(nritems == 0);
301 if (parent) {
302 struct btrfs_disk_key *parent_key;
303
304 parent_slot = path->slots[level + 1];
305 parent_key = &parent->ptrs[parent_slot].key;
306 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
307 sizeof(struct btrfs_disk_key)));
308 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
309 btrfs_header_blocknr(&node->header));
310 }
311 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
312 if (slot != 0) {
313 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
314 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
315 }
316 if (slot < nritems - 1) {
317 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
318 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
319 }
320 return 0;
321 }
322
323 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
324 int level)
325 {
326 struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
327 struct btrfs_node *parent = NULL;
328 int parent_slot;
329 int slot = path->slots[0];
330 struct btrfs_key cpukey;
331
332 u32 nritems = btrfs_header_nritems(&leaf->header);
333
334 if (path->nodes[level + 1])
335 parent = btrfs_buffer_node(path->nodes[level + 1]);
336
337 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
338
339 if (nritems == 0)
340 return 0;
341
342 if (parent) {
343 struct btrfs_disk_key *parent_key;
344
345 parent_slot = path->slots[level + 1];
346 parent_key = &parent->ptrs[parent_slot].key;
347
348 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
349 sizeof(struct btrfs_disk_key)));
350 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
351 btrfs_header_blocknr(&leaf->header));
352 }
353 if (slot != 0) {
354 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
355 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
356 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
357 btrfs_item_end(leaf->items + slot));
358 }
359 if (slot < nritems - 1) {
360 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
361 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
362 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
363 btrfs_item_end(leaf->items + slot + 1));
364 }
365 BUG_ON(btrfs_item_offset(leaf->items) +
366 btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
367 return 0;
368 }
369
370 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
371 int level)
372 {
373 struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
374 if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
375 sizeof(node->header.fsid)))
376 BUG();
377 if (level == 0)
378 return check_leaf(root, path, level);
379 return check_node(root, path, level);
380 }
381
382 /*
383 * search for key in the array p. items p are item_size apart
384 * and there are 'max' items in p
385 * the slot in the array is returned via slot, and it points to
386 * the place where you would insert key if it is not found in
387 * the array.
388 *
389 * slot may point to max if the key is bigger than all of the keys
390 */
391 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
392 int max, int *slot)
393 {
394 int low = 0;
395 int high = max;
396 int mid;
397 int ret;
398 struct btrfs_disk_key *tmp;
399
400 while(low < high) {
401 mid = (low + high) / 2;
402 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
403 ret = comp_keys(tmp, key);
404
405 if (ret < 0)
406 low = mid + 1;
407 else if (ret > 0)
408 high = mid;
409 else {
410 *slot = mid;
411 return 0;
412 }
413 }
414 *slot = low;
415 return 1;
416 }
417
418 /*
419 * simple bin_search frontend that does the right thing for
420 * leaves vs nodes
421 */
422 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
423 {
424 if (btrfs_is_leaf(c)) {
425 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
426 return generic_bin_search((void *)l->items,
427 sizeof(struct btrfs_item),
428 key, btrfs_header_nritems(&c->header),
429 slot);
430 } else {
431 return generic_bin_search((void *)c->ptrs,
432 sizeof(struct btrfs_key_ptr),
433 key, btrfs_header_nritems(&c->header),
434 slot);
435 }
436 return -1;
437 }
438
439 static struct buffer_head *read_node_slot(struct btrfs_root *root,
440 struct buffer_head *parent_buf,
441 int slot)
442 {
443 struct btrfs_node *node = btrfs_buffer_node(parent_buf);
444 if (slot < 0)
445 return NULL;
446 if (slot >= btrfs_header_nritems(&node->header))
447 return NULL;
448 return read_tree_block(root, btrfs_node_blockptr(node, slot));
449 }
450
451 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
452 *root, struct btrfs_path *path, int level)
453 {
454 struct buffer_head *right_buf;
455 struct buffer_head *mid_buf;
456 struct buffer_head *left_buf;
457 struct buffer_head *parent_buf = NULL;
458 struct btrfs_node *right = NULL;
459 struct btrfs_node *mid;
460 struct btrfs_node *left = NULL;
461 struct btrfs_node *parent = NULL;
462 int ret = 0;
463 int wret;
464 int pslot;
465 int orig_slot = path->slots[level];
466 int err_on_enospc = 0;
467 u64 orig_ptr;
468
469 if (level == 0)
470 return 0;
471
472 mid_buf = path->nodes[level];
473 mid = btrfs_buffer_node(mid_buf);
474 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
475
476 if (level < BTRFS_MAX_LEVEL - 1)
477 parent_buf = path->nodes[level + 1];
478 pslot = path->slots[level + 1];
479
480 /*
481 * deal with the case where there is only one pointer in the root
482 * by promoting the node below to a root
483 */
484 if (!parent_buf) {
485 struct buffer_head *child;
486 u64 blocknr = bh_blocknr(mid_buf);
487
488 if (btrfs_header_nritems(&mid->header) != 1)
489 return 0;
490
491 /* promote the child to a root */
492 child = read_node_slot(root, mid_buf, 0);
493 BUG_ON(!child);
494 root->node = child;
495 path->nodes[level] = NULL;
496 clean_tree_block(trans, root, mid_buf);
497 wait_on_buffer(mid_buf);
498 /* once for the path */
499 btrfs_block_release(root, mid_buf);
500 /* once for the root ptr */
501 btrfs_block_release(root, mid_buf);
502 return btrfs_free_extent(trans, root, blocknr, 1, 1);
503 }
504 parent = btrfs_buffer_node(parent_buf);
505
506 if (btrfs_header_nritems(&mid->header) >
507 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
508 return 0;
509
510 if (btrfs_header_nritems(&mid->header) < 2)
511 err_on_enospc = 1;
512
513 left_buf = read_node_slot(root, parent_buf, pslot - 1);
514 right_buf = read_node_slot(root, parent_buf, pslot + 1);
515
516 /* first, try to make some room in the middle buffer */
517 if (left_buf) {
518 wret = btrfs_cow_block(trans, root, left_buf,
519 parent_buf, pslot - 1, &left_buf);
520 if (wret) {
521 ret = wret;
522 goto enospc;
523 }
524 left = btrfs_buffer_node(left_buf);
525 orig_slot += btrfs_header_nritems(&left->header);
526 wret = push_node_left(trans, root, left_buf, mid_buf);
527 if (wret < 0)
528 ret = wret;
529 if (btrfs_header_nritems(&mid->header) < 2)
530 err_on_enospc = 1;
531 }
532
533 /*
534 * then try to empty the right most buffer into the middle
535 */
536 if (right_buf) {
537 wret = btrfs_cow_block(trans, root, right_buf,
538 parent_buf, pslot + 1, &right_buf);
539 if (wret) {
540 ret = wret;
541 goto enospc;
542 }
543
544 right = btrfs_buffer_node(right_buf);
545 wret = push_node_left(trans, root, mid_buf, right_buf);
546 if (wret < 0 && wret != -ENOSPC)
547 ret = wret;
548 if (btrfs_header_nritems(&right->header) == 0) {
549 u64 blocknr = bh_blocknr(right_buf);
550 clean_tree_block(trans, root, right_buf);
551 wait_on_buffer(right_buf);
552 btrfs_block_release(root, right_buf);
553 right_buf = NULL;
554 right = NULL;
555 wret = del_ptr(trans, root, path, level + 1, pslot +
556 1);
557 if (wret)
558 ret = wret;
559 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
560 if (wret)
561 ret = wret;
562 } else {
563 btrfs_memcpy(root, parent,
564 &parent->ptrs[pslot + 1].key,
565 &right->ptrs[0].key,
566 sizeof(struct btrfs_disk_key));
567 btrfs_mark_buffer_dirty(parent_buf);
568 }
569 }
570 if (btrfs_header_nritems(&mid->header) == 1) {
571 /*
572 * we're not allowed to leave a node with one item in the
573 * tree during a delete. A deletion from lower in the tree
574 * could try to delete the only pointer in this node.
