btrfs: publish per-super attributes in sysfs
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include "extent_io.h"
37 #include "extent_map.h"
38 #include "async-thread.h"
39
40 struct btrfs_trans_handle;
41 struct btrfs_transaction;
42 struct btrfs_pending_snapshot;
43 extern struct kmem_cache *btrfs_trans_handle_cachep;
44 extern struct kmem_cache *btrfs_transaction_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 struct btrfs_ordered_sum;
49
50 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
51 #define STATIC noinline
52 #else
53 #define STATIC static noinline
54 #endif
55
56 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
57
58 #define BTRFS_MAX_MIRRORS 3
59
60 #define BTRFS_MAX_LEVEL 8
61
62 #define BTRFS_COMPAT_EXTENT_TREE_V0
63
64 /*
65 * files bigger than this get some pre-flushing when they are added
66 * to the ordered operations list. That way we limit the total
67 * work done by the commit
68 */
69 #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
70
71 /* holds pointers to all of the tree roots */
72 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
73
74 /* stores information about which extents are in use, and reference counts */
75 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
76
77 /*
78 * chunk tree stores translations from logical -> physical block numbering
79 * the super block points to the chunk tree
80 */
81 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
82
83 /*
84 * stores information about which areas of a given device are in use.
85 * one per device. The tree of tree roots points to the device tree
86 */
87 #define BTRFS_DEV_TREE_OBJECTID 4ULL
88
89 /* one per subvolume, storing files and directories */
90 #define BTRFS_FS_TREE_OBJECTID 5ULL
91
92 /* directory objectid inside the root tree */
93 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
94
95 /* holds checksums of all the data extents */
96 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
97
98 /* holds quota configuration and tracking */
99 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
100
101 /* for storing items that use the BTRFS_UUID_KEY* types */
102 #define BTRFS_UUID_TREE_OBJECTID 9ULL
103
104 /* for storing balance parameters in the root tree */
105 #define BTRFS_BALANCE_OBJECTID -4ULL
106
107 /* orhpan objectid for tracking unlinked/truncated files */
108 #define BTRFS_ORPHAN_OBJECTID -5ULL
109
110 /* does write ahead logging to speed up fsyncs */
111 #define BTRFS_TREE_LOG_OBJECTID -6ULL
112 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
113
114 /* for space balancing */
115 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
116 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
117
118 /*
119 * extent checksums all have this objectid
120 * this allows them to share the logging tree
121 * for fsyncs
122 */
123 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
124
125 /* For storing free space cache */
126 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
127
128 /*
129 * The inode number assigned to the special inode for storing
130 * free ino cache
131 */
132 #define BTRFS_FREE_INO_OBJECTID -12ULL
133
134 /* dummy objectid represents multiple objectids */
135 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
136
137 /*
138 * All files have objectids in this range.
139 */
140 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
141 #define BTRFS_LAST_FREE_OBJECTID -256ULL
142 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
143
144
145 /*
146 * the device items go into the chunk tree. The key is in the form
147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
148 */
149 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
150
151 #define BTRFS_BTREE_INODE_OBJECTID 1
152
153 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
154
155 #define BTRFS_DEV_REPLACE_DEVID 0ULL
156
157 /*
158 * the max metadata block size. This limit is somewhat artificial,
159 * but the memmove costs go through the roof for larger blocks.
160 */
161 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
162
163 /*
164 * we can actually store much bigger names, but lets not confuse the rest
165 * of linux
166 */
167 #define BTRFS_NAME_LEN 255
168
169 /*
170 * Theoretical limit is larger, but we keep this down to a sane
171 * value. That should limit greatly the possibility of collisions on
172 * inode ref items.
173 */
174 #define BTRFS_LINK_MAX 65535U
175
176 /* 32 bytes in various csum fields */
177 #define BTRFS_CSUM_SIZE 32
178
179 /* csum types */
180 #define BTRFS_CSUM_TYPE_CRC32 0
181
182 static int btrfs_csum_sizes[] = { 4, 0 };
183
184 /* four bytes for CRC32 */
185 #define BTRFS_EMPTY_DIR_SIZE 0
186
187 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
188 #define REQ_GET_READ_MIRRORS (1 << 30)
189
190 #define BTRFS_FT_UNKNOWN 0
191 #define BTRFS_FT_REG_FILE 1
192 #define BTRFS_FT_DIR 2
193 #define BTRFS_FT_CHRDEV 3
194 #define BTRFS_FT_BLKDEV 4
195 #define BTRFS_FT_FIFO 5
196 #define BTRFS_FT_SOCK 6
197 #define BTRFS_FT_SYMLINK 7
198 #define BTRFS_FT_XATTR 8
199 #define BTRFS_FT_MAX 9
200
201 /* ioprio of readahead is set to idle */
202 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
203
204 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
205
206 /*
207 * The key defines the order in the tree, and so it also defines (optimal)
208 * block layout.
209 *
210 * objectid corresponds to the inode number.
211 *
212 * type tells us things about the object, and is a kind of stream selector.
213 * so for a given inode, keys with type of 1 might refer to the inode data,
214 * type of 2 may point to file data in the btree and type == 3 may point to
215 * extents.
216 *
217 * offset is the starting byte offset for this key in the stream.
218 *
219 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
220 * in cpu native order. Otherwise they are identical and their sizes
221 * should be the same (ie both packed)
222 */
223 struct btrfs_disk_key {
224 __le64 objectid;
225 u8 type;
226 __le64 offset;
227 } __attribute__ ((__packed__));
228
229 struct btrfs_key {
230 u64 objectid;
231 u8 type;
232 u64 offset;
233 } __attribute__ ((__packed__));
234
235 struct btrfs_mapping_tree {
236 struct extent_map_tree map_tree;
237 };
238
239 struct btrfs_dev_item {
240 /* the internal btrfs device id */
241 __le64 devid;
242
243 /* size of the device */
244 __le64 total_bytes;
245
246 /* bytes used */
247 __le64 bytes_used;
248
249 /* optimal io alignment for this device */
250 __le32 io_align;
251
252 /* optimal io width for this device */
253 __le32 io_width;
254
255 /* minimal io size for this device */
256 __le32 sector_size;
257
258 /* type and info about this device */
259 __le64 type;
260
261 /* expected generation for this device */
262 __le64 generation;
263
264 /*
265 * starting byte of this partition on the device,
266 * to allow for stripe alignment in the future
267 */
268 __le64 start_offset;
269
270 /* grouping information for allocation decisions */
271 __le32 dev_group;
272
273 /* seek speed 0-100 where 100 is fastest */
274 u8 seek_speed;
275
276 /* bandwidth 0-100 where 100 is fastest */
277 u8 bandwidth;
278
279 /* btrfs generated uuid for this device */
280 u8 uuid[BTRFS_UUID_SIZE];
281
282 /* uuid of FS who owns this device */
283 u8 fsid[BTRFS_UUID_SIZE];
284 } __attribute__ ((__packed__));
285
286 struct btrfs_stripe {
287 __le64 devid;
288 __le64 offset;
289 u8 dev_uuid[BTRFS_UUID_SIZE];
290 } __attribute__ ((__packed__));
291
292 struct btrfs_chunk {
293 /* size of this chunk in bytes */
294 __le64 length;
295
296 /* objectid of the root referencing this chunk */
297 __le64 owner;
298
299 __le64 stripe_len;
300 __le64 type;
301
302 /* optimal io alignment for this chunk */
303 __le32 io_align;
304
305 /* optimal io width for this chunk */
306 __le32 io_width;
307
308 /* minimal io size for this chunk */
309 __le32 sector_size;
310
311 /* 2^16 stripes is quite a lot, a second limit is the size of a single
312 * item in the btree
313 */
314 __le16 num_stripes;
315
316 /* sub stripes only matter for raid10 */
317 __le16 sub_stripes;
318 struct btrfs_stripe stripe;
319 /* additional stripes go here */
320 } __attribute__ ((__packed__));
321
322 #define BTRFS_FREE_SPACE_EXTENT 1
323 #define BTRFS_FREE_SPACE_BITMAP 2
324
325 struct btrfs_free_space_entry {
326 __le64 offset;
327 __le64 bytes;
328 u8 type;
329 } __attribute__ ((__packed__));
330
331 struct btrfs_free_space_header {
332 struct btrfs_disk_key location;
333 __le64 generation;
334 __le64 num_entries;
335 __le64 num_bitmaps;
336 } __attribute__ ((__packed__));
337
338 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
339 {
340 BUG_ON(num_stripes == 0);
341 return sizeof(struct btrfs_chunk) +
342 sizeof(struct btrfs_stripe) * (num_stripes - 1);
343 }
344
345 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
346 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
347
348 /*
349 * File system states
350 */
351 #define BTRFS_FS_STATE_ERROR 0
352 #define BTRFS_FS_STATE_REMOUNTING 1
353 #define BTRFS_FS_STATE_TRANS_ABORTED 2
354
355 /* Super block flags */
356 /* Errors detected */
357 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
358
359 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
360 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
361
362 #define BTRFS_BACKREF_REV_MAX 256
363 #define BTRFS_BACKREF_REV_SHIFT 56
364 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
365 BTRFS_BACKREF_REV_SHIFT)
366
367 #define BTRFS_OLD_BACKREF_REV 0
368 #define BTRFS_MIXED_BACKREF_REV 1
369
370 /*
371 * every tree block (leaf or node) starts with this header.
372 */
373 struct btrfs_header {
374 /* these first four must match the super block */
375 u8 csum[BTRFS_CSUM_SIZE];
376 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
377 __le64 bytenr; /* which block this node is supposed to live in */
378 __le64 flags;
379
380 /* allowed to be different from the super from here on down */
381 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
382 __le64 generation;
383 __le64 owner;
384 __le32 nritems;
385 u8 level;
386 } __attribute__ ((__packed__));
387
388 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
389 sizeof(struct btrfs_header)) / \
390 sizeof(struct btrfs_key_ptr))
391 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
392 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
393 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
394 sizeof(struct btrfs_item) - \
395 sizeof(struct btrfs_file_extent_item))
396 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
397 sizeof(struct btrfs_item) -\
398 sizeof(struct btrfs_dir_item))
399
400
401 /*
402 * this is a very generous portion of the super block, giving us
403 * room to translate 14 chunks with 3 stripes each.
404 */
405 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
406 #define BTRFS_LABEL_SIZE 256
407
408 /*
409 * just in case we somehow lose the roots and are not able to mount,
410 * we store an array of the roots from previous transactions
411 * in the super.
412 */
413 #define BTRFS_NUM_BACKUP_ROOTS 4
414 struct btrfs_root_backup {
415 __le64 tree_root;
416 __le64 tree_root_gen;
417
418 __le64 chunk_root;
419 __le64 chunk_root_gen;
420
421 __le64 extent_root;
422 __le64 extent_root_gen;
423
424 __le64 fs_root;
425 __le64 fs_root_gen;
426
427 __le64 dev_root;
428 __le64 dev_root_gen;
429
430 __le64 csum_root;
431 __le64 csum_root_gen;
432
433 __le64 total_bytes;
434 __le64 bytes_used;
435 __le64 num_devices;
436 /* future */
437 __le64 unused_64[4];
438
439 u8 tree_root_level;
440 u8 chunk_root_level;
441 u8 extent_root_level;
442 u8 fs_root_level;
443 u8 dev_root_level;
444 u8 csum_root_level;
445 /* future and to align */
446 u8 unused_8[10];
447 } __attribute__ ((__packed__));
448
449 /*
450 * the super block basically lists the main trees of the FS
451 * it currently lacks any block count etc etc
452 */
453 struct btrfs_super_block {
454 u8 csum[BTRFS_CSUM_SIZE];
455 /* the first 4 fields must match struct btrfs_header */
456 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
457 __le64 bytenr; /* this block number */
458 __le64 flags;
459
460 /* allowed to be different from the btrfs_header from here own down */
461 __le64 magic;
462 __le64 generation;
463 __le64 root;
464 __le64 chunk_root;
465 __le64 log_root;
466
467 /* this will help find the new super based on the log root */
468 __le64 log_root_transid;
469 __le64 total_bytes;
470 __le64 bytes_used;
471 __le64 root_dir_objectid;
472 __le64 num_devices;
473 __le32 sectorsize;
474 __le32 nodesize;
475 __le32 leafsize;
476 __le32 stripesize;
477 __le32 sys_chunk_array_size;
478 __le64 chunk_root_generation;
479 __le64 compat_flags;
480 __le64 compat_ro_flags;
481 __le64 incompat_flags;
482 __le16 csum_type;
483 u8 root_level;
484 u8 chunk_root_level;
485 u8 log_root_level;
486 struct btrfs_dev_item dev_item;
487
488 char label[BTRFS_LABEL_SIZE];
489
490 __le64 cache_generation;
491 __le64 uuid_tree_generation;
492
493 /* future expansion */
494 __le64 reserved[30];
495 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
496 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
497 } __attribute__ ((__packed__));
498
499 /*
500 * Compat flags that we support. If any incompat flags are set other than the
501 * ones specified below then we will fail to mount
502 */
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
504 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
505 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
506 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
507 /*
508 * some patches floated around with a second compression method
509 * lets save that incompat here for when they do get in
510 * Note we don't actually support it, we're just reserving the
511 * number
512 */
513 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
514
515 /*
516 * older kernels tried to do bigger metadata blocks, but the
517 * code was pretty buggy. Lets not let them try anymore.
