Btrfs: Fix misuse of chunk mutex
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include "extent_io.h"
38 #include "extent_map.h"
39 #include "async-thread.h"
40
41 struct btrfs_trans_handle;
42 struct btrfs_transaction;
43 struct btrfs_pending_snapshot;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_transaction_cachep;
46 extern struct kmem_cache *btrfs_bit_radix_cachep;
47 extern struct kmem_cache *btrfs_path_cachep;
48 extern struct kmem_cache *btrfs_free_space_cachep;
49 struct btrfs_ordered_sum;
50
51 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
52 #define STATIC noinline
53 #else
54 #define STATIC static noinline
55 #endif
56
57 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
58
59 #define BTRFS_MAX_MIRRORS 3
60
61 #define BTRFS_MAX_LEVEL 8
62
63 #define BTRFS_COMPAT_EXTENT_TREE_V0
64
65 /* holds pointers to all of the tree roots */
66 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
67
68 /* stores information about which extents are in use, and reference counts */
69 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
70
71 /*
72 * chunk tree stores translations from logical -> physical block numbering
73 * the super block points to the chunk tree
74 */
75 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
76
77 /*
78 * stores information about which areas of a given device are in use.
79 * one per device. The tree of tree roots points to the device tree
80 */
81 #define BTRFS_DEV_TREE_OBJECTID 4ULL
82
83 /* one per subvolume, storing files and directories */
84 #define BTRFS_FS_TREE_OBJECTID 5ULL
85
86 /* directory objectid inside the root tree */
87 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
88
89 /* holds checksums of all the data extents */
90 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
91
92 /* holds quota configuration and tracking */
93 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
94
95 /* for storing items that use the BTRFS_UUID_KEY* types */
96 #define BTRFS_UUID_TREE_OBJECTID 9ULL
97
98 /* for storing balance parameters in the root tree */
99 #define BTRFS_BALANCE_OBJECTID -4ULL
100
101 /* orhpan objectid for tracking unlinked/truncated files */
102 #define BTRFS_ORPHAN_OBJECTID -5ULL
103
104 /* does write ahead logging to speed up fsyncs */
105 #define BTRFS_TREE_LOG_OBJECTID -6ULL
106 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
107
108 /* for space balancing */
109 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
110 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
111
112 /*
113 * extent checksums all have this objectid
114 * this allows them to share the logging tree
115 * for fsyncs
116 */
117 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
118
119 /* For storing free space cache */
120 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
121
122 /*
123 * The inode number assigned to the special inode for storing
124 * free ino cache
125 */
126 #define BTRFS_FREE_INO_OBJECTID -12ULL
127
128 /* dummy objectid represents multiple objectids */
129 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
130
131 /*
132 * All files have objectids in this range.
133 */
134 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
135 #define BTRFS_LAST_FREE_OBJECTID -256ULL
136 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
137
138
139 /*
140 * the device items go into the chunk tree. The key is in the form
141 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
142 */
143 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
144
145 #define BTRFS_BTREE_INODE_OBJECTID 1
146
147 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
148
149 #define BTRFS_DEV_REPLACE_DEVID 0ULL
150
151 /*
152 * the max metadata block size. This limit is somewhat artificial,
153 * but the memmove costs go through the roof for larger blocks.
154 */
155 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
156
157 /*
158 * we can actually store much bigger names, but lets not confuse the rest
159 * of linux
160 */
161 #define BTRFS_NAME_LEN 255
162
163 /*
164 * Theoretical limit is larger, but we keep this down to a sane
165 * value. That should limit greatly the possibility of collisions on
166 * inode ref items.
167 */
168 #define BTRFS_LINK_MAX 65535U
169
170 /* 32 bytes in various csum fields */
171 #define BTRFS_CSUM_SIZE 32
172
173 /* csum types */
174 #define BTRFS_CSUM_TYPE_CRC32 0
175
176 static int btrfs_csum_sizes[] = { 4, 0 };
177
178 /* four bytes for CRC32 */
179 #define BTRFS_EMPTY_DIR_SIZE 0
180
181 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
182 #define REQ_GET_READ_MIRRORS (1 << 30)
183
184 #define BTRFS_FT_UNKNOWN 0
185 #define BTRFS_FT_REG_FILE 1
186 #define BTRFS_FT_DIR 2
187 #define BTRFS_FT_CHRDEV 3
188 #define BTRFS_FT_BLKDEV 4
189 #define BTRFS_FT_FIFO 5
190 #define BTRFS_FT_SOCK 6
191 #define BTRFS_FT_SYMLINK 7
192 #define BTRFS_FT_XATTR 8
193 #define BTRFS_FT_MAX 9
194
195 /* ioprio of readahead is set to idle */
196 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
197
198 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
199
200 /*
201 * The key defines the order in the tree, and so it also defines (optimal)
202 * block layout.
203 *
204 * objectid corresponds to the inode number.
205 *
206 * type tells us things about the object, and is a kind of stream selector.
207 * so for a given inode, keys with type of 1 might refer to the inode data,
208 * type of 2 may point to file data in the btree and type == 3 may point to
209 * extents.
210 *
211 * offset is the starting byte offset for this key in the stream.
212 *
213 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
214 * in cpu native order. Otherwise they are identical and their sizes
215 * should be the same (ie both packed)
216 */
217 struct btrfs_disk_key {
218 __le64 objectid;
219 u8 type;
220 __le64 offset;
221 } __attribute__ ((__packed__));
222
223 struct btrfs_key {
224 u64 objectid;
225 u8 type;
226 u64 offset;
227 } __attribute__ ((__packed__));
228
229 struct btrfs_mapping_tree {
230 struct extent_map_tree map_tree;
231 };
232
233 struct btrfs_dev_item {
234 /* the internal btrfs device id */
235 __le64 devid;
236
237 /* size of the device */
238 __le64 total_bytes;
239
240 /* bytes used */
241 __le64 bytes_used;
242
243 /* optimal io alignment for this device */
244 __le32 io_align;
245
246 /* optimal io width for this device */
247 __le32 io_width;
248
249 /* minimal io size for this device */
250 __le32 sector_size;
251
252 /* type and info about this device */
253 __le64 type;
254
255 /* expected generation for this device */
256 __le64 generation;
257
258 /*
259 * starting byte of this partition on the device,
260 * to allow for stripe alignment in the future
261 */
262 __le64 start_offset;
263
264 /* grouping information for allocation decisions */
265 __le32 dev_group;
266
267 /* seek speed 0-100 where 100 is fastest */
268 u8 seek_speed;
269
270 /* bandwidth 0-100 where 100 is fastest */
271 u8 bandwidth;
272
273 /* btrfs generated uuid for this device */
274 u8 uuid[BTRFS_UUID_SIZE];
275
276 /* uuid of FS who owns this device */
277 u8 fsid[BTRFS_UUID_SIZE];
278 } __attribute__ ((__packed__));
279
280 struct btrfs_stripe {
281 __le64 devid;
282 __le64 offset;
283 u8 dev_uuid[BTRFS_UUID_SIZE];
284 } __attribute__ ((__packed__));
285
286 struct btrfs_chunk {
287 /* size of this chunk in bytes */
288 __le64 length;
289
290 /* objectid of the root referencing this chunk */
291 __le64 owner;
292
293 __le64 stripe_len;
294 __le64 type;
295
296 /* optimal io alignment for this chunk */
297 __le32 io_align;
298
299 /* optimal io width for this chunk */
300 __le32 io_width;
301
302 /* minimal io size for this chunk */
303 __le32 sector_size;
304
305 /* 2^16 stripes is quite a lot, a second limit is the size of a single
306 * item in the btree
307 */
308 __le16 num_stripes;
309
310 /* sub stripes only matter for raid10 */
311 __le16 sub_stripes;
312 struct btrfs_stripe stripe;
313 /* additional stripes go here */
314 } __attribute__ ((__packed__));
315
316 #define BTRFS_FREE_SPACE_EXTENT 1
317 #define BTRFS_FREE_SPACE_BITMAP 2
318
319 struct btrfs_free_space_entry {
320 __le64 offset;
321 __le64 bytes;
322 u8 type;
323 } __attribute__ ((__packed__));
324
325 struct btrfs_free_space_header {
326 struct btrfs_disk_key location;
327 __le64 generation;
328 __le64 num_entries;
329 __le64 num_bitmaps;
330 } __attribute__ ((__packed__));
331
332 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
333 {
334 BUG_ON(num_stripes == 0);
335 return sizeof(struct btrfs_chunk) +
336 sizeof(struct btrfs_stripe) * (num_stripes - 1);
337 }
338
339 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
340 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
341
342 /*
343 * File system states
344 */
345 #define BTRFS_FS_STATE_ERROR 0
346 #define BTRFS_FS_STATE_REMOUNTING 1
347 #define BTRFS_FS_STATE_TRANS_ABORTED 2
348 #define BTRFS_FS_STATE_DEV_REPLACING 3
349
350 /* Super block flags */
351 /* Errors detected */
352 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
353
354 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
355 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
356
357 #define BTRFS_BACKREF_REV_MAX 256
358 #define BTRFS_BACKREF_REV_SHIFT 56
359 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
360 BTRFS_BACKREF_REV_SHIFT)
361
362 #define BTRFS_OLD_BACKREF_REV 0
363 #define BTRFS_MIXED_BACKREF_REV 1
364
365 /*
366 * every tree block (leaf or node) starts with this header.
367 */
368 struct btrfs_header {
369 /* these first four must match the super block */
370 u8 csum[BTRFS_CSUM_SIZE];
371 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
372 __le64 bytenr; /* which block this node is supposed to live in */
373 __le64 flags;
374
375 /* allowed to be different from the super from here on down */
376 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
377 __le64 generation;
378 __le64 owner;
379 __le32 nritems;
380 u8 level;
381 } __attribute__ ((__packed__));
382
383 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
384 sizeof(struct btrfs_header)) / \
385 sizeof(struct btrfs_key_ptr))
386 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
387 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
388 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
389 sizeof(struct btrfs_item) - \
390 offsetof(struct btrfs_file_extent_item, disk_bytenr))
391 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
392 sizeof(struct btrfs_item) -\
393 sizeof(struct btrfs_dir_item))
394
395
396 /*
397 * this is a very generous portion of the super block, giving us
398 * room to translate 14 chunks with 3 stripes each.
399 */
400 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
401 #define BTRFS_LABEL_SIZE 256
402
403 /*
404 * just in case we somehow lose the roots and are not able to mount,
405 * we store an array of the roots from previous transactions
406 * in the super.
407 */
408 #define BTRFS_NUM_BACKUP_ROOTS 4
409 struct btrfs_root_backup {
410 __le64 tree_root;
411 __le64 tree_root_gen;
412
413 __le64 chunk_root;
414 __le64 chunk_root_gen;
415
416 __le64 extent_root;
417 __le64 extent_root_gen;
418
419 __le64 fs_root;
420 __le64 fs_root_gen;
421
422 __le64 dev_root;
423 __le64 dev_root_gen;
424
425 __le64 csum_root;
426 __le64 csum_root_gen;
427
428 __le64 total_bytes;
429 __le64 bytes_used;
430 __le64 num_devices;
431 /* future */
432 __le64 unused_64[4];
433
434 u8 tree_root_level;
435 u8 chunk_root_level;
436 u8 extent_root_level;
437 u8 fs_root_level;
438 u8 dev_root_level;
439 u8 csum_root_level;
440 /* future and to align */
441 u8 unused_8[10];
442 } __attribute__ ((__packed__));
443
444 /*
445 * the super block basically lists the main trees of the FS
446 * it currently lacks any block count etc etc
447 */
448 struct btrfs_super_block {
449 u8 csum[BTRFS_CSUM_SIZE];
450 /* the first 4 fields must match struct btrfs_header */
451 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
452 __le64 bytenr; /* this block number */
453 __le64 flags;
454
455 /* allowed to be different from the btrfs_header from here own down */
456 __le64 magic;
457 __le64 generation;
458 __le64 root;
459 __le64 chunk_root;
460 __le64 log_root;
461
462 /* this will help find the new super based on the log root */
463 __le64 log_root_transid;
464 __le64 total_bytes;
465 __le64 bytes_used;
466 __le64 root_dir_objectid;
467 __le64 num_devices;
468 __le32 sectorsize;
469 __le32 nodesize;
470 __le32 __unused_leafsize;
471 __le32 stripesize;
472 __le32 sys_chunk_array_size;
473 __le64 chunk_root_generation;
474 __le64 compat_flags;
475 __le64 compat_ro_flags;
476 __le64 incompat_flags;
477 __le16 csum_type;
478 u8 root_level;
479 u8 chunk_root_level;
480 u8 log_root_level;
481 struct btrfs_dev_item dev_item;
482
483 char label[BTRFS_LABEL_SIZE];
484
485 __le64 cache_generation;
486 __le64 uuid_tree_generation;
487
488 /* future expansion */
489 __le64 reserved[30];
490 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
491 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
492 } __attribute__ ((__packed__));
493
494 /*
495 * Compat flags that we support. If any incompat flags are set other than the
496 * ones specified below then we will fail to mount
497 */
498 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
499 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
500 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
501 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
502 /*
503 * some patches floated around with a second compression method
504 * lets save that incompat here for when they do get in
505 * Note we don't actually support it, we're just reserving the
506 * number
507 */
508 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
509
510 /*
511 * older kernels tried to do bigger metadata blocks, but the
512 * code was pretty buggy. Lets not let them try anymore.
513 */
514 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
515
516 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
517 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
518 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
519 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
520
521 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
522 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
523 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
524 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
525 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
526 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
527
528 #define BTRFS_FEATURE_INCOMPAT_SUPP \
529 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
530 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
531 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
532 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
533 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
534 BTRFS_FEATURE_INCOMPAT_RAID56 | \
535 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
536 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
537 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
538
539 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
540 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
541 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
542
543 /*
544 * A leaf is full of items. offset and size tell us where to find
545 * the item in the leaf (relative to the start of the data area)
546 */
547 struct btrfs_item {
548 struct btrfs_disk_key key;
549 __le32 offset;
550 __le32 size;
551 } __attribute__ ((__packed__));
552
553 /*
554 * leaves have an item area and a data area:
555 * [item0, item1....itemN] [free space] [dataN...data1, data0]
556 *
557 * The data is separate from the items to get the keys closer together
558 * during searches.
559 */
560 struct btrfs_leaf {
561 struct btrfs_header header;
562 struct btrfs_item items[];
563 } __attribute__ ((__packed__));
564
565 /*
566 * all non-leaf blocks are nodes, they hold only keys and pointers to
567 * other blocks
568 */
569 struct btrfs_key_ptr {
570 struct btrfs_disk_key key;
571 __le64 blockptr;
572 __le64 generation;
573 } __attribute__ ((__packed__));
574
575 struct btrfs_node {
576 struct btrfs_header header;
577 struct btrfs_key_ptr ptrs[];
578 } __attribute__ ((__packed__));
579
580 /*
581 * btrfs_paths remember the path taken from the root down to the leaf.
