Btrfs: byte offsets for file keys
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include "bit-radix.h"
6
7 struct btrfs_trans_handle;
8 struct btrfs_transaction;
9
10 #define BTRFS_MAGIC "_BtRfS_M"
11
12 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
13 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
14 #define BTRFS_INODE_MAP_OBJECTID 3ULL
15 #define BTRFS_FS_TREE_OBJECTID 4ULL
16 #define BTRFS_FIRST_FREE_OBJECTID 5ULL
17
18 /*
19 * we can actually store much bigger names, but lets not confuse the rest
20 * of linux
21 */
22 #define BTRFS_NAME_LEN 255
23
24 /*
25 * the key defines the order in the tree, and so it also defines (optimal)
26 * block layout. objectid corresonds to the inode number. The flags
27 * tells us things about the object, and is a kind of stream selector.
28 * so for a given inode, keys with flags of 1 might refer to the inode
29 * data, flags of 2 may point to file data in the btree and flags == 3
30 * may point to extents.
31 *
32 * offset is the starting byte offset for this key in the stream.
33 *
34 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
35 * in cpu native order. Otherwise they are identical and their sizes
36 * should be the same (ie both packed)
37 */
38 struct btrfs_disk_key {
39 __le64 objectid;
40 __le32 flags;
41 __le64 offset;
42 } __attribute__ ((__packed__));
43
44 struct btrfs_key {
45 u64 objectid;
46 u32 flags;
47 u64 offset;
48 } __attribute__ ((__packed__));
49
50 /*
51 * every tree block (leaf or node) starts with this header.
52 */
53 struct btrfs_header {
54 u8 fsid[16]; /* FS specific uuid */
55 __le64 blocknr; /* which block this node is supposed to live in */
56 __le64 generation;
57 __le64 parentid; /* objectid of the tree root */
58 __le32 csum;
59 __le32 ham;
60 __le16 nritems;
61 __le16 flags;
62 u8 level;
63 } __attribute__ ((__packed__));
64
65 #define BTRFS_MAX_LEVEL 8
66 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
67 sizeof(struct btrfs_header)) / \
68 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
69 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
70 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
71
72 struct buffer_head;
73 /*
74 * the super block basically lists the main trees of the FS
75 * it currently lacks any block count etc etc
76 */
77 struct btrfs_super_block {
78 u8 fsid[16]; /* FS specific uuid */
79 __le64 blocknr; /* this block number */
80 __le32 csum;
81 __le64 magic;
82 __le32 blocksize;
83 __le64 generation;
84 __le64 root;
85 __le64 total_blocks;
86 __le64 blocks_used;
87 __le64 root_dir_objectid;
88 } __attribute__ ((__packed__));
89
90 /*
91 * A leaf is full of items. offset and size tell us where to find
92 * the item in the leaf (relative to the start of the data area)
93 */
94 struct btrfs_item {
95 struct btrfs_disk_key key;
96 __le32 offset;
97 __le16 size;
98 } __attribute__ ((__packed__));
99
100 /*
101 * leaves have an item area and a data area:
102 * [item0, item1....itemN] [free space] [dataN...data1, data0]
103 *
104 * The data is separate from the items to get the keys closer together
105 * during searches.
106 */
107 struct btrfs_leaf {
108 struct btrfs_header header;
109 struct btrfs_item items[];
110 } __attribute__ ((__packed__));
111
112 /*
113 * all non-leaf blocks are nodes, they hold only keys and pointers to
114 * other blocks
115 */
116 struct btrfs_key_ptr {
117 struct btrfs_disk_key key;
118 __le64 blockptr;
119 } __attribute__ ((__packed__));
120
121 struct btrfs_node {
122 struct btrfs_header header;
123 struct btrfs_key_ptr ptrs[];
124 } __attribute__ ((__packed__));
125
126 /*
127 * btrfs_paths remember the path taken from the root down to the leaf.
128 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
129 * to any other levels that are present.
130 *
131 * The slots array records the index of the item or block pointer
132 * used while walking the tree.
