Mountable btrfs, with readdir
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/radix-tree.h>
5 #include <linux/fs.h>
6
7 struct btrfs_trans_handle;
8
9 #define BTRFS_MAGIC "_BtRfS_M"
10
11 #define BTRFS_ROOT_TREE_OBJECTID 1
12 #define BTRFS_EXTENT_TREE_OBJECTID 2
13 #define BTRFS_INODE_MAP_OBJECTID 3
14 #define BTRFS_FS_TREE_OBJECTID 4
15
16 /*
17 * we can actually store much bigger names, but lets not confuse the rest
18 * of linux
19 */
20 #define BTRFS_NAME_LEN 255
21
22 /*
23 * the key defines the order in the tree, and so it also defines (optimal)
24 * block layout. objectid corresonds to the inode number. The flags
25 * tells us things about the object, and is a kind of stream selector.
26 * so for a given inode, keys with flags of 1 might refer to the inode
27 * data, flags of 2 may point to file data in the btree and flags == 3
28 * may point to extents.
29 *
30 * offset is the starting byte offset for this key in the stream.
31 *
32 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
33 * in cpu native order. Otherwise they are identical and their sizes
34 * should be the same (ie both packed)
35 */
36 struct btrfs_disk_key {
37 __le64 objectid;
38 __le32 flags;
39 __le64 offset;
40 } __attribute__ ((__packed__));
41
42 struct btrfs_key {
43 u64 objectid;
44 u32 flags;
45 u64 offset;
46 } __attribute__ ((__packed__));
47
48 /*
49 * every tree block (leaf or node) starts with this header.
50 */
51 struct btrfs_header {
52 u8 fsid[16]; /* FS specific uuid */
53 __le64 blocknr; /* which block this node is supposed to live in */
54 __le64 parentid; /* objectid of the tree root */
55 __le32 csum;
56 __le32 ham;
57 __le16 nritems;
58 __le16 flags;
59 /* generation flags to be added */
60 } __attribute__ ((__packed__));
61
62 #define BTRFS_MAX_LEVEL 8
63 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
64 sizeof(struct btrfs_header)) / \
65 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
66 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
67 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
68
69 struct buffer_head;
70 /*
71 * the super block basically lists the main trees of the FS
72 * it currently lacks any block count etc etc
73 */
74 struct btrfs_super_block {
75 u8 fsid[16]; /* FS specific uuid */
76 __le64 blocknr; /* this block number */
77 __le32 csum;
78 __le64 magic;
79 __le32 blocksize;
80 __le64 generation;
81 __le64 root;
82 __le64 total_blocks;
83 __le64 blocks_used;
84 __le64 root_dir_objectid;
85 } __attribute__ ((__packed__));
86
87 /*
88 * A leaf is full of items. offset and size tell us where to find
89 * the item in the leaf (relative to the start of the data area)
90 */
91 struct btrfs_item {
92 struct btrfs_disk_key key;
93 __le32 offset;
94 __le16 size;
95 } __attribute__ ((__packed__));
96
97 /*
98 * leaves have an item area and a data area:
99 * [item0, item1....itemN] [free space] [dataN...data1, data0]
100 *
101 * The data is separate from the items to get the keys closer together
102 * during searches.
103 */
104 struct btrfs_leaf {
105 struct btrfs_header header;
106 struct btrfs_item items[];
107 } __attribute__ ((__packed__));
108
109 /*
110 * all non-leaf blocks are nodes, they hold only keys and pointers to
111 * other blocks
112 */
113 struct btrfs_key_ptr {
114 struct btrfs_disk_key key;
115 __le64 blockptr;
116 } __attribute__ ((__packed__));
117
118 struct btrfs_node {
119 struct btrfs_header header;
120 struct btrfs_key_ptr ptrs[];
121 } __attribute__ ((__packed__));
122
123 /*
124 * btrfs_paths remember the path taken from the root down to the leaf.
125 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
126 * to any other levels that are present.
127 *
128 * The slots array records the index of the item or block pointer
129 * used while walking the tree.