582 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
583 * to any other levels that are present.
584 *
585 * The slots array records the index of the item or block pointer
586 * used while walking the tree.
587 */
588 struct btrfs_path {
589 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
590 int slots[BTRFS_MAX_LEVEL];
591 /* if there is real range locking, this locks field will change */
592 int locks[BTRFS_MAX_LEVEL];
593 int reada;
594 /* keep some upper locks as we walk down */
595 int lowest_level;
596
597 /*
598 * set by btrfs_split_item, tells search_slot to keep all locks
599 * and to force calls to keep space in the nodes
600 */
601 unsigned int search_for_split:1;
602 unsigned int keep_locks:1;
603 unsigned int skip_locking:1;
604 unsigned int leave_spinning:1;
605 unsigned int search_commit_root:1;
606 unsigned int need_commit_sem:1;
607 };
608
609 /*
610 * items in the extent btree are used to record the objectid of the
611 * owner of the block and the number of references
612 */
613
614 struct btrfs_extent_item {
615 __le64 refs;
616 __le64 generation;
617 __le64 flags;
618 } __attribute__ ((__packed__));
619
620 struct btrfs_extent_item_v0 {
621 __le32 refs;
622 } __attribute__ ((__packed__));
623
624 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
625 sizeof(struct btrfs_item))
626
627 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
628 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
629
630 /* following flags only apply to tree blocks */
631
632 /* use full backrefs for extent pointers in the block */
633 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
634
635 /*
636 * this flag is only used internally by scrub and may be changed at any time
637 * it is only declared here to avoid collisions
638 */
639 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
640
641 struct btrfs_tree_block_info {
642 struct btrfs_disk_key key;
643 u8 level;
644 } __attribute__ ((__packed__));
645
646 struct btrfs_extent_data_ref {
647 __le64 root;
648 __le64 objectid;
649 __le64 offset;
650 __le32 count;
651 } __attribute__ ((__packed__));
652
653 struct btrfs_shared_data_ref {
654 __le32 count;
655 } __attribute__ ((__packed__));
656
657 struct btrfs_extent_inline_ref {
658 u8 type;
659 __le64 offset;
660 } __attribute__ ((__packed__));
661
662 /* old style backrefs item */
663 struct btrfs_extent_ref_v0 {
664 __le64 root;
665 __le64 generation;
666 __le64 objectid;
667 __le32 count;
668 } __attribute__ ((__packed__));
669
670
671 /* dev extents record free space on individual devices. The owner
672 * field points back to the chunk allocation mapping tree that allocated
673 * the extent. The chunk tree uuid field is a way to double check the owner
674 */
675 struct btrfs_dev_extent {
676 __le64 chunk_tree;
677 __le64 chunk_objectid;
678 __le64 chunk_offset;
679 __le64 length;
680 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
681 } __attribute__ ((__packed__));
682
683 struct btrfs_inode_ref {
684 __le64 index;
685 __le16 name_len;
686 /* name goes here */
687 } __attribute__ ((__packed__));
688
689 struct btrfs_inode_extref {
690 __le64 parent_objectid;
691 __le64 index;
692 __le16 name_len;
693 __u8 name[0];
694 /* name goes here */
695 } __attribute__ ((__packed__));
696
697 struct btrfs_timespec {
698 __le64 sec;
699 __le32 nsec;
700 } __attribute__ ((__packed__));
701
702 enum btrfs_compression_type {
703 BTRFS_COMPRESS_NONE = 0,
704 BTRFS_COMPRESS_ZLIB = 1,
705 BTRFS_COMPRESS_LZO = 2,
706 BTRFS_COMPRESS_TYPES = 2,
707 BTRFS_COMPRESS_LAST = 3,
708 };
709
710 struct btrfs_inode_item {
711 /* nfs style generation number */
712 __le64 generation;
713 /* transid that last touched this inode */
714 __le64 transid;
715 __le64 size;
716 __le64 nbytes;
717 __le64 block_group;
718 __le32 nlink;
719 __le32 uid;
720 __le32 gid;
721 __le32 mode;
722 __le64 rdev;
723 __le64 flags;
724
725 /* modification sequence number for NFS */
726 __le64 sequence;
727
728 /*
729 * a little future expansion, for more than this we can
730 * just grow the inode item and version it
731 */
732 __le64 reserved[4];
733 struct btrfs_timespec atime;
734 struct btrfs_timespec ctime;
735 struct btrfs_timespec mtime;
736 struct btrfs_timespec otime;
737 } __attribute__ ((__packed__));
738
739 struct btrfs_dir_log_item {
740 __le64 end;
741 } __attribute__ ((__packed__));
742
743 struct btrfs_dir_item {
744 struct btrfs_disk_key location;
745 __le64 transid;
746 __le16 data_len;
747 __le16 name_len;
748 u8 type;
749 } __attribute__ ((__packed__));
750
751 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
752
753 /*
754 * Internal in-memory flag that a subvolume has been marked for deletion but
755 * still visible as a directory
756 */
757 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
758
759 struct btrfs_root_item {
760 struct btrfs_inode_item inode;
761 __le64 generation;
762 __le64 root_dirid;
763 __le64 bytenr;
764 __le64 byte_limit;
765 __le64 bytes_used;
766 __le64 last_snapshot;
767 __le64 flags;
768 __le32 refs;
769 struct btrfs_disk_key drop_progress;
770 u8 drop_level;
771 u8 level;
772
773 /*
774 * The following fields appear after subvol_uuids+subvol_times
775 * were introduced.
776 */
777
778 /*
779 * This generation number is used to test if the new fields are valid
780 * and up to date while reading the root item. Everytime the root item
781 * is written out, the "generation" field is copied into this field. If
782 * anyone ever mounted the fs with an older kernel, we will have
783 * mismatching generation values here and thus must invalidate the
784 * new fields. See btrfs_update_root and btrfs_find_last_root for
785 * details.
786 * the offset of generation_v2 is also used as the start for the memset
787 * when invalidating the fields.
788 */
789 __le64 generation_v2;
790 u8 uuid[BTRFS_UUID_SIZE];
791 u8 parent_uuid[BTRFS_UUID_SIZE];
792 u8 received_uuid[BTRFS_UUID_SIZE];
793 __le64 ctransid; /* updated when an inode changes */
794 __le64 otransid; /* trans when created */
795 __le64 stransid; /* trans when sent. non-zero for received subvol */
796 __le64 rtransid; /* trans when received. non-zero for received subvol */
797 struct btrfs_timespec ctime;
798 struct btrfs_timespec otime;
799 struct btrfs_timespec stime;
800 struct btrfs_timespec rtime;
801 __le64 reserved[8]; /* for future */
802 } __attribute__ ((__packed__));
803
804 /*
805 * this is used for both forward and backward root refs
806 */
807 struct btrfs_root_ref {
808 __le64 dirid;
809 __le64 sequence;
810 __le16 name_len;
811 } __attribute__ ((__packed__));
812
813 struct btrfs_disk_balance_args {
814 /*
815 * profiles to operate on, single is denoted by
816 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
817 */
818 __le64 profiles;
819
820 /* usage filter */
821 __le64 usage;
822
823 /* devid filter */
824 __le64 devid;
825
826 /* devid subset filter [pstart..pend) */
827 __le64 pstart;
828 __le64 pend;
829
830 /* btrfs virtual address space subset filter [vstart..vend) */
831 __le64 vstart;
832 __le64 vend;
833
834 /*
835 * profile to convert to, single is denoted by
836 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
837 */
838 __le64 target;
839
840 /* BTRFS_BALANCE_ARGS_* */
841 __le64 flags;
842
843 /* BTRFS_BALANCE_ARGS_LIMIT value */
844 __le64 limit;
845
846 __le64 unused[7];
847 } __attribute__ ((__packed__));
848
849 /*
850 * store balance parameters to disk so that balance can be properly
851 * resumed after crash or unmount
852 */
853 struct btrfs_balance_item {
854 /* BTRFS_BALANCE_* */
855 __le64 flags;
856
857 struct btrfs_disk_balance_args data;
858 struct btrfs_disk_balance_args meta;
859 struct btrfs_disk_balance_args sys;
860
861 __le64 unused[4];
862 } __attribute__ ((__packed__));
863
864 #define BTRFS_FILE_EXTENT_INLINE 0
865 #define BTRFS_FILE_EXTENT_REG 1
866 #define BTRFS_FILE_EXTENT_PREALLOC 2
867
868 struct btrfs_file_extent_item {
869 /*
870 * transaction id that created this extent
871 */
872 __le64 generation;
873 /*
874 * max number of bytes to hold this extent in ram
875 * when we split a compressed extent we can't know how big
876 * each of the resulting pieces will be. So, this is
877 * an upper limit on the size of the extent in ram instead of
878 * an exact limit.
879 */
880 __le64 ram_bytes;
881
882 /*
883 * 32 bits for the various ways we might encode the data,
884 * including compression and encryption. If any of these
885 * are set to something a given disk format doesn't understand
886 * it is treated like an incompat flag for reading and writing,
887 * but not for stat.
888 */
889 u8 compression;
890 u8 encryption;
891 __le16 other_encoding; /* spare for later use */
892
893 /* are we inline data or a real extent? */
894 u8 type;
895
896 /*
897 * disk space consumed by the extent, checksum blocks are included
898 * in these numbers
899 */
900 __le64 disk_bytenr;
901 __le64 disk_num_bytes;
902 /*
903 * the logical offset in file blocks (no csums)
904 * this extent record is for. This allows a file extent to point
905 * into the middle of an existing extent on disk, sharing it
906 * between two snapshots (useful if some bytes in the middle of the
907 * extent have changed
908 */
909 __le64 offset;
910 /*
911 * the logical number of file blocks (no csums included). This
912 * always reflects the size uncompressed and without encoding.
913 */
914 __le64 num_bytes;
915
916 } __attribute__ ((__packed__));
917
918 struct btrfs_csum_item {
919 u8 csum;
920 } __attribute__ ((__packed__));
921
922 struct btrfs_dev_stats_item {
923 /*
924 * grow this item struct at the end for future enhancements and keep
925 * the existing values unchanged
926 */
927 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
928 } __attribute__ ((__packed__));
929
930 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
931 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
932 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
933 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
934 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
935 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
936 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
937
938 struct btrfs_dev_replace {
939 u64 replace_state; /* see #define above */
940 u64 time_started; /* seconds since 1-Jan-1970 */
941 u64 time_stopped; /* seconds since 1-Jan-1970 */
942 atomic64_t num_write_errors;
943 atomic64_t num_uncorrectable_read_errors;
944
945 u64 cursor_left;
946 u64 committed_cursor_left;
947 u64 cursor_left_last_write_of_item;
948 u64 cursor_right;
949
950 u64 cont_reading_from_srcdev_mode; /* see #define above */
951
952 int is_valid;
953 int item_needs_writeback;
954 struct btrfs_device *srcdev;
955 struct btrfs_device *tgtdev;
956
957 pid_t lock_owner;
958 atomic_t nesting_level;
959 struct mutex lock_finishing_cancel_unmount;
960 struct mutex lock_management_lock;
961 struct mutex lock;
962
963 struct btrfs_scrub_progress scrub_progress;
964 };
965
966 struct btrfs_dev_replace_item {
967 /*
968 * grow this item struct at the end for future enhancements and keep
969 * the existing values unchanged
970 */
971 __le64 src_devid;
972 __le64 cursor_left;
973 __le64 cursor_right;
974 __le64 cont_reading_from_srcdev_mode;
975
976 __le64 replace_state;
977 __le64 time_started;
978 __le64 time_stopped;
979 __le64 num_write_errors;
980 __le64 num_uncorrectable_read_errors;
981 } __attribute__ ((__packed__));
982
983 /* different types of block groups (and chunks) */
984 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
985 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
986 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
987 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
988 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
989 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
990 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
991 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
992 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
993 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
994 BTRFS_SPACE_INFO_GLOBAL_RSV)
995
996 enum btrfs_raid_types {
997 BTRFS_RAID_RAID10,
998 BTRFS_RAID_RAID1,
999 BTRFS_RAID_DUP,
1000 BTRFS_RAID_RAID0,
1001 BTRFS_RAID_SINGLE,
1002 BTRFS_RAID_RAID5,
1003 BTRFS_RAID_RAID6,
1004 BTRFS_NR_RAID_TYPES
1005 };
1006
1007 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1008 BTRFS_BLOCK_GROUP_SYSTEM | \
1009 BTRFS_BLOCK_GROUP_METADATA)
1010
1011 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1012 BTRFS_BLOCK_GROUP_RAID1 | \
1013 BTRFS_BLOCK_GROUP_RAID5 | \
1014 BTRFS_BLOCK_GROUP_RAID6 | \
1015 BTRFS_BLOCK_GROUP_DUP | \
1016 BTRFS_BLOCK_GROUP_RAID10)
1017 /*
1018 * We need a bit for restriper to be able to tell when chunks of type
1019 * SINGLE are available. This "extended" profile format is used in
1020 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1021 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1022 * to avoid remappings between two formats in future.
1023 */
1024 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1025
1026 /*
1027 * A fake block group type that is used to communicate global block reserve
1028 * size to userspace via the SPACE_INFO ioctl.
1029 */
1030 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1031
1032 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1033 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1034
1035 static inline u64 chunk_to_extended(u64 flags)
1036 {
1037 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1038 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1039
1040 return flags;
1041 }
1042 static inline u64 extended_to_chunk(u64 flags)
1043 {
1044 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1045 }
1046
1047 struct btrfs_block_group_item {
1048 __le64 used;
1049 __le64 chunk_objectid;
1050 __le64 flags;
1051 } __attribute__ ((__packed__));
1052
1053 /*
1054 * is subvolume quota turned on?
1055 */
1056 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1057 /*
1058 * RESCAN is set during the initialization phase
1059 */
1060 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1061 /*
1062 * Some qgroup entries are known to be out of date,
1063 * either because the configuration has changed in a way that
1064 * makes a rescan necessary, or because the fs has been mounted
1065 * with a non-qgroup-aware version.
1066 * Turning qouta off and on again makes it inconsistent, too.