133 */
134 struct btrfs_path {
135 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
136 int slots[BTRFS_MAX_LEVEL];
137 };
138
139 /*
140 * items in the extent btree are used to record the objectid of the
141 * owner of the block and the number of references
142 */
143 struct btrfs_extent_item {
144 __le32 refs;
145 __le64 owner;
146 } __attribute__ ((__packed__));
147
148 struct btrfs_inode_timespec {
149 __le32 sec;
150 __le32 nsec;
151 } __attribute__ ((__packed__));
152
153 /*
154 * there is no padding here on purpose. If you want to extent the inode,
155 * make a new item type
156 */
157 struct btrfs_inode_item {
158 __le64 generation;
159 __le64 size;
160 __le64 nblocks;
161 __le32 nlink;
162 __le32 uid;
163 __le32 gid;
164 __le32 mode;
165 __le32 rdev;
166 __le16 flags;
167 __le16 compat_flags;
168 struct btrfs_inode_timespec atime;
169 struct btrfs_inode_timespec ctime;
170 struct btrfs_inode_timespec mtime;
171 struct btrfs_inode_timespec otime;
172 } __attribute__ ((__packed__));
173
174 /* inline data is just a blob of bytes */
175 struct btrfs_inline_data_item {
176 u8 data;
177 } __attribute__ ((__packed__));
178
179 struct btrfs_dir_item {
180 __le64 objectid;
181 __le16 flags;
182 __le16 name_len;
183 u8 type;
184 } __attribute__ ((__packed__));
185
186 struct btrfs_root_item {
187 __le64 blocknr;
188 __le32 flags;
189 __le64 block_limit;
190 __le64 blocks_used;
191 __le32 refs;
192 } __attribute__ ((__packed__));
193
194 struct btrfs_file_extent_item {
195 __le64 generation;
196 /*
197 * disk space consumed by the extent, checksum blocks are included
198 * in these numbers
199 */
200 __le64 disk_blocknr;
201 __le64 disk_num_blocks;
202 /*
203 * the logical offset in file blocks (no csums)
204 * this extent record is for. This allows a file extent to point
205 * into the middle of an existing extent on disk, sharing it
206 * between two snapshots (useful if some bytes in the middle of the
207 * extent have changed
208 */
209 __le64 offset;
210 /*
211 * the logical number of file blocks (no csums included)
212 */
213 __le64 num_blocks;
214 } __attribute__ ((__packed__));
215
216 struct btrfs_inode_map_item {
217 struct btrfs_disk_key key;
218 } __attribute__ ((__packed__));
219
220 struct btrfs_fs_info {
221 struct btrfs_root *fs_root;
222 struct btrfs_root *extent_root;
223 struct btrfs_root *tree_root;
224 struct btrfs_root *inode_root;
225 struct btrfs_key current_insert;
226 struct btrfs_key last_insert;
227 struct radix_tree_root pending_del_radix;
228 struct radix_tree_root pinned_radix;
229 u64 last_inode_alloc;
230 u64 last_inode_alloc_dirid;
231 u64 generation;
232 struct btrfs_transaction *running_transaction;
233 struct btrfs_super_block *disk_super;
234 struct buffer_head *sb_buffer;
235 struct super_block *sb;
236 struct mutex trans_mutex;
237 struct mutex fs_mutex;
238 };
239
240 /*
241 * in ram representation of the tree. extent_root is used for all allocations
242 * and for the extent tree extent_root root. current_insert is used
243 * only for the extent tree.
244 */
245 struct btrfs_root {
246 struct buffer_head *node;
247 struct buffer_head *commit_root;
248 struct btrfs_root_item root_item;
249 struct btrfs_key root_key;
250 struct btrfs_fs_info *fs_info;
251 u32 blocksize;
252 int ref_cows;
253 u32 type;
254 };
255
256 /* the lower bits in the key flags defines the item type */
257 #define BTRFS_KEY_TYPE_MAX 256
258 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
259
260 /*
261 * inode items have the data typically returned from stat and store other
262 * info about object characteristics. There is one for every file and dir in
263 * the FS
264 */
265 #define BTRFS_INODE_ITEM_KEY 1
266
267 /*
268 * dir items are the name -> inode pointers in a directory. There is one
269 * for every name in a directory.
270 */
271 #define BTRFS_DIR_ITEM_KEY 2
272 /*
273 * inline data is file data that fits in the btree.
