Btrfs: change around extent-tree prealloc
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include <linux/kobject.h>
7 #include "bit-radix.h"
8
9 struct btrfs_trans_handle;
10 struct btrfs_transaction;
11 extern struct kmem_cache *btrfs_path_cachep;
12
13 #define BTRFS_MAGIC "_BtRfS_M"
14
15 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
16 #define BTRFS_DEV_TREE_OBJECTID 2ULL
17 #define BTRFS_EXTENT_TREE_OBJECTID 3ULL
18 #define BTRFS_FS_TREE_OBJECTID 4ULL
19 #define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
20 #define BTRFS_FIRST_FREE_OBJECTID 6ULL
21
22 /*
23 * we can actually store much bigger names, but lets not confuse the rest
24 * of linux
25 */
26 #define BTRFS_NAME_LEN 255
27
28 /* 32 bytes in various csum fields */
29 #define BTRFS_CSUM_SIZE 32
30
31 /*
32 * the key defines the order in the tree, and so it also defines (optimal)
33 * block layout. objectid corresonds to the inode number. The flags
34 * tells us things about the object, and is a kind of stream selector.
35 * so for a given inode, keys with flags of 1 might refer to the inode
36 * data, flags of 2 may point to file data in the btree and flags == 3
37 * may point to extents.
38 *
39 * offset is the starting byte offset for this key in the stream.
40 *
41 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
42 * in cpu native order. Otherwise they are identical and their sizes
43 * should be the same (ie both packed)
44 */
45 struct btrfs_disk_key {
46 __le64 objectid;
47 __le32 flags;
48 __le64 offset;
49 } __attribute__ ((__packed__));
50
51 struct btrfs_key {
52 u64 objectid;
53 u32 flags;
54 u64 offset;
55 } __attribute__ ((__packed__));
56
57 /*
58 * every tree block (leaf or node) starts with this header.
59 */
60 struct btrfs_header {
61 u8 csum[BTRFS_CSUM_SIZE];
62 u8 fsid[16]; /* FS specific uuid */
63 __le64 blocknr; /* which block this node is supposed to live in */
64 __le64 generation;
65 __le64 owner;
66 __le16 nritems;
67 __le16 flags;
68 u8 level;
69 } __attribute__ ((__packed__));
70
71 #define BTRFS_MAX_LEVEL 8
72 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
73 sizeof(struct btrfs_header)) / \
74 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
75 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
76 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
77 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
78 sizeof(struct btrfs_item) - \
79 sizeof(struct btrfs_file_extent_item))
80
81 struct buffer_head;
82 /*
83 * the super block basically lists the main trees of the FS
84 * it currently lacks any block count etc etc
85 */
86 struct btrfs_super_block {
87 u8 csum[BTRFS_CSUM_SIZE];
88 /* the first 3 fields must match struct btrfs_header */
89 u8 fsid[16]; /* FS specific uuid */
90 __le64 blocknr; /* this block number */
91 __le64 magic;
92 __le32 blocksize;
93 __le64 generation;
94 __le64 root;
95 __le64 total_blocks;
96 __le64 blocks_used;
97 __le64 root_dir_objectid;
98 __le64 last_device_id;
99 /* fields below here vary with the underlying disk */
100 __le64 device_block_start;
101 __le64 device_num_blocks;
102 __le64 device_root;
103 __le64 device_id;
104 } __attribute__ ((__packed__));
105
106 /*
107 * A leaf is full of items. offset and size tell us where to find
108 * the item in the leaf (relative to the start of the data area)
109 */
110 struct btrfs_item {
111 struct btrfs_disk_key key;
112 __le32 offset;
113 __le16 size;
114 } __attribute__ ((__packed__));
115
116 /*
117 * leaves have an item area and a data area:
118 * [item0, item1....itemN] [free space] [dataN...data1, data0]
119 *
120 * The data is separate from the items to get the keys closer together
121 * during searches.