1067 */
1068 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1069
1070 #define BTRFS_QGROUP_STATUS_VERSION 1
1071
1072 struct btrfs_qgroup_status_item {
1073 __le64 version;
1074 /*
1075 * the generation is updated during every commit. As older
1076 * versions of btrfs are not aware of qgroups, it will be
1077 * possible to detect inconsistencies by checking the
1078 * generation on mount time
1079 */
1080 __le64 generation;
1081
1082 /* flag definitions see above */
1083 __le64 flags;
1084
1085 /*
1086 * only used during scanning to record the progress
1087 * of the scan. It contains a logical address
1088 */
1089 __le64 rescan;
1090 } __attribute__ ((__packed__));
1091
1092 struct btrfs_qgroup_info_item {
1093 __le64 generation;
1094 __le64 rfer;
1095 __le64 rfer_cmpr;
1096 __le64 excl;
1097 __le64 excl_cmpr;
1098 } __attribute__ ((__packed__));
1099
1100 /* flags definition for qgroup limits */
1101 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1102 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1103 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1104 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1105 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1106 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1107
1108 struct btrfs_qgroup_limit_item {
1109 /*
1110 * only updated when any of the other values change
1111 */
1112 __le64 flags;
1113 __le64 max_rfer;
1114 __le64 max_excl;
1115 __le64 rsv_rfer;
1116 __le64 rsv_excl;
1117 } __attribute__ ((__packed__));
1118
1119 /* For raid type sysfs entries */
1120 struct raid_kobject {
1121 int raid_type;
1122 struct kobject kobj;
1123 };
1124
1125 struct btrfs_space_info {
1126 spinlock_t lock;
1127
1128 u64 total_bytes; /* total bytes in the space,
1129 this doesn't take mirrors into account */
1130 u64 bytes_used; /* total bytes used,
1131 this doesn't take mirrors into account */
1132 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1133 transaction finishes */
1134 u64 bytes_reserved; /* total bytes the allocator has reserved for
1135 current allocations */
1136 u64 bytes_may_use; /* number of bytes that may be used for
1137 delalloc/allocations */
1138 u64 bytes_readonly; /* total bytes that are read only */
1139
1140 unsigned int full:1; /* indicates that we cannot allocate any more
1141 chunks for this space */
1142 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1143
1144 unsigned int flush:1; /* set if we are trying to make space */
1145
1146 unsigned int force_alloc; /* set if we need to force a chunk
1147 alloc for this space */
1148
1149 u64 disk_used; /* total bytes used on disk */
1150 u64 disk_total; /* total bytes on disk, takes mirrors into
1151 account */
1152
1153 u64 flags;
1154
1155 /*
1156 * bytes_pinned is kept in line with what is actually pinned, as in
1157 * we've called update_block_group and dropped the bytes_used counter
1158 * and increased the bytes_pinned counter. However this means that
1159 * bytes_pinned does not reflect the bytes that will be pinned once the
1160 * delayed refs are flushed, so this counter is inc'ed everytime we call
1161 * btrfs_free_extent so it is a realtime count of what will be freed
1162 * once the transaction is committed. It will be zero'ed everytime the
1163 * transaction commits.
1164 */
1165 struct percpu_counter total_bytes_pinned;
1166
1167 struct list_head list;
1168
1169 struct rw_semaphore groups_sem;
1170 /* for block groups in our same type */
1171 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1172 wait_queue_head_t wait;
1173
1174 struct kobject kobj;
1175 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1176 };
1177
1178 #define BTRFS_BLOCK_RSV_GLOBAL 1
1179 #define BTRFS_BLOCK_RSV_DELALLOC 2
1180 #define BTRFS_BLOCK_RSV_TRANS 3
1181 #define BTRFS_BLOCK_RSV_CHUNK 4
1182 #define BTRFS_BLOCK_RSV_DELOPS 5
1183 #define BTRFS_BLOCK_RSV_EMPTY 6
1184 #define BTRFS_BLOCK_RSV_TEMP 7
1185
1186 struct btrfs_block_rsv {
1187 u64 size;
1188 u64 reserved;
1189 struct btrfs_space_info *space_info;
1190 spinlock_t lock;
1191 unsigned short full;
1192 unsigned short type;
1193 unsigned short failfast;
1194 };
1195
1196 /*
1197 * free clusters are used to claim free space in relatively large chunks,
1198 * allowing us to do less seeky writes. They are used for all metadata
1199 * allocations and data allocations in ssd mode.
1200 */
1201 struct btrfs_free_cluster {
1202 spinlock_t lock;
1203 spinlock_t refill_lock;
1204 struct rb_root root;
1205
1206 /* largest extent in this cluster */
1207 u64 max_size;
1208
1209 /* first extent starting offset */
1210 u64 window_start;
1211
1212 struct btrfs_block_group_cache *block_group;
1213 /*
1214 * when a cluster is allocated from a block group, we put the
1215 * cluster onto a list in the block group so that it can
1216 * be freed before the block group is freed.
1217 */
1218 struct list_head block_group_list;
1219 };
1220
1221 enum btrfs_caching_type {
1222 BTRFS_CACHE_NO = 0,
1223 BTRFS_CACHE_STARTED = 1,
1224 BTRFS_CACHE_FAST = 2,
1225 BTRFS_CACHE_FINISHED = 3,
1226 BTRFS_CACHE_ERROR = 4,
1227 };
1228
1229 enum btrfs_disk_cache_state {
1230 BTRFS_DC_WRITTEN = 0,
1231 BTRFS_DC_ERROR = 1,
1232 BTRFS_DC_CLEAR = 2,
1233 BTRFS_DC_SETUP = 3,
1234 BTRFS_DC_NEED_WRITE = 4,
1235 };
1236
1237 struct btrfs_caching_control {
1238 struct list_head list;
1239 struct mutex mutex;
1240 wait_queue_head_t wait;
1241 struct btrfs_work work;
1242 struct btrfs_block_group_cache *block_group;
1243 u64 progress;
1244 atomic_t count;
1245 };
1246
1247 struct btrfs_block_group_cache {
1248 struct btrfs_key key;
1249 struct btrfs_block_group_item item;
1250 struct btrfs_fs_info *fs_info;
1251 struct inode *inode;
1252 spinlock_t lock;
1253 u64 pinned;
1254 u64 reserved;
1255 u64 delalloc_bytes;
1256 u64 bytes_super;
1257 u64 flags;
1258 u64 sectorsize;
1259 u64 cache_generation;
1260
1261 /*
1262 * It is just used for the delayed data space allocation because
1263 * only the data space allocation and the relative metadata update
1264 * can be done cross the transaction.
1265 */
1266 struct rw_semaphore data_rwsem;
1267
1268 /* for raid56, this is a full stripe, without parity */
1269 unsigned long full_stripe_len;
1270
1271 unsigned int ro:1;
1272 unsigned int dirty:1;
1273 unsigned int iref:1;
1274
1275 int disk_cache_state;
1276
1277 /* cache tracking stuff */
1278 int cached;
1279 struct btrfs_caching_control *caching_ctl;
1280 u64 last_byte_to_unpin;
1281
1282 struct btrfs_space_info *space_info;
1283
1284 /* free space cache stuff */
1285 struct btrfs_free_space_ctl *free_space_ctl;
1286
1287 /* block group cache stuff */
1288 struct rb_node cache_node;
1289
1290 /* for block groups in the same raid type */
1291 struct list_head list;
1292
1293 /* usage count */
1294 atomic_t count;
1295
1296 /* List of struct btrfs_free_clusters for this block group.
1297 * Today it will only have one thing on it, but that may change
1298 */
1299 struct list_head cluster_list;
1300
1301 /* For delayed block group creation */
1302 struct list_head new_bg_list;
1303 };
1304
1305 /* delayed seq elem */
1306 struct seq_list {
1307 struct list_head list;
1308 u64 seq;
1309 };
1310
1311 enum btrfs_orphan_cleanup_state {
1312 ORPHAN_CLEANUP_STARTED = 1,
1313 ORPHAN_CLEANUP_DONE = 2,
1314 };
1315
1316 /* used by the raid56 code to lock stripes for read/modify/write */
1317 struct btrfs_stripe_hash {
1318 struct list_head hash_list;
1319 wait_queue_head_t wait;
1320 spinlock_t lock;
1321 };
1322
1323 /* used by the raid56 code to lock stripes for read/modify/write */
1324 struct btrfs_stripe_hash_table {
1325 struct list_head stripe_cache;
1326 spinlock_t cache_lock;
1327 int cache_size;
1328 struct btrfs_stripe_hash table[];
1329 };
1330
1331 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1332
1333 void btrfs_init_async_reclaim_work(struct work_struct *work);
1334
1335 /* fs_info */
1336 struct reloc_control;
1337 struct btrfs_device;
1338 struct btrfs_fs_devices;
1339 struct btrfs_balance_control;
1340 struct btrfs_delayed_root;
1341 struct btrfs_fs_info {
1342 u8 fsid[BTRFS_FSID_SIZE];
1343 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1344 struct btrfs_root *extent_root;
1345 struct btrfs_root *tree_root;
1346 struct btrfs_root *chunk_root;
1347 struct btrfs_root *dev_root;
1348 struct btrfs_root *fs_root;
1349 struct btrfs_root *csum_root;
1350 struct btrfs_root *quota_root;
1351 struct btrfs_root *uuid_root;
1352
1353 /* the log root tree is a directory of all the other log roots */
1354 struct btrfs_root *log_root_tree;
1355
1356 spinlock_t fs_roots_radix_lock;
1357 struct radix_tree_root fs_roots_radix;
1358
1359 /* block group cache stuff */
1360 spinlock_t block_group_cache_lock;
1361 u64 first_logical_byte;
1362 struct rb_root block_group_cache_tree;
1363
1364 /* keep track of unallocated space */
1365 spinlock_t free_chunk_lock;
1366 u64 free_chunk_space;
1367
1368 struct extent_io_tree freed_extents[2];
1369 struct extent_io_tree *pinned_extents;
1370
1371 /* logical->physical extent mapping */
1372 struct btrfs_mapping_tree mapping_tree;
1373
1374 /*
1375 * block reservation for extent, checksum, root tree and
1376 * delayed dir index item
1377 */
1378 struct btrfs_block_rsv global_block_rsv;
1379 /* block reservation for delay allocation */
1380 struct btrfs_block_rsv delalloc_block_rsv;
1381 /* block reservation for metadata operations */
1382 struct btrfs_block_rsv trans_block_rsv;
1383 /* block reservation for chunk tree */
1384 struct btrfs_block_rsv chunk_block_rsv;
1385 /* block reservation for delayed operations */
1386 struct btrfs_block_rsv delayed_block_rsv;
1387
1388 struct btrfs_block_rsv empty_block_rsv;
1389
1390 u64 generation;
1391 u64 last_trans_committed;
1392 u64 avg_delayed_ref_runtime;
1393
1394 /*
1395 * this is updated to the current trans every time a full commit
1396 * is required instead of the faster short fsync log commits
1397 */
1398 u64 last_trans_log_full_commit;
1399 unsigned long mount_opt;
1400 unsigned long compress_type:4;
1401 int commit_interval;
1402 /*
1403 * It is a suggestive number, the read side is safe even it gets a
1404 * wrong number because we will write out the data into a regular
1405 * extent. The write side(mount/remount) is under ->s_umount lock,
1406 * so it is also safe.
1407 */
1408 u64 max_inline;
1409 /*
1410 * Protected by ->chunk_mutex and sb->s_umount.
1411 *
1412 * The reason that we use two lock to protect it is because only
1413 * remount and mount operations can change it and these two operations
1414 * are under sb->s_umount, but the read side (chunk allocation) can not
1415 * acquire sb->s_umount or the deadlock would happen. So we use two
1416 * locks to protect it. On the write side, we must acquire two locks,
1417 * and on the read side, we just need acquire one of them.
1418 */
1419 u64 alloc_start;
1420 struct btrfs_transaction *running_transaction;
1421 wait_queue_head_t transaction_throttle;
1422 wait_queue_head_t transaction_wait;
1423 wait_queue_head_t transaction_blocked_wait;
1424 wait_queue_head_t async_submit_wait;
1425
1426 /*
1427 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1428 * when they are updated.
1429 *
1430 * Because we do not clear the flags for ever, so we needn't use
1431 * the lock on the read side.
1432 *
1433 * We also needn't use the lock when we mount the fs, because
1434 * there is no other task which will update the flag.
1435 */
1436 spinlock_t super_lock;
1437 struct btrfs_super_block *super_copy;
1438 struct btrfs_super_block *super_for_commit;
1439 struct block_device *__bdev;
1440 struct super_block *sb;
1441 struct inode *btree_inode;
1442 struct backing_dev_info bdi;
1443 struct mutex tree_log_mutex;
1444 struct mutex transaction_kthread_mutex;
1445 struct mutex cleaner_mutex;
1446 struct mutex chunk_mutex;
1447 struct mutex volume_mutex;
1448
1449 /* this is used during read/modify/write to make sure
1450 * no two ios are trying to mod the same stripe at the same
1451 * time
1452 */
1453 struct btrfs_stripe_hash_table *stripe_hash_table;
1454
1455 /*
1456 * this protects the ordered operations list only while we are
1457 * processing all of the entries on it. This way we make
1458 * sure the commit code doesn't find the list temporarily empty
1459 * because another function happens to be doing non-waiting preflush
1460 * before jumping into the main commit.
1461 */
1462 struct mutex ordered_operations_mutex;
1463
1464 /*
1465 * Same as ordered_operations_mutex except this is for ordered extents
1466 * and not the operations.
1467 */
1468 struct mutex ordered_extent_flush_mutex;
1469
1470 struct rw_semaphore commit_root_sem;
1471
1472 struct rw_semaphore cleanup_work_sem;
1473
1474 struct rw_semaphore subvol_sem;
1475 struct srcu_struct subvol_srcu;
1476
1477 spinlock_t trans_lock;
1478 /*
1479 * the reloc mutex goes with the trans lock, it is taken
1480 * during commit to protect us from the relocation code
1481 */
1482 struct mutex reloc_mutex;
1483
1484 struct list_head trans_list;
1485 struct list_head dead_roots;
1486 struct list_head caching_block_groups;
1487
1488 spinlock_t delayed_iput_lock;
1489 struct list_head delayed_iputs;
1490
1491 /* this protects tree_mod_seq_list */
1492 spinlock_t tree_mod_seq_lock;
1493 atomic64_t tree_mod_seq;
1494 struct list_head tree_mod_seq_list;
1495
1496 /* this protects tree_mod_log */
1497 rwlock_t tree_mod_log_lock;
1498 struct rb_root tree_mod_log;
1499
1500 atomic_t nr_async_submits;
1501 atomic_t async_submit_draining;
1502 atomic_t nr_async_bios;
1503 atomic_t async_delalloc_pages;
1504 atomic_t open_ioctl_trans;
1505
1506 /*
1507 * this is used to protect the following list -- ordered_roots.
1508 */
1509 spinlock_t ordered_root_lock;
1510
1511 /*
1512 * all fs/file tree roots in which there are data=ordered extents
1513 * pending writeback are added into this list.