575 * So, pull some keys from the left.
576 * There has to be a left pointer at this point because
577 * otherwise we would have pulled some pointers from the
578 * right
579 */
580 BUG_ON(!left_buf);
581 wret = balance_node_right(trans, root, mid_buf, left_buf);
582 if (wret < 0) {
583 ret = wret;
584 goto enospc;
585 }
586 BUG_ON(wret == 1);
587 }
588 if (btrfs_header_nritems(&mid->header) == 0) {
589 /* we've managed to empty the middle node, drop it */
590 u64 blocknr = bh_blocknr(mid_buf);
591 clean_tree_block(trans, root, mid_buf);
592 wait_on_buffer(mid_buf);
593 btrfs_block_release(root, mid_buf);
594 mid_buf = NULL;
595 mid = NULL;
596 wret = del_ptr(trans, root, path, level + 1, pslot);
597 if (wret)
598 ret = wret;
599 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
600 if (wret)
601 ret = wret;
602 } else {
603 /* update the parent key to reflect our changes */
604 btrfs_memcpy(root, parent,
605 &parent->ptrs[pslot].key, &mid->ptrs[0].key,
606 sizeof(struct btrfs_disk_key));
607 btrfs_mark_buffer_dirty(parent_buf);
608 }
609
610 /* update the path */
611 if (left_buf) {
612 if (btrfs_header_nritems(&left->header) > orig_slot) {
613 get_bh(left_buf);
614 path->nodes[level] = left_buf;
615 path->slots[level + 1] -= 1;
616 path->slots[level] = orig_slot;
617 if (mid_buf)
618 btrfs_block_release(root, mid_buf);
619 } else {
620 orig_slot -= btrfs_header_nritems(&left->header);
621 path->slots[level] = orig_slot;
622 }
623 }
624 /* double check we haven't messed things up */
625 check_block(root, path, level);
626 if (orig_ptr !=
627 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
628 path->slots[level]))
629 BUG();
630 enospc:
631 if (right_buf)
632 btrfs_block_release(root, right_buf);
633 if (left_buf)
634 btrfs_block_release(root, left_buf);
635 return ret;
636 }
637
638 /* returns zero if the push worked, non-zero otherwise */
639 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path, int level)
642 {
643 struct buffer_head *right_buf;
644 struct buffer_head *mid_buf;
645 struct buffer_head *left_buf;
646 struct buffer_head *parent_buf = NULL;
647 struct btrfs_node *right = NULL;
648 struct btrfs_node *mid;
649 struct btrfs_node *left = NULL;
650 struct btrfs_node *parent = NULL;
651 int ret = 0;
652 int wret;
653 int pslot;
654 int orig_slot = path->slots[level];
655 u64 orig_ptr;
656
657 if (level == 0)
658 return 1;
659
660 mid_buf = path->nodes[level];
661 mid = btrfs_buffer_node(mid_buf);
662 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
663
664 if (level < BTRFS_MAX_LEVEL - 1)
665 parent_buf = path->nodes[level + 1];
666 pslot = path->slots[level + 1];
667
668 if (!parent_buf)
669 return 1;
670 parent = btrfs_buffer_node(parent_buf);
671
672 left_buf = read_node_slot(root, parent_buf, pslot - 1);
673
674 /* first, try to make some room in the middle buffer */
675 if (left_buf) {
676 u32 left_nr;
677 left = btrfs_buffer_node(left_buf);
678 left_nr = btrfs_header_nritems(&left->header);
679 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
680 wret = 1;
681 } else {
682 ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
683 pslot - 1, &left_buf);
684 if (ret)
685 wret = 1;
686 else {
687 left = btrfs_buffer_node(left_buf);
688 wret = push_node_left(trans, root,
689 left_buf, mid_buf);
690 }
691 }
692 if (wret < 0)
693 ret = wret;
694 if (wret == 0) {
695 orig_slot += left_nr;
696 btrfs_memcpy(root, parent,
697 &parent->ptrs[pslot].key,
698 &mid->ptrs[0].key,
699 sizeof(struct btrfs_disk_key));
700 btrfs_mark_buffer_dirty(parent_buf);
701 if (btrfs_header_nritems(&left->header) > orig_slot) {
702 path->nodes[level] = left_buf;
703 path->slots[level + 1] -= 1;
704 path->slots[level] = orig_slot;
705 btrfs_block_release(root, mid_buf);
706 } else {
707 orig_slot -=
708 btrfs_header_nritems(&left->header);
709 path->slots[level] = orig_slot;
710 btrfs_block_release(root, left_buf);
711 }
712 check_node(root, path, level);
713 return 0;
714 }
715 btrfs_block_release(root, left_buf);
716 }
717 right_buf = read_node_slot(root, parent_buf, pslot + 1);
718
719 /*
720 * then try to empty the right most buffer into the middle
721 */
722 if (right_buf) {
723 u32 right_nr;
724 right = btrfs_buffer_node(right_buf);
725 right_nr = btrfs_header_nritems(&right->header);
726 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
727 wret = 1;
728 } else {
729 ret = btrfs_cow_block(trans, root, right_buf,
730 parent_buf, pslot + 1,
731 &right_buf);
732 if (ret)
733 wret = 1;
734 else {
735 right = btrfs_buffer_node(right_buf);
736 wret = balance_node_right(trans, root,
737 right_buf, mid_buf);
738 }
739 }
740 if (wret < 0)
741 ret = wret;
742 if (wret == 0) {
743 btrfs_memcpy(root, parent,
744 &parent->ptrs[pslot + 1].key,
745 &right->ptrs[0].key,
746 sizeof(struct btrfs_disk_key));
747 btrfs_mark_buffer_dirty(parent_buf);
748 if (btrfs_header_nritems(&mid->header) <= orig_slot) {
749 path->nodes[level] = right_buf;
750 path->slots[level + 1] += 1;
751 path->slots[level] = orig_slot -
752 btrfs_header_nritems(&mid->header);
753 btrfs_block_release(root, mid_buf);
754 } else {
755 btrfs_block_release(root, right_buf);
756 }
757 check_node(root, path, level);
758 return 0;
759 }
760 btrfs_block_release(root, right_buf);
761 }
762 check_node(root, path, level);
763 return 1;
764 }
765
766 /*
767 * readahead one full node of leaves
768 */
769 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
770 int level, int slot)
771 {
772 struct btrfs_node *node;
773 int i;
774 u32 nritems;
775 u64 item_objectid;
776 u64 blocknr;
777 u64 search;
778 u64 cluster_start;
779 int ret;
780 int nread = 0;
781 int direction = path->reada;
782 struct radix_tree_root found;
783 unsigned long gang[8];
784 struct buffer_head *bh;
785
786 if (level == 0)
787 return;
788
789 if (!path->nodes[level])
790 return;
791
792 node = btrfs_buffer_node(path->nodes[level]);
793 search = btrfs_node_blockptr(node, slot);
794 bh = btrfs_find_tree_block(root, search);
795 if (bh) {
796 brelse(bh);
797 return;
798 }
799
800 init_bit_radix(&found);
801 nritems = btrfs_header_nritems(&node->header);
802 for (i = slot; i < nritems; i++) {
803 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
804 blocknr = btrfs_node_blockptr(node, i);
805 set_radix_bit(&found, blocknr);
806 }
807 if (direction > 0) {
808 cluster_start = search - 4;
809 if (cluster_start > search)
810 cluster_start = 0;
811 } else
812 cluster_start = search + 4;
813 while(1) {
814 ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
815 if (!ret)
816 break;
817 for (i = 0; i < ret; i++) {
818 blocknr = gang[i];
819 clear_radix_bit(&found, blocknr);
820 if (nread > 32)
821 continue;
822 if (close_blocks(cluster_start, blocknr)) {
823 readahead_tree_block(root, blocknr);
824 nread++;
825 cluster_start = blocknr;
826 }
827 }
828 }
829 }
830 /*
831 * look for key in the tree. path is filled in with nodes along the way
832 * if key is found, we return zero and you can find the item in the leaf
833 * level of the path (level 0)
834 *
835 * If the key isn't found, the path points to the slot where it should
836 * be inserted, and 1 is returned. If there are other errors during the
837 * search a negative error number is returned.