122 */
123 struct btrfs_leaf {
124 struct btrfs_header header;
125 struct btrfs_item items[];
126 } __attribute__ ((__packed__));
127
128 /*
129 * all non-leaf blocks are nodes, they hold only keys and pointers to
130 * other blocks
131 */
132 struct btrfs_key_ptr {
133 struct btrfs_disk_key key;
134 __le64 blockptr;
135 } __attribute__ ((__packed__));
136
137 struct btrfs_node {
138 struct btrfs_header header;
139 struct btrfs_key_ptr ptrs[];
140 } __attribute__ ((__packed__));
141
142 /*
143 * btrfs_paths remember the path taken from the root down to the leaf.
144 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
145 * to any other levels that are present.
146 *
147 * The slots array records the index of the item or block pointer
148 * used while walking the tree.
149 */
150 struct btrfs_path {
151 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
152 int slots[BTRFS_MAX_LEVEL];
153 };
154
155 /*
156 * items in the extent btree are used to record the objectid of the
157 * owner of the block and the number of references
158 */
159 struct btrfs_extent_item {
160 __le32 refs;
161 __le64 owner;
162 } __attribute__ ((__packed__));
163
164 struct btrfs_inode_timespec {
165 __le64 sec;
166 __le32 nsec;
167 } __attribute__ ((__packed__));
168
169 /*
170 * there is no padding here on purpose. If you want to extent the inode,
171 * make a new item type
172 */
173 struct btrfs_inode_item {
174 __le64 generation;
175 __le64 size;
176 __le64 nblocks;
177 __le32 nlink;
178 __le32 uid;
179 __le32 gid;
180 __le32 mode;
181 __le32 rdev;
182 __le16 flags;
183 __le16 compat_flags;
184 struct btrfs_inode_timespec atime;
185 struct btrfs_inode_timespec ctime;
186 struct btrfs_inode_timespec mtime;
187 struct btrfs_inode_timespec otime;
188 } __attribute__ ((__packed__));
189
190 struct btrfs_dir_item {
191 struct btrfs_disk_key location;
192 __le16 flags;
193 __le16 name_len;
194 u8 type;
195 } __attribute__ ((__packed__));
196
197 struct btrfs_root_item {
198 struct btrfs_inode_item inode;
199 __le64 root_dirid;
200 __le64 blocknr;
201 __le32 flags;
202 __le64 block_limit;
203 __le64 blocks_used;
204 __le32 refs;
205 } __attribute__ ((__packed__));
206
207 #define BTRFS_FILE_EXTENT_REG 0
208 #define BTRFS_FILE_EXTENT_INLINE 1
209
210 struct btrfs_file_extent_item {
211 __le64 generation;
212 u8 type;
213 /*
214 * disk space consumed by the extent, checksum blocks are included
215 * in these numbers
216 */
217 __le64 disk_blocknr;
218 __le64 disk_num_blocks;
219 /*
220 * the logical offset in file blocks (no csums)
221 * this extent record is for. This allows a file extent to point
222 * into the middle of an existing extent on disk, sharing it
223 * between two snapshots (useful if some bytes in the middle of the
224 * extent have changed
225 */
226 __le64 offset;
227 /*
228 * the logical number of file blocks (no csums included)
229 */
230 __le64 num_blocks;
231 } __attribute__ ((__packed__));
232
233 struct btrfs_csum_item {
234 u8 csum[BTRFS_CSUM_SIZE];
235 } __attribute__ ((__packed__));
236
237 struct btrfs_device_item {
238 __le16 pathlen;
239 __le64 device_id;
240 } __attribute__ ((__packed__));
241
242 struct crypto_hash;
243 struct btrfs_fs_info {
244 struct btrfs_root *extent_root;
245 struct btrfs_root *tree_root;
246 struct btrfs_root *dev_root;
247 struct btrfs_key last_insert;
248 struct radix_tree_root fs_roots_radix;
249 struct radix_tree_root pending_del_radix;
250 struct radix_tree_root pinned_radix;
251 struct radix_tree_root dev_radix;
252
253 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
254 int extent_tree_insert_nr;
255 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
256 int extent_tree_prealloc_nr;
257
258 u64 generation;
259 struct btrfs_transaction *running_transaction;
260 struct btrfs_super_block *disk_super;
261 struct buffer_head *sb_buffer;
262 struct super_block *sb;
263 struct inode *btree_inode;
264 struct mutex trans_mutex;
265 struct mutex fs_mutex;
266 struct list_head trans_list;
267 struct crypto_hash *hash_tfm;
268 spinlock_t hash_lock;
269 int do_barriers;
270 struct kobject kobj;
271 };
272
273 /*
274 * in ram representation of the tree. extent_root is used for all allocations
275 * and for the extent tree extent_root root.
