a4ad39b58a4b74ddb4c9404042523759eacc3b28
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include "bit-radix.h"
6
7 struct btrfs_trans_handle;
8 struct btrfs_transaction;
9
10 #define BTRFS_MAGIC "_BtRfS_M"
11
12 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
13 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
14 #define BTRFS_INODE_MAP_OBJECTID 3ULL
15 #define BTRFS_FS_TREE_OBJECTID 4ULL
16 #define BTRFS_FIRST_FREE_OBJECTID 5ULL
17
18 /*
19 * we can actually store much bigger names, but lets not confuse the rest
20 * of linux
21 */
22 #define BTRFS_NAME_LEN 255
23
24 /*
25 * the key defines the order in the tree, and so it also defines (optimal)
26 * block layout. objectid corresonds to the inode number. The flags
27 * tells us things about the object, and is a kind of stream selector.
28 * so for a given inode, keys with flags of 1 might refer to the inode
29 * data, flags of 2 may point to file data in the btree and flags == 3
30 * may point to extents.
31 *
32 * offset is the starting byte offset for this key in the stream.
33 *
34 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
35 * in cpu native order. Otherwise they are identical and their sizes
36 * should be the same (ie both packed)
37 */
38 struct btrfs_disk_key {
39 __le64 objectid;
40 __le32 flags;
41 __le64 offset;
42 } __attribute__ ((__packed__));
43
44 struct btrfs_key {
45 u64 objectid;
46 u32 flags;
47 u64 offset;
48 } __attribute__ ((__packed__));
49
50 /*
51 * every tree block (leaf or node) starts with this header.
52 */
53 struct btrfs_header {
54 u8 fsid[16]; /* FS specific uuid */
55 __le64 blocknr; /* which block this node is supposed to live in */
56 __le64 generation;
57 __le64 parentid; /* objectid of the tree root */
58 __le32 csum;
59 __le32 ham;
60 __le16 nritems;
61 __le16 flags;
62 u8 level;
63 } __attribute__ ((__packed__));
64
65 #define BTRFS_MAX_LEVEL 8
66 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
67 sizeof(struct btrfs_header)) / \
68 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
69 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
70 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
71
72 struct buffer_head;
73 /*
74 * the super block basically lists the main trees of the FS
75 * it currently lacks any block count etc etc
76 */
77 struct btrfs_super_block {
78 u8 fsid[16]; /* FS specific uuid */
79 __le64 blocknr; /* this block number */
80 __le32 csum;
81 __le64 magic;
82 __le32 blocksize;
83 __le64 generation;
84 __le64 root;
85 __le64 total_blocks;
86 __le64 blocks_used;
87 __le64 root_dir_objectid;
88 } __attribute__ ((__packed__));
89
90 /*
91 * A leaf is full of items. offset and size tell us where to find
92 * the item in the leaf (relative to the start of the data area)
93 */
94 struct btrfs_item {
95 struct btrfs_disk_key key;
96 __le32 offset;
97 __le16 size;
98 } __attribute__ ((__packed__));
99
100 /*
101 * leaves have an item area and a data area:
102 * [item0, item1....itemN] [free space] [dataN...data1, data0]
103 *
104 * The data is separate from the items to get the keys closer together
105 * during searches.
106 */
107 struct btrfs_leaf {
108 struct btrfs_header header;
109 struct btrfs_item items[];
110 } __attribute__ ((__packed__));
111
112 /*
113 * all non-leaf blocks are nodes, they hold only keys and pointers to
114 * other blocks
115 */
116 struct btrfs_key_ptr {
117 struct btrfs_disk_key key;
118 __le64 blockptr;
119 } __attribute__ ((__packed__));
120
121 struct btrfs_node {
122 struct btrfs_header header;
123 struct btrfs_key_ptr ptrs[];
124 } __attribute__ ((__packed__));
125
126 /*
127 * btrfs_paths remember the path taken from the root down to the leaf.
128 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
129 * to any other levels that are present.
130 *
131 * The slots array records the index of the item or block pointer
132 * used while walking the tree.