838 *
839 * if ins_len > 0, nodes and leaves will be split as we walk down the
840 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
841 * possible)
842 */
843 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
844 *root, struct btrfs_key *key, struct btrfs_path *p, int
845 ins_len, int cow)
846 {
847 struct buffer_head *b;
848 struct buffer_head *cow_buf;
849 struct btrfs_node *c;
850 u64 blocknr;
851 int slot;
852 int ret;
853 int level;
854 int should_reada = p->reada;
855 u8 lowest_level = 0;
856
857 lowest_level = p->lowest_level;
858 WARN_ON(lowest_level && ins_len);
859 WARN_ON(p->nodes[0] != NULL);
860 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
861 again:
862 b = root->node;
863 get_bh(b);
864 while (b) {
865 c = btrfs_buffer_node(b);
866 level = btrfs_header_level(&c->header);
867 if (cow) {
868 int wret;
869 wret = btrfs_cow_block(trans, root, b,
870 p->nodes[level + 1],
871 p->slots[level + 1],
872 &cow_buf);
873 if (wret) {
874 btrfs_block_release(root, cow_buf);
875 return wret;
876 }
877 b = cow_buf;
878 c = btrfs_buffer_node(b);
879 }
880 BUG_ON(!cow && ins_len);
881 if (level != btrfs_header_level(&c->header))
882 WARN_ON(1);
883 level = btrfs_header_level(&c->header);
884 p->nodes[level] = b;
885 ret = check_block(root, p, level);
886 if (ret)
887 return -1;
888 ret = bin_search(c, key, &slot);
889 if (!btrfs_is_leaf(c)) {
890 if (ret && slot > 0)
891 slot -= 1;
892 p->slots[level] = slot;
893 if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
894 BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
895 int sret = split_node(trans, root, p, level);
896 BUG_ON(sret > 0);
897 if (sret)
898 return sret;
899 b = p->nodes[level];
900 c = btrfs_buffer_node(b);
901 slot = p->slots[level];
902 } else if (ins_len < 0) {
903 int sret = balance_level(trans, root, p,
904 level);
905 if (sret)
906 return sret;
907 b = p->nodes[level];
908 if (!b)
909 goto again;
910 c = btrfs_buffer_node(b);
911 slot = p->slots[level];
912 BUG_ON(btrfs_header_nritems(&c->header) == 1);
913 }
914 /* this is only true while dropping a snapshot */
915 if (level == lowest_level)
916 break;
917 blocknr = btrfs_node_blockptr(c, slot);
918 if (should_reada)
919 reada_for_search(root, p, level, slot);
920 b = read_tree_block(root, btrfs_node_blockptr(c, slot));
921
922 } else {
923 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
924 p->slots[level] = slot;
925 if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
926 sizeof(struct btrfs_item) + ins_len) {
927 int sret = split_leaf(trans, root, key,
928 p, ins_len);
929 BUG_ON(sret > 0);
930 if (sret)
931 return sret;
932 }
933 return ret;
934 }
935 }
936 return 1;
937 }
938
939 /*
940 * adjust the pointers going up the tree, starting at level
941 * making sure the right key of each node is points to 'key'.
942 * This is used after shifting pointers to the left, so it stops
943 * fixing up pointers when a given leaf/node is not in slot 0 of the
944 * higher levels
945 *
946 * If this fails to write a tree block, it returns -1, but continues
947 * fixing up the blocks in ram so the tree is consistent.
948 */
949 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
950 *root, struct btrfs_path *path, struct btrfs_disk_key
951 *key, int level)
952 {
953 int i;
954 int ret = 0;
955 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
956 struct btrfs_node *t;
957 int tslot = path->slots[i];
958 if (!path->nodes[i])
959 break;
960 t = btrfs_buffer_node(path->nodes[i]);
961 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
962 btrfs_mark_buffer_dirty(path->nodes[i]);
963 if (tslot != 0)
964 break;
965 }
966 return ret;
967 }
968
969 /*
970 * try to push data from one node into the next node left in the
971 * tree.
972 *
973 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
974 * error, and > 0 if there was no room in the left hand block.
975 */
976 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
977 *root, struct buffer_head *dst_buf, struct
978 buffer_head *src_buf)
979 {
980 struct btrfs_node *src = btrfs_buffer_node(src_buf);
981 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
982 int push_items = 0;
983 int src_nritems;
984 int dst_nritems;
985 int ret = 0;
986
987 src_nritems = btrfs_header_nritems(&src->header);
988 dst_nritems = btrfs_header_nritems(&dst->header);
989 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
990
991 if (push_items <= 0) {
992 return 1;
993 }
994
995 if (src_nritems < push_items)
996 push_items = src_nritems;
997
998 btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
999 push_items * sizeof(struct btrfs_key_ptr));
1000 if (push_items < src_nritems) {
1001 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
1002 (src_nritems - push_items) *
1003 sizeof(struct btrfs_key_ptr));
1004 }
1005 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1006 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1007 btrfs_mark_buffer_dirty(src_buf);
1008 btrfs_mark_buffer_dirty(dst_buf);
1009 return ret;
1010 }
1011
1012 /*
1013 * try to push data from one node into the next node right in the
1014 * tree.
1015 *
1016 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1017 * error, and > 0 if there was no room in the right hand block.
1018 *
1019 * this will only push up to 1/2 the contents of the left node over
1020 */
1021 static int balance_node_right(struct btrfs_trans_handle *trans, struct
1022 btrfs_root *root, struct buffer_head *dst_buf,
1023 struct buffer_head *src_buf)
1024 {
1025 struct btrfs_node *src = btrfs_buffer_node(src_buf);
1026 struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
1027 int push_items = 0;
1028 int max_push;
1029 int src_nritems;
1030 int dst_nritems;
1031 int ret = 0;
1032
1033 src_nritems = btrfs_header_nritems(&src->header);
1034 dst_nritems = btrfs_header_nritems(&dst->header);
1035 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1036 if (push_items <= 0) {
1037 return 1;
1038 }
1039
1040 max_push = src_nritems / 2 + 1;
1041 /* don't try to empty the node */
1042 if (max_push > src_nritems)
1043 return 1;
1044 if (max_push < push_items)
1045 push_items = max_push;
1046
1047 btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
1048 dst_nritems * sizeof(struct btrfs_key_ptr));
1049
1050 btrfs_memcpy(root, dst, dst->ptrs,
1051 src->ptrs + src_nritems - push_items,
1052 push_items * sizeof(struct btrfs_key_ptr));
1053
1054 btrfs_set_header_nritems(&src->header, src_nritems - push_items);
1055 btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
1056
1057 btrfs_mark_buffer_dirty(src_buf);
1058 btrfs_mark_buffer_dirty(dst_buf);
1059 return ret;
1060 }
1061
1062 /*
1063 * helper function to insert a new root level in the tree.