276 */
277 struct btrfs_root {
278 struct buffer_head *node;
279 struct buffer_head *commit_root;
280 struct btrfs_root_item root_item;
281 struct btrfs_key root_key;
282 struct btrfs_fs_info *fs_info;
283 struct inode *inode;
284 u64 objectid;
285 u64 last_trans;
286 u32 blocksize;
287 int ref_cows;
288 u32 type;
289 u64 highest_inode;
290 u64 last_inode_alloc;
291 };
292
293 /* the lower bits in the key flags defines the item type */
294 #define BTRFS_KEY_TYPE_MAX 256
295 #define BTRFS_KEY_TYPE_SHIFT 24
296 #define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
297 BTRFS_KEY_TYPE_SHIFT)
298
299 /*
300 * inode items have the data typically returned from stat and store other
301 * info about object characteristics. There is one for every file and dir in
302 * the FS
303 */
304 #define BTRFS_INODE_ITEM_KEY 1
305
306 /*
307 * dir items are the name -> inode pointers in a directory. There is one
308 * for every name in a directory.
309 */
310 #define BTRFS_DIR_ITEM_KEY 2
311 #define BTRFS_DIR_INDEX_KEY 3
312 /*
313 * inline data is file data that fits in the btree.
314 */
315 #define BTRFS_INLINE_DATA_KEY 4
316 /*
317 * extent data is for data that can't fit in the btree. It points to
318 * a (hopefully) huge chunk of disk
319 */
320 #define BTRFS_EXTENT_DATA_KEY 5
321 /*
322 * csum items have the checksums for data in the extents
323 */
324 #define BTRFS_CSUM_ITEM_KEY 6
325
326 /*
327 * root items point to tree roots. There are typically in the root
328 * tree used by the super block to find all the other trees
329 */
330 #define BTRFS_ROOT_ITEM_KEY 7
331 /*
332 * extent items are in the extent map tree. These record which blocks
333 * are used, and how many references there are to each block
334 */
335 #define BTRFS_EXTENT_ITEM_KEY 8
336
337 /*
338 * dev items list the devices that make up the FS
339 */
340 #define BTRFS_DEV_ITEM_KEY 9
341
342 /*
343 * string items are for debugging. They just store a short string of
344 * data in the FS
345 */
346 #define BTRFS_STRING_ITEM_KEY 10
347
348 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
349 {
350 return le64_to_cpu(i->generation);
351 }
352
353 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
354 u64 val)
355 {
356 i->generation = cpu_to_le64(val);
357 }
358
359 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
360 {
361 return le64_to_cpu(i->size);
362 }
363
364 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
365 {
366 i->size = cpu_to_le64(val);
367 }
368
369 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
370 {
371 return le64_to_cpu(i->nblocks);
372 }
373
374 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
375 {
376 i->nblocks = cpu_to_le64(val);
377 }
378
379 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
380 {
381 return le32_to_cpu(i->nlink);
382 }
383
384 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
385 {
386 i->nlink = cpu_to_le32(val);
387 }
388
389 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
390 {
391 return le32_to_cpu(i->uid);
392 }
393
394 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
395 {
396 i->uid = cpu_to_le32(val);
397 }
398
399 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
400 {
401 return le32_to_cpu(i->gid);
402 }
403
404 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
405 {
406 i->gid = cpu_to_le32(val);
407 }
408
409 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
410 {
411 return le32_to_cpu(i->mode);
412 }
413
414 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
415 {
416 i->mode = cpu_to_le32(val);
417 }
418
419 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
420 {
421 return le32_to_cpu(i->rdev);
422 }
423
424 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
425 {
426 i->rdev = cpu_to_le32(val);
427 }
428
429 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
430 {
431 return le16_to_cpu(i->flags);
432 }
433
434 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
435 {
436 i->flags = cpu_to_le16(val);
437 }
438
439 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
440 {
441 return le16_to_cpu(i->compat_flags);
442 }
443
444 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
445 u16 val)
446 {
447 i->compat_flags = cpu_to_le16(val);
448 }
449
450 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
451 {
452 return le64_to_cpu(ts->sec);
453 }
454
455 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
456 u64 val)
457 {