1514 *
1515 * these can span multiple transactions and basically include
1516 * every dirty data page that isn't from nodatacow
1517 */
1518 struct list_head ordered_roots;
1519
1520 struct mutex delalloc_root_mutex;
1521 spinlock_t delalloc_root_lock;
1522 /* all fs/file tree roots that have delalloc inodes. */
1523 struct list_head delalloc_roots;
1524
1525 /*
1526 * there is a pool of worker threads for checksumming during writes
1527 * and a pool for checksumming after reads. This is because readers
1528 * can run with FS locks held, and the writers may be waiting for
1529 * those locks. We don't want ordering in the pending list to cause
1530 * deadlocks, and so the two are serviced separately.
1531 *
1532 * A third pool does submit_bio to avoid deadlocking with the other
1533 * two
1534 */
1535 struct btrfs_workqueue *workers;
1536 struct btrfs_workqueue *delalloc_workers;
1537 struct btrfs_workqueue *flush_workers;
1538 struct btrfs_workqueue *endio_workers;
1539 struct btrfs_workqueue *endio_meta_workers;
1540 struct btrfs_workqueue *endio_raid56_workers;
1541 struct btrfs_workqueue *rmw_workers;
1542 struct btrfs_workqueue *endio_meta_write_workers;
1543 struct btrfs_workqueue *endio_write_workers;
1544 struct btrfs_workqueue *endio_freespace_worker;
1545 struct btrfs_workqueue *submit_workers;
1546 struct btrfs_workqueue *caching_workers;
1547 struct btrfs_workqueue *readahead_workers;
1548
1549 /*
1550 * fixup workers take dirty pages that didn't properly go through
1551 * the cow mechanism and make them safe to write. It happens
1552 * for the sys_munmap function call path
1553 */
1554 struct btrfs_workqueue *fixup_workers;
1555 struct btrfs_workqueue *delayed_workers;
1556
1557 /* the extent workers do delayed refs on the extent allocation tree */
1558 struct btrfs_workqueue *extent_workers;
1559 struct task_struct *transaction_kthread;
1560 struct task_struct *cleaner_kthread;
1561 int thread_pool_size;
1562
1563 struct kobject super_kobj;
1564 struct kobject *space_info_kobj;
1565 struct kobject *device_dir_kobj;
1566 struct completion kobj_unregister;
1567 int do_barriers;
1568 int closing;
1569 int log_root_recovering;
1570
1571 u64 total_pinned;
1572
1573 /* used to keep from writing metadata until there is a nice batch */
1574 struct percpu_counter dirty_metadata_bytes;
1575 struct percpu_counter delalloc_bytes;
1576 s32 dirty_metadata_batch;
1577 s32 delalloc_batch;
1578
1579 struct list_head dirty_cowonly_roots;
1580
1581 struct btrfs_fs_devices *fs_devices;
1582
1583 /*
1584 * the space_info list is almost entirely read only. It only changes
1585 * when we add a new raid type to the FS, and that happens
1586 * very rarely. RCU is used to protect it.
1587 */
1588 struct list_head space_info;
1589
1590 struct btrfs_space_info *data_sinfo;
1591
1592 struct reloc_control *reloc_ctl;
1593
1594 /* data_alloc_cluster is only used in ssd mode */
1595 struct btrfs_free_cluster data_alloc_cluster;
1596
1597 /* all metadata allocations go through this cluster */
1598 struct btrfs_free_cluster meta_alloc_cluster;
1599
1600 /* auto defrag inodes go here */
1601 spinlock_t defrag_inodes_lock;
1602 struct rb_root defrag_inodes;
1603 atomic_t defrag_running;
1604
1605 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1606 seqlock_t profiles_lock;
1607 /*
1608 * these three are in extended format (availability of single
1609 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1610 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1611 */
1612 u64 avail_data_alloc_bits;
1613 u64 avail_metadata_alloc_bits;
1614 u64 avail_system_alloc_bits;
1615
1616 /* restriper state */
1617 spinlock_t balance_lock;
1618 struct mutex balance_mutex;
1619 atomic_t balance_running;
1620 atomic_t balance_pause_req;
1621 atomic_t balance_cancel_req;
1622 struct btrfs_balance_control *balance_ctl;
1623 wait_queue_head_t balance_wait_q;
1624
1625 unsigned data_chunk_allocations;
1626 unsigned metadata_ratio;
1627
1628 void *bdev_holder;
1629
1630 /* private scrub information */
1631 struct mutex scrub_lock;
1632 atomic_t scrubs_running;
1633 atomic_t scrub_pause_req;
1634 atomic_t scrubs_paused;
1635 atomic_t scrub_cancel_req;
1636 wait_queue_head_t scrub_pause_wait;
1637 int scrub_workers_refcnt;
1638 struct btrfs_workqueue *scrub_workers;
1639 struct btrfs_workqueue *scrub_wr_completion_workers;
1640 struct btrfs_workqueue *scrub_nocow_workers;
1641
1642 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1643 u32 check_integrity_print_mask;
1644 #endif
1645 /*
1646 * quota information
1647 */
1648 unsigned int quota_enabled:1;
1649
1650 /*
1651 * quota_enabled only changes state after a commit. This holds the
1652 * next state.
1653 */
1654 unsigned int pending_quota_state:1;
1655
1656 /* is qgroup tracking in a consistent state? */
1657 u64 qgroup_flags;
1658
1659 /* holds configuration and tracking. Protected by qgroup_lock */
1660 struct rb_root qgroup_tree;
1661 struct rb_root qgroup_op_tree;
1662 spinlock_t qgroup_lock;
1663 spinlock_t qgroup_op_lock;
1664 atomic_t qgroup_op_seq;
1665
1666 /*
1667 * used to avoid frequently calling ulist_alloc()/ulist_free()
1668 * when doing qgroup accounting, it must be protected by qgroup_lock.
1669 */
1670 struct ulist *qgroup_ulist;
1671
1672 /* protect user change for quota operations */
1673 struct mutex qgroup_ioctl_lock;
1674
1675 /* list of dirty qgroups to be written at next commit */
1676 struct list_head dirty_qgroups;
1677
1678 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1679 u64 qgroup_seq;
1680
1681 /* qgroup rescan items */
1682 struct mutex qgroup_rescan_lock; /* protects the progress item */
1683 struct btrfs_key qgroup_rescan_progress;
1684 struct btrfs_workqueue *qgroup_rescan_workers;
1685 struct completion qgroup_rescan_completion;
1686 struct btrfs_work qgroup_rescan_work;
1687
1688 /* filesystem state */
1689 unsigned long fs_state;
1690
1691 struct btrfs_delayed_root *delayed_root;
1692
1693 /* readahead tree */
1694 spinlock_t reada_lock;
1695 struct radix_tree_root reada_tree;
1696
1697 /* Extent buffer radix tree */
1698 spinlock_t buffer_lock;
1699 struct radix_tree_root buffer_radix;
1700
1701 /* next backup root to be overwritten */
1702 int backup_root_index;
1703
1704 int num_tolerated_disk_barrier_failures;
1705
1706 /* device replace state */
1707 struct btrfs_dev_replace dev_replace;
1708
1709 atomic_t mutually_exclusive_operation_running;
1710
1711 struct percpu_counter bio_counter;
1712 wait_queue_head_t replace_wait;
1713
1714 struct semaphore uuid_tree_rescan_sem;
1715 unsigned int update_uuid_tree_gen:1;
1716
1717 /* Used to reclaim the metadata space in the background. */
1718 struct work_struct async_reclaim_work;
1719 };
1720
1721 struct btrfs_subvolume_writers {
1722 struct percpu_counter counter;
1723 wait_queue_head_t wait;
1724 };
1725
1726 /*
1727 * The state of btrfs root
1728 */
1729 /*
1730 * btrfs_record_root_in_trans is a multi-step process,
1731 * and it can race with the balancing code. But the
1732 * race is very small, and only the first time the root
1733 * is added to each transaction. So IN_TRANS_SETUP
1734 * is used to tell us when more checks are required
1735 */
1736 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1737 #define BTRFS_ROOT_REF_COWS 1
1738 #define BTRFS_ROOT_TRACK_DIRTY 2
1739 #define BTRFS_ROOT_IN_RADIX 3
1740 #define BTRFS_ROOT_DUMMY_ROOT 4
1741 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1742 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1743 #define BTRFS_ROOT_FORCE_COW 7
1744 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1745
1746 /*
1747 * in ram representation of the tree. extent_root is used for all allocations
1748 * and for the extent tree extent_root root.
1749 */
1750 struct btrfs_root {
1751 struct extent_buffer *node;
1752
1753 struct extent_buffer *commit_root;
1754 struct btrfs_root *log_root;
1755 struct btrfs_root *reloc_root;
1756
1757 unsigned long state;
1758 struct btrfs_root_item root_item;
1759 struct btrfs_key root_key;
1760 struct btrfs_fs_info *fs_info;
1761 struct extent_io_tree dirty_log_pages;
1762
1763 struct kobject root_kobj;
1764 struct completion kobj_unregister;
1765 struct mutex objectid_mutex;
1766
1767 spinlock_t accounting_lock;
1768 struct btrfs_block_rsv *block_rsv;
1769
1770 /* free ino cache stuff */
1771 struct btrfs_free_space_ctl *free_ino_ctl;
1772 enum btrfs_caching_type ino_cache_state;
1773 spinlock_t ino_cache_lock;
1774 wait_queue_head_t ino_cache_wait;
1775 struct btrfs_free_space_ctl *free_ino_pinned;
1776 u64 ino_cache_progress;
1777 struct inode *ino_cache_inode;
1778
1779 struct mutex log_mutex;
1780 wait_queue_head_t log_writer_wait;
1781 wait_queue_head_t log_commit_wait[2];
1782 struct list_head log_ctxs[2];
1783 atomic_t log_writers;
1784 atomic_t log_commit[2];
1785 atomic_t log_batch;
1786 int log_transid;
1787 /* No matter the commit succeeds or not*/
1788 int log_transid_committed;
1789 /* Just be updated when the commit succeeds. */
1790 int last_log_commit;
1791 pid_t log_start_pid;
1792
1793 u64 objectid;
1794 u64 last_trans;
1795
1796 /* data allocations are done in sectorsize units */
1797 u32 sectorsize;
1798
1799 /* node allocations are done in nodesize units */
1800 u32 nodesize;
1801
1802 u32 stripesize;
1803
1804 u32 type;
1805
1806 u64 highest_objectid;
1807
1808 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1809 u64 alloc_bytenr;
1810 #endif
1811
1812 u64 defrag_trans_start;
1813 struct btrfs_key defrag_progress;
1814 struct btrfs_key defrag_max;
1815 char *name;
1816
1817 /* the dirty list is only used by non-reference counted roots */
1818 struct list_head dirty_list;
1819
1820 struct list_head root_list;
1821
1822 spinlock_t log_extents_lock[2];
1823 struct list_head logged_list[2];
1824
1825 spinlock_t orphan_lock;
1826 atomic_t orphan_inodes;
1827 struct btrfs_block_rsv *orphan_block_rsv;
1828 int orphan_cleanup_state;
1829
1830 spinlock_t inode_lock;
1831 /* red-black tree that keeps track of in-memory inodes */
1832 struct rb_root inode_tree;
1833
1834 /*
1835 * radix tree that keeps track of delayed nodes of every inode,
1836 * protected by inode_lock
1837 */
1838 struct radix_tree_root delayed_nodes_tree;
1839 /*
1840 * right now this just gets used so that a root has its own devid
1841 * for stat. It may be used for more later
1842 */
1843 dev_t anon_dev;
1844
1845 spinlock_t root_item_lock;
1846 atomic_t refs;
1847
1848 struct mutex delalloc_mutex;
1849 spinlock_t delalloc_lock;
1850 /*
1851 * all of the inodes that have delalloc bytes. It is possible for
1852 * this list to be empty even when there is still dirty data=ordered
1853 * extents waiting to finish IO.
1854 */
1855 struct list_head delalloc_inodes;
1856 struct list_head delalloc_root;
1857 u64 nr_delalloc_inodes;
1858
1859 struct mutex ordered_extent_mutex;
1860 /*
1861 * this is used by the balancing code to wait for all the pending
1862 * ordered extents
1863 */
1864 spinlock_t ordered_extent_lock;
1865
1866 /*
1867 * all of the data=ordered extents pending writeback
1868 * these can span multiple transactions and basically include
1869 * every dirty data page that isn't from nodatacow
1870 */
1871 struct list_head ordered_extents;
1872 struct list_head ordered_root;
1873 u64 nr_ordered_extents;
1874
1875 /*
1876 * Number of currently running SEND ioctls to prevent
1877 * manipulation with the read-only status via SUBVOL_SETFLAGS
1878 */
1879 int send_in_progress;
1880 struct btrfs_subvolume_writers *subv_writers;
1881 atomic_t will_be_snapshoted;
1882 };
1883
1884 struct btrfs_ioctl_defrag_range_args {
1885 /* start of the defrag operation */
1886 __u64 start;
1887
1888 /* number of bytes to defrag, use (u64)-1 to say all */
1889 __u64 len;
1890
1891 /*
1892 * flags for the operation, which can include turning
1893 * on compression for this one defrag
1894 */
1895 __u64 flags;
1896
1897 /*
1898 * any extent bigger than this will be considered
1899 * already defragged. Use 0 to take the kernel default
1900 * Use 1 to say every single extent must be rewritten
1901 */
1902 __u32 extent_thresh;
1903
1904 /*
1905 * which compression method to use if turning on compression
1906 * for this defrag operation. If unspecified, zlib will
1907 * be used
1908 */
1909 __u32 compress_type;
1910
1911 /* spare for later */
1912 __u32 unused[4];
1913 };
1914
1915
1916 /*
1917 * inode items have the data typically returned from stat and store other
1918 * info about object characteristics. There is one for every file and dir in
1919 * the FS
1920 */
1921 #define BTRFS_INODE_ITEM_KEY 1
1922 #define BTRFS_INODE_REF_KEY 12
1923 #define BTRFS_INODE_EXTREF_KEY 13
1924 #define BTRFS_XATTR_ITEM_KEY 24
1925 #define BTRFS_ORPHAN_ITEM_KEY 48
1926 /* reserve 2-15 close to the inode for later flexibility */
1927
1928 /*
1929 * dir items are the name -> inode pointers in a directory. There is one
1930 * for every name in a directory.
1931 */
1932 #define BTRFS_DIR_LOG_ITEM_KEY 60
1933 #define BTRFS_DIR_LOG_INDEX_KEY 72
1934 #define BTRFS_DIR_ITEM_KEY 84
1935 #define BTRFS_DIR_INDEX_KEY 96
1936 /*
1937 * extent data is for file data
1938 */
1939 #define BTRFS_EXTENT_DATA_KEY 108
1940
1941 /*
1942 * extent csums are stored in a separate tree and hold csums for
1943 * an entire extent on disk.