130 */
131 struct btrfs_path {
132 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
133 int slots[BTRFS_MAX_LEVEL];
134 };
135
136 /*
137 * items in the extent btree are used to record the objectid of the
138 * owner of the block and the number of references
139 */
140 struct btrfs_extent_item {
141 __le32 refs;
142 __le64 owner;
143 } __attribute__ ((__packed__));
144
145 struct btrfs_inode_timespec {
146 __le32 sec;
147 __le32 nsec;
148 } __attribute__ ((__packed__));
149
150 /*
151 * there is no padding here on purpose. If you want to extent the inode,
152 * make a new item type
153 */
154 struct btrfs_inode_item {
155 __le64 generation;
156 __le64 size;
157 __le64 nblocks;
158 __le32 nlink;
159 __le32 uid;
160 __le32 gid;
161 __le32 mode;
162 __le32 rdev;
163 __le16 flags;
164 __le16 compat_flags;
165 struct btrfs_inode_timespec atime;
166 struct btrfs_inode_timespec ctime;
167 struct btrfs_inode_timespec mtime;
168 struct btrfs_inode_timespec otime;
169 } __attribute__ ((__packed__));
170
171 /* inline data is just a blob of bytes */
172 struct btrfs_inline_data_item {
173 u8 data;
174 } __attribute__ ((__packed__));
175
176 struct btrfs_dir_item {
177 __le64 objectid;
178 __le16 flags;
179 __le16 name_len;
180 u8 type;
181 } __attribute__ ((__packed__));
182
183 struct btrfs_root_item {
184 __le64 blocknr;
185 __le32 flags;
186 __le64 block_limit;
187 __le64 blocks_used;
188 __le32 refs;
189 } __attribute__ ((__packed__));
190
191 struct btrfs_file_extent_item {
192 /*
193 * disk space consumed by the extent, checksum blocks are included
194 * in these numbers
195 */
196 __le64 disk_blocknr;
197 __le64 disk_num_blocks;
198 /*
199 * the logical offset in file bytes (no csums)
200 * this extent record is for. This allows a file extent to point
201 * into the middle of an existing extent on disk, sharing it
202 * between two snapshots (useful if some bytes in the middle of the
203 * extent have changed
204 */
205 __le64 offset;
206 /*
207 * the logical number of file blocks (no csums included)
208 */
209 __le64 num_blocks;
210 } __attribute__ ((__packed__));
211
212 struct btrfs_inode_map_item {
213 struct btrfs_disk_key key;
214 } __attribute__ ((__packed__));
215
216 struct btrfs_fs_info {
217 struct btrfs_root *fs_root;
218 struct btrfs_root *extent_root;
219 struct btrfs_root *tree_root;
220 struct btrfs_root *inode_root;
221 struct btrfs_key current_insert;
222 struct btrfs_key last_insert;
223 struct radix_tree_root pinned_radix;
224 u64 last_inode_alloc;
225 u64 last_inode_alloc_dirid;
226 u64 generation;
227 struct btrfs_trans_handle *running_transaction;
228 struct btrfs_super_block *disk_super;
229 struct buffer_head *sb_buffer;
230 struct super_block *sb;
231 };
232
233 /*
234 * in ram representation of the tree. extent_root is used for all allocations
235 * and for the extent tree extent_root root. current_insert is used
236 * only for the extent tree.
237 */
238 struct btrfs_root {
239 struct buffer_head *node;
240 struct buffer_head *commit_root;
241 struct btrfs_root_item root_item;
242 struct btrfs_key root_key;
243 struct btrfs_fs_info *fs_info;
244 u32 blocksize;
245 int ref_cows;
246 u32 type;
247 };
248
249 /* the lower bits in the key flags defines the item type */
250 #define BTRFS_KEY_TYPE_MAX 256
251 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
252
253 /*
254 * inode items have the data typically returned from stat and store other
255 * info about object characteristics. There is one for every file and dir in
256 * the FS
257 */
258 #define BTRFS_INODE_ITEM_KEY 1
259
260 /*
261 * dir items are the name -> inode pointers in a directory. There is one
262 * for every name in a directory.
263 */
264 #define BTRFS_DIR_ITEM_KEY 2
265 /*
266 * inline data is file data that fits in the btree.