458 ts->sec = cpu_to_le64(val);
459 }
460
461 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
462 {
463 return le32_to_cpu(ts->nsec);
464 }
465
466 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
467 u32 val)
468 {
469 ts->nsec = cpu_to_le32(val);
470 }
471
472 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
473 {
474 return le32_to_cpu(ei->refs);
475 }
476
477 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
478 {
479 ei->refs = cpu_to_le32(val);
480 }
481
482 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
483 {
484 return le64_to_cpu(ei->owner);
485 }
486
487 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
488 {
489 ei->owner = cpu_to_le64(val);
490 }
491
492 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
493 {
494 return le64_to_cpu(n->ptrs[nr].blockptr);
495 }
496
497
498 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
499 u64 val)
500 {
501 n->ptrs[nr].blockptr = cpu_to_le64(val);
502 }
503
504 static inline u32 btrfs_item_offset(struct btrfs_item *item)
505 {
506 return le32_to_cpu(item->offset);
507 }
508
509 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
510 {
511 item->offset = cpu_to_le32(val);
512 }
513
514 static inline u32 btrfs_item_end(struct btrfs_item *item)
515 {
516 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
517 }
518
519 static inline u16 btrfs_item_size(struct btrfs_item *item)
520 {
521 return le16_to_cpu(item->size);
522 }
523
524 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
525 {
526 item->size = cpu_to_le16(val);
527 }
528
529 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
530 {
531 return le16_to_cpu(d->flags);
532 }
533
534 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
535 {
536 d->flags = cpu_to_le16(val);
537 }
538
539 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
540 {
541 return d->type;
542 }
543
544 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
545 {
546 d->type = val;
547 }
548
549 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
550 {
551 return le16_to_cpu(d->name_len);
552 }
553
554 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
555 {
556 d->name_len = cpu_to_le16(val);
557 }
558
559 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
560 struct btrfs_disk_key *disk)
561 {
562 cpu->offset = le64_to_cpu(disk->offset);
563 cpu->flags = le32_to_cpu(disk->flags);
564 cpu->objectid = le64_to_cpu(disk->objectid);
565 }
566
567 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
568 struct btrfs_key *cpu)
569 {
570 disk->offset = cpu_to_le64(cpu->offset);
571 disk->flags = cpu_to_le32(cpu->flags);
572 disk->objectid = cpu_to_le64(cpu->objectid);
573 }
574
575 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
576 {
577 return le64_to_cpu(disk->objectid);
578 }
579
580 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
581 u64 val)
582 {
583 disk->objectid = cpu_to_le64(val);
584 }
585
586 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
587 {
588 return le64_to_cpu(disk->offset);
589 }
590
591 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
592 u64 val)
593 {
594 disk->offset = cpu_to_le64(val);
595 }
596
597 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
598 {
599 return le32_to_cpu(disk->flags);
600 }
601
602 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
603 u32 val)
604 {
605 disk->flags = cpu_to_le32(val);
606 }
607
608 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
609 {
610 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
611 }
612
613 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
614 u32 val)
615 {
616 u32 flags = btrfs_disk_key_flags(key);
617 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
618 val = val << BTRFS_KEY_TYPE_SHIFT;
619 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
620 btrfs_set_disk_key_flags(key, flags);
621 }
622
623 static inline u32 btrfs_key_type(struct btrfs_key *key)
624 {
625 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
626 }
627
628 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
629 {
630 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
631 val = val << BTRFS_KEY_TYPE_SHIFT;
632 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
633 }
634
635 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
636 {
637 return le64_to_cpu(h->blocknr);
638 }
639
640 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
641 {
642 h->blocknr = cpu_to_le64(blocknr);
643 }
644