1944 */
1945 #define BTRFS_EXTENT_CSUM_KEY 128
1946
1947 /*
1948 * root items point to tree roots. They are typically in the root
1949 * tree used by the super block to find all the other trees
1950 */
1951 #define BTRFS_ROOT_ITEM_KEY 132
1952
1953 /*
1954 * root backrefs tie subvols and snapshots to the directory entries that
1955 * reference them
1956 */
1957 #define BTRFS_ROOT_BACKREF_KEY 144
1958
1959 /*
1960 * root refs make a fast index for listing all of the snapshots and
1961 * subvolumes referenced by a given root. They point directly to the
1962 * directory item in the root that references the subvol
1963 */
1964 #define BTRFS_ROOT_REF_KEY 156
1965
1966 /*
1967 * extent items are in the extent map tree. These record which blocks
1968 * are used, and how many references there are to each block
1969 */
1970 #define BTRFS_EXTENT_ITEM_KEY 168
1971
1972 /*
1973 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1974 * the length, so we save the level in key->offset instead of the length.
1975 */
1976 #define BTRFS_METADATA_ITEM_KEY 169
1977
1978 #define BTRFS_TREE_BLOCK_REF_KEY 176
1979
1980 #define BTRFS_EXTENT_DATA_REF_KEY 178
1981
1982 #define BTRFS_EXTENT_REF_V0_KEY 180
1983
1984 #define BTRFS_SHARED_BLOCK_REF_KEY 182
1985
1986 #define BTRFS_SHARED_DATA_REF_KEY 184
1987
1988 /*
1989 * block groups give us hints into the extent allocation trees. Which
1990 * blocks are free etc etc
1991 */
1992 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1993
1994 #define BTRFS_DEV_EXTENT_KEY 204
1995 #define BTRFS_DEV_ITEM_KEY 216
1996 #define BTRFS_CHUNK_ITEM_KEY 228
1997
1998 /*
1999 * Records the overall state of the qgroups.
2000 * There's only one instance of this key present,
2001 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2002 */
2003 #define BTRFS_QGROUP_STATUS_KEY 240
2004 /*
2005 * Records the currently used space of the qgroup.
2006 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2007 */
2008 #define BTRFS_QGROUP_INFO_KEY 242
2009 /*
2010 * Contains the user configured limits for the qgroup.
2011 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2012 */
2013 #define BTRFS_QGROUP_LIMIT_KEY 244
2014 /*
2015 * Records the child-parent relationship of qgroups. For
2016 * each relation, 2 keys are present:
2017 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2018 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2019 */
2020 #define BTRFS_QGROUP_RELATION_KEY 246
2021
2022 #define BTRFS_BALANCE_ITEM_KEY 248
2023
2024 /*
2025 * Persistantly stores the io stats in the device tree.
2026 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2027 */
2028 #define BTRFS_DEV_STATS_KEY 249
2029
2030 /*
2031 * Persistantly stores the device replace state in the device tree.
2032 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2033 */
2034 #define BTRFS_DEV_REPLACE_KEY 250
2035
2036 /*
2037 * Stores items that allow to quickly map UUIDs to something else.
2038 * These items are part of the filesystem UUID tree.
2039 * The key is built like this:
2040 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2041 */
2042 #if BTRFS_UUID_SIZE != 16
2043 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2044 #endif
2045 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2046 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2047 * received subvols */
2048
2049 /*
2050 * string items are for debugging. They just store a short string of
2051 * data in the FS
2052 */
2053 #define BTRFS_STRING_ITEM_KEY 253
2054
2055 /*
2056 * Flags for mount options.
2057 *
2058 * Note: don't forget to add new options to btrfs_show_options()
2059 */
2060 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2061 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2062 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2063 #define BTRFS_MOUNT_SSD (1 << 3)
2064 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2065 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2066 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2067 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2068 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2069 #define BTRFS_MOUNT_NOSSD (1 << 9)
2070 #define BTRFS_MOUNT_DISCARD (1 << 10)
2071 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2072 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2073 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2074 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2075 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2076 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2077 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2078 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2079 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2080 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2081 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2082 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2083 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2084 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2085
2086 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2087
2088 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2089 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2090 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2091 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2092 BTRFS_MOUNT_##opt)
2093 #define btrfs_set_and_info(root, opt, fmt, args...) \
2094 { \
2095 if (!btrfs_test_opt(root, opt)) \
2096 btrfs_info(root->fs_info, fmt, ##args); \
2097 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2098 }
2099
2100 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2101 { \
2102 if (btrfs_test_opt(root, opt)) \
2103 btrfs_info(root->fs_info, fmt, ##args); \
2104 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2105 }
2106
2107 /*
2108 * Inode flags
2109 */
2110 #define BTRFS_INODE_NODATASUM (1 << 0)
2111 #define BTRFS_INODE_NODATACOW (1 << 1)
2112 #define BTRFS_INODE_READONLY (1 << 2)
2113 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2114 #define BTRFS_INODE_PREALLOC (1 << 4)
2115 #define BTRFS_INODE_SYNC (1 << 5)
2116 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2117 #define BTRFS_INODE_APPEND (1 << 7)
2118 #define BTRFS_INODE_NODUMP (1 << 8)
2119 #define BTRFS_INODE_NOATIME (1 << 9)
2120 #define BTRFS_INODE_DIRSYNC (1 << 10)
2121 #define BTRFS_INODE_COMPRESS (1 << 11)
2122
2123 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2124
2125 struct btrfs_map_token {
2126 struct extent_buffer *eb;
2127 char *kaddr;
2128 unsigned long offset;
2129 };
2130
2131 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2132 {
2133 token->kaddr = NULL;
2134 }
2135
2136 /* some macros to generate set/get funcs for the struct fields. This
2137 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2138 * one for u8:
2139 */
2140 #define le8_to_cpu(v) (v)
2141 #define cpu_to_le8(v) (v)
2142 #define __le8 u8
2143
2144 #define read_eb_member(eb, ptr, type, member, result) ( \
2145 read_extent_buffer(eb, (char *)(result), \
2146 ((unsigned long)(ptr)) + \
2147 offsetof(type, member), \
2148 sizeof(((type *)0)->member)))
2149
2150 #define write_eb_member(eb, ptr, type, member, result) ( \
2151 write_extent_buffer(eb, (char *)(result), \
2152 ((unsigned long)(ptr)) + \
2153 offsetof(type, member), \
2154 sizeof(((type *)0)->member)))
2155
2156 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2157 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2158 unsigned long off, \
2159 struct btrfs_map_token *token); \
2160 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2161 unsigned long off, u##bits val, \
2162 struct btrfs_map_token *token); \
2163 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2164 unsigned long off) \
2165 { \
2166 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2167 } \
2168 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2169 unsigned long off, u##bits val) \
2170 { \
2171 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2172 }
2173
2174 DECLARE_BTRFS_SETGET_BITS(8)
2175 DECLARE_BTRFS_SETGET_BITS(16)
2176 DECLARE_BTRFS_SETGET_BITS(32)
2177 DECLARE_BTRFS_SETGET_BITS(64)
2178
2179 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2180 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2181 { \
2182 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2183 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2184 } \
2185 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2186 u##bits val) \
2187 { \
2188 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2189 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2190 } \
2191 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2192 struct btrfs_map_token *token) \
2193 { \
2194 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2195 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2196 } \
2197 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2198 type *s, u##bits val, \
2199 struct btrfs_map_token *token) \
2200 { \
2201 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2202 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2203 }
2204
2205 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2206 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2207 { \
2208 type *p = page_address(eb->pages[0]); \
2209 u##bits res = le##bits##_to_cpu(p->member); \
2210 return res; \
2211 } \
2212 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2213 u##bits val) \
2214 { \
2215 type *p = page_address(eb->pages[0]); \
2216 p->member = cpu_to_le##bits(val); \
2217 }
2218
2219 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2220 static inline u##bits btrfs_##name(type *s) \
2221 { \
2222 return le##bits##_to_cpu(s->member); \
2223 } \
2224 static inline void btrfs_set_##name(type *s, u##bits val) \
2225 { \
2226 s->member = cpu_to_le##bits(val); \
2227 }
2228
2229 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2230 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2231 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2232 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2233 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2234 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2235 start_offset, 64);
2236 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2237 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2238 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2239 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2240 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2241 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2242
2243 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2244 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2245 total_bytes, 64);
2246 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2247 bytes_used, 64);
2248 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2249 io_align, 32);
2250 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2251 io_width, 32);
2252 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2253 sector_size, 32);
2254 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2255 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2256 dev_group, 32);
2257 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2258 seek_speed, 8);
2259 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2260 bandwidth, 8);
2261 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2262 generation, 64);
2263
2264 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2265 {
2266 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2267 }
2268
2269 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2270 {
2271 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2272 }
2273
2274 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2275 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2276 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2277 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2278 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2279 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2280 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2281 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2282 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2283 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2284 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2285
2286 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2287 {
2288 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2289 }
2290
2291 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2292 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2293 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2294 stripe_len, 64);
2295 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2296 io_align, 32);
2297 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2298 io_width, 32);
2299 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2300 sector_size, 32);
2301 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2302 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2303 num_stripes, 16);
2304 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2305 sub_stripes, 16);
2306 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2307 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2308
2309 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2310 int nr)
2311 {
2312 unsigned long offset = (unsigned long)c;
2313 offset += offsetof(struct btrfs_chunk, stripe);
2314 offset += nr * sizeof(struct btrfs_stripe);
2315 return (struct btrfs_stripe *)offset;
2316 }
2317
2318 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2319 {
2320 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2321 }
2322
2323 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2324 struct btrfs_chunk *c, int nr)
2325 {
2326 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2327 }
2328
2329 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2330 struct btrfs_chunk *c, int nr)
2331 {
2332 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2333 }
2334
2335 /* struct btrfs_block_group_item */
2336 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2337 used, 64);
2338 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2339 used, 64);
2340 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2341 struct btrfs_block_group_item, chunk_objectid, 64);
2342
2343 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2344 struct btrfs_block_group_item, chunk_objectid, 64);
2345 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2346 struct btrfs_block_group_item, flags, 64);
2347 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2348 struct btrfs_block_group_item, flags, 64);
2349
2350 /* struct btrfs_inode_ref */
2351 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2352 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2353
2354 /* struct btrfs_inode_extref */
2355 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2356 parent_objectid, 64);
2357 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2358 name_len, 16);
2359 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2360
2361 /* struct btrfs_inode_item */
2362 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2363 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2364 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2365 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2366 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2367 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2368 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2369 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2370 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2371 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2372 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2373 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2374 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2375 generation, 64);
2376 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2377 sequence, 64);
2378 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2379 transid, 64);
2380 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2381 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2382 nbytes, 64);
2383 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2384 block_group, 64);
2385 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2386 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2387 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2388 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2389 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2390 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2391
2392 static inline struct btrfs_timespec *
2393 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2394 {
2395 unsigned long ptr = (unsigned long)inode_item;
2396 ptr += offsetof(struct btrfs_inode_item, atime);
2397 return (struct btrfs_timespec *)ptr;
2398 }
2399
2400 static inline struct btrfs_timespec *
2401 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2402 {
2403 unsigned long ptr = (unsigned long)inode_item;
2404 ptr += offsetof(struct btrfs_inode_item, mtime);
2405 return (struct btrfs_timespec *)ptr;
2406 }
2407
2408 static inline struct btrfs_timespec *
2409 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2410 {
2411 unsigned long ptr = (unsigned long)inode_item;
2412 ptr += offsetof(struct btrfs_inode_item, ctime);
2413 return (struct btrfs_timespec *)ptr;
2414 }
2415
2416 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2417 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2418 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2419 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2420
2421 /* struct btrfs_dev_extent */
2422 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2423 chunk_tree, 64);
2424 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2425 chunk_objectid, 64);
2426 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2427 chunk_offset, 64);
2428 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2429
2430 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2431 {
2432 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2433 return (unsigned long)dev + ptr;
2434 }
2435
2436 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2437 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2438 generation, 64);
2439 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2440
2441 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2442
2443
2444 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2445
2446 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2447 struct btrfs_tree_block_info *item,
2448 struct btrfs_disk_key *key)
2449 {
2450 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2451 }
2452
2453 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2454 struct btrfs_tree_block_info *item,
2455 struct btrfs_disk_key *key)
2456 {
2457 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2458 }
2459
2460 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2461 root, 64);
2462 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2463 objectid, 64);
2464 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2465 offset, 64);
2466 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2467 count, 32);
2468
2469 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2470 count, 32);
2471
2472 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2473 type, 8);
2474 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2475 offset, 64);
2476
2477 static inline u32 btrfs_extent_inline_ref_size(int type)
2478 {
2479 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2480 type == BTRFS_SHARED_BLOCK_REF_KEY)
2481 return sizeof(struct btrfs_extent_inline_ref);
2482 if (type == BTRFS_SHARED_DATA_REF_KEY)
2483 return sizeof(struct btrfs_shared_data_ref) +
2484 sizeof(struct btrfs_extent_inline_ref);
2485 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2486 return sizeof(struct btrfs_extent_data_ref) +
2487 offsetof(struct btrfs_extent_inline_ref, offset);
2488 BUG();
2489 return 0;
2490 }
2491
2492 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2493 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2494 generation, 64);