1064 * A new node is allocated, and a single item is inserted to
1065 * point to the existing root
1066 *
1067 * returns zero on success or < 0 on failure.
1068 */
1069 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
1070 *root, struct btrfs_path *path, int level)
1071 {
1072 struct buffer_head *t;
1073 struct btrfs_node *lower;
1074 struct btrfs_node *c;
1075 struct btrfs_disk_key *lower_key;
1076
1077 BUG_ON(path->nodes[level]);
1078 BUG_ON(path->nodes[level-1] != root->node);
1079
1080 t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
1081 if (IS_ERR(t))
1082 return PTR_ERR(t);
1083 c = btrfs_buffer_node(t);
1084 memset(c, 0, root->blocksize);
1085 btrfs_set_header_nritems(&c->header, 1);
1086 btrfs_set_header_level(&c->header, level);
1087 btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
1088 btrfs_set_header_generation(&c->header, trans->transid);
1089 btrfs_set_header_owner(&c->header, root->root_key.objectid);
1090 lower = btrfs_buffer_node(path->nodes[level-1]);
1091 memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
1092 sizeof(c->header.fsid));
1093 if (btrfs_is_leaf(lower))
1094 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
1095 else
1096 lower_key = &lower->ptrs[0].key;
1097 btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
1098 sizeof(struct btrfs_disk_key));
1099 btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
1100
1101 btrfs_mark_buffer_dirty(t);
1102
1103 /* the super has an extra ref to root->node */
1104 btrfs_block_release(root, root->node);
1105 root->node = t;
1106 get_bh(t);
1107 path->nodes[level] = t;
1108 path->slots[level] = 0;
1109 return 0;
1110 }
1111
1112 /*
1113 * worker function to insert a single pointer in a node.
1114 * the node should have enough room for the pointer already
1115 *
1116 * slot and level indicate where you want the key to go, and
1117 * blocknr is the block the key points to.
1118 *
1119 * returns zero on success and < 0 on any error
1120 */
1121 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1122 *root, struct btrfs_path *path, struct btrfs_disk_key
1123 *key, u64 blocknr, int slot, int level)
1124 {
1125 struct btrfs_node *lower;
1126 int nritems;
1127
1128 BUG_ON(!path->nodes[level]);
1129 lower = btrfs_buffer_node(path->nodes[level]);
1130 nritems = btrfs_header_nritems(&lower->header);
1131 if (slot > nritems)
1132 BUG();
1133 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1134 BUG();
1135 if (slot != nritems) {
1136 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
1137 lower->ptrs + slot,
1138 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1139 }
1140 btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
1141 key, sizeof(struct btrfs_disk_key));
1142 btrfs_set_node_blockptr(lower, slot, blocknr);
1143 btrfs_set_header_nritems(&lower->header, nritems + 1);
1144 btrfs_mark_buffer_dirty(path->nodes[level]);
1145 check_node(root, path, level);
1146 return 0;
1147 }
1148
1149 /*
1150 * split the node at the specified level in path in two.
1151 * The path is corrected to point to the appropriate node after the split
1152 *
1153 * Before splitting this tries to make some room in the node by pushing
1154 * left and right, if either one works, it returns right away.
1155 *
1156 * returns 0 on success and < 0 on failure
1157 */
1158 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1159 *root, struct btrfs_path *path, int level)
1160 {
1161 struct buffer_head *t;
1162 struct btrfs_node *c;
1163 struct buffer_head *split_buffer;
1164 struct btrfs_node *split;
1165 int mid;
1166 int ret;
1167 int wret;
1168 u32 c_nritems;
1169
1170 t = path->nodes[level];
1171 c = btrfs_buffer_node(t);
1172 if (t == root->node) {
1173 /* trying to split the root, lets make a new one */
1174 ret = insert_new_root(trans, root, path, level + 1);
1175 if (ret)
1176 return ret;
1177 } else {
1178 ret = push_nodes_for_insert(trans, root, path, level);
1179 t = path->nodes[level];
1180 c = btrfs_buffer_node(t);
1181 if (!ret &&
1182 btrfs_header_nritems(&c->header) <
1183 BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
1184 return 0;
1185 if (ret < 0)
1186 return ret;
1187 }
1188
1189 c_nritems = btrfs_header_nritems(&c->header);
1190 split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
1191 if (IS_ERR(split_buffer))
1192 return PTR_ERR(split_buffer);
1193
1194 split = btrfs_buffer_node(split_buffer);
1195 btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
1196 btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
1197 btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
1198 btrfs_set_header_generation(&split->header, trans->transid);
1199 btrfs_set_header_owner(&split->header, root->root_key.objectid);
1200 memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
1201 sizeof(split->header.fsid));
1202 mid = (c_nritems + 1) / 2;
1203 btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1204 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1205 btrfs_set_header_nritems(&split->header, c_nritems - mid);
1206 btrfs_set_header_nritems(&c->header, mid);
1207 ret = 0;
1208
1209 btrfs_mark_buffer_dirty(t);
1210 btrfs_mark_buffer_dirty(split_buffer);
1211 wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1212 bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1213 level + 1);
1214 if (wret)
1215 ret = wret;
1216
1217 if (path->slots[level] >= mid) {
1218 path->slots[level] -= mid;
1219 btrfs_block_release(root, t);
1220 path->nodes[level] = split_buffer;
1221 path->slots[level + 1] += 1;
1222 } else {
1223 btrfs_block_release(root, split_buffer);
1224 }
1225 return ret;
1226 }
1227
1228 /*
1229 * how many bytes are required to store the items in a leaf. start
1230 * and nr indicate which items in the leaf to check. This totals up the
1231 * space used both by the item structs and the item data
1232 */
1233 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1234 {
1235 int data_len;
1236 int nritems = btrfs_header_nritems(&l->header);
1237 int end = min(nritems, start + nr) - 1;
1238
1239 if (!nr)
1240 return 0;
1241 data_len = btrfs_item_end(l->items + start);
1242 data_len = data_len - btrfs_item_offset(l->items + end);
1243 data_len += sizeof(struct btrfs_item) * nr;
1244 WARN_ON(data_len < 0);
1245 return data_len;
1246 }
1247
1248 /*
1249 * The space between the end of the leaf items and
1250 * the start of the leaf data. IOW, how much room
1251 * the leaf has left for both items and data
1252 */
1253 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1254 {
1255 int nritems = btrfs_header_nritems(&leaf->header);
1256 return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1257 }
1258
1259 /*
1260 * push some data in the path leaf to the right, trying to free up at
1261 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1262 *
1263 * returns 1 if the push failed because the other node didn't have enough
1264 * room, 0 if everything worked out and < 0 if there were major errors.