645 static inline u64 btrfs_header_generation(struct btrfs_header *h)
646 {
647 return le64_to_cpu(h->generation);
648 }
649
650 static inline void btrfs_set_header_generation(struct btrfs_header *h,
651 u64 val)
652 {
653 h->generation = cpu_to_le64(val);
654 }
655
656 static inline u64 btrfs_header_owner(struct btrfs_header *h)
657 {
658 return le64_to_cpu(h->owner);
659 }
660
661 static inline void btrfs_set_header_owner(struct btrfs_header *h,
662 u64 val)
663 {
664 h->owner = cpu_to_le64(val);
665 }
666
667 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
668 {
669 return le16_to_cpu(h->nritems);
670 }
671
672 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
673 {
674 h->nritems = cpu_to_le16(val);
675 }
676
677 static inline u16 btrfs_header_flags(struct btrfs_header *h)
678 {
679 return le16_to_cpu(h->flags);
680 }
681
682 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
683 {
684 h->flags = cpu_to_le16(val);
685 }
686
687 static inline int btrfs_header_level(struct btrfs_header *h)
688 {
689 return h->level;
690 }
691
692 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
693 {
694 BUG_ON(level > BTRFS_MAX_LEVEL);
695 h->level = level;
696 }
697
698 static inline int btrfs_is_leaf(struct btrfs_node *n)
699 {
700 return (btrfs_header_level(&n->header) == 0);
701 }
702
703 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
704 {
705 return le64_to_cpu(item->blocknr);
706 }
707
708 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
709 {
710 item->blocknr = cpu_to_le64(val);
711 }
712
713 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
714 {
715 return le64_to_cpu(item->root_dirid);
716 }
717
718 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
719 {
720 item->root_dirid = cpu_to_le64(val);
721 }
722
723 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
724 {
725 return le32_to_cpu(item->refs);
726 }
727
728 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
729 {
730 item->refs = cpu_to_le32(val);
731 }
732
733 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
734 {
735 return le64_to_cpu(s->blocknr);
736 }
737
738 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
739 {
740 s->blocknr = cpu_to_le64(val);
741 }
742
743 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
744 {
745 return le64_to_cpu(s->generation);
746 }
747
748 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
749 u64 val)
750 {
751 s->generation = cpu_to_le64(val);
752 }
753
754 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
755 {
756 return le64_to_cpu(s->root);
757 }
758
759 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
760 {
761 s->root = cpu_to_le64(val);
762 }
763
764 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
765 {
766 return le64_to_cpu(s->total_blocks);
767 }
768
769 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
770 u64 val)
771 {
772 s->total_blocks = cpu_to_le64(val);
773 }
774
775 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
776 {
777 return le64_to_cpu(s->blocks_used);
778 }
779
780 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
781 u64 val)
782 {
783 s->blocks_used = cpu_to_le64(val);
784 }
785
786 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
787 {
788 return le32_to_cpu(s->blocksize);
789 }
790
791 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
792 u32 val)
793 {
794 s->blocksize = cpu_to_le32(val);
795 }
796
797 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
798 {
799 return le64_to_cpu(s->root_dir_objectid);
800 }
801
802 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
803 val)
804 {
805 s->root_dir_objectid = cpu_to_le64(val);
806 }
807
808 static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
809 {
810 return le64_to_cpu(s->last_device_id);
811 }
812
813 static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
814 u64 val)
815 {
816 s->last_device_id = cpu_to_le64(val);
817 }
818
819 static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
820 {
821 return le64_to_cpu(s->device_id);
822 }
823
824 static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
825 u64 val)
826 {
827 s->device_id = cpu_to_le64(val);
828 }
829
830 static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
831 {
832 return le64_to_cpu(s->device_block_start);
833 }
834
835 static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
836 *s, u64 val)
837 {
838 s->device_block_start = cpu_to_le64(val);
839 }
840