267 */
268 #define BTRFS_INLINE_DATA_KEY 3
269 /*
270 * extent data is for data that can't fit in the btree. It points to
271 * a (hopefully) huge chunk of disk
272 */
273 #define BTRFS_EXTENT_DATA_KEY 4
274 /*
275 * root items point to tree roots. There are typically in the root
276 * tree used by the super block to find all the other trees
277 */
278 #define BTRFS_ROOT_ITEM_KEY 5
279 /*
280 * extent items are in the extent map tree. These record which blocks
281 * are used, and how many references there are to each block
282 */
283 #define BTRFS_EXTENT_ITEM_KEY 6
284
285 /*
286 * the inode map records which inode numbers are in use and where
287 * they actually live on disk
288 */
289 #define BTRFS_INODE_MAP_ITEM_KEY 7
290 /*
291 * string items are for debugging. They just store a short string of
292 * data in the FS
293 */
294 #define BTRFS_STRING_ITEM_KEY 8
295
296 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
297 {
298 return le64_to_cpu(i->generation);
299 }
300
301 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
302 u64 val)
303 {
304 i->generation = cpu_to_le64(val);
305 }
306
307 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
308 {
309 return le64_to_cpu(i->size);
310 }
311
312 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
313 {
314 i->size = cpu_to_le64(val);
315 }
316
317 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
318 {
319 return le64_to_cpu(i->nblocks);
320 }
321
322 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
323 {
324 i->nblocks = cpu_to_le64(val);
325 }
326
327 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
328 {
329 return le32_to_cpu(i->nlink);
330 }
331
332 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
333 {
334 i->nlink = cpu_to_le32(val);
335 }
336
337 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
338 {
339 return le32_to_cpu(i->uid);
340 }
341
342 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
343 {
344 i->uid = cpu_to_le32(val);
345 }
346
347 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
348 {
349 return le32_to_cpu(i->gid);
350 }
351
352 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
353 {
354 i->gid = cpu_to_le32(val);
355 }
356
357 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
358 {
359 return le32_to_cpu(i->mode);
360 }
361
362 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
363 {
364 i->mode = cpu_to_le32(val);
365 }
366
367 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
368 {
369 return le32_to_cpu(i->rdev);
370 }
371
372 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
373 {
374 i->rdev = cpu_to_le32(val);
375 }
376
377 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
378 {
379 return le16_to_cpu(i->flags);
380 }
381
382 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
383 {
384 i->flags = cpu_to_le16(val);
385 }
386
387 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
388 {
389 return le16_to_cpu(i->compat_flags);
390 }
391
392 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
393 u16 val)
394 {
395 i->compat_flags = cpu_to_le16(val);
396 }
397
398 static inline u32 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
399 {
400 return le32_to_cpu(ts->sec);
401 }
402
403 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
404 u32 val)
405 {
406 ts->sec = cpu_to_le32(val);
407 }
408
409 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
410 {
411 return le32_to_cpu(ts->nsec);
412 }
413
414 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
415 u32 val)
416 {
417 ts->nsec = cpu_to_le32(val);
418 }
419
420
421
422 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
423 {
424 return le64_to_cpu(ei->owner);
425 }
426
427 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
428 {
429 ei->owner = cpu_to_le64(val);
430 }
431
432 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
433 {
434 return le32_to_cpu(ei->refs);
435 }
436
437 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
438 {
439 ei->refs = cpu_to_le32(val);
440 }
441
442 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
443 {
444 return le64_to_cpu(n->ptrs[nr].blockptr);
445 }
446
447 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
448 u64 val)
449 {
450 n->ptrs[nr].blockptr = cpu_to_le64(val);
451 }
452
453 static inline u32 btrfs_item_offset(struct btrfs_item *item)
454 {
455 return le32_to_cpu(item->offset);
456 }
457
458 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
459 {
460 item->offset = cpu_to_le32(val);
461 }
462
463 static inline u32 btrfs_item_end(struct btrfs_item *item)
464 {
465 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
466 }
467
468 static inline u16 btrfs_item_size(struct btrfs_item *item)
469 {
470 return le16_to_cpu(item->size);
471 }
472
473 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
474 {
475 item->size = cpu_to_le16(val);
476 }
477
478 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
479 {
480 return le64_to_cpu(d->objectid);
481 }
482
483 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
484 {
485 d->objectid = cpu_to_le64(val);
