Btrfs: add missing free_extent_buffer
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include "extent_io.h"
39 #include "extent_map.h"
40 #include "async-thread.h"
41
42 struct btrfs_trans_handle;
43 struct btrfs_transaction;
44 struct btrfs_pending_snapshot;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_transaction_cachep;
47 extern struct kmem_cache *btrfs_bit_radix_cachep;
48 extern struct kmem_cache *btrfs_path_cachep;
49 extern struct kmem_cache *btrfs_free_space_cachep;
50 struct btrfs_ordered_sum;
51
52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
53 #define STATIC noinline
54 #else
55 #define STATIC static noinline
56 #endif
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 #define BTRFS_MAX_MIRRORS 3
61
62 #define BTRFS_MAX_LEVEL 8
63
64 #define BTRFS_COMPAT_EXTENT_TREE_V0
65
66 /* holds pointers to all of the tree roots */
67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
68
69 /* stores information about which extents are in use, and reference counts */
70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
71
72 /*
73 * chunk tree stores translations from logical -> physical block numbering
74 * the super block points to the chunk tree
75 */
76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
77
78 /*
79 * stores information about which areas of a given device are in use.
80 * one per device. The tree of tree roots points to the device tree
81 */
82 #define BTRFS_DEV_TREE_OBJECTID 4ULL
83
84 /* one per subvolume, storing files and directories */
85 #define BTRFS_FS_TREE_OBJECTID 5ULL
86
87 /* directory objectid inside the root tree */
88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
89
90 /* holds checksums of all the data extents */
91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
92
93 /* holds quota configuration and tracking */
94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
95
96 /* for storing items that use the BTRFS_UUID_KEY* types */
97 #define BTRFS_UUID_TREE_OBJECTID 9ULL
98
99 /* for storing balance parameters in the root tree */
100 #define BTRFS_BALANCE_OBJECTID -4ULL
101
102 /* orhpan objectid for tracking unlinked/truncated files */
103 #define BTRFS_ORPHAN_OBJECTID -5ULL
104
105 /* does write ahead logging to speed up fsyncs */
106 #define BTRFS_TREE_LOG_OBJECTID -6ULL
107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
108
109 /* for space balancing */
110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
112
113 /*
114 * extent checksums all have this objectid
115 * this allows them to share the logging tree
116 * for fsyncs
117 */
118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
119
120 /* For storing free space cache */
121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
122
123 /*
124 * The inode number assigned to the special inode for storing
125 * free ino cache
126 */
127 #define BTRFS_FREE_INO_OBJECTID -12ULL
128
129 /* dummy objectid represents multiple objectids */
130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
131
132 /*
133 * All files have objectids in this range.
134 */
135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
136 #define BTRFS_LAST_FREE_OBJECTID -256ULL
137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
138
139
140 /*
141 * the device items go into the chunk tree. The key is in the form
142 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
143 */
144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
145
146 #define BTRFS_BTREE_INODE_OBJECTID 1
147
148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
149
150 #define BTRFS_DEV_REPLACE_DEVID 0ULL
151
152 /*
153 * the max metadata block size. This limit is somewhat artificial,
154 * but the memmove costs go through the roof for larger blocks.
155 */
156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
157
158 /*
159 * we can actually store much bigger names, but lets not confuse the rest
160 * of linux
161 */
162 #define BTRFS_NAME_LEN 255
163
164 /*
165 * Theoretical limit is larger, but we keep this down to a sane
166 * value. That should limit greatly the possibility of collisions on
167 * inode ref items.
168 */
169 #define BTRFS_LINK_MAX 65535U
170
171 /* 32 bytes in various csum fields */
172 #define BTRFS_CSUM_SIZE 32
173
174 /* csum types */
175 #define BTRFS_CSUM_TYPE_CRC32 0
176
177 static int btrfs_csum_sizes[] = { 4 };
178
179 /* four bytes for CRC32 */
180 #define BTRFS_EMPTY_DIR_SIZE 0
181
182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
183 #define REQ_GET_READ_MIRRORS (1 << 30)
184
185 #define BTRFS_FT_UNKNOWN 0
186 #define BTRFS_FT_REG_FILE 1
187 #define BTRFS_FT_DIR 2
188 #define BTRFS_FT_CHRDEV 3
189 #define BTRFS_FT_BLKDEV 4
190 #define BTRFS_FT_FIFO 5
191 #define BTRFS_FT_SOCK 6
192 #define BTRFS_FT_SYMLINK 7
193 #define BTRFS_FT_XATTR 8
194 #define BTRFS_FT_MAX 9
195
196 /* ioprio of readahead is set to idle */
197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
198
199 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
200
201 #define BTRFS_MAX_EXTENT_SIZE (128 * 1024 * 1024)
202
203 /*
204 * The key defines the order in the tree, and so it also defines (optimal)
205 * block layout.
206 *
207 * objectid corresponds to the inode number.
208 *
209 * type tells us things about the object, and is a kind of stream selector.
210 * so for a given inode, keys with type of 1 might refer to the inode data,
211 * type of 2 may point to file data in the btree and type == 3 may point to
212 * extents.
213 *
214 * offset is the starting byte offset for this key in the stream.
215 *
216 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
217 * in cpu native order. Otherwise they are identical and their sizes
218 * should be the same (ie both packed)
219 */
220 struct btrfs_disk_key {
221 __le64 objectid;
222 u8 type;
223 __le64 offset;
224 } __attribute__ ((__packed__));
225
226 struct btrfs_key {
227 u64 objectid;
228 u8 type;
229 u64 offset;
230 } __attribute__ ((__packed__));
231
232 struct btrfs_mapping_tree {
233 struct extent_map_tree map_tree;
234 };
235
236 struct btrfs_dev_item {
237 /* the internal btrfs device id */
238 __le64 devid;
239
240 /* size of the device */
241 __le64 total_bytes;
242
243 /* bytes used */
244 __le64 bytes_used;
245
246 /* optimal io alignment for this device */
247 __le32 io_align;
248
249 /* optimal io width for this device */
250 __le32 io_width;
251
252 /* minimal io size for this device */
253 __le32 sector_size;
254
255 /* type and info about this device */
256 __le64 type;
257
258 /* expected generation for this device */
259 __le64 generation;
260
261 /*
262 * starting byte of this partition on the device,
263 * to allow for stripe alignment in the future
264 */
265 __le64 start_offset;
266
267 /* grouping information for allocation decisions */
268 __le32 dev_group;
269
270 /* seek speed 0-100 where 100 is fastest */
271 u8 seek_speed;
272
273 /* bandwidth 0-100 where 100 is fastest */
274 u8 bandwidth;
275
276 /* btrfs generated uuid for this device */
277 u8 uuid[BTRFS_UUID_SIZE];
278
279 /* uuid of FS who owns this device */
280 u8 fsid[BTRFS_UUID_SIZE];
281 } __attribute__ ((__packed__));
282
283 struct btrfs_stripe {
284 __le64 devid;
285 __le64 offset;
286 u8 dev_uuid[BTRFS_UUID_SIZE];
287 } __attribute__ ((__packed__));
288
289 struct btrfs_chunk {
290 /* size of this chunk in bytes */
291 __le64 length;
292
293 /* objectid of the root referencing this chunk */
294 __le64 owner;
295
296 __le64 stripe_len;
297 __le64 type;
298
299 /* optimal io alignment for this chunk */
300 __le32 io_align;
301
302 /* optimal io width for this chunk */
303 __le32 io_width;
304
305 /* minimal io size for this chunk */
306 __le32 sector_size;
307
308 /* 2^16 stripes is quite a lot, a second limit is the size of a single
309 * item in the btree
310 */
311 __le16 num_stripes;
312
313 /* sub stripes only matter for raid10 */
314 __le16 sub_stripes;
315 struct btrfs_stripe stripe;
316 /* additional stripes go here */
317 } __attribute__ ((__packed__));
318
319 #define BTRFS_FREE_SPACE_EXTENT 1
320 #define BTRFS_FREE_SPACE_BITMAP 2
321
322 struct btrfs_free_space_entry {
323 __le64 offset;
324 __le64 bytes;
325 u8 type;
326 } __attribute__ ((__packed__));
327
328 struct btrfs_free_space_header {
329 struct btrfs_disk_key location;
330 __le64 generation;
331 __le64 num_entries;
332 __le64 num_bitmaps;
333 } __attribute__ ((__packed__));
334
335 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
336 {
337 BUG_ON(num_stripes == 0);
338 return sizeof(struct btrfs_chunk) +
339 sizeof(struct btrfs_stripe) * (num_stripes - 1);
340 }
341
342 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
343 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
344
345 /*
346 * File system states
347 */
348 #define BTRFS_FS_STATE_ERROR 0
349 #define BTRFS_FS_STATE_REMOUNTING 1
350 #define BTRFS_FS_STATE_TRANS_ABORTED 2
351 #define BTRFS_FS_STATE_DEV_REPLACING 3
352
353 /* Super block flags */
354 /* Errors detected */
355 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
356
357 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
358 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
359
360 #define BTRFS_BACKREF_REV_MAX 256
361 #define BTRFS_BACKREF_REV_SHIFT 56
362 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
363 BTRFS_BACKREF_REV_SHIFT)
364
365 #define BTRFS_OLD_BACKREF_REV 0
366 #define BTRFS_MIXED_BACKREF_REV 1
367
368 /*
369 * every tree block (leaf or node) starts with this header.
370 */
371 struct btrfs_header {
372 /* these first four must match the super block */
373 u8 csum[BTRFS_CSUM_SIZE];
374 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
375 __le64 bytenr; /* which block this node is supposed to live in */
376 __le64 flags;
377
378 /* allowed to be different from the super from here on down */
379 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
380 __le64 generation;
381 __le64 owner;
382 __le32 nritems;
383 u8 level;
384 } __attribute__ ((__packed__));
385
386 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
387 sizeof(struct btrfs_header)) / \
388 sizeof(struct btrfs_key_ptr))
389 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
390 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
391 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
392 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
393 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
394 sizeof(struct btrfs_item) - \
395 BTRFS_FILE_EXTENT_INLINE_DATA_START)
396 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
397 sizeof(struct btrfs_item) -\
398 sizeof(struct btrfs_dir_item))
399
400
401 /*
402 * this is a very generous portion of the super block, giving us
403 * room to translate 14 chunks with 3 stripes each.
404 */
405 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
406 #define BTRFS_LABEL_SIZE 256
407
408 /*
409 * just in case we somehow lose the roots and are not able to mount,
410 * we store an array of the roots from previous transactions
411 * in the super.
412 */
413 #define BTRFS_NUM_BACKUP_ROOTS 4
414 struct btrfs_root_backup {
415 __le64 tree_root;
416 __le64 tree_root_gen;
417
418 __le64 chunk_root;
419 __le64 chunk_root_gen;
420
421 __le64 extent_root;
422 __le64 extent_root_gen;
423
424 __le64 fs_root;
425 __le64 fs_root_gen;
426
427 __le64 dev_root;
428 __le64 dev_root_gen;
429
430 __le64 csum_root;
431 __le64 csum_root_gen;
432
433 __le64 total_bytes;
434 __le64 bytes_used;
435 __le64 num_devices;
436 /* future */
437 __le64 unused_64[4];
438
439 u8 tree_root_level;
440 u8 chunk_root_level;
441 u8 extent_root_level;
442 u8 fs_root_level;
443 u8 dev_root_level;
444 u8 csum_root_level;
445 /* future and to align */
446 u8 unused_8[10];
447 } __attribute__ ((__packed__));
448
449 /*
450 * the super block basically lists the main trees of the FS
451 * it currently lacks any block count etc etc
452 */
453 struct btrfs_super_block {
454 u8 csum[BTRFS_CSUM_SIZE];
455 /* the first 4 fields must match struct btrfs_header */
456 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
457 __le64 bytenr; /* this block number */
458 __le64 flags;
459
460 /* allowed to be different from the btrfs_header from here own down */
461 __le64 magic;
462 __le64 generation;
463 __le64 root;
464 __le64 chunk_root;
465 __le64 log_root;
466
467 /* this will help find the new super based on the log root */
468 __le64 log_root_transid;
469 __le64 total_bytes;
470 __le64 bytes_used;
471 __le64 root_dir_objectid;
472 __le64 num_devices;
473 __le32 sectorsize;
474 __le32 nodesize;
475 __le32 __unused_leafsize;
476 __le32 stripesize;
477 __le32 sys_chunk_array_size;
478 __le64 chunk_root_generation;
479 __le64 compat_flags;
480 __le64 compat_ro_flags;
481 __le64 incompat_flags;
482 __le16 csum_type;
483 u8 root_level;
484 u8 chunk_root_level;
485 u8 log_root_level;
486 struct btrfs_dev_item dev_item;
487
488 char label[BTRFS_LABEL_SIZE];
489
490 __le64 cache_generation;
491 __le64 uuid_tree_generation;
492
493 /* future expansion */
494 __le64 reserved[30];
495 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
496 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
497 } __attribute__ ((__packed__));
498
499 /*
500 * Compat flags that we support. If any incompat flags are set other than the
501 * ones specified below then we will fail to mount
502 */
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
504 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
505 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
506 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
507 /*
508 * some patches floated around with a second compression method
509 * lets save that incompat here for when they do get in
510 * Note we don't actually support it, we're just reserving the
511 * number
512 */
513 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
514
515 /*
516 * older kernels tried to do bigger metadata blocks, but the
517 * code was pretty buggy. Lets not let them try anymore.
518 */
519 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
520
521 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
522 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
523 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
524 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
525
526 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
527 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
532
533 #define BTRFS_FEATURE_INCOMPAT_SUPP \
534 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
535 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
536 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
537 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
538 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
539 BTRFS_FEATURE_INCOMPAT_RAID56 | \
540 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
541 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
542 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
543
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
545 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
546 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
547
548 /*
549 * A leaf is full of items. offset and size tell us where to find
550 * the item in the leaf (relative to the start of the data area)
551 */
552 struct btrfs_item {
553 struct btrfs_disk_key key;
554 __le32 offset;
555 __le32 size;
556 } __attribute__ ((__packed__));
557
558 /*
559 * leaves have an item area and a data area:
560 * [item0, item1....itemN] [free space] [dataN...data1, data0]
561 *
562 * The data is separate from the items to get the keys closer together
563 * during searches.
564 */
565 struct btrfs_leaf {
566 struct btrfs_header header;
567 struct btrfs_item items[];
568 } __attribute__ ((__packed__));
569
570 /*
571 * all non-leaf blocks are nodes, they hold only keys and pointers to
572 * other blocks
573 */
574 struct btrfs_key_ptr {
575 struct btrfs_disk_key key;
576 __le64 blockptr;
577 __le64 generation;
578 } __attribute__ ((__packed__));
579
580 struct btrfs_node {
581 struct btrfs_header header;
582 struct btrfs_key_ptr ptrs[];
583 } __attribute__ ((__packed__));
584
585 /*
586 * btrfs_paths remember the path taken from the root down to the leaf.
587 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
588 * to any other levels that are present.
589 *
590 * The slots array records the index of the item or block pointer
591 * used while walking the tree.