133 */
134 struct btrfs_path {
135 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
136 int slots[BTRFS_MAX_LEVEL];
137 };
138
139 /*
140 * items in the extent btree are used to record the objectid of the
141 * owner of the block and the number of references
142 */
143 struct btrfs_extent_item {
144 __le32 refs;
145 __le64 owner;
146 } __attribute__ ((__packed__));
147
148 struct btrfs_inode_timespec {
149 __le32 sec;
150 __le32 nsec;
151 } __attribute__ ((__packed__));
152
153 /*
154 * there is no padding here on purpose. If you want to extent the inode,
155 * make a new item type
156 */
157 struct btrfs_inode_item {
158 __le64 generation;
159 __le64 size;
160 __le64 nblocks;
161 __le32 nlink;
162 __le32 uid;
163 __le32 gid;
164 __le32 mode;
165 __le32 rdev;
166 __le16 flags;
167 __le16 compat_flags;
168 struct btrfs_inode_timespec atime;
169 struct btrfs_inode_timespec ctime;
170 struct btrfs_inode_timespec mtime;
171 struct btrfs_inode_timespec otime;
172 } __attribute__ ((__packed__));
173
174 /* inline data is just a blob of bytes */
175 struct btrfs_inline_data_item {
176 u8 data;
177 } __attribute__ ((__packed__));
178
179 struct btrfs_dir_item {
180 __le64 objectid;
181 __le16 flags;
182 __le16 name_len;
183 u8 type;
184 } __attribute__ ((__packed__));
185
186 struct btrfs_root_item {
187 __le64 blocknr;
188 __le32 flags;
189 __le64 block_limit;
190 __le64 blocks_used;
191 __le32 refs;
192 } __attribute__ ((__packed__));
193
194 struct btrfs_file_extent_item {
195 /*
196 * disk space consumed by the extent, checksum blocks are included
197 * in these numbers
198 */
199 __le64 disk_blocknr;
200 __le64 disk_num_blocks;
201 /*
202 * the logical offset in file blocks (no csums)
203 * this extent record is for. This allows a file extent to point
204 * into the middle of an existing extent on disk, sharing it
205 * between two snapshots (useful if some bytes in the middle of the
206 * extent have changed
207 */
208 __le64 offset;
209 /*
210 * the logical number of file blocks (no csums included)
211 */
212 __le64 num_blocks;
213 } __attribute__ ((__packed__));
214
215 struct btrfs_inode_map_item {
216 struct btrfs_disk_key key;
217 } __attribute__ ((__packed__));
218
219 struct btrfs_fs_info {
220 struct btrfs_root *fs_root;
221 struct btrfs_root *extent_root;
222 struct btrfs_root *tree_root;
223 struct btrfs_root *inode_root;
224 struct btrfs_key current_insert;
225 struct btrfs_key last_insert;
226 struct radix_tree_root pending_del_radix;
227 struct radix_tree_root pinned_radix;
228 u64 last_inode_alloc;
229 u64 last_inode_alloc_dirid;
230 u64 generation;
231 struct btrfs_transaction *running_transaction;
232 struct btrfs_super_block *disk_super;
233 struct buffer_head *sb_buffer;
234 struct super_block *sb;
235 struct mutex trans_mutex;
236 struct mutex fs_mutex;
237 };
238
239 /*
240 * in ram representation of the tree. extent_root is used for all allocations
241 * and for the extent tree extent_root root. current_insert is used
242 * only for the extent tree.
243 */
244 struct btrfs_root {
245 struct buffer_head *node;
246 struct buffer_head *commit_root;
247 struct btrfs_root_item root_item;
248 struct btrfs_key root_key;
249 struct btrfs_fs_info *fs_info;
250 u32 blocksize;
251 int ref_cows;
252 u32 type;
253 };
254
255 /* the lower bits in the key flags defines the item type */
256 #define BTRFS_KEY_TYPE_MAX 256
257 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
258
259 /*
260 * inode items have the data typically returned from stat and store other
261 * info about object characteristics. There is one for every file and dir in
262 * the FS
263 */
264 #define BTRFS_INODE_ITEM_KEY 1
265
266 /*
267 * dir items are the name -> inode pointers in a directory. There is one
268 * for every name in a directory.
269 */
270 #define BTRFS_DIR_ITEM_KEY 2
271 /*
272 * inline data is file data that fits in the btree.