1265 */
1266 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1267 *root, struct btrfs_path *path, int data_size)
1268 {
1269 struct buffer_head *left_buf = path->nodes[0];
1270 struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1271 struct btrfs_leaf *right;
1272 struct buffer_head *right_buf;
1273 struct buffer_head *upper;
1274 struct btrfs_node *upper_node;
1275 int slot;
1276 int i;
1277 int free_space;
1278 int push_space = 0;
1279 int push_items = 0;
1280 struct btrfs_item *item;
1281 u32 left_nritems;
1282 u32 right_nritems;
1283 int ret;
1284
1285 slot = path->slots[1];
1286 if (!path->nodes[1]) {
1287 return 1;
1288 }
1289 upper = path->nodes[1];
1290 upper_node = btrfs_buffer_node(upper);
1291 if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1292 return 1;
1293 }
1294 right_buf = read_tree_block(root,
1295 btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1296 right = btrfs_buffer_leaf(right_buf);
1297 free_space = btrfs_leaf_free_space(root, right);
1298 if (free_space < data_size + sizeof(struct btrfs_item)) {
1299 btrfs_block_release(root, right_buf);
1300 return 1;
1301 }
1302 /* cow and double check */
1303 ret = btrfs_cow_block(trans, root, right_buf, upper,
1304 slot + 1, &right_buf);
1305 if (ret) {
1306 btrfs_block_release(root, right_buf);
1307 return 1;
1308 }
1309 right = btrfs_buffer_leaf(right_buf);
1310 free_space = btrfs_leaf_free_space(root, right);
1311 if (free_space < data_size + sizeof(struct btrfs_item)) {
1312 btrfs_block_release(root, right_buf);
1313 return 1;
1314 }
1315
1316 left_nritems = btrfs_header_nritems(&left->header);
1317 if (left_nritems == 0) {
1318 btrfs_block_release(root, right_buf);
1319 return 1;
1320 }
1321 for (i = left_nritems - 1; i >= 1; i--) {
1322 item = left->items + i;
1323 if (path->slots[0] == i)
1324 push_space += data_size + sizeof(*item);
1325 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1326 free_space)
1327 break;
1328 push_items++;
1329 push_space += btrfs_item_size(item) + sizeof(*item);
1330 }
1331 if (push_items == 0) {
1332 btrfs_block_release(root, right_buf);
1333 return 1;
1334 }
1335 if (push_items == left_nritems)
1336 WARN_ON(1);
1337 right_nritems = btrfs_header_nritems(&right->header);
1338 /* push left to right */
1339 push_space = btrfs_item_end(left->items + left_nritems - push_items);
1340 push_space -= leaf_data_end(root, left);
1341 /* make room in the right data area */
1342 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1343 leaf_data_end(root, right) - push_space,
1344 btrfs_leaf_data(right) +
1345 leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1346 leaf_data_end(root, right));
1347 /* copy from the left data area */
1348 btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1349 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1350 btrfs_leaf_data(left) + leaf_data_end(root, left),
1351 push_space);
1352 btrfs_memmove(root, right, right->items + push_items, right->items,
1353 right_nritems * sizeof(struct btrfs_item));
1354 /* copy the items from left to right */
1355 btrfs_memcpy(root, right, right->items, left->items +
1356 left_nritems - push_items,
1357 push_items * sizeof(struct btrfs_item));
1358
1359 /* update the item pointers */
1360 right_nritems += push_items;
1361 btrfs_set_header_nritems(&right->header, right_nritems);
1362 push_space = BTRFS_LEAF_DATA_SIZE(root);
1363 for (i = 0; i < right_nritems; i++) {
1364 btrfs_set_item_offset(right->items + i, push_space -
1365 btrfs_item_size(right->items + i));
1366 push_space = btrfs_item_offset(right->items + i);
1367 }
1368 left_nritems -= push_items;
1369 btrfs_set_header_nritems(&left->header, left_nritems);
1370
1371 btrfs_mark_buffer_dirty(left_buf);
1372 btrfs_mark_buffer_dirty(right_buf);
1373
1374 btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1375 &right->items[0].key, sizeof(struct btrfs_disk_key));
1376 btrfs_mark_buffer_dirty(upper);
1377
1378 /* then fixup the leaf pointer in the path */
1379 if (path->slots[0] >= left_nritems) {
1380 path->slots[0] -= left_nritems;
1381 btrfs_block_release(root, path->nodes[0]);
1382 path->nodes[0] = right_buf;
1383 path->slots[1] += 1;
1384 } else {
1385 btrfs_block_release(root, right_buf);
1386 }
1387 if (path->nodes[1])
1388 check_node(root, path, 1);
1389 return 0;
1390 }
1391 /*
1392 * push some data in the path leaf to the left, trying to free up at
1393 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1394 */
1395 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1396 *root, struct btrfs_path *path, int data_size)
1397 {
1398 struct buffer_head *right_buf = path->nodes[0];
1399 struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1400 struct buffer_head *t;
1401 struct btrfs_leaf *left;
1402 int slot;
1403 int i;
1404 int free_space;
1405 int push_space = 0;
1406 int push_items = 0;
1407 struct btrfs_item *item;
1408 u32 old_left_nritems;
1409 int ret = 0;
1410 int wret;
1411
1412 slot = path->slots[1];
1413 if (slot == 0) {
1414 return 1;
1415 }
1416 if (!path->nodes[1]) {
1417 return 1;
1418 }
1419 t = read_tree_block(root,
1420 btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1421 left = btrfs_buffer_leaf(t);
1422 free_space = btrfs_leaf_free_space(root, left);
1423 if (free_space < data_size + sizeof(struct btrfs_item)) {
1424 btrfs_block_release(root, t);
1425 return 1;
1426 }
1427
1428 /* cow and double check */
1429 ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1430 if (ret) {
1431 /* we hit -ENOSPC, but it isn't fatal here */
1432 return 1;
1433 }
1434 left = btrfs_buffer_leaf(t);
1435 free_space = btrfs_leaf_free_space(root, left);
1436 if (free_space < data_size + sizeof(struct btrfs_item)) {
1437 btrfs_block_release(root, t);
1438 return 1;
1439 }
1440
1441 if (btrfs_header_nritems(&right->header) == 0) {
1442 btrfs_block_release(root, t);
1443 return 1;
1444 }
1445
1446 for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1447 item = right->items + i;
1448 if (path->slots[0] == i)
1449 push_space += data_size + sizeof(*item);
1450 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1451 free_space)
1452 break;
1453 push_items++;
1454 push_space += btrfs_item_size(item) + sizeof(*item);
1455 }
1456 if (push_items == 0) {
1457 btrfs_block_release(root, t);
1458 return 1;
1459 }
1460 if (push_items == btrfs_header_nritems(&right->header))
1461 WARN_ON(1);
1462 /* push data from right to left */
1463 btrfs_memcpy(root, left, left->items +
1464 btrfs_header_nritems(&left->header),
1465 right->items, push_items * sizeof(struct btrfs_item));
1466 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1467 btrfs_item_offset(right->items + push_items -1);
1468 btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1469 leaf_data_end(root, left) - push_space,
1470 btrfs_leaf_data(right) +
1471 btrfs_item_offset(right->items + push_items - 1),
1472 push_space);
1473 old_left_nritems = btrfs_header_nritems(&left->header);
1474 BUG_ON(old_left_nritems < 0);
1475
1476 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1477 u32 ioff = btrfs_item_offset(left->items + i);
1478 btrfs_set_item_offset(left->items + i, ioff -
1479 (BTRFS_LEAF_DATA_SIZE(root) -
1480 btrfs_item_offset(left->items +
1481 old_left_nritems - 1)));
1482 }
1483 btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1484
1485 /* fixup right node */
1486 push_space = btrfs_item_offset(right->items + push_items - 1) -
1487 leaf_data_end(root, right);
1488 btrfs_memmove(root, right, btrfs_leaf_data(right) +
1489 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1490 btrfs_leaf_data(right) +
1491 leaf_data_end(root, right), push_space);
1492 btrfs_memmove(root, right, right->items, right->items + push_items,
1493 (btrfs_header_nritems(&right->header) - push_items) *
1494 sizeof(struct btrfs_item));
1495 btrfs_set_header_nritems(&right->header,
1496 btrfs_header_nritems(&right->header) -
1497 push_items);
1498 push_space = BTRFS_LEAF_DATA_SIZE(root);
1499
1500 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1501 btrfs_set_item_offset(right->items + i, push_space -
1502 btrfs_item_size(right->items + i));
1503 push_space = btrfs_item_offset(right->items + i);
1504 }
1505
1506 btrfs_mark_buffer_dirty(t);
1507 btrfs_mark_buffer_dirty(right_buf);
1508
1509 wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1510 if (wret)
1511 ret = wret;
1512
1513 /* then fixup the leaf pointer in the path */
1514 if (path->slots[0] < push_items) {
1515 path->slots[0] += old_left_nritems;
1516 btrfs_block_release(root, path->nodes[0]);
1517 path->nodes[0] = t;
1518 path->slots[1] -= 1;
1519 } else {
1520 btrfs_block_release(root, t);
1521 path->slots[0] -= push_items;
1522 }
1523 BUG_ON(path->slots[0] < 0);
1524 if (path->nodes[1])
1525 check_node(root, path, 1);
1526 return ret;
1527 }
1528
1529 /*
1530 * split the path's leaf in two, making sure there is at least data_size
1531 * available for the resulting leaf level of the path.