518 */
519 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
520
521 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
522 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
523 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
524 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
525
526 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
527 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
532
533 #define BTRFS_FEATURE_INCOMPAT_SUPP \
534 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
535 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
536 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
537 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
538 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
539 BTRFS_FEATURE_INCOMPAT_RAID56 | \
540 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
541 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
542 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
543
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
545 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
546 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
547
548 /*
549 * A leaf is full of items. offset and size tell us where to find
550 * the item in the leaf (relative to the start of the data area)
551 */
552 struct btrfs_item {
553 struct btrfs_disk_key key;
554 __le32 offset;
555 __le32 size;
556 } __attribute__ ((__packed__));
557
558 /*
559 * leaves have an item area and a data area:
560 * [item0, item1....itemN] [free space] [dataN...data1, data0]
561 *
562 * The data is separate from the items to get the keys closer together
563 * during searches.
564 */
565 struct btrfs_leaf {
566 struct btrfs_header header;
567 struct btrfs_item items[];
568 } __attribute__ ((__packed__));
569
570 /*
571 * all non-leaf blocks are nodes, they hold only keys and pointers to
572 * other blocks
573 */
574 struct btrfs_key_ptr {
575 struct btrfs_disk_key key;
576 __le64 blockptr;
577 __le64 generation;
578 } __attribute__ ((__packed__));
579
580 struct btrfs_node {
581 struct btrfs_header header;
582 struct btrfs_key_ptr ptrs[];
583 } __attribute__ ((__packed__));
584
585 /*
586 * btrfs_paths remember the path taken from the root down to the leaf.
587 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
588 * to any other levels that are present.
589 *
590 * The slots array records the index of the item or block pointer
591 * used while walking the tree.
592 */
593 struct btrfs_path {
594 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
595 int slots[BTRFS_MAX_LEVEL];
596 /* if there is real range locking, this locks field will change */
597 int locks[BTRFS_MAX_LEVEL];
598 int reada;
599 /* keep some upper locks as we walk down */
600 int lowest_level;
601
602 /*
603 * set by btrfs_split_item, tells search_slot to keep all locks
604 * and to force calls to keep space in the nodes
605 */
606 unsigned int search_for_split:1;
607 unsigned int keep_locks:1;
608 unsigned int skip_locking:1;
609 unsigned int leave_spinning:1;
610 unsigned int search_commit_root:1;
611 };
612
613 /*
614 * items in the extent btree are used to record the objectid of the
615 * owner of the block and the number of references
616 */
617
618 struct btrfs_extent_item {
619 __le64 refs;
620 __le64 generation;
621 __le64 flags;
622 } __attribute__ ((__packed__));
623
624 struct btrfs_extent_item_v0 {
625 __le32 refs;
626 } __attribute__ ((__packed__));
627
628 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
629 sizeof(struct btrfs_item))
630
631 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
632 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
633
634 /* following flags only apply to tree blocks */
635
636 /* use full backrefs for extent pointers in the block */
637 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
638
639 /*
640 * this flag is only used internally by scrub and may be changed at any time
641 * it is only declared here to avoid collisions
642 */
643 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
644
645 struct btrfs_tree_block_info {
646 struct btrfs_disk_key key;
647 u8 level;
648 } __attribute__ ((__packed__));
649
650 struct btrfs_extent_data_ref {
651 __le64 root;
652 __le64 objectid;
653 __le64 offset;
654 __le32 count;
655 } __attribute__ ((__packed__));
656
657 struct btrfs_shared_data_ref {
658 __le32 count;
659 } __attribute__ ((__packed__));
660
661 struct btrfs_extent_inline_ref {
662 u8 type;
663 __le64 offset;
664 } __attribute__ ((__packed__));
665
666 /* old style backrefs item */
667 struct btrfs_extent_ref_v0 {
668 __le64 root;
669 __le64 generation;
670 __le64 objectid;
671 __le32 count;
672 } __attribute__ ((__packed__));
673
674
675 /* dev extents record free space on individual devices. The owner
676 * field points back to the chunk allocation mapping tree that allocated
677 * the extent. The chunk tree uuid field is a way to double check the owner
678 */
679 struct btrfs_dev_extent {
680 __le64 chunk_tree;
681 __le64 chunk_objectid;
682 __le64 chunk_offset;
683 __le64 length;
684 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
685 } __attribute__ ((__packed__));
686
687 struct btrfs_inode_ref {
688 __le64 index;
689 __le16 name_len;
690 /* name goes here */
691 } __attribute__ ((__packed__));
692
693 struct btrfs_inode_extref {
694 __le64 parent_objectid;
695 __le64 index;
696 __le16 name_len;
697 __u8 name[0];
698 /* name goes here */
699 } __attribute__ ((__packed__));
700
701 struct btrfs_timespec {
702 __le64 sec;
703 __le32 nsec;
704 } __attribute__ ((__packed__));
705
706 enum btrfs_compression_type {
707 BTRFS_COMPRESS_NONE = 0,
708 BTRFS_COMPRESS_ZLIB = 1,
709 BTRFS_COMPRESS_LZO = 2,
710 BTRFS_COMPRESS_TYPES = 2,
711 BTRFS_COMPRESS_LAST = 3,
712 };
713
714 struct btrfs_inode_item {
715 /* nfs style generation number */
716 __le64 generation;
717 /* transid that last touched this inode */
718 __le64 transid;
719 __le64 size;
720 __le64 nbytes;
721 __le64 block_group;
722 __le32 nlink;
723 __le32 uid;
724 __le32 gid;
725 __le32 mode;
726 __le64 rdev;
727 __le64 flags;
728
729 /* modification sequence number for NFS */
730 __le64 sequence;
731
732 /*
733 * a little future expansion, for more than this we can
734 * just grow the inode item and version it
735 */
736 __le64 reserved[4];
737 struct btrfs_timespec atime;
738 struct btrfs_timespec ctime;
739 struct btrfs_timespec mtime;
740 struct btrfs_timespec otime;
741 } __attribute__ ((__packed__));
742
743 struct btrfs_dir_log_item {
744 __le64 end;
745 } __attribute__ ((__packed__));
746
747 struct btrfs_dir_item {
748 struct btrfs_disk_key location;
749 __le64 transid;
750 __le16 data_len;
751 __le16 name_len;
752 u8 type;
753 } __attribute__ ((__packed__));
754
755 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
756
757 struct btrfs_root_item {
758 struct btrfs_inode_item inode;
759 __le64 generation;
760 __le64 root_dirid;
761 __le64 bytenr;
762 __le64 byte_limit;
763 __le64 bytes_used;
764 __le64 last_snapshot;
765 __le64 flags;
766 __le32 refs;
767 struct btrfs_disk_key drop_progress;
768 u8 drop_level;
769 u8 level;
770
771 /*
772 * The following fields appear after subvol_uuids+subvol_times
773 * were introduced.
774 */
775
776 /*
777 * This generation number is used to test if the new fields are valid
778 * and up to date while reading the root item. Everytime the root item
779 * is written out, the "generation" field is copied into this field. If
780 * anyone ever mounted the fs with an older kernel, we will have
781 * mismatching generation values here and thus must invalidate the
782 * new fields. See btrfs_update_root and btrfs_find_last_root for
783 * details.
784 * the offset of generation_v2 is also used as the start for the memset
785 * when invalidating the fields.
786 */
787 __le64 generation_v2;
788 u8 uuid[BTRFS_UUID_SIZE];
789 u8 parent_uuid[BTRFS_UUID_SIZE];
790 u8 received_uuid[BTRFS_UUID_SIZE];
791 __le64 ctransid; /* updated when an inode changes */
792 __le64 otransid; /* trans when created */
793 __le64 stransid; /* trans when sent. non-zero for received subvol */
794 __le64 rtransid; /* trans when received. non-zero for received subvol */
795 struct btrfs_timespec ctime;
796 struct btrfs_timespec otime;
797 struct btrfs_timespec stime;
798 struct btrfs_timespec rtime;
799 __le64 reserved[8]; /* for future */
800 } __attribute__ ((__packed__));
801
802 /*
803 * this is used for both forward and backward root refs
804 */
805 struct btrfs_root_ref {
806 __le64 dirid;
807 __le64 sequence;
808 __le16 name_len;
809 } __attribute__ ((__packed__));
810
811 struct btrfs_disk_balance_args {
812 /*
813 * profiles to operate on, single is denoted by
814 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
815 */
816 __le64 profiles;
817
818 /* usage filter */
819 __le64 usage;
820
821 /* devid filter */
822 __le64 devid;
823
824 /* devid subset filter [pstart..pend) */
825 __le64 pstart;
826 __le64 pend;
827
828 /* btrfs virtual address space subset filter [vstart..vend) */
829 __le64 vstart;
830 __le64 vend;
831
832 /*
833 * profile to convert to, single is denoted by
834 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
835 */
836 __le64 target;
837
838 /* BTRFS_BALANCE_ARGS_* */
839 __le64 flags;
840
841 __le64 unused[8];
842 } __attribute__ ((__packed__));
843
844 /*
845 * store balance parameters to disk so that balance can be properly
846 * resumed after crash or unmount
847 */
848 struct btrfs_balance_item {
849 /* BTRFS_BALANCE_* */
850 __le64 flags;
851
852 struct btrfs_disk_balance_args data;
853 struct btrfs_disk_balance_args meta;
854 struct btrfs_disk_balance_args sys;
855
856 __le64 unused[4];
857 } __attribute__ ((__packed__));
858
859 #define BTRFS_FILE_EXTENT_INLINE 0
860 #define BTRFS_FILE_EXTENT_REG 1
861 #define BTRFS_FILE_EXTENT_PREALLOC 2
862
863 struct btrfs_file_extent_item {
864 /*
865 * transaction id that created this extent
866 */
867 __le64 generation;
868 /*
869 * max number of bytes to hold this extent in ram
870 * when we split a compressed extent we can't know how big
871 * each of the resulting pieces will be. So, this is
872 * an upper limit on the size of the extent in ram instead of
873 * an exact limit.
874 */
875 __le64 ram_bytes;
876
877 /*
878 * 32 bits for the various ways we might encode the data,
879 * including compression and encryption. If any of these
880 * are set to something a given disk format doesn't understand
881 * it is treated like an incompat flag for reading and writing,
882 * but not for stat.
883 */
884 u8 compression;
885 u8 encryption;
886 __le16 other_encoding; /* spare for later use */
887
888 /* are we inline data or a real extent? */
889 u8 type;
890
891 /*
892 * disk space consumed by the extent, checksum blocks are included
893 * in these numbers
894 */
895 __le64 disk_bytenr;
896 __le64 disk_num_bytes;
897 /*
898 * the logical offset in file blocks (no csums)
899 * this extent record is for. This allows a file extent to point
900 * into the middle of an existing extent on disk, sharing it
901 * between two snapshots (useful if some bytes in the middle of the
902 * extent have changed
903 */
904 __le64 offset;
905 /*
906 * the logical number of file blocks (no csums included). This
907 * always reflects the size uncompressed and without encoding.