274 */
275 #define BTRFS_INLINE_DATA_KEY 3
276 /*
277 * extent data is for data that can't fit in the btree. It points to
278 * a (hopefully) huge chunk of disk
279 */
280 #define BTRFS_EXTENT_DATA_KEY 4
281 /*
282 * root items point to tree roots. There are typically in the root
283 * tree used by the super block to find all the other trees
284 */
285 #define BTRFS_ROOT_ITEM_KEY 5
286 /*
287 * extent items are in the extent map tree. These record which blocks
288 * are used, and how many references there are to each block
289 */
290 #define BTRFS_EXTENT_ITEM_KEY 6
291
292 /*
293 * the inode map records which inode numbers are in use and where
294 * they actually live on disk
295 */
296 #define BTRFS_INODE_MAP_ITEM_KEY 7
297 /*
298 * string items are for debugging. They just store a short string of
299 * data in the FS
300 */
301 #define BTRFS_STRING_ITEM_KEY 8
302
303 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
304 {
305 return le64_to_cpu(i->generation);
306 }
307
308 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
309 u64 val)
310 {
311 i->generation = cpu_to_le64(val);
312 }
313
314 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
315 {
316 return le64_to_cpu(i->size);
317 }
318
319 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
320 {
321 i->size = cpu_to_le64(val);
322 }
323
324 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
325 {
326 return le64_to_cpu(i->nblocks);
327 }
328
329 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
330 {
331 i->nblocks = cpu_to_le64(val);
332 }
333
334 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
335 {
336 return le32_to_cpu(i->nlink);
337 }
338
339 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
340 {
341 i->nlink = cpu_to_le32(val);
342 }
343
344 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
345 {
346 return le32_to_cpu(i->uid);
347 }
348
349 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
350 {
351 i->uid = cpu_to_le32(val);
352 }
353
354 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
355 {
356 return le32_to_cpu(i->gid);
357 }
358
359 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
360 {
361 i->gid = cpu_to_le32(val);
362 }
363
364 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
365 {
366 return le32_to_cpu(i->mode);
367 }
368
369 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
370 {
371 i->mode = cpu_to_le32(val);
372 }
373
374 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
375 {
376 return le32_to_cpu(i->rdev);
377 }
378
379 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
380 {
381 i->rdev = cpu_to_le32(val);
382 }
383
384 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
385 {
386 return le16_to_cpu(i->flags);
387 }
388
389 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
390 {
391 i->flags = cpu_to_le16(val);
392 }
393
394 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
395 {
396 return le16_to_cpu(i->compat_flags);
397 }
398
399 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
400 u16 val)
401 {
402 i->compat_flags = cpu_to_le16(val);
403 }
404
405 static inline u32 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
406 {
407 return le32_to_cpu(ts->sec);
408 }
409
410 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
411 u32 val)
412 {
413 ts->sec = cpu_to_le32(val);
414 }
415
416 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
417 {
418 return le32_to_cpu(ts->nsec);
419 }
420
421 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
422 u32 val)
423 {
424 ts->nsec = cpu_to_le32(val);
425 }
426
427
428
429 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
430 {
431 return le64_to_cpu(ei->owner);
432 }
433
434 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
435 {
436 ei->owner = cpu_to_le64(val);
437 }
438
439 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
440 {
441 return le32_to_cpu(ei->refs);
442 }
443
444 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
445 {
446 ei->refs = cpu_to_le32(val);
447 }
448
449 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
450 {
451 return le64_to_cpu(n->ptrs[nr].blockptr);
452 }
453
454 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
455 u64 val)
456 {
457 n->ptrs[nr].blockptr = cpu_to_le64(val);
458 }
459
460 static inline u32 btrfs_item_offset(struct btrfs_item *item)
461 {
462 return le32_to_cpu(item->offset);
463 }
464
465 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
466 {
467 item->offset = cpu_to_le32(val);
468 }
469
470 static inline u32 btrfs_item_end(struct btrfs_item *item)
471 {
472 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
473 }
474
475 static inline u16 btrfs_item_size(struct btrfs_item *item)
476 {
477 return le16_to_cpu(item->size);
478 }
479
480 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
481 {
482 item->size = cpu_to_le16(val);
483 }
484
485 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
486 {
487 return le64_to_cpu(d->objectid);
488 }
489
490 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
491 {
492 d->objectid = cpu_to_le64(val);
493 }
494
495 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
496 {
497 return le16_to_cpu(d->flags);
498 }
499
500 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
501 {
502 d->flags = cpu_to_le16(val);
503 }
504
505 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
506 {
507 return d->type;
508 }
509