841 static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
842 {
843 return le64_to_cpu(s->device_num_blocks);
844 }
845
846 static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
847 *s, u64 val)
848 {
849 s->device_num_blocks = cpu_to_le64(val);
850 }
851
852 static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
853 {
854 return le64_to_cpu(s->device_root);
855 }
856
857 static inline void btrfs_set_super_device_root(struct btrfs_super_block
858 *s, u64 val)
859 {
860 s->device_root = cpu_to_le64(val);
861 }
862
863
864 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
865 {
866 return (u8 *)l->items;
867 }
868
869 static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
870 {
871 return e->type;
872 }
873 static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
874 u8 val)
875 {
876 e->type = val;
877 }
878
879 static inline char *btrfs_file_extent_inline_start(struct
880 btrfs_file_extent_item *e)
881 {
882 return (char *)(&e->disk_blocknr);
883 }
884
885 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
886 {
887 return (unsigned long)(&((struct
888 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
889 }
890
891 static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
892 {
893 struct btrfs_file_extent_item *fe = NULL;
894 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
895 }
896
897 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
898 *e)
899 {
900 return le64_to_cpu(e->disk_blocknr);
901 }
902
903 static inline void btrfs_set_file_extent_disk_blocknr(struct
904 btrfs_file_extent_item
905 *e, u64 val)
906 {
907 e->disk_blocknr = cpu_to_le64(val);
908 }
909
910 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
911 {
912 return le64_to_cpu(e->generation);
913 }
914
915 static inline void btrfs_set_file_extent_generation(struct
916 btrfs_file_extent_item *e,
917 u64 val)
918 {
919 e->generation = cpu_to_le64(val);
920 }
921
922 static inline u64 btrfs_file_extent_disk_num_blocks(struct
923 btrfs_file_extent_item *e)
924 {
925 return le64_to_cpu(e->disk_num_blocks);
926 }
927
928 static inline void btrfs_set_file_extent_disk_num_blocks(struct
929 btrfs_file_extent_item
930 *e, u64 val)
931 {
932 e->disk_num_blocks = cpu_to_le64(val);
933 }
934
935 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
936 {
937 return le64_to_cpu(e->offset);
938 }
939
940 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
941 *e, u64 val)
942 {
943 e->offset = cpu_to_le64(val);
944 }
945
946 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
947 *e)
948 {
949 return le64_to_cpu(e->num_blocks);
950 }
951
952 static inline void btrfs_set_file_extent_num_blocks(struct
953 btrfs_file_extent_item *e,
954 u64 val)
955 {
956 e->num_blocks = cpu_to_le64(val);
957 }
958
959 static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
960 {
961 return le16_to_cpu(d->pathlen);
962 }
963
964 static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
965 u16 val)
966 {
967 d->pathlen = cpu_to_le16(val);
968 }
969
970 static inline u64 btrfs_device_id(struct btrfs_device_item *d)
971 {
972 return le64_to_cpu(d->device_id);
973 }
974
975 static inline void btrfs_set_device_id(struct btrfs_device_item *d,
976 u64 val)
977 {
978 d->device_id = cpu_to_le64(val);
979 }
980
981 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
982 {
983 return sb->s_fs_info;
984 }
985
986 static inline void btrfs_check_bounds(void *vptr, size_t len,
987 void *vcontainer, size_t container_len)
988 {
989 char *ptr = vptr;
990 char *container = vcontainer;
991 WARN_ON(ptr < container);
992 WARN_ON(ptr + len > container + container_len);
993 }
994
995 static inline void btrfs_memcpy(struct btrfs_root *root,
996 void *dst_block,
997 void *dst, const void *src, size_t nr)
998 {
999 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1000 memcpy(dst, src, nr);
1001 }
1002
1003 static inline void btrfs_memmove(struct btrfs_root *root,
1004 void *dst_block,
1005 void *dst, void *src, size_t nr)
1006 {
1007 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1008 memmove(dst, src, nr);
1009 }
1010
1011 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1012 {
1013 WARN_ON(!atomic_read(&bh->b_count));
1014 mark_buffer_dirty(bh);
1015 }
1016
1017 /* helper function to cast into the data area of the leaf. */
1018 #define btrfs_item_ptr(leaf, slot, type) \
1019 ((type *)(btrfs_leaf_data(leaf) + \
1020 btrfs_item_offset((leaf)->items + (slot))))