908 */
909 __le64 num_bytes;
910
911 } __attribute__ ((__packed__));
912
913 struct btrfs_csum_item {
914 u8 csum;
915 } __attribute__ ((__packed__));
916
917 struct btrfs_dev_stats_item {
918 /*
919 * grow this item struct at the end for future enhancements and keep
920 * the existing values unchanged
921 */
922 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
923 } __attribute__ ((__packed__));
924
925 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
926 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
927 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
928 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
929 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
930 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
931 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
932
933 struct btrfs_dev_replace {
934 u64 replace_state; /* see #define above */
935 u64 time_started; /* seconds since 1-Jan-1970 */
936 u64 time_stopped; /* seconds since 1-Jan-1970 */
937 atomic64_t num_write_errors;
938 atomic64_t num_uncorrectable_read_errors;
939
940 u64 cursor_left;
941 u64 committed_cursor_left;
942 u64 cursor_left_last_write_of_item;
943 u64 cursor_right;
944
945 u64 cont_reading_from_srcdev_mode; /* see #define above */
946
947 int is_valid;
948 int item_needs_writeback;
949 struct btrfs_device *srcdev;
950 struct btrfs_device *tgtdev;
951
952 pid_t lock_owner;
953 atomic_t nesting_level;
954 struct mutex lock_finishing_cancel_unmount;
955 struct mutex lock_management_lock;
956 struct mutex lock;
957
958 struct btrfs_scrub_progress scrub_progress;
959 };
960
961 struct btrfs_dev_replace_item {
962 /*
963 * grow this item struct at the end for future enhancements and keep
964 * the existing values unchanged
965 */
966 __le64 src_devid;
967 __le64 cursor_left;
968 __le64 cursor_right;
969 __le64 cont_reading_from_srcdev_mode;
970
971 __le64 replace_state;
972 __le64 time_started;
973 __le64 time_stopped;
974 __le64 num_write_errors;
975 __le64 num_uncorrectable_read_errors;
976 } __attribute__ ((__packed__));
977
978 /* different types of block groups (and chunks) */
979 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
980 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
981 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
982 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
983 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
984 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
985 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
986 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
987 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
988 #define BTRFS_BLOCK_GROUP_RESERVED BTRFS_AVAIL_ALLOC_BIT_SINGLE
989
990 enum btrfs_raid_types {
991 BTRFS_RAID_RAID10,
992 BTRFS_RAID_RAID1,
993 BTRFS_RAID_DUP,
994 BTRFS_RAID_RAID0,
995 BTRFS_RAID_SINGLE,
996 BTRFS_RAID_RAID5,
997 BTRFS_RAID_RAID6,
998 BTRFS_NR_RAID_TYPES
999 };
1000
1001 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1002 BTRFS_BLOCK_GROUP_SYSTEM | \
1003 BTRFS_BLOCK_GROUP_METADATA)
1004
1005 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1006 BTRFS_BLOCK_GROUP_RAID1 | \
1007 BTRFS_BLOCK_GROUP_RAID5 | \
1008 BTRFS_BLOCK_GROUP_RAID6 | \
1009 BTRFS_BLOCK_GROUP_DUP | \
1010 BTRFS_BLOCK_GROUP_RAID10)
1011 /*
1012 * We need a bit for restriper to be able to tell when chunks of type
1013 * SINGLE are available. This "extended" profile format is used in
1014 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1015 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1016 * to avoid remappings between two formats in future.
1017 */
1018 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1019
1020 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1021 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1022
1023 static inline u64 chunk_to_extended(u64 flags)
1024 {
1025 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1026 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1027
1028 return flags;
1029 }
1030 static inline u64 extended_to_chunk(u64 flags)
1031 {
1032 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1033 }
1034
1035 struct btrfs_block_group_item {
1036 __le64 used;
1037 __le64 chunk_objectid;
1038 __le64 flags;
1039 } __attribute__ ((__packed__));
1040
1041 /*
1042 * is subvolume quota turned on?
1043 */
1044 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1045 /*
1046 * RESCAN is set during the initialization phase
1047 */
1048 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1049 /*
1050 * Some qgroup entries are known to be out of date,
1051 * either because the configuration has changed in a way that
1052 * makes a rescan necessary, or because the fs has been mounted
1053 * with a non-qgroup-aware version.
1054 * Turning qouta off and on again makes it inconsistent, too.
1055 */
1056 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1057
1058 #define BTRFS_QGROUP_STATUS_VERSION 1
1059
1060 struct btrfs_qgroup_status_item {
1061 __le64 version;
1062 /*
1063 * the generation is updated during every commit. As older
1064 * versions of btrfs are not aware of qgroups, it will be
1065 * possible to detect inconsistencies by checking the
1066 * generation on mount time
1067 */
1068 __le64 generation;
1069
1070 /* flag definitions see above */
1071 __le64 flags;
1072
1073 /*
1074 * only used during scanning to record the progress
1075 * of the scan. It contains a logical address
1076 */
1077 __le64 rescan;
1078 } __attribute__ ((__packed__));
1079
1080 struct btrfs_qgroup_info_item {
1081 __le64 generation;
1082 __le64 rfer;
1083 __le64 rfer_cmpr;
1084 __le64 excl;
1085 __le64 excl_cmpr;
1086 } __attribute__ ((__packed__));
1087
1088 /* flags definition for qgroup limits */
1089 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1090 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1091 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1092 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1093 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1094 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1095
1096 struct btrfs_qgroup_limit_item {
1097 /*
1098 * only updated when any of the other values change
1099 */
1100 __le64 flags;
1101 __le64 max_rfer;
1102 __le64 max_excl;
1103 __le64 rsv_rfer;
1104 __le64 rsv_excl;
1105 } __attribute__ ((__packed__));
1106
1107 struct btrfs_space_info {
1108 u64 flags;
1109
1110 u64 total_bytes; /* total bytes in the space,
1111 this doesn't take mirrors into account */
1112 u64 bytes_used; /* total bytes used,
1113 this doesn't take mirrors into account */
1114 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1115 transaction finishes */
1116 u64 bytes_reserved; /* total bytes the allocator has reserved for
1117 current allocations */
1118 u64 bytes_readonly; /* total bytes that are read only */
1119
1120 u64 bytes_may_use; /* number of bytes that may be used for
1121 delalloc/allocations */
1122 u64 disk_used; /* total bytes used on disk */
1123 u64 disk_total; /* total bytes on disk, takes mirrors into
1124 account */
1125
1126 /*
1127 * bytes_pinned is kept in line with what is actually pinned, as in
1128 * we've called update_block_group and dropped the bytes_used counter
1129 * and increased the bytes_pinned counter. However this means that
1130 * bytes_pinned does not reflect the bytes that will be pinned once the
1131 * delayed refs are flushed, so this counter is inc'ed everytime we call
1132 * btrfs_free_extent so it is a realtime count of what will be freed
1133 * once the transaction is committed. It will be zero'ed everytime the
1134 * transaction commits.
1135 */
1136 struct percpu_counter total_bytes_pinned;
1137
1138 unsigned int full:1; /* indicates that we cannot allocate any more
1139 chunks for this space */
1140 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1141
1142 unsigned int flush:1; /* set if we are trying to make space */
1143
1144 unsigned int force_alloc; /* set if we need to force a chunk
1145 alloc for this space */
1146
1147 struct list_head list;
1148
1149 /* for block groups in our same type */
1150 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1151 spinlock_t lock;
1152 struct rw_semaphore groups_sem;
1153 wait_queue_head_t wait;
1154 };
1155
1156 #define BTRFS_BLOCK_RSV_GLOBAL 1
1157 #define BTRFS_BLOCK_RSV_DELALLOC 2
1158 #define BTRFS_BLOCK_RSV_TRANS 3
1159 #define BTRFS_BLOCK_RSV_CHUNK 4
1160 #define BTRFS_BLOCK_RSV_DELOPS 5
1161 #define BTRFS_BLOCK_RSV_EMPTY 6
1162 #define BTRFS_BLOCK_RSV_TEMP 7
1163
1164 struct btrfs_block_rsv {
1165 u64 size;
1166 u64 reserved;
1167 struct btrfs_space_info *space_info;
1168 spinlock_t lock;
1169 unsigned short full;
1170 unsigned short type;
1171 unsigned short failfast;
1172 };
1173
1174 /*
1175 * free clusters are used to claim free space in relatively large chunks,
1176 * allowing us to do less seeky writes. They are used for all metadata
1177 * allocations and data allocations in ssd mode.
1178 */
1179 struct btrfs_free_cluster {
1180 spinlock_t lock;
1181 spinlock_t refill_lock;
1182 struct rb_root root;
1183
1184 /* largest extent in this cluster */
1185 u64 max_size;
1186
1187 /* first extent starting offset */
1188 u64 window_start;
1189
1190 struct btrfs_block_group_cache *block_group;
1191 /*
1192 * when a cluster is allocated from a block group, we put the
1193 * cluster onto a list in the block group so that it can
1194 * be freed before the block group is freed.
1195 */
1196 struct list_head block_group_list;
1197 };
1198
1199 enum btrfs_caching_type {
1200 BTRFS_CACHE_NO = 0,
1201 BTRFS_CACHE_STARTED = 1,
1202 BTRFS_CACHE_FAST = 2,
1203 BTRFS_CACHE_FINISHED = 3,
1204 BTRFS_CACHE_ERROR = 4,
1205 };
1206
1207 enum btrfs_disk_cache_state {
1208 BTRFS_DC_WRITTEN = 0,
1209 BTRFS_DC_ERROR = 1,
1210 BTRFS_DC_CLEAR = 2,
1211 BTRFS_DC_SETUP = 3,
1212 BTRFS_DC_NEED_WRITE = 4,
1213 };
1214
1215 struct btrfs_caching_control {
1216 struct list_head list;
1217 struct mutex mutex;
1218 wait_queue_head_t wait;
1219 struct btrfs_work work;
1220 struct btrfs_block_group_cache *block_group;
1221 u64 progress;
1222 atomic_t count;
1223 };
1224
1225 struct btrfs_block_group_cache {
1226 struct btrfs_key key;
1227 struct btrfs_block_group_item item;
1228 struct btrfs_fs_info *fs_info;
1229 struct inode *inode;
1230 spinlock_t lock;
1231 u64 pinned;
1232 u64 reserved;
1233 u64 bytes_super;
1234 u64 flags;
1235 u64 sectorsize;
1236 u64 cache_generation;
1237
1238 /* for raid56, this is a full stripe, without parity */
1239 unsigned long full_stripe_len;
1240
1241 unsigned int ro:1;
1242 unsigned int dirty:1;
1243 unsigned int iref:1;
1244
1245 int disk_cache_state;
1246
1247 /* cache tracking stuff */
1248 int cached;
1249 struct btrfs_caching_control *caching_ctl;
1250 u64 last_byte_to_unpin;
1251
1252 struct btrfs_space_info *space_info;
1253
1254 /* free space cache stuff */
1255 struct btrfs_free_space_ctl *free_space_ctl;
1256
1257 /* block group cache stuff */
1258 struct rb_node cache_node;
1259
1260 /* for block groups in the same raid type */
1261 struct list_head list;
1262
1263 /* usage count */
1264 atomic_t count;
1265
1266 /* List of struct btrfs_free_clusters for this block group.
1267 * Today it will only have one thing on it, but that may change
1268 */
1269 struct list_head cluster_list;
1270
1271 /* For delayed block group creation */
1272 struct list_head new_bg_list;
1273 };
1274
1275 /* delayed seq elem */
1276 struct seq_list {
1277 struct list_head list;
1278 u64 seq;
1279 };
1280
1281 enum btrfs_orphan_cleanup_state {
1282 ORPHAN_CLEANUP_STARTED = 1,
1283 ORPHAN_CLEANUP_DONE = 2,
1284 };
1285
1286 /* used by the raid56 code to lock stripes for read/modify/write */
1287 struct btrfs_stripe_hash {
1288 struct list_head hash_list;
1289 wait_queue_head_t wait;
1290 spinlock_t lock;
1291 };
1292
1293 /* used by the raid56 code to lock stripes for read/modify/write */
1294 struct btrfs_stripe_hash_table {
1295 struct list_head stripe_cache;
1296 spinlock_t cache_lock;
1297 int cache_size;
1298 struct btrfs_stripe_hash table[];
1299 };
1300
1301 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1302
1303 /* fs_info */
1304 struct reloc_control;
1305 struct btrfs_device;
1306 struct btrfs_fs_devices;
1307 struct btrfs_balance_control;
1308 struct btrfs_delayed_root;
1309 struct btrfs_fs_info {
1310 u8 fsid[BTRFS_FSID_SIZE];
1311 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1312 struct btrfs_root *extent_root;
1313 struct btrfs_root *tree_root;
1314 struct btrfs_root *chunk_root;
1315 struct btrfs_root *dev_root;
1316 struct btrfs_root *fs_root;
1317 struct btrfs_root *csum_root;
1318 struct btrfs_root *quota_root;
1319 struct btrfs_root *uuid_root;
1320
1321 /* the log root tree is a directory of all the other log roots */
1322 struct btrfs_root *log_root_tree;
1323
1324 spinlock_t fs_roots_radix_lock;
1325 struct radix_tree_root fs_roots_radix;
1326
1327 /* block group cache stuff */
1328 spinlock_t block_group_cache_lock;
1329 u64 first_logical_byte;
1330 struct rb_root block_group_cache_tree;
1331
1332 /* keep track of unallocated space */
1333 spinlock_t free_chunk_lock;
1334 u64 free_chunk_space;
1335
1336 struct extent_io_tree freed_extents[2];
1337 struct extent_io_tree *pinned_extents;
1338
1339 /* logical->physical extent mapping */
1340 struct btrfs_mapping_tree mapping_tree;
1341
1342 /*
1343 * block reservation for extent, checksum, root tree and
1344 * delayed dir index item
1345 */
1346 struct btrfs_block_rsv global_block_rsv;
1347 /* block reservation for delay allocation */
1348 struct btrfs_block_rsv delalloc_block_rsv;
1349 /* block reservation for metadata operations */
1350 struct btrfs_block_rsv trans_block_rsv;
1351 /* block reservation for chunk tree */
1352 struct btrfs_block_rsv chunk_block_rsv;
1353 /* block reservation for delayed operations */
1354 struct btrfs_block_rsv delayed_block_rsv;
1355
1356 struct btrfs_block_rsv empty_block_rsv;
1357
1358 u64 generation;
1359 u64 last_trans_committed;
1360
1361 /*
1362 * this is updated to the current trans every time a full commit
1363 * is required instead of the faster short fsync log commits
1364 */
1365 u64 last_trans_log_full_commit;
1366 unsigned long mount_opt;
1367 unsigned long compress_type:4;
1368 int commit_interval;
1369 /*
1370 * It is a suggestive number, the read side is safe even it gets a
1371 * wrong number because we will write out the data into a regular
1372 * extent. The write side(mount/remount) is under ->s_umount lock,
1373 * so it is also safe.