510 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
511 {
512 d->type = val;
513 }
514
515 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
516 {
517 return le16_to_cpu(d->name_len);
518 }
519
520 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
521 {
522 d->name_len = cpu_to_le16(val);
523 }
524
525 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
526 struct btrfs_disk_key *disk)
527 {
528 cpu->offset = le64_to_cpu(disk->offset);
529 cpu->flags = le32_to_cpu(disk->flags);
530 cpu->objectid = le64_to_cpu(disk->objectid);
531 }
532
533 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
534 struct btrfs_key *cpu)
535 {
536 disk->offset = cpu_to_le64(cpu->offset);
537 disk->flags = cpu_to_le32(cpu->flags);
538 disk->objectid = cpu_to_le64(cpu->objectid);
539 }
540
541 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
542 {
543 return le64_to_cpu(disk->objectid);
544 }
545
546 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
547 u64 val)
548 {
549 disk->objectid = cpu_to_le64(val);
550 }
551
552 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
553 {
554 return le64_to_cpu(disk->offset);
555 }
556
557 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
558 u64 val)
559 {
560 disk->offset = cpu_to_le64(val);
561 }
562
563 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
564 {
565 return le32_to_cpu(disk->flags);
566 }
567
568 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
569 u32 val)
570 {
571 disk->flags = cpu_to_le32(val);
572 }
573
574 static inline u32 btrfs_key_type(struct btrfs_key *key)
575 {
576 return key->flags & BTRFS_KEY_TYPE_MASK;
577 }
578
579 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
580 {
581 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
582 }
583
584 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
585 {
586 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
587 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
588 }
589
590 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
591 {
592 u32 flags = btrfs_disk_key_flags(key);
593 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
594 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
595 btrfs_set_disk_key_flags(key, flags);
596 }
597
598 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
599 {
600 return le64_to_cpu(h->blocknr);
601 }
602
603 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
604 {
605 h->blocknr = cpu_to_le64(blocknr);
606 }
607
608 static inline u64 btrfs_header_generation(struct btrfs_header *h)
609 {
610 return le64_to_cpu(h->generation);
611 }
612
613 static inline void btrfs_set_header_generation(struct btrfs_header *h,
614 u64 val)
615 {
616 h->generation = cpu_to_le64(val);
617 }
618
619 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
620 {
621 return le64_to_cpu(h->parentid);
622 }
623
624 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
625 u64 parentid)
626 {
627 h->parentid = cpu_to_le64(parentid);
628 }
629
630 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
631 {
632 return le16_to_cpu(h->nritems);
633 }
634
635 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
636 {
637 h->nritems = cpu_to_le16(val);
638 }
639
640 static inline u16 btrfs_header_flags(struct btrfs_header *h)
641 {
642 return le16_to_cpu(h->flags);
643 }
644
645 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
646 {
647 h->flags = cpu_to_le16(val);
648 }
649
650 static inline int btrfs_header_level(struct btrfs_header *h)
651 {
652 return h->level;
653 }
654
655 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
656 {
657 BUG_ON(level > BTRFS_MAX_LEVEL);
658 h->level = level;
659 }
660
661 static inline int btrfs_is_leaf(struct btrfs_node *n)
662 {
663 return (btrfs_header_level(&n->header) == 0);
664 }
665
666 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
667 {
668 return le64_to_cpu(item->blocknr);
669 }
670
671 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
672 {
673 item->blocknr = cpu_to_le64(val);
674 }
675
676 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
677 {
678 return le32_to_cpu(item->refs);
679 }
680
681 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
682 {
683 item->refs = cpu_to_le32(val);
684 }
685
686 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
687 {
688 return le64_to_cpu(s->blocknr);
689 }
690
691 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
692 {
693 s->blocknr = cpu_to_le64(val);
694 }
695
696 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
697 {
698 return le64_to_cpu(s->root);
699 }
700
701 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
702 {
703 s->root = cpu_to_le64(val);
704 }
705
706 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
707 {
708 return le64_to_cpu(s->total_blocks);
709 }
710
711 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
712 u64 val)
713 {
714 s->total_blocks = cpu_to_le64(val);
715 }
716
717 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
718 {
719 return le64_to_cpu(s->blocks_used);
720 }
721
722 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
723 u64 val)
724 {
725 s->blocks_used = cpu_to_le64(val);
726 }
727
728 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
729 {
730 return le32_to_cpu(s->blocksize);
731 }
732
733 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
734 u32 val)
735 {
736 s->blocksize = cpu_to_le32(val);
737 }
738