592 */
593 struct btrfs_path {
594 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
595 int slots[BTRFS_MAX_LEVEL];
596 /* if there is real range locking, this locks field will change */
597 int locks[BTRFS_MAX_LEVEL];
598 int reada;
599 /* keep some upper locks as we walk down */
600 int lowest_level;
601
602 /*
603 * set by btrfs_split_item, tells search_slot to keep all locks
604 * and to force calls to keep space in the nodes
605 */
606 unsigned int search_for_split:1;
607 unsigned int keep_locks:1;
608 unsigned int skip_locking:1;
609 unsigned int leave_spinning:1;
610 unsigned int search_commit_root:1;
611 unsigned int need_commit_sem:1;
612 unsigned int skip_release_on_error:1;
613 };
614
615 /*
616 * items in the extent btree are used to record the objectid of the
617 * owner of the block and the number of references
618 */
619
620 struct btrfs_extent_item {
621 __le64 refs;
622 __le64 generation;
623 __le64 flags;
624 } __attribute__ ((__packed__));
625
626 struct btrfs_extent_item_v0 {
627 __le32 refs;
628 } __attribute__ ((__packed__));
629
630 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
631 sizeof(struct btrfs_item))
632
633 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
634 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
635
636 /* following flags only apply to tree blocks */
637
638 /* use full backrefs for extent pointers in the block */
639 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
640
641 /*
642 * this flag is only used internally by scrub and may be changed at any time
643 * it is only declared here to avoid collisions
644 */
645 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
646
647 struct btrfs_tree_block_info {
648 struct btrfs_disk_key key;
649 u8 level;
650 } __attribute__ ((__packed__));
651
652 struct btrfs_extent_data_ref {
653 __le64 root;
654 __le64 objectid;
655 __le64 offset;
656 __le32 count;
657 } __attribute__ ((__packed__));
658
659 struct btrfs_shared_data_ref {
660 __le32 count;
661 } __attribute__ ((__packed__));
662
663 struct btrfs_extent_inline_ref {
664 u8 type;
665 __le64 offset;
666 } __attribute__ ((__packed__));
667
668 /* old style backrefs item */
669 struct btrfs_extent_ref_v0 {
670 __le64 root;
671 __le64 generation;
672 __le64 objectid;
673 __le32 count;
674 } __attribute__ ((__packed__));
675
676
677 /* dev extents record free space on individual devices. The owner
678 * field points back to the chunk allocation mapping tree that allocated
679 * the extent. The chunk tree uuid field is a way to double check the owner
680 */
681 struct btrfs_dev_extent {
682 __le64 chunk_tree;
683 __le64 chunk_objectid;
684 __le64 chunk_offset;
685 __le64 length;
686 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
687 } __attribute__ ((__packed__));
688
689 struct btrfs_inode_ref {
690 __le64 index;
691 __le16 name_len;
692 /* name goes here */
693 } __attribute__ ((__packed__));
694
695 struct btrfs_inode_extref {
696 __le64 parent_objectid;
697 __le64 index;
698 __le16 name_len;
699 __u8 name[0];
700 /* name goes here */
701 } __attribute__ ((__packed__));
702
703 struct btrfs_timespec {
704 __le64 sec;
705 __le32 nsec;
706 } __attribute__ ((__packed__));
707
708 enum btrfs_compression_type {
709 BTRFS_COMPRESS_NONE = 0,
710 BTRFS_COMPRESS_ZLIB = 1,
711 BTRFS_COMPRESS_LZO = 2,
712 BTRFS_COMPRESS_TYPES = 2,
713 BTRFS_COMPRESS_LAST = 3,
714 };
715
716 struct btrfs_inode_item {
717 /* nfs style generation number */
718 __le64 generation;
719 /* transid that last touched this inode */
720 __le64 transid;
721 __le64 size;
722 __le64 nbytes;
723 __le64 block_group;
724 __le32 nlink;
725 __le32 uid;
726 __le32 gid;
727 __le32 mode;
728 __le64 rdev;
729 __le64 flags;
730
731 /* modification sequence number for NFS */
732 __le64 sequence;
733
734 /*
735 * a little future expansion, for more than this we can
736 * just grow the inode item and version it
737 */
738 __le64 reserved[4];
739 struct btrfs_timespec atime;
740 struct btrfs_timespec ctime;
741 struct btrfs_timespec mtime;
742 struct btrfs_timespec otime;
743 } __attribute__ ((__packed__));
744
745 struct btrfs_dir_log_item {
746 __le64 end;
747 } __attribute__ ((__packed__));
748
749 struct btrfs_dir_item {
750 struct btrfs_disk_key location;
751 __le64 transid;
752 __le16 data_len;
753 __le16 name_len;
754 u8 type;
755 } __attribute__ ((__packed__));
756
757 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
758
759 /*
760 * Internal in-memory flag that a subvolume has been marked for deletion but
761 * still visible as a directory
762 */
763 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
764
765 struct btrfs_root_item {
766 struct btrfs_inode_item inode;
767 __le64 generation;
768 __le64 root_dirid;
769 __le64 bytenr;
770 __le64 byte_limit;
771 __le64 bytes_used;
772 __le64 last_snapshot;
773 __le64 flags;
774 __le32 refs;
775 struct btrfs_disk_key drop_progress;
776 u8 drop_level;
777 u8 level;
778
779 /*
780 * The following fields appear after subvol_uuids+subvol_times
781 * were introduced.
782 */
783
784 /*
785 * This generation number is used to test if the new fields are valid
786 * and up to date while reading the root item. Everytime the root item
787 * is written out, the "generation" field is copied into this field. If
788 * anyone ever mounted the fs with an older kernel, we will have
789 * mismatching generation values here and thus must invalidate the
790 * new fields. See btrfs_update_root and btrfs_find_last_root for
791 * details.
792 * the offset of generation_v2 is also used as the start for the memset
793 * when invalidating the fields.
794 */
795 __le64 generation_v2;
796 u8 uuid[BTRFS_UUID_SIZE];
797 u8 parent_uuid[BTRFS_UUID_SIZE];
798 u8 received_uuid[BTRFS_UUID_SIZE];
799 __le64 ctransid; /* updated when an inode changes */
800 __le64 otransid; /* trans when created */
801 __le64 stransid; /* trans when sent. non-zero for received subvol */
802 __le64 rtransid; /* trans when received. non-zero for received subvol */
803 struct btrfs_timespec ctime;
804 struct btrfs_timespec otime;
805 struct btrfs_timespec stime;
806 struct btrfs_timespec rtime;
807 __le64 reserved[8]; /* for future */
808 } __attribute__ ((__packed__));
809
810 /*
811 * this is used for both forward and backward root refs
812 */
813 struct btrfs_root_ref {
814 __le64 dirid;
815 __le64 sequence;
816 __le16 name_len;
817 } __attribute__ ((__packed__));
818
819 struct btrfs_disk_balance_args {
820 /*
821 * profiles to operate on, single is denoted by
822 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
823 */
824 __le64 profiles;
825
826 /* usage filter */
827 __le64 usage;
828
829 /* devid filter */
830 __le64 devid;
831
832 /* devid subset filter [pstart..pend) */
833 __le64 pstart;
834 __le64 pend;
835
836 /* btrfs virtual address space subset filter [vstart..vend) */
837 __le64 vstart;
838 __le64 vend;
839
840 /*
841 * profile to convert to, single is denoted by
842 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
843 */
844 __le64 target;
845
846 /* BTRFS_BALANCE_ARGS_* */
847 __le64 flags;
848
849 /* BTRFS_BALANCE_ARGS_LIMIT value */
850 __le64 limit;
851
852 __le64 unused[7];
853 } __attribute__ ((__packed__));
854
855 /*
856 * store balance parameters to disk so that balance can be properly
857 * resumed after crash or unmount
858 */
859 struct btrfs_balance_item {
860 /* BTRFS_BALANCE_* */
861 __le64 flags;
862
863 struct btrfs_disk_balance_args data;
864 struct btrfs_disk_balance_args meta;
865 struct btrfs_disk_balance_args sys;
866
867 __le64 unused[4];
868 } __attribute__ ((__packed__));
869
870 #define BTRFS_FILE_EXTENT_INLINE 0
871 #define BTRFS_FILE_EXTENT_REG 1
872 #define BTRFS_FILE_EXTENT_PREALLOC 2
873
874 struct btrfs_file_extent_item {
875 /*
876 * transaction id that created this extent
877 */
878 __le64 generation;
879 /*
880 * max number of bytes to hold this extent in ram
881 * when we split a compressed extent we can't know how big
882 * each of the resulting pieces will be. So, this is
883 * an upper limit on the size of the extent in ram instead of
884 * an exact limit.
885 */
886 __le64 ram_bytes;
887
888 /*
889 * 32 bits for the various ways we might encode the data,
890 * including compression and encryption. If any of these
891 * are set to something a given disk format doesn't understand
892 * it is treated like an incompat flag for reading and writing,
893 * but not for stat.
894 */
895 u8 compression;
896 u8 encryption;
897 __le16 other_encoding; /* spare for later use */
898
899 /* are we inline data or a real extent? */
900 u8 type;
901
902 /*
903 * disk space consumed by the extent, checksum blocks are included
904 * in these numbers
905 *
906 * At this offset in the structure, the inline extent data start.
907 */
908 __le64 disk_bytenr;
909 __le64 disk_num_bytes;
910 /*
911 * the logical offset in file blocks (no csums)
912 * this extent record is for. This allows a file extent to point
913 * into the middle of an existing extent on disk, sharing it
914 * between two snapshots (useful if some bytes in the middle of the
915 * extent have changed
916 */
917 __le64 offset;
918 /*
919 * the logical number of file blocks (no csums included). This
920 * always reflects the size uncompressed and without encoding.
921 */
922 __le64 num_bytes;
923
924 } __attribute__ ((__packed__));
925
926 struct btrfs_csum_item {
927 u8 csum;
928 } __attribute__ ((__packed__));
929
930 struct btrfs_dev_stats_item {
931 /*
932 * grow this item struct at the end for future enhancements and keep
933 * the existing values unchanged
934 */
935 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
936 } __attribute__ ((__packed__));
937
938 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
939 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
940 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
941 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
942 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
943 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
944 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
945
946 struct btrfs_dev_replace {
947 u64 replace_state; /* see #define above */
948 u64 time_started; /* seconds since 1-Jan-1970 */
949 u64 time_stopped; /* seconds since 1-Jan-1970 */
950 atomic64_t num_write_errors;
951 atomic64_t num_uncorrectable_read_errors;
952
953 u64 cursor_left;
954 u64 committed_cursor_left;
955 u64 cursor_left_last_write_of_item;
956 u64 cursor_right;
957
958 u64 cont_reading_from_srcdev_mode; /* see #define above */
959
960 int is_valid;
961 int item_needs_writeback;
962 struct btrfs_device *srcdev;
963 struct btrfs_device *tgtdev;
964
965 pid_t lock_owner;
966 atomic_t nesting_level;
967 struct mutex lock_finishing_cancel_unmount;
968 struct mutex lock_management_lock;
969 struct mutex lock;
970
971 struct btrfs_scrub_progress scrub_progress;
972 };
973
974 struct btrfs_dev_replace_item {
975 /*
976 * grow this item struct at the end for future enhancements and keep
977 * the existing values unchanged
978 */
979 __le64 src_devid;
980 __le64 cursor_left;
981 __le64 cursor_right;
982 __le64 cont_reading_from_srcdev_mode;
983
984 __le64 replace_state;
985 __le64 time_started;
986 __le64 time_stopped;
987 __le64 num_write_errors;
988 __le64 num_uncorrectable_read_errors;
989 } __attribute__ ((__packed__));
990
991 /* different types of block groups (and chunks) */
992 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
993 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
994 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
995 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
996 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
997 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
998 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
999 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
1000 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
1001 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1002 BTRFS_SPACE_INFO_GLOBAL_RSV)
1003
1004 enum btrfs_raid_types {
1005 BTRFS_RAID_RAID10,
1006 BTRFS_RAID_RAID1,
1007 BTRFS_RAID_DUP,
1008 BTRFS_RAID_RAID0,
1009 BTRFS_RAID_SINGLE,
1010 BTRFS_RAID_RAID5,
1011 BTRFS_RAID_RAID6,
1012 BTRFS_NR_RAID_TYPES
1013 };
1014
1015 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1016 BTRFS_BLOCK_GROUP_SYSTEM | \
1017 BTRFS_BLOCK_GROUP_METADATA)
1018
1019 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1020 BTRFS_BLOCK_GROUP_RAID1 | \
1021 BTRFS_BLOCK_GROUP_RAID5 | \
1022 BTRFS_BLOCK_GROUP_RAID6 | \
1023 BTRFS_BLOCK_GROUP_DUP | \
1024 BTRFS_BLOCK_GROUP_RAID10)
1025 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
1026 BTRFS_BLOCK_GROUP_RAID6)
1027
1028 /*
1029 * We need a bit for restriper to be able to tell when chunks of type
1030 * SINGLE are available. This "extended" profile format is used in
1031 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1032 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1033 * to avoid remappings between two formats in future.
1034 */
1035 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1036
1037 /*
1038 * A fake block group type that is used to communicate global block reserve
1039 * size to userspace via the SPACE_INFO ioctl.
1040 */
1041 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1042
1043 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1044 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1045
1046 static inline u64 chunk_to_extended(u64 flags)
1047 {
1048 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1049 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1050
1051 return flags;
1052 }
1053 static inline u64 extended_to_chunk(u64 flags)
1054 {
1055 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1056 }
1057
1058 struct btrfs_block_group_item {
1059 __le64 used;
1060 __le64 chunk_objectid;
1061 __le64 flags;
1062 } __attribute__ ((__packed__));
1063
1064 #define BTRFS_QGROUP_LEVEL_SHIFT 48
1065 static inline u64 btrfs_qgroup_level(u64 qgroupid)
1066 {
1067 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1068 }
1069
1070 /*
1071 * is subvolume quota turned on?
1072 */
1073 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1074 /*
1075 * RESCAN is set during the initialization phase
1076 */
1077 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1078 /*
1079 * Some qgroup entries are known to be out of date,
1080 * either because the configuration has changed in a way that
1081 * makes a rescan necessary, or because the fs has been mounted
1082 * with a non-qgroup-aware version.
1083 * Turning qouta off and on again makes it inconsistent, too.