1374 */
1375 u64 max_inline;
1376 /*
1377 * Protected by ->chunk_mutex and sb->s_umount.
1378 *
1379 * The reason that we use two lock to protect it is because only
1380 * remount and mount operations can change it and these two operations
1381 * are under sb->s_umount, but the read side (chunk allocation) can not
1382 * acquire sb->s_umount or the deadlock would happen. So we use two
1383 * locks to protect it. On the write side, we must acquire two locks,
1384 * and on the read side, we just need acquire one of them.
1385 */
1386 u64 alloc_start;
1387 struct btrfs_transaction *running_transaction;
1388 wait_queue_head_t transaction_throttle;
1389 wait_queue_head_t transaction_wait;
1390 wait_queue_head_t transaction_blocked_wait;
1391 wait_queue_head_t async_submit_wait;
1392
1393 /*
1394 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1395 * when they are updated.
1396 *
1397 * Because we do not clear the flags for ever, so we needn't use
1398 * the lock on the read side.
1399 *
1400 * We also needn't use the lock when we mount the fs, because
1401 * there is no other task which will update the flag.
1402 */
1403 spinlock_t super_lock;
1404 struct btrfs_super_block *super_copy;
1405 struct btrfs_super_block *super_for_commit;
1406 struct block_device *__bdev;
1407 struct super_block *sb;
1408 struct inode *btree_inode;
1409 struct backing_dev_info bdi;
1410 struct mutex tree_log_mutex;
1411 struct mutex transaction_kthread_mutex;
1412 struct mutex cleaner_mutex;
1413 struct mutex chunk_mutex;
1414 struct mutex volume_mutex;
1415
1416 /* this is used during read/modify/write to make sure
1417 * no two ios are trying to mod the same stripe at the same
1418 * time
1419 */
1420 struct btrfs_stripe_hash_table *stripe_hash_table;
1421
1422 /*
1423 * this protects the ordered operations list only while we are
1424 * processing all of the entries on it. This way we make
1425 * sure the commit code doesn't find the list temporarily empty
1426 * because another function happens to be doing non-waiting preflush
1427 * before jumping into the main commit.
1428 */
1429 struct mutex ordered_operations_mutex;
1430
1431 /*
1432 * Same as ordered_operations_mutex except this is for ordered extents
1433 * and not the operations.
1434 */
1435 struct mutex ordered_extent_flush_mutex;
1436
1437 struct rw_semaphore extent_commit_sem;
1438
1439 struct rw_semaphore cleanup_work_sem;
1440
1441 struct rw_semaphore subvol_sem;
1442 struct srcu_struct subvol_srcu;
1443
1444 spinlock_t trans_lock;
1445 /*
1446 * the reloc mutex goes with the trans lock, it is taken
1447 * during commit to protect us from the relocation code
1448 */
1449 struct mutex reloc_mutex;
1450
1451 struct list_head trans_list;
1452 struct list_head dead_roots;
1453 struct list_head caching_block_groups;
1454
1455 spinlock_t delayed_iput_lock;
1456 struct list_head delayed_iputs;
1457
1458 /* this protects tree_mod_seq_list */
1459 spinlock_t tree_mod_seq_lock;
1460 atomic64_t tree_mod_seq;
1461 struct list_head tree_mod_seq_list;
1462 struct seq_list tree_mod_seq_elem;
1463
1464 /* this protects tree_mod_log */
1465 rwlock_t tree_mod_log_lock;
1466 struct rb_root tree_mod_log;
1467
1468 atomic_t nr_async_submits;
1469 atomic_t async_submit_draining;
1470 atomic_t nr_async_bios;
1471 atomic_t async_delalloc_pages;
1472 atomic_t open_ioctl_trans;
1473
1474 /*
1475 * this is used to protect the following list -- ordered_roots.
1476 */
1477 spinlock_t ordered_root_lock;
1478
1479 /*
1480 * all fs/file tree roots in which there are data=ordered extents
1481 * pending writeback are added into this list.
1482 *
1483 * these can span multiple transactions and basically include
1484 * every dirty data page that isn't from nodatacow
1485 */
1486 struct list_head ordered_roots;
1487
1488 spinlock_t delalloc_root_lock;
1489 /* all fs/file tree roots that have delalloc inodes. */
1490 struct list_head delalloc_roots;
1491
1492 /*
1493 * there is a pool of worker threads for checksumming during writes
1494 * and a pool for checksumming after reads. This is because readers
1495 * can run with FS locks held, and the writers may be waiting for
1496 * those locks. We don't want ordering in the pending list to cause
1497 * deadlocks, and so the two are serviced separately.
1498 *
1499 * A third pool does submit_bio to avoid deadlocking with the other
1500 * two
1501 */
1502 struct btrfs_workers generic_worker;
1503 struct btrfs_workers workers;
1504 struct btrfs_workers delalloc_workers;
1505 struct btrfs_workers flush_workers;
1506 struct btrfs_workers endio_workers;
1507 struct btrfs_workers endio_meta_workers;
1508 struct btrfs_workers endio_raid56_workers;
1509 struct btrfs_workers rmw_workers;
1510 struct btrfs_workers endio_meta_write_workers;
1511 struct btrfs_workers endio_write_workers;
1512 struct btrfs_workers endio_freespace_worker;
1513 struct btrfs_workers submit_workers;
1514 struct btrfs_workers caching_workers;
1515 struct btrfs_workers readahead_workers;
1516
1517 /*
1518 * fixup workers take dirty pages that didn't properly go through
1519 * the cow mechanism and make them safe to write. It happens
1520 * for the sys_munmap function call path
1521 */
1522 struct btrfs_workers fixup_workers;
1523 struct btrfs_workers delayed_workers;
1524 struct task_struct *transaction_kthread;
1525 struct task_struct *cleaner_kthread;
1526 int thread_pool_size;
1527
1528 struct kobject super_kobj;
1529 struct completion kobj_unregister;
1530 int do_barriers;
1531 int closing;
1532 int log_root_recovering;
1533
1534 u64 total_pinned;
1535
1536 /* used to keep from writing metadata until there is a nice batch */
1537 struct percpu_counter dirty_metadata_bytes;
1538 struct percpu_counter delalloc_bytes;
1539 s32 dirty_metadata_batch;
1540 s32 delalloc_batch;
1541
1542 struct list_head dirty_cowonly_roots;
1543
1544 struct btrfs_fs_devices *fs_devices;
1545
1546 /*
1547 * the space_info list is almost entirely read only. It only changes
1548 * when we add a new raid type to the FS, and that happens
1549 * very rarely. RCU is used to protect it.
1550 */
1551 struct list_head space_info;
1552
1553 struct btrfs_space_info *data_sinfo;
1554
1555 struct reloc_control *reloc_ctl;
1556
1557 /* data_alloc_cluster is only used in ssd mode */
1558 struct btrfs_free_cluster data_alloc_cluster;
1559
1560 /* all metadata allocations go through this cluster */
1561 struct btrfs_free_cluster meta_alloc_cluster;
1562
1563 /* auto defrag inodes go here */
1564 spinlock_t defrag_inodes_lock;
1565 struct rb_root defrag_inodes;
1566 atomic_t defrag_running;
1567
1568 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1569 seqlock_t profiles_lock;
1570 /*
1571 * these three are in extended format (availability of single
1572 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1573 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1574 */
1575 u64 avail_data_alloc_bits;
1576 u64 avail_metadata_alloc_bits;
1577 u64 avail_system_alloc_bits;
1578
1579 /* restriper state */
1580 spinlock_t balance_lock;
1581 struct mutex balance_mutex;
1582 atomic_t balance_running;
1583 atomic_t balance_pause_req;
1584 atomic_t balance_cancel_req;
1585 struct btrfs_balance_control *balance_ctl;
1586 wait_queue_head_t balance_wait_q;
1587
1588 unsigned data_chunk_allocations;
1589 unsigned metadata_ratio;
1590
1591 void *bdev_holder;
1592
1593 /* private scrub information */
1594 struct mutex scrub_lock;
1595 atomic_t scrubs_running;
1596 atomic_t scrub_pause_req;
1597 atomic_t scrubs_paused;
1598 atomic_t scrub_cancel_req;
1599 wait_queue_head_t scrub_pause_wait;
1600 int scrub_workers_refcnt;
1601 struct btrfs_workers scrub_workers;
1602 struct btrfs_workers scrub_wr_completion_workers;
1603 struct btrfs_workers scrub_nocow_workers;
1604
1605 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1606 u32 check_integrity_print_mask;
1607 #endif
1608 /*
1609 * quota information
1610 */
1611 unsigned int quota_enabled:1;
1612
1613 /*
1614 * quota_enabled only changes state after a commit. This holds the
1615 * next state.
1616 */
1617 unsigned int pending_quota_state:1;
1618
1619 /* is qgroup tracking in a consistent state? */
1620 u64 qgroup_flags;
1621
1622 /* holds configuration and tracking. Protected by qgroup_lock */
1623 struct rb_root qgroup_tree;
1624 spinlock_t qgroup_lock;
1625
1626 /*
1627 * used to avoid frequently calling ulist_alloc()/ulist_free()
1628 * when doing qgroup accounting, it must be protected by qgroup_lock.
1629 */
1630 struct ulist *qgroup_ulist;
1631
1632 /* protect user change for quota operations */
1633 struct mutex qgroup_ioctl_lock;
1634
1635 /* list of dirty qgroups to be written at next commit */
1636 struct list_head dirty_qgroups;
1637
1638 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1639 u64 qgroup_seq;
1640
1641 /* qgroup rescan items */
1642 struct mutex qgroup_rescan_lock; /* protects the progress item */
1643 struct btrfs_key qgroup_rescan_progress;
1644 struct btrfs_workers qgroup_rescan_workers;
1645 struct completion qgroup_rescan_completion;
1646 struct btrfs_work qgroup_rescan_work;
1647
1648 /* filesystem state */
1649 unsigned long fs_state;
1650
1651 struct btrfs_delayed_root *delayed_root;
1652
1653 /* readahead tree */
1654 spinlock_t reada_lock;
1655 struct radix_tree_root reada_tree;
1656
1657 /* next backup root to be overwritten */
1658 int backup_root_index;
1659
1660 int num_tolerated_disk_barrier_failures;
1661
1662 /* device replace state */
1663 struct btrfs_dev_replace dev_replace;
1664
1665 atomic_t mutually_exclusive_operation_running;
1666
1667 struct semaphore uuid_tree_rescan_sem;
1668 unsigned int update_uuid_tree_gen:1;
1669 };
1670
1671 /*
1672 * in ram representation of the tree. extent_root is used for all allocations
1673 * and for the extent tree extent_root root.