273 */
274 #define BTRFS_INLINE_DATA_KEY 3
275 /*
276 * extent data is for data that can't fit in the btree. It points to
277 * a (hopefully) huge chunk of disk
278 */
279 #define BTRFS_EXTENT_DATA_KEY 4
280 /*
281 * root items point to tree roots. There are typically in the root
282 * tree used by the super block to find all the other trees
283 */
284 #define BTRFS_ROOT_ITEM_KEY 5
285 /*
286 * extent items are in the extent map tree. These record which blocks
287 * are used, and how many references there are to each block
288 */
289 #define BTRFS_EXTENT_ITEM_KEY 6
290
291 /*
292 * the inode map records which inode numbers are in use and where
293 * they actually live on disk
294 */
295 #define BTRFS_INODE_MAP_ITEM_KEY 7
296 /*
297 * string items are for debugging. They just store a short string of
298 * data in the FS
299 */
300 #define BTRFS_STRING_ITEM_KEY 8
301
302 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
303 {
304 return le64_to_cpu(i->generation);
305 }
306
307 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
308 u64 val)
309 {
310 i->generation = cpu_to_le64(val);
311 }
312
313 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
314 {
315 return le64_to_cpu(i->size);
316 }
317
318 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
319 {
320 i->size = cpu_to_le64(val);
321 }
322
323 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
324 {
325 return le64_to_cpu(i->nblocks);
326 }
327
328 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
329 {
330 i->nblocks = cpu_to_le64(val);
331 }
332
333 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
334 {
335 return le32_to_cpu(i->nlink);
336 }
337
338 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
339 {
340 i->nlink = cpu_to_le32(val);
341 }
342
343 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
344 {
345 return le32_to_cpu(i->uid);
346 }
347
348 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
349 {
350 i->uid = cpu_to_le32(val);
351 }
352
353 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
354 {
355 return le32_to_cpu(i->gid);
356 }
357
358 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
359 {
360 i->gid = cpu_to_le32(val);
361 }
362
363 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
364 {
365 return le32_to_cpu(i->mode);
366 }
367
368 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
369 {
370 i->mode = cpu_to_le32(val);
371 }
372
373 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
374 {
375 return le32_to_cpu(i->rdev);
376 }
377
378 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
379 {
380 i->rdev = cpu_to_le32(val);
381 }
382
383 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
384 {
385 return le16_to_cpu(i->flags);
386 }
387
388 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
389 {
390 i->flags = cpu_to_le16(val);
391 }
392
393 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
394 {
395 return le16_to_cpu(i->compat_flags);
396 }
397
398 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
399 u16 val)
400 {
401 i->compat_flags = cpu_to_le16(val);
402 }
403
404 static inline u32 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
405 {
406 return le32_to_cpu(ts->sec);
407 }
408
409 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
410 u32 val)
411 {
412 ts->sec = cpu_to_le32(val);
413 }
414
415 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
416 {
417 return le32_to_cpu(ts->nsec);
418 }
419
420 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
421 u32 val)
422 {
423 ts->nsec = cpu_to_le32(val);
424 }
425
426
427
428 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
429 {
430 return le64_to_cpu(ei->owner);
431 }
432
433 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
434 {
435 ei->owner = cpu_to_le64(val);
436 }
437
438 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
439 {
440 return le32_to_cpu(ei->refs);
441 }
442
443 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
444 {
445 ei->refs = cpu_to_le32(val);
446 }
447
448 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
449 {
450 return le64_to_cpu(n->ptrs[nr].blockptr);
451 }
452
453 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
454 u64 val)
455 {
456 n->ptrs[nr].blockptr = cpu_to_le64(val);
457 }
458
459 static inline u32 btrfs_item_offset(struct btrfs_item *item)
460 {
461 return le32_to_cpu(item->offset);
462 }
463
464 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
465 {
466 item->offset = cpu_to_le32(val);
467 }
468
469 static inline u32 btrfs_item_end(struct btrfs_item *item)
470 {
471 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
472 }
473
474 static inline u16 btrfs_item_size(struct btrfs_item *item)
475 {
476 return le16_to_cpu(item->size);
477 }
478
479 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
480 {
481 item->size = cpu_to_le16(val);
482 }
483
484 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
485 {
486 return le64_to_cpu(d->objectid);
487 }
488
489 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
490 {
491 d->objectid = cpu_to_le64(val);
492 }
493
494 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
495 {
496 return le16_to_cpu(d->flags);
497 }
498
499 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
500 {
501 d->flags = cpu_to_le16(val);
502 }
503