1084 */
1085 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1086
1087 #define BTRFS_QGROUP_STATUS_VERSION 1
1088
1089 struct btrfs_qgroup_status_item {
1090 __le64 version;
1091 /*
1092 * the generation is updated during every commit. As older
1093 * versions of btrfs are not aware of qgroups, it will be
1094 * possible to detect inconsistencies by checking the
1095 * generation on mount time
1096 */
1097 __le64 generation;
1098
1099 /* flag definitions see above */
1100 __le64 flags;
1101
1102 /*
1103 * only used during scanning to record the progress
1104 * of the scan. It contains a logical address
1105 */
1106 __le64 rescan;
1107 } __attribute__ ((__packed__));
1108
1109 struct btrfs_qgroup_info_item {
1110 __le64 generation;
1111 __le64 rfer;
1112 __le64 rfer_cmpr;
1113 __le64 excl;
1114 __le64 excl_cmpr;
1115 } __attribute__ ((__packed__));
1116
1117 /* flags definition for qgroup limits */
1118 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1119 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1120 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1121 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1122 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1123 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1124
1125 struct btrfs_qgroup_limit_item {
1126 /*
1127 * only updated when any of the other values change
1128 */
1129 __le64 flags;
1130 __le64 max_rfer;
1131 __le64 max_excl;
1132 __le64 rsv_rfer;
1133 __le64 rsv_excl;
1134 } __attribute__ ((__packed__));
1135
1136 /* For raid type sysfs entries */
1137 struct raid_kobject {
1138 int raid_type;
1139 struct kobject kobj;
1140 };
1141
1142 struct btrfs_space_info {
1143 spinlock_t lock;
1144
1145 u64 total_bytes; /* total bytes in the space,
1146 this doesn't take mirrors into account */
1147 u64 bytes_used; /* total bytes used,
1148 this doesn't take mirrors into account */
1149 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1150 transaction finishes */
1151 u64 bytes_reserved; /* total bytes the allocator has reserved for
1152 current allocations */
1153 u64 bytes_may_use; /* number of bytes that may be used for
1154 delalloc/allocations */
1155 u64 bytes_readonly; /* total bytes that are read only */
1156
1157 unsigned int full:1; /* indicates that we cannot allocate any more
1158 chunks for this space */
1159 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1160
1161 unsigned int flush:1; /* set if we are trying to make space */
1162
1163 unsigned int force_alloc; /* set if we need to force a chunk
1164 alloc for this space */
1165
1166 u64 disk_used; /* total bytes used on disk */
1167 u64 disk_total; /* total bytes on disk, takes mirrors into
1168 account */
1169
1170 u64 flags;
1171
1172 /*
1173 * bytes_pinned is kept in line with what is actually pinned, as in
1174 * we've called update_block_group and dropped the bytes_used counter
1175 * and increased the bytes_pinned counter. However this means that
1176 * bytes_pinned does not reflect the bytes that will be pinned once the
1177 * delayed refs are flushed, so this counter is inc'ed everytime we call
1178 * btrfs_free_extent so it is a realtime count of what will be freed
1179 * once the transaction is committed. It will be zero'ed everytime the
1180 * transaction commits.
1181 */
1182 struct percpu_counter total_bytes_pinned;
1183
1184 struct list_head list;
1185 /* Protected by the spinlock 'lock'. */
1186 struct list_head ro_bgs;
1187
1188 struct rw_semaphore groups_sem;
1189 /* for block groups in our same type */
1190 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1191 wait_queue_head_t wait;
1192
1193 struct kobject kobj;
1194 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1195 };
1196
1197 #define BTRFS_BLOCK_RSV_GLOBAL 1
1198 #define BTRFS_BLOCK_RSV_DELALLOC 2
1199 #define BTRFS_BLOCK_RSV_TRANS 3
1200 #define BTRFS_BLOCK_RSV_CHUNK 4
1201 #define BTRFS_BLOCK_RSV_DELOPS 5
1202 #define BTRFS_BLOCK_RSV_EMPTY 6
1203 #define BTRFS_BLOCK_RSV_TEMP 7
1204
1205 struct btrfs_block_rsv {
1206 u64 size;
1207 u64 reserved;
1208 struct btrfs_space_info *space_info;
1209 spinlock_t lock;
1210 unsigned short full;
1211 unsigned short type;
1212 unsigned short failfast;
1213 };
1214
1215 /*
1216 * free clusters are used to claim free space in relatively large chunks,
1217 * allowing us to do less seeky writes. They are used for all metadata
1218 * allocations and data allocations in ssd mode.
1219 */
1220 struct btrfs_free_cluster {
1221 spinlock_t lock;
1222 spinlock_t refill_lock;
1223 struct rb_root root;
1224
1225 /* largest extent in this cluster */
1226 u64 max_size;
1227
1228 /* first extent starting offset */
1229 u64 window_start;
1230
1231 struct btrfs_block_group_cache *block_group;
1232 /*
1233 * when a cluster is allocated from a block group, we put the
1234 * cluster onto a list in the block group so that it can
1235 * be freed before the block group is freed.
1236 */
1237 struct list_head block_group_list;
1238 };
1239
1240 enum btrfs_caching_type {
1241 BTRFS_CACHE_NO = 0,
1242 BTRFS_CACHE_STARTED = 1,
1243 BTRFS_CACHE_FAST = 2,
1244 BTRFS_CACHE_FINISHED = 3,
1245 BTRFS_CACHE_ERROR = 4,
1246 };
1247
1248 enum btrfs_disk_cache_state {
1249 BTRFS_DC_WRITTEN = 0,
1250 BTRFS_DC_ERROR = 1,
1251 BTRFS_DC_CLEAR = 2,
1252 BTRFS_DC_SETUP = 3,
1253 };
1254
1255 struct btrfs_caching_control {
1256 struct list_head list;
1257 struct mutex mutex;
1258 wait_queue_head_t wait;
1259 struct btrfs_work work;
1260 struct btrfs_block_group_cache *block_group;
1261 u64 progress;
1262 atomic_t count;
1263 };
1264
1265 struct btrfs_io_ctl {
1266 void *cur, *orig;
1267 struct page *page;
1268 struct page **pages;
1269 struct btrfs_root *root;
1270 struct inode *inode;
1271 unsigned long size;
1272 int index;
1273 int num_pages;
1274 int entries;
1275 int bitmaps;
1276 unsigned check_crcs:1;
1277 };
1278
1279 struct btrfs_block_group_cache {
1280 struct btrfs_key key;
1281 struct btrfs_block_group_item item;
1282 struct btrfs_fs_info *fs_info;
1283 struct inode *inode;
1284 spinlock_t lock;
1285 u64 pinned;
1286 u64 reserved;
1287 u64 delalloc_bytes;
1288 u64 bytes_super;
1289 u64 flags;
1290 u64 sectorsize;
1291 u64 cache_generation;
1292
1293 /*
1294 * It is just used for the delayed data space allocation because
1295 * only the data space allocation and the relative metadata update
1296 * can be done cross the transaction.
1297 */
1298 struct rw_semaphore data_rwsem;
1299
1300 /* for raid56, this is a full stripe, without parity */
1301 unsigned long full_stripe_len;
1302
1303 unsigned int ro:1;
1304 unsigned int iref:1;
1305 unsigned int has_caching_ctl:1;
1306 unsigned int removed:1;
1307
1308 int disk_cache_state;
1309
1310 /* cache tracking stuff */
1311 int cached;
1312 struct btrfs_caching_control *caching_ctl;
1313 u64 last_byte_to_unpin;
1314
1315 struct btrfs_space_info *space_info;
1316
1317 /* free space cache stuff */
1318 struct btrfs_free_space_ctl *free_space_ctl;
1319
1320 /* block group cache stuff */
1321 struct rb_node cache_node;
1322
1323 /* for block groups in the same raid type */
1324 struct list_head list;
1325
1326 /* usage count */
1327 atomic_t count;
1328
1329 /* List of struct btrfs_free_clusters for this block group.
1330 * Today it will only have one thing on it, but that may change
1331 */
1332 struct list_head cluster_list;
1333
1334 /* For delayed block group creation or deletion of empty block groups */
1335 struct list_head bg_list;
1336
1337 /* For read-only block groups */
1338 struct list_head ro_list;
1339
1340 atomic_t trimming;
1341
1342 /* For dirty block groups */
1343 struct list_head dirty_list;
1344 struct list_head io_list;
1345
1346 struct btrfs_io_ctl io_ctl;
1347 };
1348
1349 /* delayed seq elem */
1350 struct seq_list {
1351 struct list_head list;
1352 u64 seq;
1353 };
1354
1355 #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1356
1357 enum btrfs_orphan_cleanup_state {
1358 ORPHAN_CLEANUP_STARTED = 1,
1359 ORPHAN_CLEANUP_DONE = 2,
1360 };
1361
1362 /* used by the raid56 code to lock stripes for read/modify/write */
1363 struct btrfs_stripe_hash {
1364 struct list_head hash_list;
1365 wait_queue_head_t wait;
1366 spinlock_t lock;
1367 };
1368
1369 /* used by the raid56 code to lock stripes for read/modify/write */
1370 struct btrfs_stripe_hash_table {
1371 struct list_head stripe_cache;
1372 spinlock_t cache_lock;
1373 int cache_size;
1374 struct btrfs_stripe_hash table[];
1375 };
1376
1377 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1378
1379 void btrfs_init_async_reclaim_work(struct work_struct *work);
1380
1381 /* fs_info */
1382 struct reloc_control;
1383 struct btrfs_device;
1384 struct btrfs_fs_devices;
1385 struct btrfs_balance_control;
1386 struct btrfs_delayed_root;
1387 struct btrfs_fs_info {
1388 u8 fsid[BTRFS_FSID_SIZE];
1389 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1390 struct btrfs_root *extent_root;
1391 struct btrfs_root *tree_root;
1392 struct btrfs_root *chunk_root;
1393 struct btrfs_root *dev_root;
1394 struct btrfs_root *fs_root;
1395 struct btrfs_root *csum_root;
1396 struct btrfs_root *quota_root;
1397 struct btrfs_root *uuid_root;
1398
1399 /* the log root tree is a directory of all the other log roots */
1400 struct btrfs_root *log_root_tree;
1401
1402 spinlock_t fs_roots_radix_lock;
1403 struct radix_tree_root fs_roots_radix;
1404
1405 /* block group cache stuff */
1406 spinlock_t block_group_cache_lock;
1407 u64 first_logical_byte;
1408 struct rb_root block_group_cache_tree;
1409
1410 /* keep track of unallocated space */
1411 spinlock_t free_chunk_lock;
1412 u64 free_chunk_space;
1413
1414 struct extent_io_tree freed_extents[2];
1415 struct extent_io_tree *pinned_extents;
1416
1417 /* logical->physical extent mapping */
1418 struct btrfs_mapping_tree mapping_tree;
1419
1420 /*
1421 * block reservation for extent, checksum, root tree and
1422 * delayed dir index item
1423 */
1424 struct btrfs_block_rsv global_block_rsv;
1425 /* block reservation for delay allocation */
1426 struct btrfs_block_rsv delalloc_block_rsv;
1427 /* block reservation for metadata operations */
1428 struct btrfs_block_rsv trans_block_rsv;
1429 /* block reservation for chunk tree */
1430 struct btrfs_block_rsv chunk_block_rsv;
1431 /* block reservation for delayed operations */
1432 struct btrfs_block_rsv delayed_block_rsv;
1433
1434 struct btrfs_block_rsv empty_block_rsv;
1435
1436 u64 generation;
1437 u64 last_trans_committed;
1438 u64 avg_delayed_ref_runtime;
1439
1440 /*
1441 * this is updated to the current trans every time a full commit
1442 * is required instead of the faster short fsync log commits
1443 */
1444 u64 last_trans_log_full_commit;
1445 unsigned long mount_opt;
1446 /*
1447 * Track requests for actions that need to be done during transaction
1448 * commit (like for some mount options).
1449 */
1450 unsigned long pending_changes;
1451 unsigned long compress_type:4;
1452 int commit_interval;
1453 /*
1454 * It is a suggestive number, the read side is safe even it gets a
1455 * wrong number because we will write out the data into a regular
1456 * extent. The write side(mount/remount) is under ->s_umount lock,
1457 * so it is also safe.
1458 */
1459 u64 max_inline;
1460 /*
1461 * Protected by ->chunk_mutex and sb->s_umount.
1462 *
1463 * The reason that we use two lock to protect it is because only
1464 * remount and mount operations can change it and these two operations
1465 * are under sb->s_umount, but the read side (chunk allocation) can not
1466 * acquire sb->s_umount or the deadlock would happen. So we use two
1467 * locks to protect it. On the write side, we must acquire two locks,
1468 * and on the read side, we just need acquire one of them.
1469 */
1470 u64 alloc_start;
1471 struct btrfs_transaction *running_transaction;
1472 wait_queue_head_t transaction_throttle;
1473 wait_queue_head_t transaction_wait;
1474 wait_queue_head_t transaction_blocked_wait;
1475 wait_queue_head_t async_submit_wait;
1476
1477 /*
1478 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1479 * when they are updated.
1480 *
1481 * Because we do not clear the flags for ever, so we needn't use
1482 * the lock on the read side.
1483 *
1484 * We also needn't use the lock when we mount the fs, because
1485 * there is no other task which will update the flag.
1486 */
1487 spinlock_t super_lock;
1488 struct btrfs_super_block *super_copy;
1489 struct btrfs_super_block *super_for_commit;
1490 struct block_device *__bdev;
1491 struct super_block *sb;
1492 struct inode *btree_inode;
1493 struct backing_dev_info bdi;
1494 struct mutex tree_log_mutex;
1495 struct mutex transaction_kthread_mutex;
1496 struct mutex cleaner_mutex;
1497 struct mutex chunk_mutex;
1498 struct mutex volume_mutex;
1499
1500 /*
1501 * this is taken to make sure we don't set block groups ro after
1502 * the free space cache has been allocated on them
1503 */
1504 struct mutex ro_block_group_mutex;
1505
1506 /* this is used during read/modify/write to make sure
1507 * no two ios are trying to mod the same stripe at the same
1508 * time
1509 */
1510 struct btrfs_stripe_hash_table *stripe_hash_table;
1511
1512 /*
1513 * this protects the ordered operations list only while we are
1514 * processing all of the entries on it. This way we make
1515 * sure the commit code doesn't find the list temporarily empty
1516 * because another function happens to be doing non-waiting preflush
1517 * before jumping into the main commit.
1518 */
1519 struct mutex ordered_operations_mutex;
1520
1521 /*
1522 * Same as ordered_operations_mutex except this is for ordered extents
1523 * and not the operations.
1524 */
1525 struct mutex ordered_extent_flush_mutex;
1526
1527 struct rw_semaphore commit_root_sem;
1528
1529 struct rw_semaphore cleanup_work_sem;
1530
1531 struct rw_semaphore subvol_sem;
1532 struct srcu_struct subvol_srcu;
1533
1534 spinlock_t trans_lock;
1535 /*
1536 * the reloc mutex goes with the trans lock, it is taken
1537 * during commit to protect us from the relocation code
1538 */
1539 struct mutex reloc_mutex;
1540
1541 struct list_head trans_list;
1542 struct list_head dead_roots;
1543 struct list_head caching_block_groups;
1544
1545 spinlock_t delayed_iput_lock;
1546 struct list_head delayed_iputs;
1547 struct rw_semaphore delayed_iput_sem;
1548
1549 /* this protects tree_mod_seq_list */
1550 spinlock_t tree_mod_seq_lock;
1551 atomic64_t tree_mod_seq;
1552 struct list_head tree_mod_seq_list;
1553
1554 /* this protects tree_mod_log */
1555 rwlock_t tree_mod_log_lock;
1556 struct rb_root tree_mod_log;
1557
1558 atomic_t nr_async_submits;
1559 atomic_t async_submit_draining;
1560 atomic_t nr_async_bios;
1561 atomic_t async_delalloc_pages;
1562 atomic_t open_ioctl_trans;
1563
1564 /*
1565 * this is used to protect the following list -- ordered_roots.