486 }
487
488 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
489 {
490 return le16_to_cpu(d->flags);
491 }
492
493 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
494 {
495 d->flags = cpu_to_le16(val);
496 }
497
498 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
499 {
500 return d->type;
501 }
502
503 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
504 {
505 d->type = val;
506 }
507
508 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
509 {
510 return le16_to_cpu(d->name_len);
511 }
512
513 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
514 {
515 d->name_len = cpu_to_le16(val);
516 }
517
518 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
519 struct btrfs_disk_key *disk)
520 {
521 cpu->offset = le64_to_cpu(disk->offset);
522 cpu->flags = le32_to_cpu(disk->flags);
523 cpu->objectid = le64_to_cpu(disk->objectid);
524 }
525
526 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
527 struct btrfs_key *cpu)
528 {
529 disk->offset = cpu_to_le64(cpu->offset);
530 disk->flags = cpu_to_le32(cpu->flags);
531 disk->objectid = cpu_to_le64(cpu->objectid);
532 }
533
534 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
535 {
536 return le64_to_cpu(disk->objectid);
537 }
538
539 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
540 u64 val)
541 {
542 disk->objectid = cpu_to_le64(val);
543 }
544
545 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
546 {
547 return le64_to_cpu(disk->offset);
548 }
549
550 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
551 u64 val)
552 {
553 disk->offset = cpu_to_le64(val);
554 }
555
556 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
557 {
558 return le32_to_cpu(disk->flags);
559 }
560
561 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
562 u32 val)
563 {
564 disk->flags = cpu_to_le32(val);
565 }
566
567 static inline u32 btrfs_key_type(struct btrfs_key *key)
568 {
569 return key->flags & BTRFS_KEY_TYPE_MASK;
570 }
571
572 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
573 {
574 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
575 }
576
577 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
578 {
579 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
580 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
581 }
582
583 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
584 {
585 u32 flags = btrfs_disk_key_flags(key);
586 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
587 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
588 btrfs_set_disk_key_flags(key, flags);
589 }
590
591 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
592 {
593 return le64_to_cpu(h->blocknr);
594 }
595
596 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
597 {
598 h->blocknr = cpu_to_le64(blocknr);
599 }
600
601 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
602 {
603 return le64_to_cpu(h->parentid);
604 }
605
606 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
607 u64 parentid)
608 {
609 h->parentid = cpu_to_le64(parentid);
610 }
611
612 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
613 {
614 return le16_to_cpu(h->nritems);
615 }
616
617 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
618 {
619 h->nritems = cpu_to_le16(val);
620 }
621
622 static inline u16 btrfs_header_flags(struct btrfs_header *h)
623 {
624 return le16_to_cpu(h->flags);
625 }
626
627 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
628 {
629 h->flags = cpu_to_le16(val);
630 }
631
632 static inline int btrfs_header_level(struct btrfs_header *h)
633 {
634 return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1);
635 }
636
637 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
638 {
639 u16 flags;
640 BUG_ON(level > BTRFS_MAX_LEVEL);
641 flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1);
642 btrfs_set_header_flags(h, flags | level);
643 }
644
645 static inline int btrfs_is_leaf(struct btrfs_node *n)
646 {
647 return (btrfs_header_level(&n->header) == 0);
648 }
649
650 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
651 {
652 return le64_to_cpu(item->blocknr);
653 }
654
655 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
656 {
657 item->blocknr = cpu_to_le64(val);
658 }
659
660 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
661 {
662 return le32_to_cpu(item->refs);
663 }
664
665 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
666 {
667 item->refs = cpu_to_le32(val);
668 }
669
670 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
671 {
672 return le64_to_cpu(s->blocknr);
673 }
674
675 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
676 {
677 s->blocknr = cpu_to_le64(val);
678 }
679
680 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
681 {
682 return le64_to_cpu(s->root);
683 }
684
685 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
686 {
687 s->root = cpu_to_le64(val);
688 }
689
690 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
691 {
692 return le64_to_cpu(s->total_blocks);
693 }
694
695 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