739 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
740 {
741 return le64_to_cpu(s->root_dir_objectid);
742 }
743
744 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
745 val)
746 {
747 s->root_dir_objectid = cpu_to_le64(val);
748 }
749
750 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
751 {
752 return (u8 *)l->items;
753 }
754
755 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
756 *e)
757 {
758 return le64_to_cpu(e->disk_blocknr);
759 }
760
761 static inline void btrfs_set_file_extent_disk_blocknr(struct
762 btrfs_file_extent_item
763 *e, u64 val)
764 {
765 e->disk_blocknr = cpu_to_le64(val);
766 }
767
768 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
769 {
770 return le64_to_cpu(e->generation);
771 }
772
773 static inline void btrfs_set_file_extent_generation(struct
774 btrfs_file_extent_item *e,
775 u64 val)
776 {
777 e->generation = cpu_to_le64(val);
778 }
779
780 static inline u64 btrfs_file_extent_disk_num_blocks(struct
781 btrfs_file_extent_item *e)
782 {
783 return le64_to_cpu(e->disk_num_blocks);
784 }
785
786 static inline void btrfs_set_file_extent_disk_num_blocks(struct
787 btrfs_file_extent_item
788 *e, u64 val)
789 {
790 e->disk_num_blocks = cpu_to_le64(val);
791 }
792
793 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
794 {
795 return le64_to_cpu(e->offset);
796 }
797
798 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
799 *e, u64 val)
800 {
801 e->offset = cpu_to_le64(val);
802 }
803
804 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
805 *e)
806 {
807 return le64_to_cpu(e->num_blocks);
808 }
809
810 static inline void btrfs_set_file_extent_num_blocks(struct
811 btrfs_file_extent_item *e,
812 u64 val)
813 {
814 e->num_blocks = cpu_to_le64(val);
815 }
816
817 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
818 {
819 return sb->s_fs_info;
820 }
821
822 /* helper function to cast into the data area of the leaf. */
823 #define btrfs_item_ptr(leaf, slot, type) \
824 ((type *)(btrfs_leaf_data(leaf) + \
825 btrfs_item_offset((leaf)->items + (slot))))
826
827 /* extent-item.c */
828 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
829 struct btrfs_root *root);
830 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
831 *root, u64 num_blocks, u64 search_start, u64
832 search_end, u64 owner, struct btrfs_key *ins);
833 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
834 struct buffer_head *buf);
835 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
836 *root, u64 blocknr, u64 num_blocks, int pin);
837 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
838 btrfs_root *root);
839 /* ctree.c */
840 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
841 *root, struct btrfs_key *key, struct btrfs_path *p, int
842 ins_len, int cow);
843 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
844 void btrfs_init_path(struct btrfs_path *p);
845 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
846 struct btrfs_path *path);
847 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
848 *root, struct btrfs_key *key, void *data, u32 data_size);
849 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
850 *root, struct btrfs_path *path, struct btrfs_key
851 *cpu_key, u32 data_size);
852 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
853 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
854 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
855 *root, struct buffer_head *snap);
856 /* root-item.c */
857 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858 struct btrfs_key *key);
859 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
860 *root, struct btrfs_key *key, struct btrfs_root_item
861 *item);
862 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
863 *root, struct btrfs_key *key, struct btrfs_root_item
864 *item);
865 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
866 btrfs_root_item *item, struct btrfs_key *key);
867 /* dir-item.c */
868 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
869 *root, const char *name, int name_len, u64 dir, u64
870 objectid, u8 type);
871 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
872 *root, struct btrfs_path *path, u64 dir,
873 const char *name, int name_len, int mod);
874 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
875 const char *name, int name_len);
876 /* inode-map.c */
877 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
878 struct btrfs_root *fs_root,
879 u64 dirid, u64 *objectid);
880 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 u64 objectid, struct btrfs_key *location);
883 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
884 struct btrfs_root *root, struct btrfs_path *path,
885 u64 objectid, int mod);
886 /* inode-item.c */
887 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
888 *root, u64 objectid, struct btrfs_inode_item
889 *inode_item);
890 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
891 *root, struct btrfs_path *path, u64 objectid, int mod);
892
893 /* file-item.c */
894 int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
895 struct btrfs_root *root,
896 u64 objectid, u64 offset,
897 u64 num_blocks, u64 hint_block,
898 u64 *result);
899 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root,
901 struct btrfs_path *path, u64 objectid,
902 u64 blocknr, int mod);
903 #endif
This page took 0.049501 seconds and 5 git commands to generate.