1566 */
1567 spinlock_t ordered_root_lock;
1568
1569 /*
1570 * all fs/file tree roots in which there are data=ordered extents
1571 * pending writeback are added into this list.
1572 *
1573 * these can span multiple transactions and basically include
1574 * every dirty data page that isn't from nodatacow
1575 */
1576 struct list_head ordered_roots;
1577
1578 struct mutex delalloc_root_mutex;
1579 spinlock_t delalloc_root_lock;
1580 /* all fs/file tree roots that have delalloc inodes. */
1581 struct list_head delalloc_roots;
1582
1583 /*
1584 * there is a pool of worker threads for checksumming during writes
1585 * and a pool for checksumming after reads. This is because readers
1586 * can run with FS locks held, and the writers may be waiting for
1587 * those locks. We don't want ordering in the pending list to cause
1588 * deadlocks, and so the two are serviced separately.
1589 *
1590 * A third pool does submit_bio to avoid deadlocking with the other
1591 * two
1592 */
1593 struct btrfs_workqueue *workers;
1594 struct btrfs_workqueue *delalloc_workers;
1595 struct btrfs_workqueue *flush_workers;
1596 struct btrfs_workqueue *endio_workers;
1597 struct btrfs_workqueue *endio_meta_workers;
1598 struct btrfs_workqueue *endio_raid56_workers;
1599 struct btrfs_workqueue *endio_repair_workers;
1600 struct btrfs_workqueue *rmw_workers;
1601 struct btrfs_workqueue *endio_meta_write_workers;
1602 struct btrfs_workqueue *endio_write_workers;
1603 struct btrfs_workqueue *endio_freespace_worker;
1604 struct btrfs_workqueue *submit_workers;
1605 struct btrfs_workqueue *caching_workers;
1606 struct btrfs_workqueue *readahead_workers;
1607
1608 /*
1609 * fixup workers take dirty pages that didn't properly go through
1610 * the cow mechanism and make them safe to write. It happens
1611 * for the sys_munmap function call path
1612 */
1613 struct btrfs_workqueue *fixup_workers;
1614 struct btrfs_workqueue *delayed_workers;
1615
1616 /* the extent workers do delayed refs on the extent allocation tree */
1617 struct btrfs_workqueue *extent_workers;
1618 struct task_struct *transaction_kthread;
1619 struct task_struct *cleaner_kthread;
1620 int thread_pool_size;
1621
1622 struct kobject super_kobj;
1623 struct kobject *space_info_kobj;
1624 struct kobject *device_dir_kobj;
1625 struct completion kobj_unregister;
1626 int do_barriers;
1627 int closing;
1628 int log_root_recovering;
1629 int open;
1630
1631 u64 total_pinned;
1632
1633 /* used to keep from writing metadata until there is a nice batch */
1634 struct percpu_counter dirty_metadata_bytes;
1635 struct percpu_counter delalloc_bytes;
1636 s32 dirty_metadata_batch;
1637 s32 delalloc_batch;
1638
1639 struct list_head dirty_cowonly_roots;
1640
1641 struct btrfs_fs_devices *fs_devices;
1642
1643 /*
1644 * the space_info list is almost entirely read only. It only changes
1645 * when we add a new raid type to the FS, and that happens
1646 * very rarely. RCU is used to protect it.
1647 */
1648 struct list_head space_info;
1649
1650 struct btrfs_space_info *data_sinfo;
1651
1652 struct reloc_control *reloc_ctl;
1653
1654 /* data_alloc_cluster is only used in ssd mode */
1655 struct btrfs_free_cluster data_alloc_cluster;
1656
1657 /* all metadata allocations go through this cluster */
1658 struct btrfs_free_cluster meta_alloc_cluster;
1659
1660 /* auto defrag inodes go here */
1661 spinlock_t defrag_inodes_lock;
1662 struct rb_root defrag_inodes;
1663 atomic_t defrag_running;
1664
1665 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1666 seqlock_t profiles_lock;
1667 /*
1668 * these three are in extended format (availability of single
1669 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1670 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1671 */
1672 u64 avail_data_alloc_bits;
1673 u64 avail_metadata_alloc_bits;
1674 u64 avail_system_alloc_bits;
1675
1676 /* restriper state */
1677 spinlock_t balance_lock;
1678 struct mutex balance_mutex;
1679 atomic_t balance_running;
1680 atomic_t balance_pause_req;
1681 atomic_t balance_cancel_req;
1682 struct btrfs_balance_control *balance_ctl;
1683 wait_queue_head_t balance_wait_q;
1684
1685 unsigned data_chunk_allocations;
1686 unsigned metadata_ratio;
1687
1688 void *bdev_holder;
1689
1690 /* private scrub information */
1691 struct mutex scrub_lock;
1692 atomic_t scrubs_running;
1693 atomic_t scrub_pause_req;
1694 atomic_t scrubs_paused;
1695 atomic_t scrub_cancel_req;
1696 wait_queue_head_t scrub_pause_wait;
1697 int scrub_workers_refcnt;
1698 struct btrfs_workqueue *scrub_workers;
1699 struct btrfs_workqueue *scrub_wr_completion_workers;
1700 struct btrfs_workqueue *scrub_nocow_workers;
1701
1702 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1703 u32 check_integrity_print_mask;
1704 #endif
1705 /*
1706 * quota information
1707 */
1708 unsigned int quota_enabled:1;
1709
1710 /*
1711 * quota_enabled only changes state after a commit. This holds the
1712 * next state.
1713 */
1714 unsigned int pending_quota_state:1;
1715
1716 /* is qgroup tracking in a consistent state? */
1717 u64 qgroup_flags;
1718
1719 /* holds configuration and tracking. Protected by qgroup_lock */
1720 struct rb_root qgroup_tree;
1721 struct rb_root qgroup_op_tree;
1722 spinlock_t qgroup_lock;
1723 spinlock_t qgroup_op_lock;
1724 atomic_t qgroup_op_seq;
1725
1726 /*
1727 * used to avoid frequently calling ulist_alloc()/ulist_free()
1728 * when doing qgroup accounting, it must be protected by qgroup_lock.
1729 */
1730 struct ulist *qgroup_ulist;
1731
1732 /* protect user change for quota operations */
1733 struct mutex qgroup_ioctl_lock;
1734
1735 /* list of dirty qgroups to be written at next commit */
1736 struct list_head dirty_qgroups;
1737
1738 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1739 u64 qgroup_seq;
1740
1741 /* qgroup rescan items */
1742 struct mutex qgroup_rescan_lock; /* protects the progress item */
1743 struct btrfs_key qgroup_rescan_progress;
1744 struct btrfs_workqueue *qgroup_rescan_workers;
1745 struct completion qgroup_rescan_completion;
1746 struct btrfs_work qgroup_rescan_work;
1747
1748 /* filesystem state */
1749 unsigned long fs_state;
1750
1751 struct btrfs_delayed_root *delayed_root;
1752
1753 /* readahead tree */
1754 spinlock_t reada_lock;
1755 struct radix_tree_root reada_tree;
1756
1757 /* Extent buffer radix tree */
1758 spinlock_t buffer_lock;
1759 struct radix_tree_root buffer_radix;
1760
1761 /* next backup root to be overwritten */
1762 int backup_root_index;
1763
1764 int num_tolerated_disk_barrier_failures;
1765
1766 /* device replace state */
1767 struct btrfs_dev_replace dev_replace;
1768
1769 atomic_t mutually_exclusive_operation_running;
1770
1771 struct percpu_counter bio_counter;
1772 wait_queue_head_t replace_wait;
1773
1774 struct semaphore uuid_tree_rescan_sem;
1775 unsigned int update_uuid_tree_gen:1;
1776
1777 /* Used to reclaim the metadata space in the background. */
1778 struct work_struct async_reclaim_work;
1779
1780 spinlock_t unused_bgs_lock;
1781 struct list_head unused_bgs;
1782 struct mutex unused_bg_unpin_mutex;
1783
1784 /* For btrfs to record security options */
1785 struct security_mnt_opts security_opts;
1786
1787 /*
1788 * Chunks that can't be freed yet (under a trim/discard operation)
1789 * and will be latter freed. Protected by fs_info->chunk_mutex.
1790 */
1791 struct list_head pinned_chunks;
1792 };
1793
1794 struct btrfs_subvolume_writers {
1795 struct percpu_counter counter;
1796 wait_queue_head_t wait;
1797 };
1798
1799 /*
1800 * The state of btrfs root
1801 */
1802 /*
1803 * btrfs_record_root_in_trans is a multi-step process,
1804 * and it can race with the balancing code. But the
1805 * race is very small, and only the first time the root
1806 * is added to each transaction. So IN_TRANS_SETUP
1807 * is used to tell us when more checks are required
1808 */
1809 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1810 #define BTRFS_ROOT_REF_COWS 1
1811 #define BTRFS_ROOT_TRACK_DIRTY 2
1812 #define BTRFS_ROOT_IN_RADIX 3
1813 #define BTRFS_ROOT_DUMMY_ROOT 4
1814 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1815 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1816 #define BTRFS_ROOT_FORCE_COW 7
1817 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1818 #define BTRFS_ROOT_DIRTY 9
1819
1820 /*
1821 * in ram representation of the tree. extent_root is used for all allocations
1822 * and for the extent tree extent_root root.
1823 */
1824 struct btrfs_root {
1825 struct extent_buffer *node;
1826
1827 struct extent_buffer *commit_root;
1828 struct btrfs_root *log_root;
1829 struct btrfs_root *reloc_root;
1830
1831 unsigned long state;
1832 struct btrfs_root_item root_item;
1833 struct btrfs_key root_key;
1834 struct btrfs_fs_info *fs_info;
1835 struct extent_io_tree dirty_log_pages;
1836
1837 struct mutex objectid_mutex;
1838
1839 spinlock_t accounting_lock;
1840 struct btrfs_block_rsv *block_rsv;
1841
1842 /* free ino cache stuff */
1843 struct btrfs_free_space_ctl *free_ino_ctl;
1844 enum btrfs_caching_type ino_cache_state;
1845 spinlock_t ino_cache_lock;
1846 wait_queue_head_t ino_cache_wait;
1847 struct btrfs_free_space_ctl *free_ino_pinned;
1848 u64 ino_cache_progress;
1849 struct inode *ino_cache_inode;
1850
1851 struct mutex log_mutex;
1852 wait_queue_head_t log_writer_wait;
1853 wait_queue_head_t log_commit_wait[2];
1854 struct list_head log_ctxs[2];
1855 atomic_t log_writers;
1856 atomic_t log_commit[2];
1857 atomic_t log_batch;
1858 int log_transid;
1859 /* No matter the commit succeeds or not*/
1860 int log_transid_committed;
1861 /* Just be updated when the commit succeeds. */
1862 int last_log_commit;
1863 pid_t log_start_pid;
1864
1865 u64 objectid;
1866 u64 last_trans;
1867
1868 /* data allocations are done in sectorsize units */
1869 u32 sectorsize;
1870
1871 /* node allocations are done in nodesize units */
1872 u32 nodesize;
1873
1874 u32 stripesize;
1875
1876 u32 type;
1877
1878 u64 highest_objectid;
1879
1880 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1881 u64 alloc_bytenr;
1882
1883 u64 defrag_trans_start;
1884 struct btrfs_key defrag_progress;
1885 struct btrfs_key defrag_max;
1886 char *name;
1887
1888 /* the dirty list is only used by non-reference counted roots */
1889 struct list_head dirty_list;
1890
1891 struct list_head root_list;
1892
1893 spinlock_t log_extents_lock[2];
1894 struct list_head logged_list[2];
1895
1896 spinlock_t orphan_lock;
1897 atomic_t orphan_inodes;
1898 struct btrfs_block_rsv *orphan_block_rsv;
1899 int orphan_cleanup_state;
1900
1901 spinlock_t inode_lock;
1902 /* red-black tree that keeps track of in-memory inodes */
1903 struct rb_root inode_tree;
1904
1905 /*
1906 * radix tree that keeps track of delayed nodes of every inode,
1907 * protected by inode_lock
1908 */
1909 struct radix_tree_root delayed_nodes_tree;
1910 /*
1911 * right now this just gets used so that a root has its own devid
1912 * for stat. It may be used for more later
1913 */
1914 dev_t anon_dev;
1915
1916 spinlock_t root_item_lock;
1917 atomic_t refs;
1918
1919 struct mutex delalloc_mutex;
1920 spinlock_t delalloc_lock;
1921 /*
1922 * all of the inodes that have delalloc bytes. It is possible for
1923 * this list to be empty even when there is still dirty data=ordered
1924 * extents waiting to finish IO.
1925 */
1926 struct list_head delalloc_inodes;
1927 struct list_head delalloc_root;
1928 u64 nr_delalloc_inodes;
1929
1930 struct mutex ordered_extent_mutex;
1931 /*
1932 * this is used by the balancing code to wait for all the pending
1933 * ordered extents
1934 */
1935 spinlock_t ordered_extent_lock;
1936
1937 /*
1938 * all of the data=ordered extents pending writeback
1939 * these can span multiple transactions and basically include
1940 * every dirty data page that isn't from nodatacow
1941 */
1942 struct list_head ordered_extents;
1943 struct list_head ordered_root;
1944 u64 nr_ordered_extents;
1945
1946 /*
1947 * Number of currently running SEND ioctls to prevent
1948 * manipulation with the read-only status via SUBVOL_SETFLAGS
1949 */
1950 int send_in_progress;
1951 struct btrfs_subvolume_writers *subv_writers;
1952 atomic_t will_be_snapshoted;
1953 };
1954
1955 struct btrfs_ioctl_defrag_range_args {
1956 /* start of the defrag operation */
1957 __u64 start;
1958
1959 /* number of bytes to defrag, use (u64)-1 to say all */
1960 __u64 len;
1961
1962 /*
1963 * flags for the operation, which can include turning
1964 * on compression for this one defrag
1965 */
1966 __u64 flags;
1967
1968 /*
1969 * any extent bigger than this will be considered
1970 * already defragged. Use 0 to take the kernel default
1971 * Use 1 to say every single extent must be rewritten
1972 */
1973 __u32 extent_thresh;
1974
1975 /*
1976 * which compression method to use if turning on compression
1977 * for this defrag operation. If unspecified, zlib will
1978 * be used
1979 */
1980 __u32 compress_type;
1981
1982 /* spare for later */
1983 __u32 unused[4];
1984 };
1985
1986
1987 /*
1988 * inode items have the data typically returned from stat and store other
1989 * info about object characteristics. There is one for every file and dir in
1990 * the FS
1991 */
1992 #define BTRFS_INODE_ITEM_KEY 1
1993 #define BTRFS_INODE_REF_KEY 12
1994 #define BTRFS_INODE_EXTREF_KEY 13
1995 #define BTRFS_XATTR_ITEM_KEY 24
1996 #define BTRFS_ORPHAN_ITEM_KEY 48
1997 /* reserve 2-15 close to the inode for later flexibility */
1998
1999 /*
2000 * dir items are the name -> inode pointers in a directory. There is one
2001 * for every name in a directory.