1532 *
1533 * returns 0 if all went well and < 0 on failure.
1534 */
1535 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1536 *root, struct btrfs_key *ins_key,
1537 struct btrfs_path *path, int data_size)
1538 {
1539 struct buffer_head *l_buf;
1540 struct btrfs_leaf *l;
1541 u32 nritems;
1542 int mid;
1543 int slot;
1544 struct btrfs_leaf *right;
1545 struct buffer_head *right_buffer;
1546 int space_needed = data_size + sizeof(struct btrfs_item);
1547 int data_copy_size;
1548 int rt_data_off;
1549 int i;
1550 int ret = 0;
1551 int wret;
1552 int double_split = 0;
1553 struct btrfs_disk_key disk_key;
1554
1555 /* first try to make some room by pushing left and right */
1556 wret = push_leaf_left(trans, root, path, data_size);
1557 if (wret < 0)
1558 return wret;
1559 if (wret) {
1560 wret = push_leaf_right(trans, root, path, data_size);
1561 if (wret < 0)
1562 return wret;
1563 }
1564 l_buf = path->nodes[0];
1565 l = btrfs_buffer_leaf(l_buf);
1566
1567 /* did the pushes work? */
1568 if (btrfs_leaf_free_space(root, l) >=
1569 sizeof(struct btrfs_item) + data_size)
1570 return 0;
1571
1572 if (!path->nodes[1]) {
1573 ret = insert_new_root(trans, root, path, 1);
1574 if (ret)
1575 return ret;
1576 }
1577 slot = path->slots[0];
1578 nritems = btrfs_header_nritems(&l->header);
1579 mid = (nritems + 1)/ 2;
1580
1581 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1582 if (IS_ERR(right_buffer))
1583 return PTR_ERR(right_buffer);
1584
1585 right = btrfs_buffer_leaf(right_buffer);
1586 memset(&right->header, 0, sizeof(right->header));
1587 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1588 btrfs_set_header_generation(&right->header, trans->transid);
1589 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1590 btrfs_set_header_level(&right->header, 0);
1591 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1592 sizeof(right->header.fsid));
1593 if (mid <= slot) {
1594 if (nritems == 1 ||
1595 leaf_space_used(l, mid, nritems - mid) + space_needed >
1596 BTRFS_LEAF_DATA_SIZE(root)) {
1597 if (slot >= nritems) {
1598 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1599 btrfs_set_header_nritems(&right->header, 0);
1600 wret = insert_ptr(trans, root, path,
1601 &disk_key,
1602 bh_blocknr(right_buffer),
1603 path->slots[1] + 1, 1);
1604 if (wret)
1605 ret = wret;
1606 btrfs_block_release(root, path->nodes[0]);
1607 path->nodes[0] = right_buffer;
1608 path->slots[0] = 0;
1609 path->slots[1] += 1;
1610 return ret;
1611 }
1612 mid = slot;
1613 double_split = 1;
1614 }
1615 } else {
1616 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1617 BTRFS_LEAF_DATA_SIZE(root)) {
1618 if (slot == 0) {
1619 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1620 btrfs_set_header_nritems(&right->header, 0);
1621 wret = insert_ptr(trans, root, path,
1622 &disk_key,
1623 bh_blocknr(right_buffer),
1624 path->slots[1], 1);
1625 if (wret)
1626 ret = wret;
1627 btrfs_block_release(root, path->nodes[0]);
1628 path->nodes[0] = right_buffer;
1629 path->slots[0] = 0;
1630 if (path->slots[1] == 0) {
1631 wret = fixup_low_keys(trans, root,
1632 path, &disk_key, 1);
1633 if (wret)
1634 ret = wret;
1635 }
1636 return ret;
1637 }
1638 mid = slot;
1639 double_split = 1;
1640 }
1641 }
1642 btrfs_set_header_nritems(&right->header, nritems - mid);
1643 data_copy_size = btrfs_item_end(l->items + mid) -
1644 leaf_data_end(root, l);
1645 btrfs_memcpy(root, right, right->items, l->items + mid,
1646 (nritems - mid) * sizeof(struct btrfs_item));
1647 btrfs_memcpy(root, right,
1648 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1649 data_copy_size, btrfs_leaf_data(l) +
1650 leaf_data_end(root, l), data_copy_size);
1651 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1652 btrfs_item_end(l->items + mid);
1653
1654 for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1655 u32 ioff = btrfs_item_offset(right->items + i);
1656 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1657 }
1658
1659 btrfs_set_header_nritems(&l->header, mid);
1660 ret = 0;
1661 wret = insert_ptr(trans, root, path, &right->items[0].key,
1662 bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1663 if (wret)
1664 ret = wret;
1665 btrfs_mark_buffer_dirty(right_buffer);
1666 btrfs_mark_buffer_dirty(l_buf);
1667 BUG_ON(path->slots[0] != slot);
1668 if (mid <= slot) {
1669 btrfs_block_release(root, path->nodes[0]);
1670 path->nodes[0] = right_buffer;
1671 path->slots[0] -= mid;
1672 path->slots[1] += 1;
1673 } else
1674 btrfs_block_release(root, right_buffer);
1675 BUG_ON(path->slots[0] < 0);
1676 check_node(root, path, 1);
1677
1678 if (!double_split)
1679 return ret;
1680 right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
1681 if (IS_ERR(right_buffer))
1682 return PTR_ERR(right_buffer);
1683
1684 right = btrfs_buffer_leaf(right_buffer);
1685 memset(&right->header, 0, sizeof(right->header));
1686 btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1687 btrfs_set_header_generation(&right->header, trans->transid);
1688 btrfs_set_header_owner(&right->header, root->root_key.objectid);
1689 btrfs_set_header_level(&right->header, 0);
1690 memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1691 sizeof(right->header.fsid));
1692 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1693 btrfs_set_header_nritems(&right->header, 0);
1694 wret = insert_ptr(trans, root, path,
1695 &disk_key,
1696 bh_blocknr(right_buffer),
1697 path->slots[1], 1);
1698 if (wret)
1699 ret = wret;
1700 if (path->slots[1] == 0) {
1701 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1702 if (wret)
1703 ret = wret;
1704 }
1705 btrfs_block_release(root, path->nodes[0]);
1706 path->nodes[0] = right_buffer;
1707 path->slots[0] = 0;
1708 check_node(root, path, 1);
1709 check_leaf(root, path, 0);
1710 return ret;
1711 }
1712