504 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
505 {
506 return d->type;
507 }
508
509 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
510 {
511 d->type = val;
512 }
513
514 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
515 {
516 return le16_to_cpu(d->name_len);
517 }
518
519 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
520 {
521 d->name_len = cpu_to_le16(val);
522 }
523
524 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
525 struct btrfs_disk_key *disk)
526 {
527 cpu->offset = le64_to_cpu(disk->offset);
528 cpu->flags = le32_to_cpu(disk->flags);
529 cpu->objectid = le64_to_cpu(disk->objectid);
530 }
531
532 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
533 struct btrfs_key *cpu)
534 {
535 disk->offset = cpu_to_le64(cpu->offset);
536 disk->flags = cpu_to_le32(cpu->flags);
537 disk->objectid = cpu_to_le64(cpu->objectid);
538 }
539
540 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
541 {
542 return le64_to_cpu(disk->objectid);
543 }
544
545 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
546 u64 val)
547 {
548 disk->objectid = cpu_to_le64(val);
549 }
550
551 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
552 {
553 return le64_to_cpu(disk->offset);
554 }
555
556 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
557 u64 val)
558 {
559 disk->offset = cpu_to_le64(val);
560 }
561
562 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
563 {
564 return le32_to_cpu(disk->flags);
565 }
566
567 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
568 u32 val)
569 {
570 disk->flags = cpu_to_le32(val);
571 }
572
573 static inline u32 btrfs_key_type(struct btrfs_key *key)
574 {
575 return key->flags & BTRFS_KEY_TYPE_MASK;
576 }
577
578 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
579 {
580 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
581 }
582
583 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
584 {
585 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
586 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
587 }
588
589 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
590 {
591 u32 flags = btrfs_disk_key_flags(key);
592 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
593 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
594 btrfs_set_disk_key_flags(key, flags);
595 }
596
597 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
598 {
599 return le64_to_cpu(h->blocknr);
600 }
601
602 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
603 {
604 h->blocknr = cpu_to_le64(blocknr);
605 }
606
607 static inline u64 btrfs_header_generation(struct btrfs_header *h)
608 {
609 return le64_to_cpu(h->generation);
610 }
611
612 static inline void btrfs_set_header_generation(struct btrfs_header *h,
613 u64 val)
614 {
615 h->generation = cpu_to_le64(val);
616 }
617
618 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
619 {
620 return le64_to_cpu(h->parentid);
621 }
622
623 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
624 u64 parentid)
625 {
626 h->parentid = cpu_to_le64(parentid);
627 }
628
629 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
630 {
631 return le16_to_cpu(h->nritems);
632 }
633
634 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
635 {
636 h->nritems = cpu_to_le16(val);
637 }
638
639 static inline u16 btrfs_header_flags(struct btrfs_header *h)
640 {
641 return le16_to_cpu(h->flags);
642 }
643
644 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
645 {
646 h->flags = cpu_to_le16(val);
647 }
648
649 static inline int btrfs_header_level(struct btrfs_header *h)
650 {
651 return h->level;
652 }
653
654 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
655 {
656 BUG_ON(level > BTRFS_MAX_LEVEL);
657 h->level = level;
658 }
659
660 static inline int btrfs_is_leaf(struct btrfs_node *n)
661 {
662 return (btrfs_header_level(&n->header) == 0);
663 }
664
665 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
666 {
667 return le64_to_cpu(item->blocknr);
668 }
669
670 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
671 {
672 item->blocknr = cpu_to_le64(val);
673 }
674
675 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
676 {
677 return le32_to_cpu(item->refs);
678 }
679
680 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
681 {
682 item->refs = cpu_to_le32(val);
683 }
684
685 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
686 {
687 return le64_to_cpu(s->blocknr);
688 }
689
690 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
691 {
692 s->blocknr = cpu_to_le64(val);
693 }
694
695 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
696 {
697 return le64_to_cpu(s->root);
698 }
699
700 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
701 {
702 s->root = cpu_to_le64(val);
703 }
704
705 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
706 {
707 return le64_to_cpu(s->total_blocks);
708 }
709
710 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
711 u64 val)
712 {
713 s->total_blocks = cpu_to_le64(val);
714 }
715
716 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
717 {
718 return le64_to_cpu(s->blocks_used);
719 }
720
721 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
722 u64 val)
723 {
724 s->blocks_used = cpu_to_le64(val);
725 }
726
727 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
728 {
729 return le32_to_cpu(s->blocksize);