1674 */
1675 struct btrfs_root {
1676 struct extent_buffer *node;
1677
1678 struct extent_buffer *commit_root;
1679 struct btrfs_root *log_root;
1680 struct btrfs_root *reloc_root;
1681
1682 struct btrfs_root_item root_item;
1683 struct btrfs_key root_key;
1684 struct btrfs_fs_info *fs_info;
1685 struct extent_io_tree dirty_log_pages;
1686
1687 struct kobject root_kobj;
1688 struct completion kobj_unregister;
1689 struct mutex objectid_mutex;
1690
1691 spinlock_t accounting_lock;
1692 struct btrfs_block_rsv *block_rsv;
1693
1694 /* free ino cache stuff */
1695 struct mutex fs_commit_mutex;
1696 struct btrfs_free_space_ctl *free_ino_ctl;
1697 enum btrfs_caching_type cached;
1698 spinlock_t cache_lock;
1699 wait_queue_head_t cache_wait;
1700 struct btrfs_free_space_ctl *free_ino_pinned;
1701 u64 cache_progress;
1702 struct inode *cache_inode;
1703
1704 struct mutex log_mutex;
1705 wait_queue_head_t log_writer_wait;
1706 wait_queue_head_t log_commit_wait[2];
1707 atomic_t log_writers;
1708 atomic_t log_commit[2];
1709 atomic_t log_batch;
1710 unsigned long log_transid;
1711 unsigned long last_log_commit;
1712 pid_t log_start_pid;
1713 bool log_multiple_pids;
1714
1715 u64 objectid;
1716 u64 last_trans;
1717
1718 /* data allocations are done in sectorsize units */
1719 u32 sectorsize;
1720
1721 /* node allocations are done in nodesize units */
1722 u32 nodesize;
1723
1724 /* leaf allocations are done in leafsize units */
1725 u32 leafsize;
1726
1727 u32 stripesize;
1728
1729 u32 type;
1730
1731 u64 highest_objectid;
1732
1733 /* btrfs_record_root_in_trans is a multi-step process,
1734 * and it can race with the balancing code. But the
1735 * race is very small, and only the first time the root
1736 * is added to each transaction. So in_trans_setup
1737 * is used to tell us when more checks are required
1738 */
1739 unsigned long in_trans_setup;
1740 int ref_cows;
1741 int track_dirty;
1742 int in_radix;
1743 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1744 int dummy_root;
1745 #endif
1746 u64 defrag_trans_start;
1747 struct btrfs_key defrag_progress;
1748 struct btrfs_key defrag_max;
1749 int defrag_running;
1750 char *name;
1751
1752 /* the dirty list is only used by non-reference counted roots */
1753 struct list_head dirty_list;
1754
1755 struct list_head root_list;
1756
1757 spinlock_t log_extents_lock[2];
1758 struct list_head logged_list[2];
1759
1760 spinlock_t orphan_lock;
1761 atomic_t orphan_inodes;
1762 struct btrfs_block_rsv *orphan_block_rsv;
1763 int orphan_item_inserted;
1764 int orphan_cleanup_state;
1765
1766 spinlock_t inode_lock;
1767 /* red-black tree that keeps track of in-memory inodes */
1768 struct rb_root inode_tree;
1769
1770 /*
1771 * radix tree that keeps track of delayed nodes of every inode,
1772 * protected by inode_lock
1773 */
1774 struct radix_tree_root delayed_nodes_tree;
1775 /*
1776 * right now this just gets used so that a root has its own devid
1777 * for stat. It may be used for more later
1778 */
1779 dev_t anon_dev;
1780
1781 int force_cow;
1782
1783 spinlock_t root_item_lock;
1784 atomic_t refs;
1785
1786 spinlock_t delalloc_lock;
1787 /*
1788 * all of the inodes that have delalloc bytes. It is possible for
1789 * this list to be empty even when there is still dirty data=ordered
1790 * extents waiting to finish IO.
1791 */
1792 struct list_head delalloc_inodes;
1793 struct list_head delalloc_root;
1794 u64 nr_delalloc_inodes;
1795 /*
1796 * this is used by the balancing code to wait for all the pending
1797 * ordered extents
1798 */
1799 spinlock_t ordered_extent_lock;
1800
1801 /*
1802 * all of the data=ordered extents pending writeback
1803 * these can span multiple transactions and basically include
1804 * every dirty data page that isn't from nodatacow
1805 */
1806 struct list_head ordered_extents;
1807 struct list_head ordered_root;
1808 u64 nr_ordered_extents;
1809 };
1810
1811 struct btrfs_ioctl_defrag_range_args {
1812 /* start of the defrag operation */
1813 __u64 start;
1814
1815 /* number of bytes to defrag, use (u64)-1 to say all */
1816 __u64 len;
1817
1818 /*
1819 * flags for the operation, which can include turning
1820 * on compression for this one defrag
1821 */
1822 __u64 flags;
1823
1824 /*
1825 * any extent bigger than this will be considered
1826 * already defragged. Use 0 to take the kernel default
1827 * Use 1 to say every single extent must be rewritten
1828 */
1829 __u32 extent_thresh;
1830
1831 /*
1832 * which compression method to use if turning on compression
1833 * for this defrag operation. If unspecified, zlib will
1834 * be used
1835 */
1836 __u32 compress_type;
1837
1838 /* spare for later */
1839 __u32 unused[4];
1840 };
1841
1842
1843 /*
1844 * inode items have the data typically returned from stat and store other
1845 * info about object characteristics. There is one for every file and dir in
1846 * the FS
1847 */
1848 #define BTRFS_INODE_ITEM_KEY 1
1849 #define BTRFS_INODE_REF_KEY 12
1850 #define BTRFS_INODE_EXTREF_KEY 13
1851 #define BTRFS_XATTR_ITEM_KEY 24
1852 #define BTRFS_ORPHAN_ITEM_KEY 48
1853 /* reserve 2-15 close to the inode for later flexibility */
1854
1855 /*
1856 * dir items are the name -> inode pointers in a directory. There is one
1857 * for every name in a directory.
1858 */
1859 #define BTRFS_DIR_LOG_ITEM_KEY 60
1860 #define BTRFS_DIR_LOG_INDEX_KEY 72
1861 #define BTRFS_DIR_ITEM_KEY 84
1862 #define BTRFS_DIR_INDEX_KEY 96
1863 /*
1864 * extent data is for file data
1865 */
1866 #define BTRFS_EXTENT_DATA_KEY 108
1867
1868 /*
1869 * extent csums are stored in a separate tree and hold csums for
1870 * an entire extent on disk.
1871 */
1872 #define BTRFS_EXTENT_CSUM_KEY 128
1873
1874 /*
1875 * root items point to tree roots. They are typically in the root
1876 * tree used by the super block to find all the other trees
1877 */
1878 #define BTRFS_ROOT_ITEM_KEY 132
1879
1880 /*
1881 * root backrefs tie subvols and snapshots to the directory entries that
1882 * reference them
1883 */
1884 #define BTRFS_ROOT_BACKREF_KEY 144
1885
1886 /*
1887 * root refs make a fast index for listing all of the snapshots and
1888 * subvolumes referenced by a given root. They point directly to the
1889 * directory item in the root that references the subvol
1890 */
1891 #define BTRFS_ROOT_REF_KEY 156
1892
1893 /*
1894 * extent items are in the extent map tree. These record which blocks
1895 * are used, and how many references there are to each block
1896 */
1897 #define BTRFS_EXTENT_ITEM_KEY 168
1898
1899 /*
1900 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1901 * the length, so we save the level in key->offset instead of the length.
1902 */
1903 #define BTRFS_METADATA_ITEM_KEY 169
1904
1905 #define BTRFS_TREE_BLOCK_REF_KEY 176
1906
1907 #define BTRFS_EXTENT_DATA_REF_KEY 178
1908
1909 #define BTRFS_EXTENT_REF_V0_KEY 180
1910
1911 #define BTRFS_SHARED_BLOCK_REF_KEY 182
1912
1913 #define BTRFS_SHARED_DATA_REF_KEY 184
1914
1915 /*
1916 * block groups give us hints into the extent allocation trees. Which
1917 * blocks are free etc etc
1918 */
1919 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1920
1921 #define BTRFS_DEV_EXTENT_KEY 204
1922 #define BTRFS_DEV_ITEM_KEY 216
1923 #define BTRFS_CHUNK_ITEM_KEY 228
1924
1925 /*
1926 * Records the overall state of the qgroups.
1927 * There's only one instance of this key present,
1928 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
1929 */
1930 #define BTRFS_QGROUP_STATUS_KEY 240
1931 /*
1932 * Records the currently used space of the qgroup.
1933 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
1934 */
1935 #define BTRFS_QGROUP_INFO_KEY 242
1936 /*
1937 * Contains the user configured limits for the qgroup.
1938 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
1939 */
1940 #define BTRFS_QGROUP_LIMIT_KEY 244
1941 /*
1942 * Records the child-parent relationship of qgroups. For
1943 * each relation, 2 keys are present:
1944 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
1945 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
1946 */
1947 #define BTRFS_QGROUP_RELATION_KEY 246
1948
1949 #define BTRFS_BALANCE_ITEM_KEY 248
1950
1951 /*
1952 * Persistantly stores the io stats in the device tree.
1953 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1954 */
1955 #define BTRFS_DEV_STATS_KEY 249
1956
1957 /*
1958 * Persistantly stores the device replace state in the device tree.
1959 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
1960 */
1961 #define BTRFS_DEV_REPLACE_KEY 250
1962
1963 /*
1964 * Stores items that allow to quickly map UUIDs to something else.
1965 * These items are part of the filesystem UUID tree.
1966 * The key is built like this:
1967 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
1968 */
1969 #if BTRFS_UUID_SIZE != 16
1970 #error "UUID items require BTRFS_UUID_SIZE == 16!"
1971 #endif
1972 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
1973 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
1974 * received subvols */
1975
1976 /*
1977 * string items are for debugging. They just store a short string of
1978 * data in the FS
1979 */
1980 #define BTRFS_STRING_ITEM_KEY 253
1981
1982 /*
1983 * Flags for mount options.