2002 */
2003 #define BTRFS_DIR_LOG_ITEM_KEY 60
2004 #define BTRFS_DIR_LOG_INDEX_KEY 72
2005 #define BTRFS_DIR_ITEM_KEY 84
2006 #define BTRFS_DIR_INDEX_KEY 96
2007 /*
2008 * extent data is for file data
2009 */
2010 #define BTRFS_EXTENT_DATA_KEY 108
2011
2012 /*
2013 * extent csums are stored in a separate tree and hold csums for
2014 * an entire extent on disk.
2015 */
2016 #define BTRFS_EXTENT_CSUM_KEY 128
2017
2018 /*
2019 * root items point to tree roots. They are typically in the root
2020 * tree used by the super block to find all the other trees
2021 */
2022 #define BTRFS_ROOT_ITEM_KEY 132
2023
2024 /*
2025 * root backrefs tie subvols and snapshots to the directory entries that
2026 * reference them
2027 */
2028 #define BTRFS_ROOT_BACKREF_KEY 144
2029
2030 /*
2031 * root refs make a fast index for listing all of the snapshots and
2032 * subvolumes referenced by a given root. They point directly to the
2033 * directory item in the root that references the subvol
2034 */
2035 #define BTRFS_ROOT_REF_KEY 156
2036
2037 /*
2038 * extent items are in the extent map tree. These record which blocks
2039 * are used, and how many references there are to each block
2040 */
2041 #define BTRFS_EXTENT_ITEM_KEY 168
2042
2043 /*
2044 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2045 * the length, so we save the level in key->offset instead of the length.
2046 */
2047 #define BTRFS_METADATA_ITEM_KEY 169
2048
2049 #define BTRFS_TREE_BLOCK_REF_KEY 176
2050
2051 #define BTRFS_EXTENT_DATA_REF_KEY 178
2052
2053 #define BTRFS_EXTENT_REF_V0_KEY 180
2054
2055 #define BTRFS_SHARED_BLOCK_REF_KEY 182
2056
2057 #define BTRFS_SHARED_DATA_REF_KEY 184
2058
2059 /*
2060 * block groups give us hints into the extent allocation trees. Which
2061 * blocks are free etc etc
2062 */
2063 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2064
2065 #define BTRFS_DEV_EXTENT_KEY 204
2066 #define BTRFS_DEV_ITEM_KEY 216
2067 #define BTRFS_CHUNK_ITEM_KEY 228
2068
2069 /*
2070 * Records the overall state of the qgroups.
2071 * There's only one instance of this key present,
2072 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2073 */
2074 #define BTRFS_QGROUP_STATUS_KEY 240
2075 /*
2076 * Records the currently used space of the qgroup.
2077 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2078 */
2079 #define BTRFS_QGROUP_INFO_KEY 242
2080 /*
2081 * Contains the user configured limits for the qgroup.
2082 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2083 */
2084 #define BTRFS_QGROUP_LIMIT_KEY 244
2085 /*
2086 * Records the child-parent relationship of qgroups. For
2087 * each relation, 2 keys are present:
2088 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2089 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2090 */
2091 #define BTRFS_QGROUP_RELATION_KEY 246
2092
2093 #define BTRFS_BALANCE_ITEM_KEY 248
2094
2095 /*
2096 * Persistantly stores the io stats in the device tree.
2097 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2098 */
2099 #define BTRFS_DEV_STATS_KEY 249
2100
2101 /*
2102 * Persistantly stores the device replace state in the device tree.
2103 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2104 */
2105 #define BTRFS_DEV_REPLACE_KEY 250
2106
2107 /*
2108 * Stores items that allow to quickly map UUIDs to something else.
2109 * These items are part of the filesystem UUID tree.
2110 * The key is built like this:
2111 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2112 */
2113 #if BTRFS_UUID_SIZE != 16
2114 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2115 #endif
2116 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2117 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2118 * received subvols */
2119
2120 /*
2121 * string items are for debugging. They just store a short string of
2122 * data in the FS
2123 */
2124 #define BTRFS_STRING_ITEM_KEY 253
2125
2126 /*
2127 * Flags for mount options.
2128 *
2129 * Note: don't forget to add new options to btrfs_show_options()
2130 */
2131 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2132 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2133 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2134 #define BTRFS_MOUNT_SSD (1 << 3)
2135 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2136 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2137 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2138 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2139 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2140 #define BTRFS_MOUNT_NOSSD (1 << 9)
2141 #define BTRFS_MOUNT_DISCARD (1 << 10)
2142 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2143 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2144 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2145 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2146 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2147 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2148 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2149 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2150 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2151 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2152 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2153 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2154 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2155
2156 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2157 #define BTRFS_DEFAULT_MAX_INLINE (8192)
2158
2159 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2160 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2161 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2162 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2163 BTRFS_MOUNT_##opt)
2164
2165 #define btrfs_set_and_info(root, opt, fmt, args...) \
2166 { \
2167 if (!btrfs_test_opt(root, opt)) \
2168 btrfs_info(root->fs_info, fmt, ##args); \
2169 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2170 }
2171
2172 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2173 { \
2174 if (btrfs_test_opt(root, opt)) \
2175 btrfs_info(root->fs_info, fmt, ##args); \
2176 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2177 }
2178
2179 /*
2180 * Requests for changes that need to be done during transaction commit.
2181 *
2182 * Internal mount options that are used for special handling of the real
2183 * mount options (eg. cannot be set during remount and have to be set during
2184 * transaction commit)
2185 */
2186
2187 #define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
2188 #define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
2189 #define BTRFS_PENDING_COMMIT (2)
2190
2191 #define btrfs_test_pending(info, opt) \
2192 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2193 #define btrfs_set_pending(info, opt) \
2194 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2195 #define btrfs_clear_pending(info, opt) \
2196 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2197
2198 /*
2199 * Helpers for setting pending mount option changes.
2200 *
2201 * Expects corresponding macros
2202 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2203 */
2204 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
2205 do { \
2206 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2207 btrfs_info((info), fmt, ##args); \
2208 btrfs_set_pending((info), SET_##opt); \
2209 btrfs_clear_pending((info), CLEAR_##opt); \
2210 } \
2211 } while(0)
2212
2213 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
2214 do { \
2215 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
2216 btrfs_info((info), fmt, ##args); \
2217 btrfs_set_pending((info), CLEAR_##opt); \
2218 btrfs_clear_pending((info), SET_##opt); \
2219 } \
2220 } while(0)
2221
2222 /*
2223 * Inode flags
2224 */
2225 #define BTRFS_INODE_NODATASUM (1 << 0)
2226 #define BTRFS_INODE_NODATACOW (1 << 1)
2227 #define BTRFS_INODE_READONLY (1 << 2)
2228 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2229 #define BTRFS_INODE_PREALLOC (1 << 4)
2230 #define BTRFS_INODE_SYNC (1 << 5)
2231 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2232 #define BTRFS_INODE_APPEND (1 << 7)
2233 #define BTRFS_INODE_NODUMP (1 << 8)
2234 #define BTRFS_INODE_NOATIME (1 << 9)
2235 #define BTRFS_INODE_DIRSYNC (1 << 10)
2236 #define BTRFS_INODE_COMPRESS (1 << 11)
2237
2238 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2239
2240 struct btrfs_map_token {
2241 struct extent_buffer *eb;
2242 char *kaddr;
2243 unsigned long offset;
2244 };
2245
2246 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2247 {
2248 token->kaddr = NULL;
2249 }
2250
2251 /* some macros to generate set/get funcs for the struct fields. This
2252 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2253 * one for u8:
2254 */
2255 #define le8_to_cpu(v) (v)
2256 #define cpu_to_le8(v) (v)
2257 #define __le8 u8
2258
2259 #define read_eb_member(eb, ptr, type, member, result) ( \
2260 read_extent_buffer(eb, (char *)(result), \
2261 ((unsigned long)(ptr)) + \
2262 offsetof(type, member), \
2263 sizeof(((type *)0)->member)))
2264
2265 #define write_eb_member(eb, ptr, type, member, result) ( \
2266 write_extent_buffer(eb, (char *)(result), \
2267 ((unsigned long)(ptr)) + \
2268 offsetof(type, member), \
2269 sizeof(((type *)0)->member)))
2270
2271 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2272 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2273 unsigned long off, \
2274 struct btrfs_map_token *token); \
2275 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2276 unsigned long off, u##bits val, \
2277 struct btrfs_map_token *token); \
2278 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2279 unsigned long off) \
2280 { \
2281 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2282 } \
2283 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2284 unsigned long off, u##bits val) \
2285 { \
2286 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2287 }
2288
2289 DECLARE_BTRFS_SETGET_BITS(8)
2290 DECLARE_BTRFS_SETGET_BITS(16)
2291 DECLARE_BTRFS_SETGET_BITS(32)
2292 DECLARE_BTRFS_SETGET_BITS(64)
2293
2294 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2295 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2296 { \
2297 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2298 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2299 } \
2300 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2301 u##bits val) \
2302 { \
2303 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2304 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2305 } \
2306 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2307 struct btrfs_map_token *token) \
2308 { \
2309 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2310 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2311 } \
2312 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2313 type *s, u##bits val, \
2314 struct btrfs_map_token *token) \
2315 { \
2316 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2317 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2318 }
2319
2320 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2321 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2322 { \
2323 type *p = page_address(eb->pages[0]); \
2324 u##bits res = le##bits##_to_cpu(p->member); \
2325 return res; \
2326 } \
2327 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2328 u##bits val) \
2329 { \
2330 type *p = page_address(eb->pages[0]); \
2331 p->member = cpu_to_le##bits(val); \
2332 }
2333
2334 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2335 static inline u##bits btrfs_##name(type *s) \
2336 { \
2337 return le##bits##_to_cpu(s->member); \
2338 } \
2339 static inline void btrfs_set_##name(type *s, u##bits val) \
2340 { \
2341 s->member = cpu_to_le##bits(val); \
2342 }
2343
2344 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2345 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2346 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2347 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2348 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2349 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2350 start_offset, 64);
2351 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2352 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2353 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2354 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2355 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2356 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2357
2358 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2359 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2360 total_bytes, 64);
2361 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2362 bytes_used, 64);
2363 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2364 io_align, 32);
2365 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2366 io_width, 32);
2367 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2368 sector_size, 32);
2369 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2370 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2371 dev_group, 32);
2372 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2373 seek_speed, 8);
2374 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2375 bandwidth, 8);
2376 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2377 generation, 64);
2378
2379 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2380 {
2381 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2382 }
2383
2384 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2385 {
2386 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2387 }
2388
2389 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2390 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2391 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2392 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2393 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2394 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2395 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2396 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2397 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2398 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2399 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2400
2401 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2402 {
2403 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2404 }
2405
2406 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2407 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2408 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2409 stripe_len, 64);
2410 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2411 io_align, 32);
2412 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2413 io_width, 32);
2414 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2415 sector_size, 32);
2416 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2417 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2418 num_stripes, 16);
2419 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2420 sub_stripes, 16);
2421 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2422 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2423
2424 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2425 int nr)
2426 {
2427 unsigned long offset = (unsigned long)c;
2428 offset += offsetof(struct btrfs_chunk, stripe);
2429 offset += nr * sizeof(struct btrfs_stripe);
2430 return (struct btrfs_stripe *)offset;
2431 }
2432
2433 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2434 {
2435 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2436 }
2437
2438 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2439 struct btrfs_chunk *c, int nr)
2440 {
2441 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2442 }
2443
2444 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2445 struct btrfs_chunk *c, int nr)
2446 {
2447 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2448 }
2449
2450 /* struct btrfs_block_group_item */
2451 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2452 used, 64);
2453 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2454 used, 64);
2455 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2456 struct btrfs_block_group_item, chunk_objectid, 64);
2457
2458 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2459 struct btrfs_block_group_item, chunk_objectid, 64);
2460 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2461 struct btrfs_block_group_item, flags, 64);
2462 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2463 struct btrfs_block_group_item, flags, 64);
2464
2465 /* struct btrfs_inode_ref */
2466 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2467 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2468
2469 /* struct btrfs_inode_extref */
2470 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2471 parent_objectid, 64);
2472 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2473 name_len, 16);
2474 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2475
2476 /* struct btrfs_inode_item */
2477 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2478 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2479 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2480 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2481 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2482 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2483 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2484 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2485 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2486 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2487 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2488 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2489 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2490 generation, 64);
2491 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2492 sequence, 64);
2493 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2494 transid, 64);
2495 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2496 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2497 nbytes, 64);
2498 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2499 block_group, 64);
2500 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2501 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2502 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2503 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2504 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2505 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2506 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2507 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2508 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2509 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2510
2511 /* struct btrfs_dev_extent */
2512 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2513 chunk_tree, 64);
2514 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2515 chunk_objectid, 64);
2516 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2517 chunk_offset, 64);
2518 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2519
2520 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2521 {
2522 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2523 return (unsigned long)dev + ptr;
2524 }
2525
2526 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2527 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2528 generation, 64);
2529 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2530
2531 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2532
2533
2534 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2535
2536 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2537 struct btrfs_tree_block_info *item,
2538 struct btrfs_disk_key *key)
2539 {
2540 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2541 }
2542
2543 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2544 struct btrfs_tree_block_info *item,
2545 struct btrfs_disk_key *key)
2546 {
2547 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2548 }
2549
2550 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2551 root, 64);
2552 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2553 objectid, 64);
2554 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2555 offset, 64);
2556 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2557 count, 32);
2558
2559 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2560 count, 32);
2561
2562 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2563 type, 8);
2564 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2565 offset, 64);
2566
2567 static inline u32 btrfs_extent_inline_ref_size(int type)