730 }
731
732 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
733 u32 val)
734 {
735 s->blocksize = cpu_to_le32(val);
736 }
737
738 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
739 {
740 return le64_to_cpu(s->root_dir_objectid);
741 }
742
743 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
744 val)
745 {
746 s->root_dir_objectid = cpu_to_le64(val);
747 }
748
749 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
750 {
751 return (u8 *)l->items;
752 }
753
754 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
755 *e)
756 {
757 return le64_to_cpu(e->disk_blocknr);
758 }
759
760 static inline void btrfs_set_file_extent_disk_blocknr(struct
761 btrfs_file_extent_item
762 *e, u64 val)
763 {
764 e->disk_blocknr = cpu_to_le64(val);
765 }
766
767 static inline u64 btrfs_file_extent_disk_num_blocks(struct
768 btrfs_file_extent_item *e)
769 {
770 return le64_to_cpu(e->disk_num_blocks);
771 }
772
773 static inline void btrfs_set_file_extent_disk_num_blocks(struct
774 btrfs_file_extent_item
775 *e, u64 val)
776 {
777 e->disk_num_blocks = cpu_to_le64(val);
778 }
779
780 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
781 {
782 return le64_to_cpu(e->offset);
783 }
784
785 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
786 *e, u64 val)
787 {
788 e->offset = cpu_to_le64(val);
789 }
790
791 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
792 *e)
793 {
794 return le64_to_cpu(e->num_blocks);
795 }
796
797 static inline void btrfs_set_file_extent_num_blocks(struct
798 btrfs_file_extent_item *e,
799 u64 val)
800 {
801 e->num_blocks = cpu_to_le64(val);
802 }
803
804 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
805 {
806 return sb->s_fs_info;
807 }
808
809 /* helper function to cast into the data area of the leaf. */
810 #define btrfs_item_ptr(leaf, slot, type) \
811 ((type *)(btrfs_leaf_data(leaf) + \
812 btrfs_item_offset((leaf)->items + (slot))))
813
814 /* extent-item.c */
815 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
816 struct btrfs_root *root);
817 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
818 *root, u64 num_blocks, u64 search_start, u64
819 search_end, u64 owner, struct btrfs_key *ins);
820 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
821 struct buffer_head *buf);
822 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
823 *root, u64 blocknr, u64 num_blocks, int pin);
824 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
825 btrfs_root *root);
826 /* ctree.c */
827 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
828 *root, struct btrfs_key *key, struct btrfs_path *p, int
829 ins_len, int cow);
830 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
831 void btrfs_init_path(struct btrfs_path *p);
832 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
833 struct btrfs_path *path);
834 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
835 *root, struct btrfs_key *key, void *data, u32 data_size);
836 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
837 *root, struct btrfs_path *path, struct btrfs_key
838 *cpu_key, u32 data_size);
839 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
840 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
841 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
842 *root, struct buffer_head *snap);
843 /* root-item.c */
844 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
845 struct btrfs_key *key);
846 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
847 *root, struct btrfs_key *key, struct btrfs_root_item
848 *item);
849 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
850 *root, struct btrfs_key *key, struct btrfs_root_item
851 *item);
852 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
853 btrfs_root_item *item, struct btrfs_key *key);
854 /* dir-item.c */
855 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
856 *root, const char *name, int name_len, u64 dir, u64
857 objectid, u8 type);
858 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
859 *root, struct btrfs_path *path, u64 dir,
860 const char *name, int name_len, int mod);
861 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
862 const char *name, int name_len);
863 /* inode-map.c */
864 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
865 struct btrfs_root *fs_root,
866 u64 dirid, u64 *objectid);
867 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
868 struct btrfs_root *root,
869 u64 objectid, struct btrfs_key *location);
870 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root, struct btrfs_path *path,
872 u64 objectid, int mod);
873 /* inode-item.c */
874 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
875 *root, u64 objectid, struct btrfs_inode_item
876 *inode_item);
877 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
878 *root, struct btrfs_path *path, u64 objectid, int mod);
879
880 /* file-item.c */
881 int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
882 struct btrfs_root *root,
883 u64 objectid, u64 offset,
884 u64 num_blocks, u64 hint_block,
885 u64 *result);
886 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
887 struct btrfs_root *root,
888 struct btrfs_path *path, u64 objectid,
889 u64 blocknr, u64 num_blocks, int mod);
890 #endif
This page took 0.064923 seconds and 5 git commands to generate.