1713 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1714 struct btrfs_root *root,
1715 struct btrfs_path *path,
1716 u32 new_size)
1717 {
1718 int ret = 0;
1719 int slot;
1720 int slot_orig;
1721 struct btrfs_leaf *leaf;
1722 struct buffer_head *leaf_buf;
1723 u32 nritems;
1724 unsigned int data_end;
1725 unsigned int old_data_start;
1726 unsigned int old_size;
1727 unsigned int size_diff;
1728 int i;
1729
1730 slot_orig = path->slots[0];
1731 leaf_buf = path->nodes[0];
1732 leaf = btrfs_buffer_leaf(leaf_buf);
1733
1734 nritems = btrfs_header_nritems(&leaf->header);
1735 data_end = leaf_data_end(root, leaf);
1736
1737 slot = path->slots[0];
1738 old_data_start = btrfs_item_offset(leaf->items + slot);
1739 old_size = btrfs_item_size(leaf->items + slot);
1740 BUG_ON(old_size <= new_size);
1741 size_diff = old_size - new_size;
1742
1743 BUG_ON(slot < 0);
1744 BUG_ON(slot >= nritems);
1745
1746 /*
1747 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1748 */
1749 /* first correct the data pointers */
1750 for (i = slot; i < nritems; i++) {
1751 u32 ioff = btrfs_item_offset(leaf->items + i);
1752 btrfs_set_item_offset(leaf->items + i,
1753 ioff + size_diff);
1754 }
1755 /* shift the data */
1756 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1757 data_end + size_diff, btrfs_leaf_data(leaf) +
1758 data_end, old_data_start + new_size - data_end);
1759 btrfs_set_item_size(leaf->items + slot, new_size);
1760 btrfs_mark_buffer_dirty(leaf_buf);
1761
1762 ret = 0;
1763 if (btrfs_leaf_free_space(root, leaf) < 0)
1764 BUG();
1765 check_leaf(root, path, 0);
1766 return ret;
1767 }
1768
1769 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1770 *root, struct btrfs_path *path, u32 data_size)
1771 {
1772 int ret = 0;
1773 int slot;
1774 int slot_orig;
1775 struct btrfs_leaf *leaf;
1776 struct buffer_head *leaf_buf;
1777 u32 nritems;
1778 unsigned int data_end;
1779 unsigned int old_data;
1780 unsigned int old_size;
1781 int i;
1782
1783 slot_orig = path->slots[0];
1784 leaf_buf = path->nodes[0];
1785 leaf = btrfs_buffer_leaf(leaf_buf);
1786
1787 nritems = btrfs_header_nritems(&leaf->header);
1788 data_end = leaf_data_end(root, leaf);
1789
1790 if (btrfs_leaf_free_space(root, leaf) < data_size)
1791 BUG();
1792 slot = path->slots[0];
1793 old_data = btrfs_item_end(leaf->items + slot);
1794
1795 BUG_ON(slot < 0);
1796 BUG_ON(slot >= nritems);
1797
1798 /*
1799 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1800 */
1801 /* first correct the data pointers */
1802 for (i = slot; i < nritems; i++) {
1803 u32 ioff = btrfs_item_offset(leaf->items + i);
1804 btrfs_set_item_offset(leaf->items + i,
1805 ioff - data_size);
1806 }
1807 /* shift the data */
1808 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1809 data_end - data_size, btrfs_leaf_data(leaf) +
1810 data_end, old_data - data_end);
1811 data_end = old_data;
1812 old_size = btrfs_item_size(leaf->items + slot);
1813 btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1814 btrfs_mark_buffer_dirty(leaf_buf);
1815
1816 ret = 0;
1817 if (btrfs_leaf_free_space(root, leaf) < 0)
1818 BUG();
1819 check_leaf(root, path, 0);
1820 return ret;
1821 }
1822
1823 /*
1824 * Given a key and some data, insert an item into the tree.
1825 * This does all the path init required, making room in the tree if needed.
1826 */
1827 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1828 *root, struct btrfs_path *path, struct btrfs_key
1829 *cpu_key, u32 data_size)
1830 {
1831 int ret = 0;
1832 int slot;
1833 int slot_orig;
1834 struct btrfs_leaf *leaf;
1835 struct buffer_head *leaf_buf;
1836 u32 nritems;
1837 unsigned int data_end;
1838 struct btrfs_disk_key disk_key;
1839
1840 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1841
1842 /* create a root if there isn't one */
1843 if (!root->node)
1844 BUG();
1845 ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1846 if (ret == 0) {
1847 return -EEXIST;
1848 }
1849 if (ret < 0)
1850 goto out;
1851
1852 slot_orig = path->slots[0];
1853 leaf_buf = path->nodes[0];
1854 leaf = btrfs_buffer_leaf(leaf_buf);
1855
1856 nritems = btrfs_header_nritems(&leaf->header);
1857 data_end = leaf_data_end(root, leaf);
1858
1859 if (btrfs_leaf_free_space(root, leaf) <
1860 sizeof(struct btrfs_item) + data_size) {
1861 BUG();
1862 }
1863 slot = path->slots[0];
1864 BUG_ON(slot < 0);
1865 if (slot != nritems) {
1866 int i;
1867 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1868
1869 /*
1870 * item0..itemN ... dataN.offset..dataN.size .. data0.size
1871 */
1872 /* first correct the data pointers */
1873 for (i = slot; i < nritems; i++) {
1874 u32 ioff = btrfs_item_offset(leaf->items + i);
1875 btrfs_set_item_offset(leaf->items + i,
1876 ioff - data_size);
1877 }
1878
1879 /* shift the items */
1880 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1881 leaf->items + slot,
1882 (nritems - slot) * sizeof(struct btrfs_item));
1883
1884 /* shift the data */
1885 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1886 data_end - data_size, btrfs_leaf_data(leaf) +
1887 data_end, old_data - data_end);
1888 data_end = old_data;
1889 }
1890 /* setup the item for the new data */
1891 btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1892 sizeof(struct btrfs_disk_key));
1893 btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1894 btrfs_set_item_size(leaf->items + slot, data_size);
1895 btrfs_set_header_nritems(&leaf->header, nritems + 1);
1896 btrfs_mark_buffer_dirty(leaf_buf);
1897
1898 ret = 0;
1899 if (slot == 0)
1900 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1901
1902 if (btrfs_leaf_free_space(root, leaf) < 0)
1903 BUG();
1904 check_leaf(root, path, 0);
1905 out:
1906 return ret;
1907 }
1908
1909 /*
1910 * Given a key and some data, insert an item into the tree.
1911 * This does all the path init required, making room in the tree if needed.