1021
1022 /* extent-tree.c */
1023 int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1024 struct btrfs_root *root);
1025 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root);
1027 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1028 struct btrfs_root *root, u64 owner,
1029 u64 num_blocks, u64 search_start,
1030 u64 search_end, struct btrfs_key *ins);
1031 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1032 struct buffer_head *buf);
1033 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1034 *root, u64 blocknr, u64 num_blocks, int pin);
1035 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1036 btrfs_root *root);
1037 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root,
1039 u64 blocknr, u64 num_blocks);
1040 /* ctree.c */
1041 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1042 *root, struct btrfs_path *path, u32 data_size);
1043 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u32 new_size);
1047 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1048 *root, struct btrfs_key *key, struct btrfs_path *p, int
1049 ins_len, int cow);
1050 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1051 struct btrfs_path *btrfs_alloc_path(void);
1052 void btrfs_free_path(struct btrfs_path *p);
1053 void btrfs_init_path(struct btrfs_path *p);
1054 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1055 struct btrfs_path *path);
1056 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1057 *root, struct btrfs_key *key, void *data, u32 data_size);
1058 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1059 *root, struct btrfs_path *path, struct btrfs_key
1060 *cpu_key, u32 data_size);
1061 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1062 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1063 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1064 *root, struct buffer_head *snap);
1065 /* root-item.c */
1066 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1067 struct btrfs_key *key);
1068 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1069 *root, struct btrfs_key *key, struct btrfs_root_item
1070 *item);
1071 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1072 *root, struct btrfs_key *key, struct btrfs_root_item
1073 *item);
1074 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1075 btrfs_root_item *item, struct btrfs_key *key);
1076 /* dir-item.c */
1077 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1078 *root, const char *name, int name_len, u64 dir,
1079 struct btrfs_key *location, u8 type);
1080 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root,
1082 struct btrfs_path *path, u64 dir,
1083 const char *name, int name_len,
1084 int mod);
1085 struct btrfs_dir_item *
1086 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path, u64 dir,
1089 u64 objectid, const char *name, int name_len,
1090 int mod);
1091 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1092 struct btrfs_path *path,
1093 const char *name, int name_len);
1094 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct btrfs_path *path,
1097 struct btrfs_dir_item *di);
1098 /* inode-map.c */
1099 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *fs_root,
1101 u64 dirid, u64 *objectid);
1102 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1103
1104 /* inode-item.c */
1105 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1106 *root, u64 objectid, struct btrfs_inode_item
1107 *inode_item);
1108 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1109 *root, struct btrfs_path *path,
1110 struct btrfs_key *location, int mod);
1111
1112 /* file-item.c */
1113 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root,
1115 u64 objectid, u64 pos, u64 offset,
1116 u64 num_blocks);
1117 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 struct btrfs_path *path, u64 objectid,
1120 u64 blocknr, int mod);
1121 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root,
1123 u64 objectid, u64 offset,
1124 char *data, size_t len);
1125 int btrfs_csum_verify_file_block(struct btrfs_root *root,
1126 u64 objectid, u64 offset,
1127 char *data, size_t len);
1128 struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1129 struct btrfs_root *root,
1130 struct btrfs_path *path,
1131 u64 objectid, u64 offset,
1132 int cow);
1133 /* super.c */
1134 extern struct subsystem btrfs_subsys;
1135
1136 #endif
This page took 0.057274 seconds and 5 git commands to generate.