1984 *
1985 * Note: don't forget to add new options to btrfs_show_options()
1986 */
1987 #define BTRFS_MOUNT_NODATASUM (1 << 0)
1988 #define BTRFS_MOUNT_NODATACOW (1 << 1)
1989 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
1990 #define BTRFS_MOUNT_SSD (1 << 3)
1991 #define BTRFS_MOUNT_DEGRADED (1 << 4)
1992 #define BTRFS_MOUNT_COMPRESS (1 << 5)
1993 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
1994 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
1995 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
1996 #define BTRFS_MOUNT_NOSSD (1 << 9)
1997 #define BTRFS_MOUNT_DISCARD (1 << 10)
1998 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
1999 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2000 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2001 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2002 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2003 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2004 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2005 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2006 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2007 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2008 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2009 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2010 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2011
2012 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2013
2014 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2015 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2016 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2017 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2018 BTRFS_MOUNT_##opt)
2019 /*
2020 * Inode flags
2021 */
2022 #define BTRFS_INODE_NODATASUM (1 << 0)
2023 #define BTRFS_INODE_NODATACOW (1 << 1)
2024 #define BTRFS_INODE_READONLY (1 << 2)
2025 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2026 #define BTRFS_INODE_PREALLOC (1 << 4)
2027 #define BTRFS_INODE_SYNC (1 << 5)
2028 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2029 #define BTRFS_INODE_APPEND (1 << 7)
2030 #define BTRFS_INODE_NODUMP (1 << 8)
2031 #define BTRFS_INODE_NOATIME (1 << 9)
2032 #define BTRFS_INODE_DIRSYNC (1 << 10)
2033 #define BTRFS_INODE_COMPRESS (1 << 11)
2034
2035 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2036
2037 struct btrfs_map_token {
2038 struct extent_buffer *eb;
2039 char *kaddr;
2040 unsigned long offset;
2041 };
2042
2043 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2044 {
2045 token->kaddr = NULL;
2046 }
2047
2048 /* some macros to generate set/get funcs for the struct fields. This
2049 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2050 * one for u8:
2051 */
2052 #define le8_to_cpu(v) (v)
2053 #define cpu_to_le8(v) (v)
2054 #define __le8 u8
2055
2056 #define read_eb_member(eb, ptr, type, member, result) ( \
2057 read_extent_buffer(eb, (char *)(result), \
2058 ((unsigned long)(ptr)) + \
2059 offsetof(type, member), \
2060 sizeof(((type *)0)->member)))
2061
2062 #define write_eb_member(eb, ptr, type, member, result) ( \
2063 write_extent_buffer(eb, (char *)(result), \
2064 ((unsigned long)(ptr)) + \
2065 offsetof(type, member), \
2066 sizeof(((type *)0)->member)))
2067
2068 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2069 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2070 unsigned long off, \
2071 struct btrfs_map_token *token); \
2072 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2073 unsigned long off, u##bits val, \
2074 struct btrfs_map_token *token); \
2075 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2076 unsigned long off) \
2077 { \
2078 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2079 } \
2080 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2081 unsigned long off, u##bits val) \
2082 { \
2083 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2084 }
2085
2086 DECLARE_BTRFS_SETGET_BITS(8)
2087 DECLARE_BTRFS_SETGET_BITS(16)
2088 DECLARE_BTRFS_SETGET_BITS(32)
2089 DECLARE_BTRFS_SETGET_BITS(64)
2090
2091 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2092 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2093 { \
2094 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2095 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2096 } \
2097 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2098 u##bits val) \
2099 { \
2100 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2101 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2102 } \
2103 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2104 struct btrfs_map_token *token) \
2105 { \
2106 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2107 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2108 } \
2109 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2110 type *s, u##bits val, \
2111 struct btrfs_map_token *token) \
2112 { \
2113 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2114 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2115 }
2116
2117 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2118 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2119 { \
2120 type *p = page_address(eb->pages[0]); \
2121 u##bits res = le##bits##_to_cpu(p->member); \
2122 return res; \
2123 } \
2124 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2125 u##bits val) \
2126 { \
2127 type *p = page_address(eb->pages[0]); \
2128 p->member = cpu_to_le##bits(val); \
2129 }
2130
2131 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2132 static inline u##bits btrfs_##name(type *s) \
2133 { \
2134 return le##bits##_to_cpu(s->member); \
2135 } \
2136 static inline void btrfs_set_##name(type *s, u##bits val) \
2137 { \
2138 s->member = cpu_to_le##bits(val); \
2139 }
2140
2141 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2142 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2143 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2144 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2145 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2146 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2147 start_offset, 64);
2148 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2149 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2150 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2151 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2152 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2153 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2154
2155 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2156 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2157 total_bytes, 64);
2158 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2159 bytes_used, 64);
2160 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2161 io_align, 32);
2162 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2163 io_width, 32);
2164 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2165 sector_size, 32);
2166 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2167 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2168 dev_group, 32);
2169 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2170 seek_speed, 8);
2171 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2172 bandwidth, 8);
2173 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2174 generation, 64);
2175
2176 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2177 {
2178 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2179 }
2180
2181 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2182 {
2183 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2184 }
2185
2186 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2187 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2188 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2189 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2190 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2191 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2192 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2193 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2194 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2195 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2196 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2197
2198 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2199 {
2200 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2201 }
2202
2203 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2204 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2205 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2206 stripe_len, 64);
2207 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2208 io_align, 32);
2209 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2210 io_width, 32);
2211 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2212 sector_size, 32);
2213 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2214 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2215 num_stripes, 16);
2216 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2217 sub_stripes, 16);
2218 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2219 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2220
2221 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2222 int nr)
2223 {
2224 unsigned long offset = (unsigned long)c;
2225 offset += offsetof(struct btrfs_chunk, stripe);
2226 offset += nr * sizeof(struct btrfs_stripe);
2227 return (struct btrfs_stripe *)offset;
2228 }
2229
2230 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2231 {
2232 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2233 }
2234
2235 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2236 struct btrfs_chunk *c, int nr)
2237 {
2238 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2239 }
2240
2241 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2242 struct btrfs_chunk *c, int nr)
2243 {
2244 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2245 }
2246
2247 /* struct btrfs_block_group_item */
2248 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2249 used, 64);
2250 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2251 used, 64);
2252 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2253 struct btrfs_block_group_item, chunk_objectid, 64);
2254
2255 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2256 struct btrfs_block_group_item, chunk_objectid, 64);
2257 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2258 struct btrfs_block_group_item, flags, 64);
2259 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2260 struct btrfs_block_group_item, flags, 64);
2261
2262 /* struct btrfs_inode_ref */
2263 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2264 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2265
2266 /* struct btrfs_inode_extref */
2267 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2268 parent_objectid, 64);
2269 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2270 name_len, 16);
2271 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2272
2273 /* struct btrfs_inode_item */
2274 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2275 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2276 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2277 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2278 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2279 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2280 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2281 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2282 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2283 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2284 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2285 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2286 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2287 generation, 64);
2288 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2289 sequence, 64);
2290 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2291 transid, 64);
2292 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2293 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2294 nbytes, 64);
2295 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2296 block_group, 64);
2297 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2298 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2299 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2300 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2301 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2302 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2303
2304 static inline struct btrfs_timespec *
2305 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2306 {
2307 unsigned long ptr = (unsigned long)inode_item;
2308 ptr += offsetof(struct btrfs_inode_item, atime);
2309 return (struct btrfs_timespec *)ptr;
2310 }
2311
2312 static inline struct btrfs_timespec *
2313 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2314 {
2315 unsigned long ptr = (unsigned long)inode_item;
2316 ptr += offsetof(struct btrfs_inode_item, mtime);
2317 return (struct btrfs_timespec *)ptr;
2318 }
2319
2320 static inline struct btrfs_timespec *
2321 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2322 {
2323 unsigned long ptr = (unsigned long)inode_item;
2324 ptr += offsetof(struct btrfs_inode_item, ctime);
2325 return (struct btrfs_timespec *)ptr;
2326 }
2327
2328 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2329 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2330 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2331 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2332
2333 /* struct btrfs_dev_extent */
2334 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2335 chunk_tree, 64);
2336 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2337 chunk_objectid, 64);
2338 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2339 chunk_offset, 64);
2340 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2341
2342 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2343 {
2344 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2345 return (unsigned long)dev + ptr;
2346 }
2347
2348 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2349 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2350 generation, 64);
2351 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2352
2353 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2354
2355
2356 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2357
2358 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2359 struct btrfs_tree_block_info *item,
2360 struct btrfs_disk_key *key)
2361 {
2362 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2363 }
2364
2365 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2366 struct btrfs_tree_block_info *item,
2367 struct btrfs_disk_key *key)
2368 {
2369 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2370 }
2371
2372 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2373 root, 64);
2374 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2375 objectid, 64);
2376 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2377 offset, 64);
2378 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2379 count, 32);
2380
2381 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2382 count, 32);
2383
2384 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2385 type, 8);
2386 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2387 offset, 64);
2388
2389 static inline u32 btrfs_extent_inline_ref_size(int type)
2390 {
2391 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2392 type == BTRFS_SHARED_BLOCK_REF_KEY)
2393 return sizeof(struct btrfs_extent_inline_ref);
2394 if (type == BTRFS_SHARED_DATA_REF_KEY)
2395 return sizeof(struct btrfs_shared_data_ref) +
2396 sizeof(struct btrfs_extent_inline_ref);
2397 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2398 return sizeof(struct btrfs_extent_data_ref) +
2399 offsetof(struct btrfs_extent_inline_ref, offset);
2400 BUG();
2401 return 0;
2402 }
2403
2404 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2405 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2406 generation, 64);
2407 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2408 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2409
2410 /* struct btrfs_node */
2411 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2412 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2413 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2414 blockptr, 64);
2415 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2416 generation, 64);
2417
2418 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2419 {
2420 unsigned long ptr;
2421 ptr = offsetof(struct btrfs_node, ptrs) +
2422 sizeof(struct btrfs_key_ptr) * nr;
2423 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2424 }
2425
2426 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2427 int nr, u64 val)
2428 {
2429 unsigned long ptr;
2430 ptr = offsetof(struct btrfs_node, ptrs) +
2431 sizeof(struct btrfs_key_ptr) * nr;
2432 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2433 }
2434
2435 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2436 {
2437 unsigned long ptr;
2438 ptr = offsetof(struct btrfs_node, ptrs) +
2439 sizeof(struct btrfs_key_ptr) * nr;
2440 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2441 }
2442
2443 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2444 int nr, u64 val)
2445 {
2446 unsigned long ptr;
2447 ptr = offsetof(struct btrfs_node, ptrs) +
2448 sizeof(struct btrfs_key_ptr) * nr;
2449 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2450 }
2451
2452 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2453 {
2454 return offsetof(struct btrfs_node, ptrs) +
2455 sizeof(struct btrfs_key_ptr) * nr;
2456 }
2457
2458 void btrfs_node_key(struct extent_buffer *eb,
2459 struct btrfs_disk_key *disk_key, int nr);
2460
2461 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2462 struct btrfs_disk_key *disk_key, int nr)
2463 {
2464 unsigned long ptr;
2465 ptr = btrfs_node_key_ptr_offset(nr);
2466 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2467 struct btrfs_key_ptr, key, disk_key);
2468 }
2469
2470 /* struct btrfs_item */
2471 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2472 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2473 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2474 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2475
2476 static inline unsigned long btrfs_item_nr_offset(int nr)
2477 {
2478 return offsetof(struct btrfs_leaf, items) +
2479 sizeof(struct btrfs_item) * nr;
2480 }
2481
2482 static inline struct btrfs_item *btrfs_item_nr(int nr)
2483 {
2484 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2485 }
2486
2487 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2488 struct btrfs_item *item)
2489 {
2490 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2491 }
2492
2493 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2494 {
2495 return btrfs_item_end(eb, btrfs_item_nr(nr));
2496 }
2497
2498 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2499 {
2500 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2501 }
2502
2503 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2504 {
2505 return btrfs_item_size(eb, btrfs_item_nr(nr));
2506 }
2507
2508 static inline void btrfs_item_key(struct extent_buffer *eb,
2509 struct btrfs_disk_key *disk_key, int nr)
2510 {
2511 struct btrfs_item *item = btrfs_item_nr(nr);
2512 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2513 }
2514
2515 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2516 struct btrfs_disk_key *disk_key, int nr)
2517 {
2518 struct btrfs_item *item = btrfs_item_nr(nr);
2519 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2520 }
2521
2522 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2523
2524 /*
2525 * struct btrfs_root_ref
2526 */
2527 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2528 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2529 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2530
2531 /* struct btrfs_dir_item */
2532 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2533 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2534 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2535 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2536 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2537 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2538 data_len, 16);
2539 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2540 name_len, 16);
2541 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2542 transid, 64);
2543
2544 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2545 struct btrfs_dir_item *item,
2546 struct btrfs_disk_key *key)
2547 {
2548 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2549 }
2550
2551 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2552 struct btrfs_dir_item *item,
2553 struct btrfs_disk_key *key)
2554 {