2568 {
2569 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2570 type == BTRFS_SHARED_BLOCK_REF_KEY)
2571 return sizeof(struct btrfs_extent_inline_ref);
2572 if (type == BTRFS_SHARED_DATA_REF_KEY)
2573 return sizeof(struct btrfs_shared_data_ref) +
2574 sizeof(struct btrfs_extent_inline_ref);
2575 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2576 return sizeof(struct btrfs_extent_data_ref) +
2577 offsetof(struct btrfs_extent_inline_ref, offset);
2578 BUG();
2579 return 0;
2580 }
2581
2582 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2583 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2584 generation, 64);
2585 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2586 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2587
2588 /* struct btrfs_node */
2589 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2590 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2591 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2592 blockptr, 64);
2593 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2594 generation, 64);
2595
2596 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2597 {
2598 unsigned long ptr;
2599 ptr = offsetof(struct btrfs_node, ptrs) +
2600 sizeof(struct btrfs_key_ptr) * nr;
2601 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2602 }
2603
2604 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2605 int nr, u64 val)
2606 {
2607 unsigned long ptr;
2608 ptr = offsetof(struct btrfs_node, ptrs) +
2609 sizeof(struct btrfs_key_ptr) * nr;
2610 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2611 }
2612
2613 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2614 {
2615 unsigned long ptr;
2616 ptr = offsetof(struct btrfs_node, ptrs) +
2617 sizeof(struct btrfs_key_ptr) * nr;
2618 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2619 }
2620
2621 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2622 int nr, u64 val)
2623 {
2624 unsigned long ptr;
2625 ptr = offsetof(struct btrfs_node, ptrs) +
2626 sizeof(struct btrfs_key_ptr) * nr;
2627 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2628 }
2629
2630 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2631 {
2632 return offsetof(struct btrfs_node, ptrs) +
2633 sizeof(struct btrfs_key_ptr) * nr;
2634 }
2635
2636 void btrfs_node_key(struct extent_buffer *eb,
2637 struct btrfs_disk_key *disk_key, int nr);
2638
2639 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2640 struct btrfs_disk_key *disk_key, int nr)
2641 {
2642 unsigned long ptr;
2643 ptr = btrfs_node_key_ptr_offset(nr);
2644 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2645 struct btrfs_key_ptr, key, disk_key);
2646 }
2647
2648 /* struct btrfs_item */
2649 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2650 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2651 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2652 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2653
2654 static inline unsigned long btrfs_item_nr_offset(int nr)
2655 {
2656 return offsetof(struct btrfs_leaf, items) +
2657 sizeof(struct btrfs_item) * nr;
2658 }
2659
2660 static inline struct btrfs_item *btrfs_item_nr(int nr)
2661 {
2662 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2663 }
2664
2665 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2666 struct btrfs_item *item)
2667 {
2668 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2669 }
2670
2671 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2672 {
2673 return btrfs_item_end(eb, btrfs_item_nr(nr));
2674 }
2675
2676 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2677 {
2678 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2679 }
2680
2681 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2682 {
2683 return btrfs_item_size(eb, btrfs_item_nr(nr));
2684 }
2685
2686 static inline void btrfs_item_key(struct extent_buffer *eb,
2687 struct btrfs_disk_key *disk_key, int nr)
2688 {
2689 struct btrfs_item *item = btrfs_item_nr(nr);
2690 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2691 }
2692
2693 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2694 struct btrfs_disk_key *disk_key, int nr)
2695 {
2696 struct btrfs_item *item = btrfs_item_nr(nr);
2697 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2698 }
2699
2700 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2701
2702 /*
2703 * struct btrfs_root_ref
2704 */
2705 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2706 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2707 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2708
2709 /* struct btrfs_dir_item */
2710 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2711 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2712 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2713 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2714 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2715 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2716 data_len, 16);
2717 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2718 name_len, 16);
2719 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2720 transid, 64);
2721
2722 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2723 struct btrfs_dir_item *item,
2724 struct btrfs_disk_key *key)
2725 {
2726 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2727 }
2728
2729 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2730 struct btrfs_dir_item *item,
2731 struct btrfs_disk_key *key)
2732 {
2733 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2734 }
2735
2736 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2737 num_entries, 64);
2738 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2739 num_bitmaps, 64);
2740 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2741 generation, 64);
2742
2743 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2744 struct btrfs_free_space_header *h,
2745 struct btrfs_disk_key *key)
2746 {
2747 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2748 }
2749
2750 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2751 struct btrfs_free_space_header *h,
2752 struct btrfs_disk_key *key)
2753 {
2754 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2755 }
2756
2757 /* struct btrfs_disk_key */
2758 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2759 objectid, 64);
2760 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2761 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2762
2763 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2764 struct btrfs_disk_key *disk)
2765 {
2766 cpu->offset = le64_to_cpu(disk->offset);
2767 cpu->type = disk->type;
2768 cpu->objectid = le64_to_cpu(disk->objectid);
2769 }
2770
2771 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2772 struct btrfs_key *cpu)
2773 {
2774 disk->offset = cpu_to_le64(cpu->offset);
2775 disk->type = cpu->type;
2776 disk->objectid = cpu_to_le64(cpu->objectid);
2777 }
2778
2779 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2780 struct btrfs_key *key, int nr)
2781 {
2782 struct btrfs_disk_key disk_key;
2783 btrfs_node_key(eb, &disk_key, nr);
2784 btrfs_disk_key_to_cpu(key, &disk_key);
2785 }
2786
2787 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2788 struct btrfs_key *key, int nr)
2789 {
2790 struct btrfs_disk_key disk_key;
2791 btrfs_item_key(eb, &disk_key, nr);
2792 btrfs_disk_key_to_cpu(key, &disk_key);
2793 }
2794
2795 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2796 struct btrfs_dir_item *item,
2797 struct btrfs_key *key)
2798 {
2799 struct btrfs_disk_key disk_key;
2800 btrfs_dir_item_key(eb, item, &disk_key);
2801 btrfs_disk_key_to_cpu(key, &disk_key);
2802 }
2803
2804
2805 static inline u8 btrfs_key_type(struct btrfs_key *key)
2806 {
2807 return key->type;
2808 }
2809
2810 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2811 {
2812 key->type = val;
2813 }
2814
2815 /* struct btrfs_header */
2816 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2817 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2818 generation, 64);
2819 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2820 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2821 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2822 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2823 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2824 generation, 64);
2825 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2826 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2827 nritems, 32);
2828 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2829
2830 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2831 {
2832 return (btrfs_header_flags(eb) & flag) == flag;
2833 }
2834
2835 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2836 {
2837 u64 flags = btrfs_header_flags(eb);
2838 btrfs_set_header_flags(eb, flags | flag);
2839 return (flags & flag) == flag;
2840 }
2841
2842 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2843 {
2844 u64 flags = btrfs_header_flags(eb);
2845 btrfs_set_header_flags(eb, flags & ~flag);
2846 return (flags & flag) == flag;
2847 }
2848
2849 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2850 {
2851 u64 flags = btrfs_header_flags(eb);
2852 return flags >> BTRFS_BACKREF_REV_SHIFT;
2853 }
2854
2855 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2856 int rev)
2857 {
2858 u64 flags = btrfs_header_flags(eb);
2859 flags &= ~BTRFS_BACKREF_REV_MASK;
2860 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2861 btrfs_set_header_flags(eb, flags);
2862 }
2863
2864 static inline unsigned long btrfs_header_fsid(void)
2865 {
2866 return offsetof(struct btrfs_header, fsid);
2867 }
2868
2869 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2870 {
2871 return offsetof(struct btrfs_header, chunk_tree_uuid);
2872 }
2873
2874 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2875 {
2876 return btrfs_header_level(eb) == 0;
2877 }
2878
2879 /* struct btrfs_root_item */
2880 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2881 generation, 64);
2882 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2883 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2884 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2885
2886 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2887 generation, 64);
2888 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2889 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2890 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2891 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2892 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2893 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2894 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2895 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2896 last_snapshot, 64);
2897 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2898 generation_v2, 64);
2899 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2900 ctransid, 64);
2901 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2902 otransid, 64);
2903 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2904 stransid, 64);
2905 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2906 rtransid, 64);
2907
2908 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2909 {
2910 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2911 }
2912
2913 static inline bool btrfs_root_dead(struct btrfs_root *root)
2914 {
2915 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2916 }
2917
2918 /* struct btrfs_root_backup */
2919 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2920 tree_root, 64);
2921 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2922 tree_root_gen, 64);
2923 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2924 tree_root_level, 8);
2925
2926 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2927 chunk_root, 64);
2928 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2929 chunk_root_gen, 64);
2930 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2931 chunk_root_level, 8);
2932
2933 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2934 extent_root, 64);
2935 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2936 extent_root_gen, 64);
2937 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2938 extent_root_level, 8);
2939
2940 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2941 fs_root, 64);
2942 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2943 fs_root_gen, 64);
2944 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2945 fs_root_level, 8);
2946
2947 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2948 dev_root, 64);
2949 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2950 dev_root_gen, 64);
2951 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2952 dev_root_level, 8);
2953
2954 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2955 csum_root, 64);
2956 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2957 csum_root_gen, 64);
2958 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2959 csum_root_level, 8);
2960 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2961 total_bytes, 64);
2962 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2963 bytes_used, 64);
2964 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2965 num_devices, 64);
2966
2967 /* struct btrfs_balance_item */
2968 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2969
2970 static inline void btrfs_balance_data(struct extent_buffer *eb,
2971 struct btrfs_balance_item *bi,
2972 struct btrfs_disk_balance_args *ba)
2973 {
2974 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2975 }
2976
2977 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2978 struct btrfs_balance_item *bi,
2979 struct btrfs_disk_balance_args *ba)
2980 {
2981 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2982 }
2983
2984 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2985 struct btrfs_balance_item *bi,
2986 struct btrfs_disk_balance_args *ba)
2987 {
2988 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2989 }
2990
2991 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2992 struct btrfs_balance_item *bi,
2993 struct btrfs_disk_balance_args *ba)
2994 {
2995 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2996 }
2997
2998 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2999 struct btrfs_balance_item *bi,
3000 struct btrfs_disk_balance_args *ba)
3001 {
3002 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3003 }
3004
3005 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
3006 struct btrfs_balance_item *bi,
3007 struct btrfs_disk_balance_args *ba)
3008 {
3009 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3010 }
3011
3012 static inline void
3013 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3014 struct btrfs_disk_balance_args *disk)
3015 {
3016 memset(cpu, 0, sizeof(*cpu));
3017
3018 cpu->profiles = le64_to_cpu(disk->profiles);
3019 cpu->usage = le64_to_cpu(disk->usage);
3020 cpu->devid = le64_to_cpu(disk->devid);
3021 cpu->pstart = le64_to_cpu(disk->pstart);
3022 cpu->pend = le64_to_cpu(disk->pend);
3023 cpu->vstart = le64_to_cpu(disk->vstart);
3024 cpu->vend = le64_to_cpu(disk->vend);
3025 cpu->target = le64_to_cpu(disk->target);
3026 cpu->flags = le64_to_cpu(disk->flags);
3027 cpu->limit = le64_to_cpu(disk->limit);
3028 }
3029
3030 static inline void
3031 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3032 struct btrfs_balance_args *cpu)
3033 {
3034 memset(disk, 0, sizeof(*disk));
3035
3036 disk->profiles = cpu_to_le64(cpu->profiles);
3037 disk->usage = cpu_to_le64(cpu->usage);
3038 disk->devid = cpu_to_le64(cpu->devid);
3039 disk->pstart = cpu_to_le64(cpu->pstart);
3040 disk->pend = cpu_to_le64(cpu->pend);
3041 disk->vstart = cpu_to_le64(cpu->vstart);
3042 disk->vend = cpu_to_le64(cpu->vend);
3043 disk->target = cpu_to_le64(cpu->target);
3044 disk->flags = cpu_to_le64(cpu->flags);
3045 disk->limit = cpu_to_le64(cpu->limit);
3046 }
3047
3048 /* struct btrfs_super_block */
3049 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3050 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3051 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3052 generation, 64);
3053 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3054 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3055 struct btrfs_super_block, sys_chunk_array_size, 32);
3056 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3057 struct btrfs_super_block, chunk_root_generation, 64);
3058 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3059 root_level, 8);
3060 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3061 chunk_root, 64);
3062 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3063 chunk_root_level, 8);
3064 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3065 log_root, 64);
3066 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3067 log_root_transid, 64);
3068 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3069 log_root_level, 8);
3070 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3071 total_bytes, 64);
3072 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3073 bytes_used, 64);
3074 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3075 sectorsize, 32);
3076 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3077 nodesize, 32);
3078 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3079 stripesize, 32);
3080 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3081 root_dir_objectid, 64);
3082 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3083 num_devices, 64);
3084 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3085 compat_flags, 64);
3086 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3087 compat_ro_flags, 64);
3088 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3089 incompat_flags, 64);
3090 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3091 csum_type, 16);
3092 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3093 cache_generation, 64);
3094 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3095 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3096 uuid_tree_generation, 64);
3097
3098 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3099 {
3100 u16 t = btrfs_super_csum_type(s);
3101 /*
3102 * csum type is validated at mount time
3103 */
3104 return btrfs_csum_sizes[t];
3105 }
3106
3107 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3108 {
3109 return offsetof(struct btrfs_leaf, items);
3110 }
3111
3112 /* struct btrfs_file_extent_item */
3113 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3114 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3115 struct btrfs_file_extent_item, disk_bytenr, 64);
3116 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3117 struct btrfs_file_extent_item, offset, 64);
3118 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3119 struct btrfs_file_extent_item, generation, 64);
3120 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3121 struct btrfs_file_extent_item, num_bytes, 64);
3122 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3123 struct btrfs_file_extent_item, disk_num_bytes, 64);
3124 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3125 struct btrfs_file_extent_item, compression, 8);
3126
3127 static inline unsigned long
3128 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3129 {
3130 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3131 }
3132
3133 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3134 {
3135 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3136 }
3137
3138 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3139 disk_bytenr, 64);
3140 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3141 generation, 64);
3142 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3143 disk_num_bytes, 64);
3144 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3145 offset, 64);
3146 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3147 num_bytes, 64);
3148 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3149 ram_bytes, 64);
3150 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3151 compression, 8);
3152 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3153 encryption, 8);
3154 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3155 other_encoding, 16);
3156
3157 /*
3158 * this returns the number of bytes used by the item on disk, minus the
3159 * size of any extent headers. If a file is compressed on disk, this is
3160 * the compressed size
3161 */
3162 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3163 struct btrfs_item *e)
3164 {
3165 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3166 }
3167
3168 /* this returns the number of file bytes represented by the inline item.