1912 */
1913 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1914 *root, struct btrfs_key *cpu_key, void *data, u32
1915 data_size)
1916 {
1917 int ret = 0;
1918 struct btrfs_path *path;
1919 u8 *ptr;
1920
1921 path = btrfs_alloc_path();
1922 BUG_ON(!path);
1923 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1924 if (!ret) {
1925 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1926 path->slots[0], u8);
1927 btrfs_memcpy(root, path->nodes[0]->b_data,
1928 ptr, data, data_size);
1929 btrfs_mark_buffer_dirty(path->nodes[0]);
1930 }
1931 btrfs_free_path(path);
1932 return ret;
1933 }
1934
1935 /*
1936 * delete the pointer from a given node.
1937 *
1938 * If the delete empties a node, the node is removed from the tree,
1939 * continuing all the way the root if required. The root is converted into
1940 * a leaf if all the nodes are emptied.
1941 */
1942 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1943 struct btrfs_path *path, int level, int slot)
1944 {
1945 struct btrfs_node *node;
1946 struct buffer_head *parent = path->nodes[level];
1947 u32 nritems;
1948 int ret = 0;
1949 int wret;
1950
1951 node = btrfs_buffer_node(parent);
1952 nritems = btrfs_header_nritems(&node->header);
1953 if (slot != nritems -1) {
1954 btrfs_memmove(root, node, node->ptrs + slot,
1955 node->ptrs + slot + 1,
1956 sizeof(struct btrfs_key_ptr) *
1957 (nritems - slot - 1));
1958 }
1959 nritems--;
1960 btrfs_set_header_nritems(&node->header, nritems);
1961 if (nritems == 0 && parent == root->node) {
1962 struct btrfs_header *header = btrfs_buffer_header(root->node);
1963 BUG_ON(btrfs_header_level(header) != 1);
1964 /* just turn the root into a leaf and break */
1965 btrfs_set_header_level(header, 0);
1966 } else if (slot == 0) {
1967 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1968 level + 1);
1969 if (wret)
1970 ret = wret;
1971 }
1972 btrfs_mark_buffer_dirty(parent);
1973 return ret;
1974 }
1975
1976 /*
1977 * delete the item at the leaf level in path. If that empties
1978 * the leaf, remove it from the tree
1979 */
1980 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1981 struct btrfs_path *path)
1982 {
1983 int slot;
1984 struct btrfs_leaf *leaf;
1985 struct buffer_head *leaf_buf;
1986 int doff;
1987 int dsize;
1988 int ret = 0;
1989 int wret;
1990 u32 nritems;
1991
1992 leaf_buf = path->nodes[0];
1993 leaf = btrfs_buffer_leaf(leaf_buf);
1994 slot = path->slots[0];
1995 doff = btrfs_item_offset(leaf->items + slot);
1996 dsize = btrfs_item_size(leaf->items + slot);
1997 nritems = btrfs_header_nritems(&leaf->header);
1998
1999 if (slot != nritems - 1) {
2000 int i;
2001 int data_end = leaf_data_end(root, leaf);
2002 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
2003 data_end + dsize,
2004 btrfs_leaf_data(leaf) + data_end,
2005 doff - data_end);
2006 for (i = slot + 1; i < nritems; i++) {
2007 u32 ioff = btrfs_item_offset(leaf->items + i);
2008 btrfs_set_item_offset(leaf->items + i, ioff + dsize);
2009 }
2010 btrfs_memmove(root, leaf, leaf->items + slot,
2011 leaf->items + slot + 1,
2012 sizeof(struct btrfs_item) *
2013 (nritems - slot - 1));
2014 }
2015 btrfs_set_header_nritems(&leaf->header, nritems - 1);
2016 nritems--;
2017 /* delete the leaf if we've emptied it */
2018 if (nritems == 0) {
2019 if (leaf_buf == root->node) {
2020 btrfs_set_header_level(&leaf->header, 0);
2021 } else {
2022 clean_tree_block(trans, root, leaf_buf);
2023 wait_on_buffer(leaf_buf);
2024 wret = del_ptr(trans, root, path, 1, path->slots[1]);
2025 if (wret)
2026 ret = wret;
2027 wret = btrfs_free_extent(trans, root,
2028 bh_blocknr(leaf_buf), 1, 1);
2029 if (wret)
2030 ret = wret;
2031 }
2032 } else {
2033 int used = leaf_space_used(leaf, 0, nritems);
2034 if (slot == 0) {
2035 wret = fixup_low_keys(trans, root, path,
2036 &leaf->items[0].key, 1);
2037 if (wret)
2038 ret = wret;
2039 }
2040
2041 /* delete the leaf if it is mostly empty */
2042 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
2043 /* push_leaf_left fixes the path.
2044 * make sure the path still points to our leaf
2045 * for possible call to del_ptr below
2046 */
2047 slot = path->slots[1];
2048 get_bh(leaf_buf);
2049 wret = push_leaf_left(trans, root, path, 1);
2050 if (wret < 0 && wret != -ENOSPC)
2051 ret = wret;
2052 if (path->nodes[0] == leaf_buf &&
2053 btrfs_header_nritems(&leaf->header)) {
2054 wret = push_leaf_right(trans, root, path, 1);
2055 if (wret < 0 && wret != -ENOSPC)
2056 ret = wret;
2057 }
2058 if (btrfs_header_nritems(&leaf->header) == 0) {
2059 u64 blocknr = bh_blocknr(leaf_buf);
2060 clean_tree_block(trans, root, leaf_buf);
2061 wait_on_buffer(leaf_buf);
2062 wret = del_ptr(trans, root, path, 1, slot);
2063 if (wret)
2064 ret = wret;
2065 btrfs_block_release(root, leaf_buf);
2066 wret = btrfs_free_extent(trans, root, blocknr,
2067 1, 1);
2068 if (wret)
2069 ret = wret;
2070 } else {
2071 btrfs_mark_buffer_dirty(leaf_buf);
2072 btrfs_block_release(root, leaf_buf);
2073 }
2074 } else {
2075 btrfs_mark_buffer_dirty(leaf_buf);
2076 }
2077 }
2078 return ret;
2079 }
2080
2081 /*
2082 * walk up the tree as far as required to find the next leaf.
2083 * returns 0 if it found something or 1 if there are no greater leaves.
2084 * returns < 0 on io errors.
2085 */
2086 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2087 {
2088 int slot;
2089 int level = 1;
2090 u64 blocknr;
2091 struct buffer_head *c;
2092 struct btrfs_node *c_node;
2093 struct buffer_head *next = NULL;
2094
2095 while(level < BTRFS_MAX_LEVEL) {
2096 if (!path->nodes[level])
2097 return 1;
2098 slot = path->slots[level] + 1;
2099 c = path->nodes[level];
2100 c_node = btrfs_buffer_node(c);
2101 if (slot >= btrfs_header_nritems(&c_node->header)) {
2102 level++;
2103 continue;
2104 }
2105 blocknr = btrfs_node_blockptr(c_node, slot);
2106 if (next)
2107 btrfs_block_release(root, next);
2108 if (path->reada)
2109 reada_for_search(root, path, level, slot);
2110 next = read_tree_block(root, blocknr);
2111 break;
2112 }
2113 path->slots[level] = slot;
2114 while(1) {
2115 level--;
2116 c = path->nodes[level];
2117 btrfs_block_release(root, c);
2118 path->nodes[level] = next;
2119 path->slots[level] = 0;
2120 if (!level)
2121 break;
2122 if (path->reada)
2123 reada_for_search(root, path, level, slot);
2124 next = read_tree_block(root,
2125 btrfs_node_blockptr(btrfs_buffer_node(next), 0));
2126 }
2127 return 0;
2128 }
This page took 0.075099 seconds and 6 git commands to generate.