2555 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2556 }
2557
2558 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2559 num_entries, 64);
2560 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2561 num_bitmaps, 64);
2562 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2563 generation, 64);
2564
2565 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2566 struct btrfs_free_space_header *h,
2567 struct btrfs_disk_key *key)
2568 {
2569 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2570 }
2571
2572 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2573 struct btrfs_free_space_header *h,
2574 struct btrfs_disk_key *key)
2575 {
2576 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2577 }
2578
2579 /* struct btrfs_disk_key */
2580 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2581 objectid, 64);
2582 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2583 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2584
2585 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2586 struct btrfs_disk_key *disk)
2587 {
2588 cpu->offset = le64_to_cpu(disk->offset);
2589 cpu->type = disk->type;
2590 cpu->objectid = le64_to_cpu(disk->objectid);
2591 }
2592
2593 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2594 struct btrfs_key *cpu)
2595 {
2596 disk->offset = cpu_to_le64(cpu->offset);
2597 disk->type = cpu->type;
2598 disk->objectid = cpu_to_le64(cpu->objectid);
2599 }
2600
2601 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2602 struct btrfs_key *key, int nr)
2603 {
2604 struct btrfs_disk_key disk_key;
2605 btrfs_node_key(eb, &disk_key, nr);
2606 btrfs_disk_key_to_cpu(key, &disk_key);
2607 }
2608
2609 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2610 struct btrfs_key *key, int nr)
2611 {
2612 struct btrfs_disk_key disk_key;
2613 btrfs_item_key(eb, &disk_key, nr);
2614 btrfs_disk_key_to_cpu(key, &disk_key);
2615 }
2616
2617 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2618 struct btrfs_dir_item *item,
2619 struct btrfs_key *key)
2620 {
2621 struct btrfs_disk_key disk_key;
2622 btrfs_dir_item_key(eb, item, &disk_key);
2623 btrfs_disk_key_to_cpu(key, &disk_key);
2624 }
2625
2626
2627 static inline u8 btrfs_key_type(struct btrfs_key *key)
2628 {
2629 return key->type;
2630 }
2631
2632 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2633 {
2634 key->type = val;
2635 }
2636
2637 /* struct btrfs_header */
2638 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2639 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2640 generation, 64);
2641 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2642 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2643 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2644 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2645 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2646 generation, 64);
2647 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2648 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2649 nritems, 32);
2650 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2651
2652 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2653 {
2654 return (btrfs_header_flags(eb) & flag) == flag;
2655 }
2656
2657 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2658 {
2659 u64 flags = btrfs_header_flags(eb);
2660 btrfs_set_header_flags(eb, flags | flag);
2661 return (flags & flag) == flag;
2662 }
2663
2664 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2665 {
2666 u64 flags = btrfs_header_flags(eb);
2667 btrfs_set_header_flags(eb, flags & ~flag);
2668 return (flags & flag) == flag;
2669 }
2670
2671 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2672 {
2673 u64 flags = btrfs_header_flags(eb);
2674 return flags >> BTRFS_BACKREF_REV_SHIFT;
2675 }
2676
2677 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2678 int rev)
2679 {
2680 u64 flags = btrfs_header_flags(eb);
2681 flags &= ~BTRFS_BACKREF_REV_MASK;
2682 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2683 btrfs_set_header_flags(eb, flags);
2684 }
2685
2686 static inline unsigned long btrfs_header_fsid(void)
2687 {
2688 return offsetof(struct btrfs_header, fsid);
2689 }
2690
2691 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2692 {
2693 return offsetof(struct btrfs_header, chunk_tree_uuid);
2694 }
2695
2696 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2697 {
2698 return btrfs_header_level(eb) == 0;
2699 }
2700
2701 /* struct btrfs_root_item */
2702 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2703 generation, 64);
2704 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2705 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2706 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2707
2708 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2709 generation, 64);
2710 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2711 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2712 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2713 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2714 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2715 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2716 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2717 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2718 last_snapshot, 64);
2719 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2720 generation_v2, 64);
2721 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2722 ctransid, 64);
2723 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2724 otransid, 64);
2725 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2726 stransid, 64);
2727 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2728 rtransid, 64);
2729
2730 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2731 {
2732 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2733 }
2734
2735 /* struct btrfs_root_backup */
2736 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2737 tree_root, 64);
2738 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2739 tree_root_gen, 64);
2740 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2741 tree_root_level, 8);
2742
2743 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2744 chunk_root, 64);
2745 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2746 chunk_root_gen, 64);
2747 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2748 chunk_root_level, 8);
2749
2750 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2751 extent_root, 64);
2752 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2753 extent_root_gen, 64);
2754 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2755 extent_root_level, 8);
2756
2757 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2758 fs_root, 64);
2759 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2760 fs_root_gen, 64);
2761 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2762 fs_root_level, 8);
2763
2764 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2765 dev_root, 64);
2766 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2767 dev_root_gen, 64);
2768 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2769 dev_root_level, 8);
2770
2771 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2772 csum_root, 64);
2773 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2774 csum_root_gen, 64);
2775 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2776 csum_root_level, 8);
2777 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2778 total_bytes, 64);
2779 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2780 bytes_used, 64);
2781 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2782 num_devices, 64);
2783
2784 /* struct btrfs_balance_item */
2785 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2786
2787 static inline void btrfs_balance_data(struct extent_buffer *eb,
2788 struct btrfs_balance_item *bi,
2789 struct btrfs_disk_balance_args *ba)
2790 {
2791 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2792 }
2793
2794 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2795 struct btrfs_balance_item *bi,
2796 struct btrfs_disk_balance_args *ba)
2797 {
2798 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2799 }
2800
2801 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2802 struct btrfs_balance_item *bi,
2803 struct btrfs_disk_balance_args *ba)
2804 {
2805 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2806 }
2807
2808 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2809 struct btrfs_balance_item *bi,
2810 struct btrfs_disk_balance_args *ba)
2811 {
2812 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2813 }
2814
2815 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2816 struct btrfs_balance_item *bi,
2817 struct btrfs_disk_balance_args *ba)
2818 {
2819 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2820 }
2821
2822 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2823 struct btrfs_balance_item *bi,
2824 struct btrfs_disk_balance_args *ba)
2825 {
2826 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2827 }
2828
2829 static inline void
2830 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2831 struct btrfs_disk_balance_args *disk)
2832 {
2833 memset(cpu, 0, sizeof(*cpu));
2834
2835 cpu->profiles = le64_to_cpu(disk->profiles);
2836 cpu->usage = le64_to_cpu(disk->usage);
2837 cpu->devid = le64_to_cpu(disk->devid);
2838 cpu->pstart = le64_to_cpu(disk->pstart);
2839 cpu->pend = le64_to_cpu(disk->pend);
2840 cpu->vstart = le64_to_cpu(disk->vstart);
2841 cpu->vend = le64_to_cpu(disk->vend);
2842 cpu->target = le64_to_cpu(disk->target);
2843 cpu->flags = le64_to_cpu(disk->flags);
2844 }
2845
2846 static inline void
2847 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2848 struct btrfs_balance_args *cpu)
2849 {
2850 memset(disk, 0, sizeof(*disk));
2851
2852 disk->profiles = cpu_to_le64(cpu->profiles);
2853 disk->usage = cpu_to_le64(cpu->usage);
2854 disk->devid = cpu_to_le64(cpu->devid);
2855 disk->pstart = cpu_to_le64(cpu->pstart);
2856 disk->pend = cpu_to_le64(cpu->pend);
2857 disk->vstart = cpu_to_le64(cpu->vstart);
2858 disk->vend = cpu_to_le64(cpu->vend);
2859 disk->target = cpu_to_le64(cpu->target);
2860 disk->flags = cpu_to_le64(cpu->flags);
2861 }
2862
2863 /* struct btrfs_super_block */
2864 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2865 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2866 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2867 generation, 64);
2868 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2869 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2870 struct btrfs_super_block, sys_chunk_array_size, 32);
2871 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2872 struct btrfs_super_block, chunk_root_generation, 64);
2873 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2874 root_level, 8);
2875 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2876 chunk_root, 64);
2877 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2878 chunk_root_level, 8);
2879 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2880 log_root, 64);
2881 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2882 log_root_transid, 64);
2883 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2884 log_root_level, 8);
2885 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2886 total_bytes, 64);
2887 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2888 bytes_used, 64);
2889 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2890 sectorsize, 32);
2891 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2892 nodesize, 32);
2893 BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2894 leafsize, 32);
2895 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2896 stripesize, 32);
2897 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2898 root_dir_objectid, 64);
2899 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2900 num_devices, 64);
2901 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2902 compat_flags, 64);
2903 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2904 compat_ro_flags, 64);
2905 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2906 incompat_flags, 64);
2907 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2908 csum_type, 16);
2909 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2910 cache_generation, 64);
2911 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2912 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2913 uuid_tree_generation, 64);
2914
2915 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2916 {
2917 u16 t = btrfs_super_csum_type(s);
2918 /*
2919 * csum type is validated at mount time
2920 */
2921 return btrfs_csum_sizes[t];
2922 }
2923
2924 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2925 {
2926 return offsetof(struct btrfs_leaf, items);
2927 }
2928
2929 /* struct btrfs_file_extent_item */
2930 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2931 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2932 struct btrfs_file_extent_item, disk_bytenr, 64);
2933 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2934 struct btrfs_file_extent_item, offset, 64);
2935 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2936 struct btrfs_file_extent_item, generation, 64);
2937 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2938 struct btrfs_file_extent_item, num_bytes, 64);
2939 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2940 struct btrfs_file_extent_item, disk_num_bytes, 64);
2941 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2942 struct btrfs_file_extent_item, compression, 8);
2943
2944 static inline unsigned long
2945 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2946 {
2947 unsigned long offset = (unsigned long)e;
2948 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2949 return offset;
2950 }
2951
2952 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2953 {
2954 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2955 }
2956
2957 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2958 disk_bytenr, 64);
2959 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2960 generation, 64);
2961 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2962 disk_num_bytes, 64);
2963 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2964 offset, 64);
2965 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2966 num_bytes, 64);
2967 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2968 ram_bytes, 64);
2969 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2970 compression, 8);
2971 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2972 encryption, 8);
2973 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2974 other_encoding, 16);
2975
2976 /* this returns the number of file bytes represented by the inline item.
2977 * If an item is compressed, this is the uncompressed size
2978 */
2979 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
2980 struct btrfs_file_extent_item *e)
2981 {
2982 return btrfs_file_extent_ram_bytes(eb, e);
2983 }
2984
2985 /*
2986 * this returns the number of bytes used by the item on disk, minus the
2987 * size of any extent headers. If a file is compressed on disk, this is
2988 * the compressed size
2989 */
2990 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
2991 struct btrfs_item *e)
2992 {
2993 unsigned long offset;
2994 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
2995 return btrfs_item_size(eb, e) - offset;
2996 }
2997
2998 /* btrfs_dev_stats_item */
2999 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3000 struct btrfs_dev_stats_item *ptr,
3001 int index)
3002 {
3003 u64 val;
3004
3005 read_extent_buffer(eb, &val,
3006 offsetof(struct btrfs_dev_stats_item, values) +
3007 ((unsigned long)ptr) + (index * sizeof(u64)),
3008 sizeof(val));
3009 return val;
3010 }
3011
3012 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3013 struct btrfs_dev_stats_item *ptr,
3014 int index, u64 val)
3015 {
3016 write_extent_buffer(eb, &val,
3017 offsetof(struct btrfs_dev_stats_item, values) +
3018 ((unsigned long)ptr) + (index * sizeof(u64)),
3019 sizeof(val));
3020 }
3021
3022 /* btrfs_qgroup_status_item */
3023 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3024 generation, 64);
3025 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3026 version, 64);
3027 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3028 flags, 64);
3029 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3030 rescan, 64);
3031
3032 /* btrfs_qgroup_info_item */
3033 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3034 generation, 64);
3035 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3036 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3037 rfer_cmpr, 64);
3038 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3039 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3040 excl_cmpr, 64);
3041
3042 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3043 struct btrfs_qgroup_info_item, generation, 64);
3044 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3045 rfer, 64);
3046 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3047 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3048 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3049 excl, 64);
3050 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3051 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3052
3053 /* btrfs_qgroup_limit_item */
3054 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3055 flags, 64);
3056 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3057 max_rfer, 64);
3058 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3059 max_excl, 64);
3060 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3061 rsv_rfer, 64);
3062 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3063 rsv_excl, 64);
3064
3065 /* btrfs_dev_replace_item */
3066 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3067 struct btrfs_dev_replace_item, src_devid, 64);
3068 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3069 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3070 64);
3071 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3072 replace_state, 64);
3073 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3074 time_started, 64);
3075 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3076 time_stopped, 64);
3077 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3078 num_write_errors, 64);
3079 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3080 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3081 64);
3082 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3083 cursor_left, 64);
3084 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3085 cursor_right, 64);
3086
3087 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3088 struct btrfs_dev_replace_item, src_devid, 64);
3089 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3090 struct btrfs_dev_replace_item,
3091 cont_reading_from_srcdev_mode, 64);
3092 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3093 struct btrfs_dev_replace_item, replace_state, 64);
3094 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3095 struct btrfs_dev_replace_item, time_started, 64);
3096 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3097 struct btrfs_dev_replace_item, time_stopped, 64);
3098 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3099 struct btrfs_dev_replace_item, num_write_errors, 64);
3100 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3101 struct btrfs_dev_replace_item,
3102 num_uncorrectable_read_errors, 64);
3103 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3104 struct btrfs_dev_replace_item, cursor_left, 64);
3105 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3106 struct btrfs_dev_replace_item, cursor_right, 64);
3107
3108 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3109 {
3110 return sb->s_fs_info;
3111 }
3112
3113 static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
3114 {
3115 if (level == 0)
3116 return root->leafsize;
3117 return root->nodesize;
3118 }
3119
3120 /* helper function to cast into the data area of the leaf. */
3121 #define btrfs_item_ptr(leaf, slot, type) \
3122 ((type *)(btrfs_leaf_data(leaf) + \
3123 btrfs_item_offset_nr(leaf, slot)))
3124
3125 #define btrfs_item_ptr_offset(leaf, slot) \
3126 ((unsigned long)(btrfs_leaf_data(leaf) + \
3127 btrfs_item_offset_nr(leaf, slot)))
3128
3129 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3130 {
3131 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3132 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3133 }
3134
3135 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3136 {
3137 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3138 }
3139
3140 /* extent-tree.c */
3141 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3142 unsigned num_items)
3143 {
3144 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3145 2 * num_items;
3146 }
3147
3148 /*
3149 * Doing a truncate won't result in new nodes or leaves, just what we need for
3150 * COW.