3169 * If an item is compressed, this is the uncompressed size
3170 */
3171 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3172 int slot,
3173 struct btrfs_file_extent_item *fi)
3174 {
3175 struct btrfs_map_token token;
3176
3177 btrfs_init_map_token(&token);
3178 /*
3179 * return the space used on disk if this item isn't
3180 * compressed or encoded
3181 */
3182 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3183 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3184 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3185 return btrfs_file_extent_inline_item_len(eb,
3186 btrfs_item_nr(slot));
3187 }
3188
3189 /* otherwise use the ram bytes field */
3190 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3191 }
3192
3193
3194 /* btrfs_dev_stats_item */
3195 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3196 struct btrfs_dev_stats_item *ptr,
3197 int index)
3198 {
3199 u64 val;
3200
3201 read_extent_buffer(eb, &val,
3202 offsetof(struct btrfs_dev_stats_item, values) +
3203 ((unsigned long)ptr) + (index * sizeof(u64)),
3204 sizeof(val));
3205 return val;
3206 }
3207
3208 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3209 struct btrfs_dev_stats_item *ptr,
3210 int index, u64 val)
3211 {
3212 write_extent_buffer(eb, &val,
3213 offsetof(struct btrfs_dev_stats_item, values) +
3214 ((unsigned long)ptr) + (index * sizeof(u64)),
3215 sizeof(val));
3216 }
3217
3218 /* btrfs_qgroup_status_item */
3219 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3220 generation, 64);
3221 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3222 version, 64);
3223 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3224 flags, 64);
3225 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3226 rescan, 64);
3227
3228 /* btrfs_qgroup_info_item */
3229 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3230 generation, 64);
3231 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3232 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3233 rfer_cmpr, 64);
3234 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3235 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3236 excl_cmpr, 64);
3237
3238 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3239 struct btrfs_qgroup_info_item, generation, 64);
3240 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3241 rfer, 64);
3242 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3243 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3244 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3245 excl, 64);
3246 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3247 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3248
3249 /* btrfs_qgroup_limit_item */
3250 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3251 flags, 64);
3252 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3253 max_rfer, 64);
3254 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3255 max_excl, 64);
3256 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3257 rsv_rfer, 64);
3258 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3259 rsv_excl, 64);
3260
3261 /* btrfs_dev_replace_item */
3262 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3263 struct btrfs_dev_replace_item, src_devid, 64);
3264 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3265 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3266 64);
3267 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3268 replace_state, 64);
3269 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3270 time_started, 64);
3271 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3272 time_stopped, 64);
3273 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3274 num_write_errors, 64);
3275 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3276 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3277 64);
3278 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3279 cursor_left, 64);
3280 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3281 cursor_right, 64);
3282
3283 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3284 struct btrfs_dev_replace_item, src_devid, 64);
3285 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3286 struct btrfs_dev_replace_item,
3287 cont_reading_from_srcdev_mode, 64);
3288 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3289 struct btrfs_dev_replace_item, replace_state, 64);
3290 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3291 struct btrfs_dev_replace_item, time_started, 64);
3292 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3293 struct btrfs_dev_replace_item, time_stopped, 64);
3294 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3295 struct btrfs_dev_replace_item, num_write_errors, 64);
3296 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3297 struct btrfs_dev_replace_item,
3298 num_uncorrectable_read_errors, 64);
3299 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3300 struct btrfs_dev_replace_item, cursor_left, 64);
3301 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3302 struct btrfs_dev_replace_item, cursor_right, 64);
3303
3304 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3305 {
3306 return sb->s_fs_info;
3307 }
3308
3309 /* helper function to cast into the data area of the leaf. */
3310 #define btrfs_item_ptr(leaf, slot, type) \
3311 ((type *)(btrfs_leaf_data(leaf) + \
3312 btrfs_item_offset_nr(leaf, slot)))
3313
3314 #define btrfs_item_ptr_offset(leaf, slot) \
3315 ((unsigned long)(btrfs_leaf_data(leaf) + \
3316 btrfs_item_offset_nr(leaf, slot)))
3317
3318 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3319 {
3320 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3321 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3322 }
3323
3324 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3325 {
3326 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3327 }
3328
3329 /* extent-tree.c */
3330
3331 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3332
3333 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3334 unsigned num_items)
3335 {
3336 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3337 2 * num_items;
3338 }
3339
3340 /*
3341 * Doing a truncate won't result in new nodes or leaves, just what we need for
3342 * COW.
3343 */
3344 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3345 unsigned num_items)
3346 {
3347 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3348 }
3349
3350 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3351 struct btrfs_root *root);
3352 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3353 struct btrfs_root *root);
3354 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3355 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3356 struct btrfs_root *root, unsigned long count);
3357 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3358 unsigned long count, int wait);
3359 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3360 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3361 struct btrfs_root *root, u64 bytenr,
3362 u64 offset, int metadata, u64 *refs, u64 *flags);
3363 int btrfs_pin_extent(struct btrfs_root *root,
3364 u64 bytenr, u64 num, int reserved);
3365 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3366 u64 bytenr, u64 num_bytes);
3367 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3368 struct extent_buffer *eb);
3369 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3370 struct btrfs_root *root,
3371 u64 objectid, u64 offset, u64 bytenr);
3372 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3373 struct btrfs_fs_info *info,
3374 u64 bytenr);
3375 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3376 int get_block_group_index(struct btrfs_block_group_cache *cache);
3377 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root, u64 parent,
3379 u64 root_objectid,
3380 struct btrfs_disk_key *key, int level,
3381 u64 hint, u64 empty_size);
3382 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3383 struct btrfs_root *root,
3384 struct extent_buffer *buf,
3385 u64 parent, int last_ref);
3386 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3387 struct btrfs_root *root,
3388 u64 root_objectid, u64 owner,
3389 u64 offset, struct btrfs_key *ins);
3390 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3391 struct btrfs_root *root,
3392 u64 root_objectid, u64 owner, u64 offset,
3393 struct btrfs_key *ins);
3394 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3395 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3396 struct btrfs_key *ins, int is_data, int delalloc);
3397 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3398 struct extent_buffer *buf, int full_backref);
3399 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3400 struct extent_buffer *buf, int full_backref);
3401 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3402 struct btrfs_root *root,
3403 u64 bytenr, u64 num_bytes, u64 flags,
3404 int level, int is_data);
3405 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3406 struct btrfs_root *root,
3407 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3408 u64 owner, u64 offset, int no_quota);
3409
3410 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3411 int delalloc);
3412 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3413 u64 start, u64 len);
3414 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3415 struct btrfs_root *root);
3416 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3417 struct btrfs_root *root);
3418 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3419 struct btrfs_root *root,
3420 u64 bytenr, u64 num_bytes, u64 parent,
3421 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3422
3423 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3424 struct btrfs_root *root);
3425 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3426 struct btrfs_root *root);
3427 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3428 struct btrfs_root *root);
3429 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3430 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3431 int btrfs_read_block_groups(struct btrfs_root *root);
3432 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3433 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3434 struct btrfs_root *root, u64 bytes_used,
3435 u64 type, u64 chunk_objectid, u64 chunk_offset,
3436 u64 size);
3437 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3438 struct btrfs_root *root, u64 group_start,
3439 struct extent_map *em);
3440 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3441 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3442 struct btrfs_root *root);
3443 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3444 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3445
3446 enum btrfs_reserve_flush_enum {
3447 /* If we are in the transaction, we can't flush anything.*/
3448 BTRFS_RESERVE_NO_FLUSH,
3449 /*
3450 * Flushing delalloc may cause deadlock somewhere, in this
3451 * case, use FLUSH LIMIT
3452 */
3453 BTRFS_RESERVE_FLUSH_LIMIT,
3454 BTRFS_RESERVE_FLUSH_ALL,
3455 };
3456
3457 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes);
3458 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3459 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root);
3461 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
3462 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3463 struct inode *inode);
3464 void btrfs_orphan_release_metadata(struct inode *inode);
3465 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3466 struct btrfs_block_rsv *rsv,
3467 int nitems,
3468 u64 *qgroup_reserved, bool use_global_rsv);
3469 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3470 struct btrfs_block_rsv *rsv,
3471 u64 qgroup_reserved);
3472 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3473 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3474 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3475 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3476 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3477 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3478 unsigned short type);
3479 void btrfs_free_block_rsv(struct btrfs_root *root,
3480 struct btrfs_block_rsv *rsv);
3481 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3482 int btrfs_block_rsv_add(struct btrfs_root *root,
3483 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3484 enum btrfs_reserve_flush_enum flush);
3485 int btrfs_block_rsv_check(struct btrfs_root *root,
3486 struct btrfs_block_rsv *block_rsv, int min_factor);
3487 int btrfs_block_rsv_refill(struct btrfs_root *root,
3488 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3489 enum btrfs_reserve_flush_enum flush);
3490 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3491 struct btrfs_block_rsv *dst_rsv,
3492 u64 num_bytes);
3493 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3494 struct btrfs_block_rsv *dest, u64 num_bytes,
3495 int min_factor);
3496 void btrfs_block_rsv_release(struct btrfs_root *root,
3497 struct btrfs_block_rsv *block_rsv,
3498 u64 num_bytes);
3499 int btrfs_set_block_group_ro(struct btrfs_root *root,
3500 struct btrfs_block_group_cache *cache);
3501 void btrfs_set_block_group_rw(struct btrfs_root *root,
3502 struct btrfs_block_group_cache *cache);
3503 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3504 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3505 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3506 u64 start, u64 end);
3507 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3508 u64 num_bytes, u64 *actual_bytes);
3509 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, u64 type);
3511 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3512
3513 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3514 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3515 struct btrfs_fs_info *fs_info);
3516 int __get_raid_index(u64 flags);
3517 int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3518 void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3519 void check_system_chunk(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root,
3521 const u64 type,
3522 const bool is_allocation);
3523 /* ctree.c */
3524 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3525 int level, int *slot);
3526 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3527 int btrfs_previous_item(struct btrfs_root *root,
3528 struct btrfs_path *path, u64 min_objectid,
3529 int type);
3530 int btrfs_previous_extent_item(struct btrfs_root *root,
3531 struct btrfs_path *path, u64 min_objectid);
3532 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3533 struct btrfs_path *path,
3534 struct btrfs_key *new_key);
3535 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3536 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3537 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3538 struct btrfs_key *key, int lowest_level,
3539 u64 min_trans);
3540 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3541 struct btrfs_path *path,
3542 u64 min_trans);
3543 enum btrfs_compare_tree_result {
3544 BTRFS_COMPARE_TREE_NEW,
3545 BTRFS_COMPARE_TREE_DELETED,
3546 BTRFS_COMPARE_TREE_CHANGED,
3547 BTRFS_COMPARE_TREE_SAME,
3548 };
3549 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3550 struct btrfs_root *right_root,
3551 struct btrfs_path *left_path,
3552 struct btrfs_path *right_path,
3553 struct btrfs_key *key,
3554 enum btrfs_compare_tree_result result,
3555 void *ctx);
3556 int btrfs_compare_trees(struct btrfs_root *left_root,
3557 struct btrfs_root *right_root,
3558 btrfs_changed_cb_t cb, void *ctx);
3559 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3560 struct btrfs_root *root, struct extent_buffer *buf,
3561 struct extent_buffer *parent, int parent_slot,
3562 struct extent_buffer **cow_ret);
3563 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3564 struct btrfs_root *root,
3565 struct extent_buffer *buf,
3566 struct extent_buffer **cow_ret, u64 new_root_objectid);
3567 int btrfs_block_can_be_shared(struct btrfs_root *root,
3568 struct extent_buffer *buf);
3569 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3570 u32 data_size);
3571 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3572 u32 new_size, int from_end);
3573 int btrfs_split_item(struct btrfs_trans_handle *trans,
3574 struct btrfs_root *root,
3575 struct btrfs_path *path,
3576 struct btrfs_key *new_key,
3577 unsigned long split_offset);
3578 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *root,
3580 struct btrfs_path *path,
3581 struct btrfs_key *new_key);
3582 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3583 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3584 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3585 *root, struct btrfs_key *key, struct btrfs_path *p, int
3586 ins_len, int cow);
3587 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3588 struct btrfs_path *p, u64 time_seq);
3589 int btrfs_search_slot_for_read(struct btrfs_root *root,
3590 struct btrfs_key *key, struct btrfs_path *p,
3591 int find_higher, int return_any);
3592 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3593 struct btrfs_root *root, struct extent_buffer *parent,
3594 int start_slot, u64 *last_ret,
3595 struct btrfs_key *progress);
3596 void btrfs_release_path(struct btrfs_path *p);
3597 struct btrfs_path *btrfs_alloc_path(void);
3598 void btrfs_free_path(struct btrfs_path *p);
3599 void btrfs_set_path_blocking(struct btrfs_path *p);
3600 void btrfs_clear_path_blocking(struct btrfs_path *p,
3601 struct extent_buffer *held, int held_rw);
3602 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3603
3604 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3605 struct btrfs_path *path, int slot, int nr);
3606 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3607 struct btrfs_root *root,
3608 struct btrfs_path *path)
3609 {
3610 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3611 }
3612
3613 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3614 struct btrfs_key *cpu_key, u32 *data_size,
3615 u32 total_data, u32 total_size, int nr);
3616 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3617 *root, struct btrfs_key *key, void *data, u32 data_size);
3618 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root,
3620 struct btrfs_path *path,
3621 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3622
3623 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root,
3625 struct btrfs_path *path,
3626 struct btrfs_key *key,
3627 u32 data_size)
3628 {
3629 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3630 }
3631
3632 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3633 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3634 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3635 u64 time_seq);
3636 static inline int btrfs_next_old_item(struct btrfs_root *root,
3637 struct btrfs_path *p, u64 time_seq)
3638 {
3639 ++p->slots[0];
3640 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3641 return btrfs_next_old_leaf(root, p, time_seq);
3642 return 0;
3643 }
3644 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3645 {
3646 return btrfs_next_old_item(root, p, 0);
3647 }
3648 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3649 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3650 struct btrfs_block_rsv *block_rsv,
3651 int update_ref, int for_reloc);
3652 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root,
3654 struct extent_buffer *node,
3655 struct extent_buffer *parent);
3656 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3657 {
3658 /*
3659 * Get synced with close_ctree()
3660 */
3661 smp_mb();
3662 return fs_info->closing;
3663 }
3664
3665 /*
3666 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3667 * anything except sleeping. This function is used to check the status of
3668 * the fs.