2495 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2496 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2497
2498 /* struct btrfs_node */
2499 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2500 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2501 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2502 blockptr, 64);
2503 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2504 generation, 64);
2505
2506 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2507 {
2508 unsigned long ptr;
2509 ptr = offsetof(struct btrfs_node, ptrs) +
2510 sizeof(struct btrfs_key_ptr) * nr;
2511 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2512 }
2513
2514 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2515 int nr, u64 val)
2516 {
2517 unsigned long ptr;
2518 ptr = offsetof(struct btrfs_node, ptrs) +
2519 sizeof(struct btrfs_key_ptr) * nr;
2520 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2521 }
2522
2523 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2524 {
2525 unsigned long ptr;
2526 ptr = offsetof(struct btrfs_node, ptrs) +
2527 sizeof(struct btrfs_key_ptr) * nr;
2528 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2529 }
2530
2531 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2532 int nr, u64 val)
2533 {
2534 unsigned long ptr;
2535 ptr = offsetof(struct btrfs_node, ptrs) +
2536 sizeof(struct btrfs_key_ptr) * nr;
2537 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2538 }
2539
2540 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2541 {
2542 return offsetof(struct btrfs_node, ptrs) +
2543 sizeof(struct btrfs_key_ptr) * nr;
2544 }
2545
2546 void btrfs_node_key(struct extent_buffer *eb,
2547 struct btrfs_disk_key *disk_key, int nr);
2548
2549 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2550 struct btrfs_disk_key *disk_key, int nr)
2551 {
2552 unsigned long ptr;
2553 ptr = btrfs_node_key_ptr_offset(nr);
2554 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2555 struct btrfs_key_ptr, key, disk_key);
2556 }
2557
2558 /* struct btrfs_item */
2559 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2560 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2561 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2562 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2563
2564 static inline unsigned long btrfs_item_nr_offset(int nr)
2565 {
2566 return offsetof(struct btrfs_leaf, items) +
2567 sizeof(struct btrfs_item) * nr;
2568 }
2569
2570 static inline struct btrfs_item *btrfs_item_nr(int nr)
2571 {
2572 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2573 }
2574
2575 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2576 struct btrfs_item *item)
2577 {
2578 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2579 }
2580
2581 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2582 {
2583 return btrfs_item_end(eb, btrfs_item_nr(nr));
2584 }
2585
2586 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2587 {
2588 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2589 }
2590
2591 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2592 {
2593 return btrfs_item_size(eb, btrfs_item_nr(nr));
2594 }
2595
2596 static inline void btrfs_item_key(struct extent_buffer *eb,
2597 struct btrfs_disk_key *disk_key, int nr)
2598 {
2599 struct btrfs_item *item = btrfs_item_nr(nr);
2600 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2601 }
2602
2603 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2604 struct btrfs_disk_key *disk_key, int nr)
2605 {
2606 struct btrfs_item *item = btrfs_item_nr(nr);
2607 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2608 }
2609
2610 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2611
2612 /*
2613 * struct btrfs_root_ref
2614 */
2615 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2616 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2617 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2618
2619 /* struct btrfs_dir_item */
2620 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2621 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2622 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2623 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2624 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2625 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2626 data_len, 16);
2627 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2628 name_len, 16);
2629 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2630 transid, 64);
2631
2632 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2633 struct btrfs_dir_item *item,
2634 struct btrfs_disk_key *key)
2635 {
2636 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2637 }
2638
2639 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2640 struct btrfs_dir_item *item,
2641 struct btrfs_disk_key *key)
2642 {
2643 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2644 }
2645
2646 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2647 num_entries, 64);
2648 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2649 num_bitmaps, 64);
2650 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2651 generation, 64);
2652
2653 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2654 struct btrfs_free_space_header *h,
2655 struct btrfs_disk_key *key)
2656 {
2657 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2658 }
2659
2660 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2661 struct btrfs_free_space_header *h,
2662 struct btrfs_disk_key *key)
2663 {
2664 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2665 }
2666
2667 /* struct btrfs_disk_key */
2668 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2669 objectid, 64);
2670 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2671 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2672
2673 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2674 struct btrfs_disk_key *disk)
2675 {
2676 cpu->offset = le64_to_cpu(disk->offset);
2677 cpu->type = disk->type;
2678 cpu->objectid = le64_to_cpu(disk->objectid);
2679 }
2680
2681 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2682 struct btrfs_key *cpu)
2683 {
2684 disk->offset = cpu_to_le64(cpu->offset);
2685 disk->type = cpu->type;
2686 disk->objectid = cpu_to_le64(cpu->objectid);
2687 }
2688
2689 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2690 struct btrfs_key *key, int nr)
2691 {
2692 struct btrfs_disk_key disk_key;
2693 btrfs_node_key(eb, &disk_key, nr);
2694 btrfs_disk_key_to_cpu(key, &disk_key);
2695 }
2696
2697 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2698 struct btrfs_key *key, int nr)
2699 {
2700 struct btrfs_disk_key disk_key;
2701 btrfs_item_key(eb, &disk_key, nr);
2702 btrfs_disk_key_to_cpu(key, &disk_key);
2703 }
2704
2705 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2706 struct btrfs_dir_item *item,
2707 struct btrfs_key *key)
2708 {
2709 struct btrfs_disk_key disk_key;
2710 btrfs_dir_item_key(eb, item, &disk_key);
2711 btrfs_disk_key_to_cpu(key, &disk_key);
2712 }
2713
2714
2715 static inline u8 btrfs_key_type(struct btrfs_key *key)
2716 {
2717 return key->type;
2718 }
2719
2720 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2721 {
2722 key->type = val;
2723 }
2724
2725 /* struct btrfs_header */
2726 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2727 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2728 generation, 64);
2729 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2730 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2731 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2732 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2733 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2734 generation, 64);
2735 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2736 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2737 nritems, 32);
2738 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2739
2740 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2741 {
2742 return (btrfs_header_flags(eb) & flag) == flag;
2743 }
2744
2745 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2746 {
2747 u64 flags = btrfs_header_flags(eb);
2748 btrfs_set_header_flags(eb, flags | flag);
2749 return (flags & flag) == flag;
2750 }
2751
2752 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2753 {
2754 u64 flags = btrfs_header_flags(eb);
2755 btrfs_set_header_flags(eb, flags & ~flag);
2756 return (flags & flag) == flag;
2757 }
2758
2759 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2760 {
2761 u64 flags = btrfs_header_flags(eb);
2762 return flags >> BTRFS_BACKREF_REV_SHIFT;
2763 }
2764
2765 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2766 int rev)
2767 {
2768 u64 flags = btrfs_header_flags(eb);
2769 flags &= ~BTRFS_BACKREF_REV_MASK;
2770 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2771 btrfs_set_header_flags(eb, flags);
2772 }
2773
2774 static inline unsigned long btrfs_header_fsid(void)
2775 {
2776 return offsetof(struct btrfs_header, fsid);
2777 }
2778
2779 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2780 {
2781 return offsetof(struct btrfs_header, chunk_tree_uuid);
2782 }
2783
2784 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2785 {
2786 return btrfs_header_level(eb) == 0;
2787 }
2788
2789 /* struct btrfs_root_item */
2790 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2791 generation, 64);
2792 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2793 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2794 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2795
2796 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2797 generation, 64);
2798 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2799 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2800 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2801 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2802 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2803 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2804 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2805 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2806 last_snapshot, 64);
2807 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2808 generation_v2, 64);
2809 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2810 ctransid, 64);
2811 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2812 otransid, 64);
2813 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2814 stransid, 64);
2815 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2816 rtransid, 64);
2817
2818 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2819 {
2820 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2821 }
2822
2823 static inline bool btrfs_root_dead(struct btrfs_root *root)
2824 {
2825 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2826 }
2827
2828 /* struct btrfs_root_backup */
2829 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2830 tree_root, 64);
2831 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2832 tree_root_gen, 64);
2833 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2834 tree_root_level, 8);
2835
2836 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2837 chunk_root, 64);
2838 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2839 chunk_root_gen, 64);
2840 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2841 chunk_root_level, 8);
2842
2843 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2844 extent_root, 64);
2845 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2846 extent_root_gen, 64);
2847 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2848 extent_root_level, 8);
2849
2850 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2851 fs_root, 64);
2852 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2853 fs_root_gen, 64);
2854 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2855 fs_root_level, 8);
2856
2857 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2858 dev_root, 64);
2859 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2860 dev_root_gen, 64);
2861 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2862 dev_root_level, 8);
2863
2864 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2865 csum_root, 64);
2866 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2867 csum_root_gen, 64);
2868 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2869 csum_root_level, 8);
2870 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2871 total_bytes, 64);
2872 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2873 bytes_used, 64);
2874 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2875 num_devices, 64);
2876
2877 /* struct btrfs_balance_item */
2878 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2879
2880 static inline void btrfs_balance_data(struct extent_buffer *eb,
2881 struct btrfs_balance_item *bi,
2882 struct btrfs_disk_balance_args *ba)
2883 {
2884 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2885 }
2886
2887 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2888 struct btrfs_balance_item *bi,
2889 struct btrfs_disk_balance_args *ba)
2890 {
2891 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2892 }
2893
2894 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2895 struct btrfs_balance_item *bi,
2896 struct btrfs_disk_balance_args *ba)
2897 {
2898 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2899 }
2900
2901 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2902 struct btrfs_balance_item *bi,
2903 struct btrfs_disk_balance_args *ba)
2904 {
2905 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2906 }
2907
2908 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2909 struct btrfs_balance_item *bi,
2910 struct btrfs_disk_balance_args *ba)
2911 {
2912 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2913 }
2914
2915 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2916 struct btrfs_balance_item *bi,
2917 struct btrfs_disk_balance_args *ba)
2918 {
2919 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2920 }
2921
2922 static inline void
2923 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2924 struct btrfs_disk_balance_args *disk)
2925 {
2926 memset(cpu, 0, sizeof(*cpu));
2927
2928 cpu->profiles = le64_to_cpu(disk->profiles);
2929 cpu->usage = le64_to_cpu(disk->usage);
2930 cpu->devid = le64_to_cpu(disk->devid);
2931 cpu->pstart = le64_to_cpu(disk->pstart);
2932 cpu->pend = le64_to_cpu(disk->pend);
2933 cpu->vstart = le64_to_cpu(disk->vstart);
2934 cpu->vend = le64_to_cpu(disk->vend);
2935 cpu->target = le64_to_cpu(disk->target);
2936 cpu->flags = le64_to_cpu(disk->flags);
2937 cpu->limit = le64_to_cpu(disk->limit);
2938 }
2939
2940 static inline void
2941 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2942 struct btrfs_balance_args *cpu)
2943 {
2944 memset(disk, 0, sizeof(*disk));
2945
2946 disk->profiles = cpu_to_le64(cpu->profiles);
2947 disk->usage = cpu_to_le64(cpu->usage);
2948 disk->devid = cpu_to_le64(cpu->devid);
2949 disk->pstart = cpu_to_le64(cpu->pstart);
2950 disk->pend = cpu_to_le64(cpu->pend);
2951 disk->vstart = cpu_to_le64(cpu->vstart);
2952 disk->vend = cpu_to_le64(cpu->vend);
2953 disk->target = cpu_to_le64(cpu->target);
2954 disk->flags = cpu_to_le64(cpu->flags);
2955 disk->limit = cpu_to_le64(cpu->limit);
2956 }
2957
2958 /* struct btrfs_super_block */
2959 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2960 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2961 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2962 generation, 64);
2963 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2964 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2965 struct btrfs_super_block, sys_chunk_array_size, 32);
2966 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2967 struct btrfs_super_block, chunk_root_generation, 64);
2968 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2969 root_level, 8);
2970 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2971 chunk_root, 64);
2972 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2973 chunk_root_level, 8);
2974 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2975 log_root, 64);
2976 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2977 log_root_transid, 64);
2978 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2979 log_root_level, 8);
2980 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2981 total_bytes, 64);
2982 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2983 bytes_used, 64);
2984 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2985 sectorsize, 32);
2986 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2987 nodesize, 32);
2988 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2989 stripesize, 32);
2990 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2991 root_dir_objectid, 64);
2992 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2993 num_devices, 64);
2994 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2995 compat_flags, 64);
2996 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2997 compat_ro_flags, 64);
2998 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2999 incompat_flags, 64);
3000 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3001 csum_type, 16);
3002 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3003 cache_generation, 64);
3004 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3005 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3006 uuid_tree_generation, 64);
3007
3008 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3009 {
3010 u16 t = btrfs_super_csum_type(s);
3011 /*
3012 * csum type is validated at mount time
3013 */
3014 return btrfs_csum_sizes[t];
3015 }
3016
3017 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3018 {
3019 return offsetof(struct btrfs_leaf, items);
3020 }
3021
3022 /* struct btrfs_file_extent_item */
3023 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3024 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3025 struct btrfs_file_extent_item, disk_bytenr, 64);
3026 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3027 struct btrfs_file_extent_item, offset, 64);
3028 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3029 struct btrfs_file_extent_item, generation, 64);
3030 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3031 struct btrfs_file_extent_item, num_bytes, 64);
3032 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3033 struct btrfs_file_extent_item, disk_num_bytes, 64);
3034 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3035 struct btrfs_file_extent_item, compression, 8);
3036
3037 static inline unsigned long
3038 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3039 {
3040 unsigned long offset = (unsigned long)e;
3041 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
3042 return offset;
3043 }
3044
3045 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3046 {
3047 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
3048 }
3049
3050 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3051 disk_bytenr, 64);
3052 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3053 generation, 64);
3054 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3055 disk_num_bytes, 64);
3056 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3057 offset, 64);
3058 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3059 num_bytes, 64);
3060 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3061 ram_bytes, 64);
3062 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3063 compression, 8);
3064 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3065 encryption, 8);
3066 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3067 other_encoding, 16);
3068
3069 /*
3070 * this returns the number of bytes used by the item on disk, minus the
3071 * size of any extent headers. If a file is compressed on disk, this is
3072 * the compressed size
3073 */
3074 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3075 struct btrfs_item *e)
3076 {
3077 unsigned long offset;
3078 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
3079 return btrfs_item_size(eb, e) - offset;
3080 }
3081
3082 /* this returns the number of file bytes represented by the inline item.