696 u64 val)
697 {
698 s->total_blocks = cpu_to_le64(val);
699 }
700
701 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
702 {
703 return le64_to_cpu(s->blocks_used);
704 }
705
706 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
707 u64 val)
708 {
709 s->blocks_used = cpu_to_le64(val);
710 }
711
712 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
713 {
714 return le32_to_cpu(s->blocksize);
715 }
716
717 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
718 u32 val)
719 {
720 s->blocksize = cpu_to_le32(val);
721 }
722
723 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
724 {
725 return le64_to_cpu(s->root_dir_objectid);
726 }
727
728 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
729 val)
730 {
731 s->root_dir_objectid = cpu_to_le64(val);
732 }
733
734 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
735 {
736 return (u8 *)l->items;
737 }
738
739 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
740 *e)
741 {
742 return le64_to_cpu(e->disk_blocknr);
743 }
744
745 static inline void btrfs_set_file_extent_disk_blocknr(struct
746 btrfs_file_extent_item
747 *e, u64 val)
748 {
749 e->disk_blocknr = cpu_to_le64(val);
750 }
751
752 static inline u64 btrfs_file_extent_disk_num_blocks(struct
753 btrfs_file_extent_item *e)
754 {
755 return le64_to_cpu(e->disk_num_blocks);
756 }
757
758 static inline void btrfs_set_file_extent_disk_num_blocks(struct
759 btrfs_file_extent_item
760 *e, u64 val)
761 {
762 e->disk_num_blocks = cpu_to_le64(val);
763 }
764
765 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
766 {
767 return le64_to_cpu(e->offset);
768 }
769
770 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
771 *e, u64 val)
772 {
773 e->offset = cpu_to_le64(val);
774 }
775
776 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
777 *e)
778 {
779 return le64_to_cpu(e->num_blocks);
780 }
781
782 static inline void btrfs_set_file_extent_num_blocks(struct
783 btrfs_file_extent_item *e,
784 u64 val)
785 {
786 e->num_blocks = cpu_to_le64(val);
787 }
788
789 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
790 {
791 return sb->s_fs_info;
792 }
793
794 /* helper function to cast into the data area of the leaf. */
795 #define btrfs_item_ptr(leaf, slot, type) \
796 ((type *)(btrfs_leaf_data(leaf) + \
797 btrfs_item_offset((leaf)->items + (slot))))
798
799 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root);
801 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
802 struct buffer_head *buf);
803 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
804 *root, u64 blocknr, u64 num_blocks, int pin);
805 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
806 *root, struct btrfs_key *key, struct btrfs_path *p, int
807 ins_len, int cow);
808 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
809 void btrfs_init_path(struct btrfs_path *p);
810 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
811 struct btrfs_path *path);
812 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
813 *root, struct btrfs_key *key, void *data, u32 data_size);
814 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
815 *root, struct btrfs_path *path, struct btrfs_key
816 *cpu_key, u32 data_size);
817 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
818 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
819 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
820 *root, struct buffer_head *snap);
821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
822 btrfs_root *root);
823 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
824 struct btrfs_key *key);
825 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
826 *root, struct btrfs_key *key, struct btrfs_root_item
827 *item);
828 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
829 *root, struct btrfs_key *key, struct btrfs_root_item
830 *item);
831 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
832 btrfs_root_item *item, struct btrfs_key *key);
833 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
834 *root, char *name, int name_len, u64 dir, u64
835 objectid, u8 type);
836 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
837 *root, struct btrfs_path *path, u64 dir,
838 const char *name, int name_len, int mod);
839 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
840 char *name, int name_len);
841 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
842 struct btrfs_root *fs_root,
843 u64 dirid, u64 *objectid);
844 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
845 struct btrfs_root *root,
846 u64 objectid, struct btrfs_key *location);
847 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
848 struct btrfs_root *root, struct btrfs_path *path,
849 u64 objectid, int mod);
850 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
851 *root, u64 objectid, struct btrfs_inode_item
852 *inode_item);
853 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
854 *root, struct btrfs_path *path, u64 objectid, int mod);
855 #endif
This page took 0.063274 seconds and 5 git commands to generate.