3669 */
3670 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3671 {
3672 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3673 btrfs_fs_closing(root->fs_info));
3674 }
3675
3676 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3677 {
3678 kfree(fs_info->balance_ctl);
3679 kfree(fs_info->delayed_root);
3680 kfree(fs_info->extent_root);
3681 kfree(fs_info->tree_root);
3682 kfree(fs_info->chunk_root);
3683 kfree(fs_info->dev_root);
3684 kfree(fs_info->csum_root);
3685 kfree(fs_info->quota_root);
3686 kfree(fs_info->uuid_root);
3687 kfree(fs_info->super_copy);
3688 kfree(fs_info->super_for_commit);
3689 security_free_mnt_opts(&fs_info->security_opts);
3690 kfree(fs_info);
3691 }
3692
3693 /* tree mod log functions from ctree.c */
3694 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3695 struct seq_list *elem);
3696 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3697 struct seq_list *elem);
3698 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3699
3700 /* root-item.c */
3701 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3702 struct btrfs_path *path,
3703 u64 root_id, u64 ref_id);
3704 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3705 struct btrfs_root *tree_root,
3706 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3707 const char *name, int name_len);
3708 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3709 struct btrfs_root *tree_root,
3710 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3711 const char *name, int name_len);
3712 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3713 struct btrfs_key *key);
3714 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3715 *root, struct btrfs_key *key, struct btrfs_root_item
3716 *item);
3717 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root,
3719 struct btrfs_key *key,
3720 struct btrfs_root_item *item);
3721 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3722 struct btrfs_path *path, struct btrfs_root_item *root_item,
3723 struct btrfs_key *root_key);
3724 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3725 void btrfs_set_root_node(struct btrfs_root_item *item,
3726 struct extent_buffer *node);
3727 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3728 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root);
3730
3731 /* uuid-tree.c */
3732 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3733 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3734 u64 subid);
3735 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3737 u64 subid);
3738 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3739 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3740 u64));
3741
3742 /* dir-item.c */
3743 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3744 const char *name, int name_len);
3745 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3746 struct btrfs_root *root, const char *name,
3747 int name_len, struct inode *dir,
3748 struct btrfs_key *location, u8 type, u64 index);
3749 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3750 struct btrfs_root *root,
3751 struct btrfs_path *path, u64 dir,
3752 const char *name, int name_len,
3753 int mod);
3754 struct btrfs_dir_item *
3755 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3756 struct btrfs_root *root,
3757 struct btrfs_path *path, u64 dir,
3758 u64 objectid, const char *name, int name_len,
3759 int mod);
3760 struct btrfs_dir_item *
3761 btrfs_search_dir_index_item(struct btrfs_root *root,
3762 struct btrfs_path *path, u64 dirid,
3763 const char *name, int name_len);
3764 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3765 struct btrfs_root *root,
3766 struct btrfs_path *path,
3767 struct btrfs_dir_item *di);
3768 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3769 struct btrfs_root *root,
3770 struct btrfs_path *path, u64 objectid,
3771 const char *name, u16 name_len,
3772 const void *data, u16 data_len);
3773 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3774 struct btrfs_root *root,
3775 struct btrfs_path *path, u64 dir,
3776 const char *name, u16 name_len,
3777 int mod);
3778 int verify_dir_item(struct btrfs_root *root,
3779 struct extent_buffer *leaf,
3780 struct btrfs_dir_item *dir_item);
3781 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3782 struct btrfs_path *path,
3783 const char *name,
3784 int name_len);
3785
3786 /* orphan.c */
3787 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root, u64 offset);
3789 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3790 struct btrfs_root *root, u64 offset);
3791 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3792
3793 /* inode-item.c */
3794 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3795 struct btrfs_root *root,
3796 const char *name, int name_len,
3797 u64 inode_objectid, u64 ref_objectid, u64 index);
3798 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3799 struct btrfs_root *root,
3800 const char *name, int name_len,
3801 u64 inode_objectid, u64 ref_objectid, u64 *index);
3802 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3803 struct btrfs_root *root,
3804 struct btrfs_path *path, u64 objectid);
3805 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3806 *root, struct btrfs_path *path,
3807 struct btrfs_key *location, int mod);
3808
3809 struct btrfs_inode_extref *
3810 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3811 struct btrfs_root *root,
3812 struct btrfs_path *path,
3813 const char *name, int name_len,
3814 u64 inode_objectid, u64 ref_objectid, int ins_len,
3815 int cow);
3816
3817 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3818 u64 ref_objectid, const char *name,
3819 int name_len,
3820 struct btrfs_inode_extref **extref_ret);
3821
3822 /* file-item.c */
3823 struct btrfs_dio_private;
3824 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3825 struct btrfs_root *root, u64 bytenr, u64 len);
3826 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3827 struct bio *bio, u32 *dst);
3828 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3829 struct bio *bio, u64 logical_offset);
3830 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3831 struct btrfs_root *root,
3832 u64 objectid, u64 pos,
3833 u64 disk_offset, u64 disk_num_bytes,
3834 u64 num_bytes, u64 offset, u64 ram_bytes,
3835 u8 compression, u8 encryption, u16 other_encoding);
3836 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3837 struct btrfs_root *root,
3838 struct btrfs_path *path, u64 objectid,
3839 u64 bytenr, int mod);
3840 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3841 struct btrfs_root *root,
3842 struct btrfs_ordered_sum *sums);
3843 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3844 struct bio *bio, u64 file_start, int contig);
3845 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3846 struct list_head *list, int search_commit);
3847 void btrfs_extent_item_to_extent_map(struct inode *inode,
3848 const struct btrfs_path *path,
3849 struct btrfs_file_extent_item *fi,
3850 const bool new_inline,
3851 struct extent_map *em);
3852
3853 /* inode.c */
3854 struct btrfs_delalloc_work {
3855 struct inode *inode;
3856 int wait;
3857 int delay_iput;
3858 struct completion completion;
3859 struct list_head list;
3860 struct btrfs_work work;
3861 };
3862
3863 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3864 int wait, int delay_iput);
3865 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3866
3867 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3868 size_t pg_offset, u64 start, u64 len,
3869 int create);
3870 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3871 u64 *orig_start, u64 *orig_block_len,
3872 u64 *ram_bytes);
3873
3874 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3875 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3876 #define ClearPageChecked ClearPageFsMisc
3877 #define SetPageChecked SetPageFsMisc
3878 #define PageChecked PageFsMisc
3879 #endif
3880
3881 /* This forces readahead on a given range of bytes in an inode */
3882 static inline void btrfs_force_ra(struct address_space *mapping,
3883 struct file_ra_state *ra, struct file *file,
3884 pgoff_t offset, unsigned long req_size)
3885 {
3886 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3887 }
3888
3889 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3890 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3891 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root,
3893 struct inode *dir, struct inode *inode,
3894 const char *name, int name_len);
3895 int btrfs_add_link(struct btrfs_trans_handle *trans,
3896 struct inode *parent_inode, struct inode *inode,
3897 const char *name, int name_len, int add_backref, u64 index);
3898 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root,
3900 struct inode *dir, u64 objectid,
3901 const char *name, int name_len);
3902 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3903 int front);
3904 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3905 struct btrfs_root *root,
3906 struct inode *inode, u64 new_size,
3907 u32 min_type);
3908
3909 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3910 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3911 int nr);
3912 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3913 struct extent_state **cached_state);
3914 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3915 struct btrfs_root *new_root,
3916 struct btrfs_root *parent_root,
3917 u64 new_dirid);
3918 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3919 size_t size, struct bio *bio,
3920 unsigned long bio_flags);
3921 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3922 int btrfs_readpage(struct file *file, struct page *page);
3923 void btrfs_evict_inode(struct inode *inode);
3924 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3925 struct inode *btrfs_alloc_inode(struct super_block *sb);
3926 void btrfs_destroy_inode(struct inode *inode);
3927 int btrfs_drop_inode(struct inode *inode);
3928 int btrfs_init_cachep(void);
3929 void btrfs_destroy_cachep(void);
3930 long btrfs_ioctl_trans_end(struct file *file);
3931 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3932 struct btrfs_root *root, int *was_new);
3933 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3934 size_t pg_offset, u64 start, u64 end,
3935 int create);
3936 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3937 struct btrfs_root *root,
3938 struct inode *inode);
3939 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *root, struct inode *inode);
3941 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3942 int btrfs_orphan_cleanup(struct btrfs_root *root);
3943 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3944 struct btrfs_root *root);
3945 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3946 void btrfs_invalidate_inodes(struct btrfs_root *root);
3947 void btrfs_add_delayed_iput(struct inode *inode);
3948 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3949 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3950 u64 start, u64 num_bytes, u64 min_size,
3951 loff_t actual_len, u64 *alloc_hint);
3952 int btrfs_prealloc_file_range_trans(struct inode *inode,
3953 struct btrfs_trans_handle *trans, int mode,
3954 u64 start, u64 num_bytes, u64 min_size,
3955 loff_t actual_len, u64 *alloc_hint);
3956 int btrfs_inode_check_errors(struct inode *inode);
3957 extern const struct dentry_operations btrfs_dentry_operations;
3958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3959 void btrfs_test_inode_set_ops(struct inode *inode);
3960 #endif
3961
3962 /* ioctl.c */
3963 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3964 void btrfs_update_iflags(struct inode *inode);
3965 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3966 int btrfs_is_empty_uuid(u8 *uuid);
3967 int btrfs_defrag_file(struct inode *inode, struct file *file,
3968 struct btrfs_ioctl_defrag_range_args *range,
3969 u64 newer_than, unsigned long max_pages);
3970 void btrfs_get_block_group_info(struct list_head *groups_list,
3971 struct btrfs_ioctl_space_info *space);
3972 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3973 struct btrfs_ioctl_balance_args *bargs);
3974
3975
3976 /* file.c */
3977 int btrfs_auto_defrag_init(void);
3978 void btrfs_auto_defrag_exit(void);
3979 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3980 struct inode *inode);
3981 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3982 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3983 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3984 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3985 int skip_pinned);
3986 extern const struct file_operations btrfs_file_operations;
3987 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3988 struct btrfs_root *root, struct inode *inode,
3989 struct btrfs_path *path, u64 start, u64 end,
3990 u64 *drop_end, int drop_cache,
3991 int replace_extent,
3992 u32 extent_item_size,
3993 int *key_inserted);
3994 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root, struct inode *inode, u64 start,
3996 u64 end, int drop_cache);
3997 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3998 struct inode *inode, u64 start, u64 end);
3999 int btrfs_release_file(struct inode *inode, struct file *file);
4000 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
4001 struct page **pages, size_t num_pages,
4002 loff_t pos, size_t write_bytes,
4003 struct extent_state **cached);
4004 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
4005
4006 /* tree-defrag.c */
4007 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
4008 struct btrfs_root *root);
4009
4010 /* sysfs.c */
4011 int btrfs_init_sysfs(void);
4012 void btrfs_exit_sysfs(void);
4013 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
4014 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
4015
4016 /* xattr.c */
4017 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4018
4019 /* super.c */
4020 int btrfs_parse_options(struct btrfs_root *root, char *options);
4021 int btrfs_sync_fs(struct super_block *sb, int wait);
4022
4023 #ifdef CONFIG_PRINTK
4024 __printf(2, 3)
4025 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4026 #else
4027 static inline __printf(2, 3)
4028 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4029 {
4030 }
4031 #endif
4032
4033 #define btrfs_emerg(fs_info, fmt, args...) \
4034 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4035 #define btrfs_alert(fs_info, fmt, args...) \
4036 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4037 #define btrfs_crit(fs_info, fmt, args...) \
4038 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4039 #define btrfs_err(fs_info, fmt, args...) \
4040 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4041 #define btrfs_warn(fs_info, fmt, args...) \
4042 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4043 #define btrfs_notice(fs_info, fmt, args...) \
4044 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4045 #define btrfs_info(fs_info, fmt, args...) \
4046 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4047
4048 #ifdef DEBUG
4049 #define btrfs_debug(fs_info, fmt, args...) \
4050 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4051 #else
4052 #define btrfs_debug(fs_info, fmt, args...) \
4053 no_printk(KERN_DEBUG fmt, ##args)
4054 #endif
4055
4056 #ifdef CONFIG_BTRFS_ASSERT
4057
4058 __cold
4059 static inline void assfail(char *expr, char *file, int line)
4060 {
4061 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4062 expr, file, line);
4063 BUG();
4064 }
4065
4066 #define ASSERT(expr) \
4067 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4068 #else
4069 #define ASSERT(expr) ((void)0)
4070 #endif
4071
4072 #define btrfs_assert()
4073 __printf(5, 6)
4074 __cold
4075 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4076 unsigned int line, int errno, const char *fmt, ...);
4077
4078
4079 __cold
4080 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root, const char *function,
4082 unsigned int line, int errno);
4083
4084 #define btrfs_set_fs_incompat(__fs_info, opt) \
4085 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4086
4087 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4088 u64 flag)
4089 {
4090 struct btrfs_super_block *disk_super;
4091 u64 features;
4092
4093 disk_super = fs_info->super_copy;
4094 features = btrfs_super_incompat_flags(disk_super);
4095 if (!(features & flag)) {
4096 spin_lock(&fs_info->super_lock);
4097 features = btrfs_super_incompat_flags(disk_super);
4098 if (!(features & flag)) {
4099 features |= flag;
4100 btrfs_set_super_incompat_flags(disk_super, features);
4101 btrfs_info(fs_info, "setting %llu feature flag",
4102 flag);
4103 }
4104 spin_unlock(&fs_info->super_lock);
4105 }
4106 }
4107
4108 #define btrfs_fs_incompat(fs_info, opt) \
4109 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4110
4111 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4112 {
4113 struct btrfs_super_block *disk_super;
4114 disk_super = fs_info->super_copy;
4115 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4116 }
4117
4118 /*
4119 * Call btrfs_abort_transaction as early as possible when an error condition is
4120 * detected, that way the exact line number is reported.
4121 */
4122 #define btrfs_abort_transaction(trans, root, errno) \
4123 do { \
4124 /* Report first abort since mount */ \
4125 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
4126 &((root)->fs_info->fs_state))) { \
4127 WARN(1, KERN_DEBUG \
4128 "BTRFS: Transaction aborted (error %d)\n", \
4129 (errno)); \
4130 } \
4131 __btrfs_abort_transaction((trans), (root), __func__, \
4132 __LINE__, (errno)); \
4133 } while (0)
4134
4135 #define btrfs_std_error(fs_info, errno) \
4136 do { \
4137 if ((errno)) \
4138 __btrfs_std_error((fs_info), __func__, \
4139 __LINE__, (errno), NULL); \
4140 } while (0)
4141
4142 #define btrfs_error(fs_info, errno, fmt, args...) \
4143 do { \
4144 __btrfs_std_error((fs_info), __func__, __LINE__, \
4145 (errno), fmt, ##args); \
4146 } while (0)
4147
4148 __printf(5, 6)
4149 __cold
4150 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4151 unsigned int line, int errno, const char *fmt, ...);
4152
4153 /*
4154 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4155 * will panic(). Otherwise we BUG() here.
4156 */
4157 #define btrfs_panic(fs_info, errno, fmt, args...) \
4158 do { \
4159 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4160 BUG(); \
4161 } while (0)
4162
4163 /* acl.c */
4164 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4165 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4166 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4167 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4168 struct inode *inode, struct inode *dir);
4169 #else
4170 #define btrfs_get_acl NULL
4171 #define btrfs_set_acl NULL
4172 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4173 struct inode *inode, struct inode *dir)
4174 {
4175 return 0;
4176 }
4177 #endif
4178
4179 /* relocation.c */
4180 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4181 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root);
4183 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4184 struct btrfs_root *root);
4185 int btrfs_recover_relocation(struct btrfs_root *root);
4186 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4187 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4188 struct btrfs_root *root, struct extent_buffer *buf,
4189 struct extent_buffer *cow);
4190 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4191 struct btrfs_pending_snapshot *pending,
4192 u64 *bytes_to_reserve);
4193 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4194 struct btrfs_pending_snapshot *pending);
4195
4196 /* scrub.c */
4197 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4198 u64 end, struct btrfs_scrub_progress *progress,
4199 int readonly, int is_dev_replace);
4200 void btrfs_scrub_pause(struct btrfs_root *root);
4201 void btrfs_scrub_continue(struct btrfs_root *root);
4202 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4203 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4204 struct btrfs_device *dev);
4205 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4206 struct btrfs_scrub_progress *progress);
4207
4208 /* dev-replace.c */
4209 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4210 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4211 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4212
4213 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4214 {
4215 btrfs_bio_counter_sub(fs_info, 1);
4216 }
4217
4218 /* reada.c */
4219 struct reada_control {
4220 struct btrfs_root *root; /* tree to prefetch */
4221 struct btrfs_key key_start;
4222 struct btrfs_key key_end; /* exclusive */
4223 atomic_t elems;
4224 struct kref refcnt;
4225 wait_queue_head_t wait;
4226 };
4227 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4228 struct btrfs_key *start, struct btrfs_key *end);
4229 int btrfs_reada_wait(void *handle);
4230 void btrfs_reada_detach(void *handle);
4231 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4232 u64 start, int err);
4233
4234 static inline int is_fstree(u64 rootid)
4235 {
4236 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4237 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4238 !btrfs_qgroup_level(rootid)))
4239 return 1;
4240 return 0;
4241 }
4242
4243 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4244 {
4245 return signal_pending(current);
4246 }
4247
4248 /* Sanity test specific functions */
4249 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4250 void btrfs_test_destroy_inode(struct inode *inode);
4251 #endif
4252
4253 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4254 {
4255 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4256 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4257 return 1;
4258 #endif
4259 return 0;
4260 }
4261
4262 #endif
This page took 0.119227 seconds and 5 git commands to generate.