3083 * If an item is compressed, this is the uncompressed size
3084 */
3085 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3086 int slot,
3087 struct btrfs_file_extent_item *fi)
3088 {
3089 struct btrfs_map_token token;
3090
3091 btrfs_init_map_token(&token);
3092 /*
3093 * return the space used on disk if this item isn't
3094 * compressed or encoded
3095 */
3096 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3097 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3098 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3099 return btrfs_file_extent_inline_item_len(eb,
3100 btrfs_item_nr(slot));
3101 }
3102
3103 /* otherwise use the ram bytes field */
3104 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3105 }
3106
3107
3108 /* btrfs_dev_stats_item */
3109 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3110 struct btrfs_dev_stats_item *ptr,
3111 int index)
3112 {
3113 u64 val;
3114
3115 read_extent_buffer(eb, &val,
3116 offsetof(struct btrfs_dev_stats_item, values) +
3117 ((unsigned long)ptr) + (index * sizeof(u64)),
3118 sizeof(val));
3119 return val;
3120 }
3121
3122 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3123 struct btrfs_dev_stats_item *ptr,
3124 int index, u64 val)
3125 {
3126 write_extent_buffer(eb, &val,
3127 offsetof(struct btrfs_dev_stats_item, values) +
3128 ((unsigned long)ptr) + (index * sizeof(u64)),
3129 sizeof(val));
3130 }
3131
3132 /* btrfs_qgroup_status_item */
3133 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3134 generation, 64);
3135 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3136 version, 64);
3137 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3138 flags, 64);
3139 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3140 rescan, 64);
3141
3142 /* btrfs_qgroup_info_item */
3143 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3144 generation, 64);
3145 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3146 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3147 rfer_cmpr, 64);
3148 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3149 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3150 excl_cmpr, 64);
3151
3152 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3153 struct btrfs_qgroup_info_item, generation, 64);
3154 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3155 rfer, 64);
3156 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3157 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3158 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3159 excl, 64);
3160 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3161 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3162
3163 /* btrfs_qgroup_limit_item */
3164 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3165 flags, 64);
3166 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3167 max_rfer, 64);
3168 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3169 max_excl, 64);
3170 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3171 rsv_rfer, 64);
3172 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3173 rsv_excl, 64);
3174
3175 /* btrfs_dev_replace_item */
3176 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3177 struct btrfs_dev_replace_item, src_devid, 64);
3178 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3179 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3180 64);
3181 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3182 replace_state, 64);
3183 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3184 time_started, 64);
3185 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3186 time_stopped, 64);
3187 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3188 num_write_errors, 64);
3189 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3190 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3191 64);
3192 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3193 cursor_left, 64);
3194 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3195 cursor_right, 64);
3196
3197 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3198 struct btrfs_dev_replace_item, src_devid, 64);
3199 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3200 struct btrfs_dev_replace_item,
3201 cont_reading_from_srcdev_mode, 64);
3202 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3203 struct btrfs_dev_replace_item, replace_state, 64);
3204 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3205 struct btrfs_dev_replace_item, time_started, 64);
3206 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3207 struct btrfs_dev_replace_item, time_stopped, 64);
3208 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3209 struct btrfs_dev_replace_item, num_write_errors, 64);
3210 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3211 struct btrfs_dev_replace_item,
3212 num_uncorrectable_read_errors, 64);
3213 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3214 struct btrfs_dev_replace_item, cursor_left, 64);
3215 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3216 struct btrfs_dev_replace_item, cursor_right, 64);
3217
3218 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3219 {
3220 return sb->s_fs_info;
3221 }
3222
3223 /* helper function to cast into the data area of the leaf. */
3224 #define btrfs_item_ptr(leaf, slot, type) \
3225 ((type *)(btrfs_leaf_data(leaf) + \
3226 btrfs_item_offset_nr(leaf, slot)))
3227
3228 #define btrfs_item_ptr_offset(leaf, slot) \
3229 ((unsigned long)(btrfs_leaf_data(leaf) + \
3230 btrfs_item_offset_nr(leaf, slot)))
3231
3232 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3233 {
3234 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3235 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3236 }
3237
3238 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3239 {
3240 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3241 }
3242
3243 /* extent-tree.c */
3244 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3245 unsigned num_items)
3246 {
3247 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3248 2 * num_items;
3249 }
3250
3251 /*
3252 * Doing a truncate won't result in new nodes or leaves, just what we need for
3253 * COW.
3254 */
3255 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3256 unsigned num_items)
3257 {
3258 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3259 }
3260
3261 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *root);
3263 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3264 struct btrfs_root *root);
3265 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3266 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root, unsigned long count);
3268 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3269 unsigned long count, int wait);
3270 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3271 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3272 struct btrfs_root *root, u64 bytenr,
3273 u64 offset, int metadata, u64 *refs, u64 *flags);
3274 int btrfs_pin_extent(struct btrfs_root *root,
3275 u64 bytenr, u64 num, int reserved);
3276 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3277 u64 bytenr, u64 num_bytes);
3278 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3279 struct extent_buffer *eb);
3280 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *root,
3282 u64 objectid, u64 offset, u64 bytenr);
3283 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3284 struct btrfs_fs_info *info,
3285 u64 bytenr);
3286 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3287 int get_block_group_index(struct btrfs_block_group_cache *cache);
3288 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3289 struct btrfs_root *root, u32 blocksize,
3290 u64 parent, u64 root_objectid,
3291 struct btrfs_disk_key *key, int level,
3292 u64 hint, u64 empty_size);
3293 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3294 struct btrfs_root *root,
3295 struct extent_buffer *buf,
3296 u64 parent, int last_ref);
3297 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 u64 root_objectid, u64 owner,
3300 u64 offset, struct btrfs_key *ins);
3301 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3302 struct btrfs_root *root,
3303 u64 root_objectid, u64 owner, u64 offset,
3304 struct btrfs_key *ins);
3305 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3306 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3307 struct btrfs_key *ins, int is_data, int delalloc);
3308 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3309 struct extent_buffer *buf, int full_backref);
3310 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3311 struct extent_buffer *buf, int full_backref);
3312 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3313 struct btrfs_root *root,
3314 u64 bytenr, u64 num_bytes, u64 flags,
3315 int level, int is_data);
3316 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root,
3318 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3319 u64 owner, u64 offset, int no_quota);
3320
3321 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3322 int delalloc);
3323 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3324 u64 start, u64 len);
3325 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root);
3327 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3328 struct btrfs_root *root);
3329 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 u64 bytenr, u64 num_bytes, u64 parent,
3332 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3333
3334 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3335 struct btrfs_root *root);
3336 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3337 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3338 int btrfs_read_block_groups(struct btrfs_root *root);
3339 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3340 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3341 struct btrfs_root *root, u64 bytes_used,
3342 u64 type, u64 chunk_objectid, u64 chunk_offset,
3343 u64 size);
3344 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *root, u64 group_start);
3346 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3347 struct btrfs_root *root);
3348 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3349 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3350
3351 enum btrfs_reserve_flush_enum {
3352 /* If we are in the transaction, we can't flush anything.*/
3353 BTRFS_RESERVE_NO_FLUSH,
3354 /*
3355 * Flushing delalloc may cause deadlock somewhere, in this
3356 * case, use FLUSH LIMIT
3357 */
3358 BTRFS_RESERVE_FLUSH_LIMIT,
3359 BTRFS_RESERVE_FLUSH_ALL,
3360 };
3361
3362 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3363 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3364 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3365 struct btrfs_root *root);
3366 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3367 struct inode *inode);
3368 void btrfs_orphan_release_metadata(struct inode *inode);
3369 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3370 struct btrfs_block_rsv *rsv,
3371 int nitems,
3372 u64 *qgroup_reserved, bool use_global_rsv);
3373 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3374 struct btrfs_block_rsv *rsv,
3375 u64 qgroup_reserved);
3376 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3377 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3378 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3379 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3380 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3381 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3382 unsigned short type);
3383 void btrfs_free_block_rsv(struct btrfs_root *root,
3384 struct btrfs_block_rsv *rsv);
3385 int btrfs_block_rsv_add(struct btrfs_root *root,
3386 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3387 enum btrfs_reserve_flush_enum flush);
3388 int btrfs_block_rsv_check(struct btrfs_root *root,
3389 struct btrfs_block_rsv *block_rsv, int min_factor);
3390 int btrfs_block_rsv_refill(struct btrfs_root *root,
3391 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3392 enum btrfs_reserve_flush_enum flush);
3393 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3394 struct btrfs_block_rsv *dst_rsv,
3395 u64 num_bytes);
3396 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3397 struct btrfs_block_rsv *dest, u64 num_bytes,
3398 int min_factor);
3399 void btrfs_block_rsv_release(struct btrfs_root *root,
3400 struct btrfs_block_rsv *block_rsv,
3401 u64 num_bytes);
3402 int btrfs_set_block_group_ro(struct btrfs_root *root,
3403 struct btrfs_block_group_cache *cache);
3404 void btrfs_set_block_group_rw(struct btrfs_root *root,
3405 struct btrfs_block_group_cache *cache);
3406 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3407 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3408 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3409 u64 start, u64 end);
3410 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3411 u64 num_bytes, u64 *actual_bytes);
3412 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3413 struct btrfs_root *root, u64 type);
3414 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3415
3416 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3417 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3418 struct btrfs_fs_info *fs_info);
3419 int __get_raid_index(u64 flags);
3420 int btrfs_start_nocow_write(struct btrfs_root *root);
3421 void btrfs_end_nocow_write(struct btrfs_root *root);
3422 /* ctree.c */
3423 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3424 int level, int *slot);
3425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3426 int btrfs_previous_item(struct btrfs_root *root,
3427 struct btrfs_path *path, u64 min_objectid,
3428 int type);
3429 int btrfs_previous_extent_item(struct btrfs_root *root,
3430 struct btrfs_path *path, u64 min_objectid);
3431 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3432 struct btrfs_key *new_key);
3433 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3434 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3435 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3436 struct btrfs_key *key, int lowest_level,
3437 u64 min_trans);
3438 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3439 struct btrfs_path *path,
3440 u64 min_trans);
3441 enum btrfs_compare_tree_result {
3442 BTRFS_COMPARE_TREE_NEW,
3443 BTRFS_COMPARE_TREE_DELETED,
3444 BTRFS_COMPARE_TREE_CHANGED,
3445 BTRFS_COMPARE_TREE_SAME,
3446 };
3447 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3448 struct btrfs_root *right_root,
3449 struct btrfs_path *left_path,
3450 struct btrfs_path *right_path,
3451 struct btrfs_key *key,
3452 enum btrfs_compare_tree_result result,
3453 void *ctx);
3454 int btrfs_compare_trees(struct btrfs_root *left_root,
3455 struct btrfs_root *right_root,
3456 btrfs_changed_cb_t cb, void *ctx);
3457 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3458 struct btrfs_root *root, struct extent_buffer *buf,
3459 struct extent_buffer *parent, int parent_slot,
3460 struct extent_buffer **cow_ret);
3461 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3462 struct btrfs_root *root,
3463 struct extent_buffer *buf,
3464 struct extent_buffer **cow_ret, u64 new_root_objectid);
3465 int btrfs_block_can_be_shared(struct btrfs_root *root,
3466 struct extent_buffer *buf);
3467 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3468 u32 data_size);
3469 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3470 u32 new_size, int from_end);
3471 int btrfs_split_item(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root,
3473 struct btrfs_path *path,
3474 struct btrfs_key *new_key,
3475 unsigned long split_offset);
3476 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3477 struct btrfs_root *root,
3478 struct btrfs_path *path,
3479 struct btrfs_key *new_key);
3480 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3481 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3482 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3483 *root, struct btrfs_key *key, struct btrfs_path *p, int
3484 ins_len, int cow);
3485 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3486 struct btrfs_path *p, u64 time_seq);
3487 int btrfs_search_slot_for_read(struct btrfs_root *root,
3488 struct btrfs_key *key, struct btrfs_path *p,
3489 int find_higher, int return_any);
3490 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *root, struct extent_buffer *parent,
3492 int start_slot, u64 *last_ret,
3493 struct btrfs_key *progress);
3494 void btrfs_release_path(struct btrfs_path *p);
3495 struct btrfs_path *btrfs_alloc_path(void);
3496 void btrfs_free_path(struct btrfs_path *p);
3497 void btrfs_set_path_blocking(struct btrfs_path *p);
3498 void btrfs_clear_path_blocking(struct btrfs_path *p,
3499 struct extent_buffer *held, int held_rw);
3500 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3501
3502 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3503 struct btrfs_path *path, int slot, int nr);
3504 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *root,
3506 struct btrfs_path *path)
3507 {
3508 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3509 }
3510
3511 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3512 struct btrfs_key *cpu_key, u32 *data_size,
3513 u32 total_data, u32 total_size, int nr);
3514 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3515 *root, struct btrfs_key *key, void *data, u32 data_size);
3516 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3517 struct btrfs_root *root,
3518 struct btrfs_path *path,
3519 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3520
3521 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3522 struct btrfs_root *root,
3523 struct btrfs_path *path,
3524 struct btrfs_key *key,
3525 u32 data_size)
3526 {
3527 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3528 }
3529
3530 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3531 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3532 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3533 u64 time_seq);
3534 static inline int btrfs_next_old_item(struct btrfs_root *root,
3535 struct btrfs_path *p, u64 time_seq)
3536 {
3537 ++p->slots[0];
3538 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3539 return btrfs_next_old_leaf(root, p, time_seq);
3540 return 0;
3541 }
3542 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3543 {
3544 return btrfs_next_old_item(root, p, 0);
3545 }
3546 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3547 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3548 struct btrfs_block_rsv *block_rsv,
3549 int update_ref, int for_reloc);
3550 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3551 struct btrfs_root *root,
3552 struct extent_buffer *node,
3553 struct extent_buffer *parent);
3554 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3555 {
3556 /*
3557 * Get synced with close_ctree()
3558 */
3559 smp_mb();
3560 return fs_info->closing;
3561 }
3562
3563 /*
3564 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3565 * anything except sleeping. This function is used to check the status of
3566 * the fs.
3567 */
3568 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3569 {
3570 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3571 btrfs_fs_closing(root->fs_info));
3572 }
3573
3574 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3575 {
3576 kfree(fs_info->balance_ctl);
3577 kfree(fs_info->delayed_root);
3578 kfree(fs_info->extent_root);
3579 kfree(fs_info->tree_root);
3580 kfree(fs_info->chunk_root);
3581 kfree(fs_info->dev_root);
3582 kfree(fs_info->csum_root);
3583 kfree(fs_info->quota_root);
3584 kfree(fs_info->uuid_root);
3585 kfree(fs_info->super_copy);
3586 kfree(fs_info->super_for_commit);
3587 kfree(fs_info);
3588 }
3589
3590 /* tree mod log functions from ctree.c */
3591 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3592 struct seq_list *elem);
3593 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3594 struct seq_list *elem);
3595 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3596
3597 /* root-item.c */
3598 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3599 struct btrfs_path *path,
3600 u64 root_id, u64 ref_id);
3601 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3602 struct btrfs_root *tree_root,
3603 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3604 const char *name, int name_len);
3605 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3606 struct btrfs_root *tree_root,
3607 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3608 const char *name, int name_len);
3609 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3610 struct btrfs_key *key);
3611 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3612 *root, struct btrfs_key *key, struct btrfs_root_item
3613 *item);
3614 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3615 struct btrfs_root *root,
3616 struct btrfs_key *key,
3617 struct btrfs_root_item *item);
3618 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3619 struct btrfs_path *path, struct btrfs_root_item *root_item,
3620 struct btrfs_key *root_key);
3621 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3622 void btrfs_set_root_node(struct btrfs_root_item *item,
3623 struct extent_buffer *node);
3624 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3625 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3626 struct btrfs_root *root);
3627
3628 /* uuid-tree.c */
3629 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3630 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3631 u64 subid);
3632 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3633 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3634 u64 subid);
3635 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3636 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3637 u64));
3638
3639 /* dir-item.c */
3640 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3641 const char *name, int name_len);
3642 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3643 struct btrfs_root *root, const char *name,
3644 int name_len, struct inode *dir,
3645 struct btrfs_key *location, u8 type, u64 index);
3646 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3647 struct btrfs_root *root,
3648 struct btrfs_path *path, u64 dir,
3649 const char *name, int name_len,
3650 int mod);
3651 struct btrfs_dir_item *
3652 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root,
3654 struct btrfs_path *path, u64 dir,
3655 u64 objectid, const char *name, int name_len,
3656 int mod);
3657 struct btrfs_dir_item *
3658 btrfs_search_dir_index_item(struct btrfs_root *root,
3659 struct btrfs_path *path, u64 dirid,
3660 const char *name, int name_len);
3661 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root,
3663 struct btrfs_path *path,
3664 struct btrfs_dir_item *di);
3665 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3666 struct btrfs_root *root,
3667 struct btrfs_path *path, u64 objectid,
3668 const char *name, u16 name_len,
3669 const void *data, u16 data_len);
3670 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3671 struct btrfs_root *root,
3672 struct btrfs_path *path, u64 dir,
3673 const char *name, u16 name_len,
3674 int mod);
3675 int verify_dir_item(struct btrfs_root *root,
3676 struct extent_buffer *leaf,
3677 struct btrfs_dir_item *dir_item);
3678
3679 /* orphan.c */
3680 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root, u64 offset);
3682 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3683 struct btrfs_root *root, u64 offset);
3684 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3685
3686 /* inode-item.c */
3687 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3688 struct btrfs_root *root,
3689 const char *name, int name_len,
3690 u64 inode_objectid, u64 ref_objectid, u64 index);
3691 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3692 struct btrfs_root *root,
3693 const char *name, int name_len,
3694 u64 inode_objectid, u64 ref_objectid, u64 *index);
3695 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3696 struct btrfs_root *root,
3697 struct btrfs_path *path, u64 objectid);
3698 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3699 *root, struct btrfs_path *path,
3700 struct btrfs_key *location, int mod);
3701
3702 struct btrfs_inode_extref *
3703 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3704 struct btrfs_root *root,
3705 struct btrfs_path *path,
3706 const char *name, int name_len,
3707 u64 inode_objectid, u64 ref_objectid, int ins_len,
3708 int cow);
3709
3710 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3711 u64 ref_objectid, const char *name,
3712 int name_len,
3713 struct btrfs_inode_extref **extref_ret);
3714
3715 /* file-item.c */
3716 struct btrfs_dio_private;
3717 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root, u64 bytenr, u64 len);
3719 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3720 struct bio *bio, u32 *dst);
3721 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3722 struct btrfs_dio_private *dip, struct bio *bio,
3723 u64 logical_offset);
3724 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3725 struct btrfs_root *root,
3726 u64 objectid, u64 pos,
3727 u64 disk_offset, u64 disk_num_bytes,
3728 u64 num_bytes, u64 offset, u64 ram_bytes,
3729 u8 compression, u8 encryption, u16 other_encoding);
3730 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3731 struct btrfs_root *root,
3732 struct btrfs_path *path, u64 objectid,
3733 u64 bytenr, int mod);
3734 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3735 struct btrfs_root *root,
3736 struct btrfs_ordered_sum *sums);
3737 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3738 struct bio *bio, u64 file_start, int contig);
3739 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3740 struct list_head *list, int search_commit);
3741 void btrfs_extent_item_to_extent_map(struct inode *inode,
3742 const struct btrfs_path *path,
3743 struct btrfs_file_extent_item *fi,
3744 const bool new_inline,
3745 struct extent_map *em);
3746
3747 /* inode.c */
3748 struct btrfs_delalloc_work {
3749 struct inode *inode;
3750 int wait;
3751 int delay_iput;
3752 struct completion completion;
3753 struct list_head list;
3754 struct btrfs_work work;
3755 };
3756
3757 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3758 int wait, int delay_iput);
3759 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3760
3761 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3762 size_t pg_offset, u64 start, u64 len,
3763 int create);
3764 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3765 u64 *orig_start, u64 *orig_block_len,
3766 u64 *ram_bytes);
3767
3768 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3769 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3770 #define ClearPageChecked ClearPageFsMisc
3771 #define SetPageChecked SetPageFsMisc
3772 #define PageChecked PageFsMisc
3773 #endif
3774
3775 /* This forces readahead on a given range of bytes in an inode */
3776 static inline void btrfs_force_ra(struct address_space *mapping,
3777 struct file_ra_state *ra, struct file *file,
3778 pgoff_t offset, unsigned long req_size)
3779 {
3780 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3781 }
3782
3783 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3784 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3785 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3786 struct btrfs_root *root,
3787 struct inode *dir, struct inode *inode,
3788 const char *name, int name_len);
3789 int btrfs_add_link(struct btrfs_trans_handle *trans,
3790 struct inode *parent_inode, struct inode *inode,
3791 const char *name, int name_len, int add_backref, u64 index);
3792 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3793 struct btrfs_root *root,
3794 struct inode *dir, u64 objectid,
3795 const char *name, int name_len);
3796 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3797 int front);
3798 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3799 struct btrfs_root *root,
3800 struct inode *inode, u64 new_size,
3801 u32 min_type);
3802
3803 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3804 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3805 int nr);
3806 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3807 struct extent_state **cached_state);
3808 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3809 struct btrfs_root *new_root,
3810 struct btrfs_root *parent_root,
3811 u64 new_dirid);
3812 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3813 size_t size, struct bio *bio,
3814 unsigned long bio_flags);
3815 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3816 int btrfs_readpage(struct file *file, struct page *page);
3817 void btrfs_evict_inode(struct inode *inode);
3818 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3819 struct inode *btrfs_alloc_inode(struct super_block *sb);
3820 void btrfs_destroy_inode(struct inode *inode);
3821 int btrfs_drop_inode(struct inode *inode);
3822 int btrfs_init_cachep(void);
3823 void btrfs_destroy_cachep(void);
3824 long btrfs_ioctl_trans_end(struct file *file);
3825 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3826 struct btrfs_root *root, int *was_new);
3827 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3828 size_t pg_offset, u64 start, u64 end,
3829 int create);
3830 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3831 struct btrfs_root *root,
3832 struct inode *inode);
3833 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *root, struct inode *inode);
3835 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3836 int btrfs_orphan_cleanup(struct btrfs_root *root);
3837 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3838 struct btrfs_root *root);
3839 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3840 void btrfs_invalidate_inodes(struct btrfs_root *root);
3841 void btrfs_add_delayed_iput(struct inode *inode);
3842 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3843 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3844 u64 start, u64 num_bytes, u64 min_size,
3845 loff_t actual_len, u64 *alloc_hint);
3846 int btrfs_prealloc_file_range_trans(struct inode *inode,
3847 struct btrfs_trans_handle *trans, int mode,
3848 u64 start, u64 num_bytes, u64 min_size,
3849 loff_t actual_len, u64 *alloc_hint);
3850 extern const struct dentry_operations btrfs_dentry_operations;
3851
3852 /* ioctl.c */
3853 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3854 void btrfs_update_iflags(struct inode *inode);
3855 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3856 int btrfs_is_empty_uuid(u8 *uuid);
3857 int btrfs_defrag_file(struct inode *inode, struct file *file,
3858 struct btrfs_ioctl_defrag_range_args *range,
3859 u64 newer_than, unsigned long max_pages);
3860 void btrfs_get_block_group_info(struct list_head *groups_list,
3861 struct btrfs_ioctl_space_info *space);
3862 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3863 struct btrfs_ioctl_balance_args *bargs);
3864
3865
3866 /* file.c */
3867 int btrfs_auto_defrag_init(void);
3868 void btrfs_auto_defrag_exit(void);
3869 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3870 struct inode *inode);
3871 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3872 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3873 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3874 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3875 int skip_pinned);
3876 extern const struct file_operations btrfs_file_operations;
3877 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root, struct inode *inode,
3879 struct btrfs_path *path, u64 start, u64 end,
3880 u64 *drop_end, int drop_cache,
3881 int replace_extent,
3882 u32 extent_item_size,
3883 int *key_inserted);
3884 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3885 struct btrfs_root *root, struct inode *inode, u64 start,
3886 u64 end, int drop_cache);
3887 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3888 struct inode *inode, u64 start, u64 end);
3889 int btrfs_release_file(struct inode *inode, struct file *file);
3890 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3891 struct page **pages, size_t num_pages,
3892 loff_t pos, size_t write_bytes,
3893 struct extent_state **cached);
3894
3895 /* tree-defrag.c */
3896 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3897 struct btrfs_root *root);
3898
3899 /* sysfs.c */
3900 int btrfs_init_sysfs(void);
3901 void btrfs_exit_sysfs(void);
3902 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3903 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3904
3905 /* xattr.c */
3906 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3907
3908 /* super.c */
3909 int btrfs_parse_options(struct btrfs_root *root, char *options);
3910 int btrfs_sync_fs(struct super_block *sb, int wait);
3911
3912 #ifdef CONFIG_PRINTK
3913 __printf(2, 3)
3914 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3915 #else
3916 static inline __printf(2, 3)
3917 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3918 {
3919 }
3920 #endif
3921
3922 #define btrfs_emerg(fs_info, fmt, args...) \
3923 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3924 #define btrfs_alert(fs_info, fmt, args...) \
3925 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3926 #define btrfs_crit(fs_info, fmt, args...) \
3927 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3928 #define btrfs_err(fs_info, fmt, args...) \
3929 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3930 #define btrfs_warn(fs_info, fmt, args...) \
3931 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3932 #define btrfs_notice(fs_info, fmt, args...) \
3933 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3934 #define btrfs_info(fs_info, fmt, args...) \
3935 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3936
3937 #ifdef DEBUG
3938 #define btrfs_debug(fs_info, fmt, args...) \
3939 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3940 #else
3941 #define btrfs_debug(fs_info, fmt, args...) \
3942 no_printk(KERN_DEBUG fmt, ##args)
3943 #endif
3944
3945 #ifdef CONFIG_BTRFS_ASSERT
3946
3947 static inline void assfail(char *expr, char *file, int line)
3948 {
3949 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3950 expr, file, line);
3951 BUG();
3952 }
3953
3954 #define ASSERT(expr) \
3955 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3956 #else
3957 #define ASSERT(expr) ((void)0)
3958 #endif
3959
3960 #define btrfs_assert()
3961 __printf(5, 6)
3962 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3963 unsigned int line, int errno, const char *fmt, ...);
3964
3965
3966 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3967 struct btrfs_root *root, const char *function,
3968 unsigned int line, int errno);
3969
3970 #define btrfs_set_fs_incompat(__fs_info, opt) \
3971 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3972
3973 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3974 u64 flag)
3975 {
3976 struct btrfs_super_block *disk_super;
3977 u64 features;
3978
3979 disk_super = fs_info->super_copy;
3980 features = btrfs_super_incompat_flags(disk_super);
3981 if (!(features & flag)) {
3982 spin_lock(&fs_info->super_lock);
3983 features = btrfs_super_incompat_flags(disk_super);
3984 if (!(features & flag)) {
3985 features |= flag;
3986 btrfs_set_super_incompat_flags(disk_super, features);
3987 btrfs_info(fs_info, "setting %llu feature flag",
3988 flag);
3989 }
3990 spin_unlock(&fs_info->super_lock);
3991 }
3992 }
3993
3994 #define btrfs_fs_incompat(fs_info, opt) \
3995 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3996
3997 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3998 {
3999 struct btrfs_super_block *disk_super;
4000 disk_super = fs_info->super_copy;
4001 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4002 }
4003
4004 /*
4005 * Call btrfs_abort_transaction as early as possible when an error condition is
4006 * detected, that way the exact line number is reported.
4007 */
4008
4009 #define btrfs_abort_transaction(trans, root, errno) \
4010 do { \
4011 __btrfs_abort_transaction(trans, root, __func__, \
4012 __LINE__, errno); \
4013 } while (0)
4014
4015 #define btrfs_std_error(fs_info, errno) \
4016 do { \
4017 if ((errno)) \
4018 __btrfs_std_error((fs_info), __func__, \
4019 __LINE__, (errno), NULL); \
4020 } while (0)
4021
4022 #define btrfs_error(fs_info, errno, fmt, args...) \
4023 do { \
4024 __btrfs_std_error((fs_info), __func__, __LINE__, \
4025 (errno), fmt, ##args); \
4026 } while (0)
4027
4028 __printf(5, 6)
4029 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4030 unsigned int line, int errno, const char *fmt, ...);
4031
4032 /*
4033 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4034 * will panic(). Otherwise we BUG() here.
4035 */
4036 #define btrfs_panic(fs_info, errno, fmt, args...) \
4037 do { \
4038 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4039 BUG(); \
4040 } while (0)
4041
4042 /* acl.c */
4043 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4044 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4045 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4046 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4047 struct inode *inode, struct inode *dir);
4048 #else
4049 #define btrfs_get_acl NULL
4050 #define btrfs_set_acl NULL
4051 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4052 struct inode *inode, struct inode *dir)
4053 {
4054 return 0;
4055 }
4056 #endif
4057
4058 /* relocation.c */
4059 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4060 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4061 struct btrfs_root *root);
4062 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4063 struct btrfs_root *root);
4064 int btrfs_recover_relocation(struct btrfs_root *root);
4065 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4066 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4067 struct btrfs_root *root, struct extent_buffer *buf,
4068 struct extent_buffer *cow);
4069 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4070 struct btrfs_pending_snapshot *pending,
4071 u64 *bytes_to_reserve);
4072 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4073 struct btrfs_pending_snapshot *pending);
4074
4075 /* scrub.c */
4076 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4077 u64 end, struct btrfs_scrub_progress *progress,
4078 int readonly, int is_dev_replace);
4079 void btrfs_scrub_pause(struct btrfs_root *root);
4080 void btrfs_scrub_continue(struct btrfs_root *root);
4081 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4082 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4083 struct btrfs_device *dev);
4084 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4085 struct btrfs_scrub_progress *progress);
4086
4087 /* dev-replace.c */
4088 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4089 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4090 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4091
4092 /* reada.c */
4093 struct reada_control {
4094 struct btrfs_root *root; /* tree to prefetch */
4095 struct btrfs_key key_start;
4096 struct btrfs_key key_end; /* exclusive */
4097 atomic_t elems;
4098 struct kref refcnt;
4099 wait_queue_head_t wait;
4100 };
4101 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4102 struct btrfs_key *start, struct btrfs_key *end);
4103 int btrfs_reada_wait(void *handle);
4104 void btrfs_reada_detach(void *handle);
4105 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4106 u64 start, int err);
4107
4108 static inline int is_fstree(u64 rootid)
4109 {
4110 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4111 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4112 return 1;
4113 return 0;
4114 }
4115
4116 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4117 {
4118 return signal_pending(current);
4119 }
4120
4121 /* Sanity test specific functions */
4122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4123 void btrfs_test_destroy_inode(struct inode *inode);
4124 int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid,
4125 u64 rfer, u64 excl);
4126 #endif
4127
4128 #endif
This page took 0.276621 seconds and 5 git commands to generate.