3151 */
3152 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3153 unsigned num_items)
3154 {
3155 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3156 num_items;
3157 }
3158
3159 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3160 struct btrfs_root *root);
3161 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3162 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3163 struct btrfs_root *root, unsigned long count);
3164 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
3165 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *root, u64 bytenr,
3167 u64 offset, int metadata, u64 *refs, u64 *flags);
3168 int btrfs_pin_extent(struct btrfs_root *root,
3169 u64 bytenr, u64 num, int reserved);
3170 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3171 u64 bytenr, u64 num_bytes);
3172 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3173 struct extent_buffer *eb);
3174 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3175 struct btrfs_root *root,
3176 u64 objectid, u64 offset, u64 bytenr);
3177 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3178 struct btrfs_fs_info *info,
3179 u64 bytenr);
3180 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3181 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3182 struct btrfs_root *root, u32 blocksize,
3183 u64 parent, u64 root_objectid,
3184 struct btrfs_disk_key *key, int level,
3185 u64 hint, u64 empty_size);
3186 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3187 struct btrfs_root *root,
3188 struct extent_buffer *buf,
3189 u64 parent, int last_ref);
3190 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3191 struct btrfs_root *root,
3192 u64 root_objectid, u64 owner,
3193 u64 offset, struct btrfs_key *ins);
3194 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3195 struct btrfs_root *root,
3196 u64 root_objectid, u64 owner, u64 offset,
3197 struct btrfs_key *ins);
3198 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3199 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3200 struct btrfs_key *ins, int is_data);
3201 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3202 struct extent_buffer *buf, int full_backref, int for_cow);
3203 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3204 struct extent_buffer *buf, int full_backref, int for_cow);
3205 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3206 struct btrfs_root *root,
3207 u64 bytenr, u64 num_bytes, u64 flags,
3208 int level, int is_data);
3209 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *root,
3211 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3212 u64 owner, u64 offset, int for_cow);
3213
3214 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
3215 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3216 u64 start, u64 len);
3217 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root);
3219 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3220 struct btrfs_root *root);
3221 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3222 struct btrfs_root *root,
3223 u64 bytenr, u64 num_bytes, u64 parent,
3224 u64 root_objectid, u64 owner, u64 offset, int for_cow);
3225
3226 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3227 struct btrfs_root *root);
3228 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3229 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3230 int btrfs_read_block_groups(struct btrfs_root *root);
3231 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3232 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3233 struct btrfs_root *root, u64 bytes_used,
3234 u64 type, u64 chunk_objectid, u64 chunk_offset,
3235 u64 size);
3236 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3237 struct btrfs_root *root, u64 group_start);
3238 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root);
3240 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3241 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3242
3243 enum btrfs_reserve_flush_enum {
3244 /* If we are in the transaction, we can't flush anything.*/
3245 BTRFS_RESERVE_NO_FLUSH,
3246 /*
3247 * Flushing delalloc may cause deadlock somewhere, in this
3248 * case, use FLUSH LIMIT
3249 */
3250 BTRFS_RESERVE_FLUSH_LIMIT,
3251 BTRFS_RESERVE_FLUSH_ALL,
3252 };
3253
3254 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3255 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3256 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3257 struct btrfs_root *root);
3258 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3259 struct inode *inode);
3260 void btrfs_orphan_release_metadata(struct inode *inode);
3261 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3262 struct btrfs_block_rsv *rsv,
3263 int nitems,
3264 u64 *qgroup_reserved, bool use_global_rsv);
3265 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3266 struct btrfs_block_rsv *rsv,
3267 u64 qgroup_reserved);
3268 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3269 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3270 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3271 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3272 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3273 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3274 unsigned short type);
3275 void btrfs_free_block_rsv(struct btrfs_root *root,
3276 struct btrfs_block_rsv *rsv);
3277 int btrfs_block_rsv_add(struct btrfs_root *root,
3278 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3279 enum btrfs_reserve_flush_enum flush);
3280 int btrfs_block_rsv_check(struct btrfs_root *root,
3281 struct btrfs_block_rsv *block_rsv, int min_factor);
3282 int btrfs_block_rsv_refill(struct btrfs_root *root,
3283 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3284 enum btrfs_reserve_flush_enum flush);
3285 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3286 struct btrfs_block_rsv *dst_rsv,
3287 u64 num_bytes);
3288 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3289 struct btrfs_block_rsv *dest, u64 num_bytes,
3290 int min_factor);
3291 void btrfs_block_rsv_release(struct btrfs_root *root,
3292 struct btrfs_block_rsv *block_rsv,
3293 u64 num_bytes);
3294 int btrfs_set_block_group_ro(struct btrfs_root *root,
3295 struct btrfs_block_group_cache *cache);
3296 void btrfs_set_block_group_rw(struct btrfs_root *root,
3297 struct btrfs_block_group_cache *cache);
3298 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3299 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3300 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3301 u64 start, u64 end);
3302 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3303 u64 num_bytes, u64 *actual_bytes);
3304 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3305 struct btrfs_root *root, u64 type);
3306 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3307
3308 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3309 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3310 struct btrfs_fs_info *fs_info);
3311 int __get_raid_index(u64 flags);
3312 /* ctree.c */
3313 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3314 int level, int *slot);
3315 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3316 int btrfs_previous_item(struct btrfs_root *root,
3317 struct btrfs_path *path, u64 min_objectid,
3318 int type);
3319 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3320 struct btrfs_key *new_key);
3321 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3322 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3323 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3324 struct btrfs_key *key, int lowest_level,
3325 u64 min_trans);
3326 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3327 struct btrfs_path *path,
3328 u64 min_trans);
3329 enum btrfs_compare_tree_result {
3330 BTRFS_COMPARE_TREE_NEW,
3331 BTRFS_COMPARE_TREE_DELETED,
3332 BTRFS_COMPARE_TREE_CHANGED,
3333 BTRFS_COMPARE_TREE_SAME,
3334 };
3335 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3336 struct btrfs_root *right_root,
3337 struct btrfs_path *left_path,
3338 struct btrfs_path *right_path,
3339 struct btrfs_key *key,
3340 enum btrfs_compare_tree_result result,
3341 void *ctx);
3342 int btrfs_compare_trees(struct btrfs_root *left_root,
3343 struct btrfs_root *right_root,
3344 btrfs_changed_cb_t cb, void *ctx);
3345 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3346 struct btrfs_root *root, struct extent_buffer *buf,
3347 struct extent_buffer *parent, int parent_slot,
3348 struct extent_buffer **cow_ret);
3349 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3350 struct btrfs_root *root,
3351 struct extent_buffer *buf,
3352 struct extent_buffer **cow_ret, u64 new_root_objectid);
3353 int btrfs_block_can_be_shared(struct btrfs_root *root,
3354 struct extent_buffer *buf);
3355 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3356 u32 data_size);
3357 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3358 u32 new_size, int from_end);
3359 int btrfs_split_item(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root,
3361 struct btrfs_path *path,
3362 struct btrfs_key *new_key,
3363 unsigned long split_offset);
3364 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3365 struct btrfs_root *root,
3366 struct btrfs_path *path,
3367 struct btrfs_key *new_key);
3368 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3369 *root, struct btrfs_key *key, struct btrfs_path *p, int
3370 ins_len, int cow);
3371 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3372 struct btrfs_path *p, u64 time_seq);
3373 int btrfs_search_slot_for_read(struct btrfs_root *root,
3374 struct btrfs_key *key, struct btrfs_path *p,
3375 int find_higher, int return_any);
3376 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3377 struct btrfs_root *root, struct extent_buffer *parent,
3378 int start_slot, u64 *last_ret,
3379 struct btrfs_key *progress);
3380 void btrfs_release_path(struct btrfs_path *p);
3381 struct btrfs_path *btrfs_alloc_path(void);
3382 void btrfs_free_path(struct btrfs_path *p);
3383 void btrfs_set_path_blocking(struct btrfs_path *p);
3384 void btrfs_clear_path_blocking(struct btrfs_path *p,
3385 struct extent_buffer *held, int held_rw);
3386 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3387
3388 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3389 struct btrfs_path *path, int slot, int nr);
3390 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3391 struct btrfs_root *root,
3392 struct btrfs_path *path)
3393 {
3394 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3395 }
3396
3397 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3398 struct btrfs_key *cpu_key, u32 *data_size,
3399 u32 total_data, u32 total_size, int nr);
3400 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3401 *root, struct btrfs_key *key, void *data, u32 data_size);
3402 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3403 struct btrfs_root *root,
3404 struct btrfs_path *path,
3405 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3406
3407 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3408 struct btrfs_root *root,
3409 struct btrfs_path *path,
3410 struct btrfs_key *key,
3411 u32 data_size)
3412 {
3413 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3414 }
3415
3416 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3417 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3418 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3419 u64 time_seq);
3420 static inline int btrfs_next_old_item(struct btrfs_root *root,
3421 struct btrfs_path *p, u64 time_seq)
3422 {
3423 ++p->slots[0];
3424 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3425 return btrfs_next_old_leaf(root, p, time_seq);
3426 return 0;
3427 }
3428 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3429 {
3430 return btrfs_next_old_item(root, p, 0);
3431 }
3432 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3433 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3434 struct btrfs_block_rsv *block_rsv,
3435 int update_ref, int for_reloc);
3436 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3437 struct btrfs_root *root,
3438 struct extent_buffer *node,
3439 struct extent_buffer *parent);
3440 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3441 {
3442 /*
3443 * Get synced with close_ctree()
3444 */
3445 smp_mb();
3446 return fs_info->closing;
3447 }
3448
3449 /*
3450 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3451 * anything except sleeping. This function is used to check the status of
3452 * the fs.
3453 */
3454 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3455 {
3456 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3457 btrfs_fs_closing(root->fs_info));
3458 }
3459
3460 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3461 {
3462 kfree(fs_info->balance_ctl);
3463 kfree(fs_info->delayed_root);
3464 kfree(fs_info->extent_root);
3465 kfree(fs_info->tree_root);
3466 kfree(fs_info->chunk_root);
3467 kfree(fs_info->dev_root);
3468 kfree(fs_info->csum_root);
3469 kfree(fs_info->quota_root);
3470 kfree(fs_info->uuid_root);
3471 kfree(fs_info->super_copy);
3472 kfree(fs_info->super_for_commit);
3473 kfree(fs_info);
3474 }
3475
3476 /* tree mod log functions from ctree.c */
3477 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3478 struct seq_list *elem);
3479 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3480 struct seq_list *elem);
3481 u64 btrfs_tree_mod_seq_prev(u64 seq);
3482 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3483
3484 /* root-item.c */
3485 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3486 struct btrfs_path *path,
3487 u64 root_id, u64 ref_id);
3488 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3489 struct btrfs_root *tree_root,
3490 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3491 const char *name, int name_len);
3492 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *tree_root,
3494 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3495 const char *name, int name_len);
3496 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3497 struct btrfs_key *key);
3498 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3499 *root, struct btrfs_key *key, struct btrfs_root_item
3500 *item);
3501 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3502 struct btrfs_root *root,
3503 struct btrfs_key *key,
3504 struct btrfs_root_item *item);
3505 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3506 struct btrfs_path *path, struct btrfs_root_item *root_item,
3507 struct btrfs_key *root_key);
3508 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3509 void btrfs_set_root_node(struct btrfs_root_item *item,
3510 struct extent_buffer *node);
3511 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3512 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3513 struct btrfs_root *root);
3514
3515 /* uuid-tree.c */
3516 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3517 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3518 u64 subid);
3519 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3521 u64 subid);
3522 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3523 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3524 u64));
3525
3526 /* dir-item.c */
3527 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3528 const char *name, int name_len);
3529 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root, const char *name,
3531 int name_len, struct inode *dir,
3532 struct btrfs_key *location, u8 type, u64 index);
3533 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3534 struct btrfs_root *root,
3535 struct btrfs_path *path, u64 dir,
3536 const char *name, int name_len,
3537 int mod);
3538 struct btrfs_dir_item *
3539 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3540 struct btrfs_root *root,
3541 struct btrfs_path *path, u64 dir,
3542 u64 objectid, const char *name, int name_len,
3543 int mod);
3544 struct btrfs_dir_item *
3545 btrfs_search_dir_index_item(struct btrfs_root *root,
3546 struct btrfs_path *path, u64 dirid,
3547 const char *name, int name_len);
3548 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *root,
3550 struct btrfs_path *path,
3551 struct btrfs_dir_item *di);
3552 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3553 struct btrfs_root *root,
3554 struct btrfs_path *path, u64 objectid,
3555 const char *name, u16 name_len,
3556 const void *data, u16 data_len);
3557 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3558 struct btrfs_root *root,
3559 struct btrfs_path *path, u64 dir,
3560 const char *name, u16 name_len,
3561 int mod);
3562 int verify_dir_item(struct btrfs_root *root,
3563 struct extent_buffer *leaf,
3564 struct btrfs_dir_item *dir_item);
3565
3566 /* orphan.c */
3567 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root, u64 offset);
3569 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3570 struct btrfs_root *root, u64 offset);
3571 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3572
3573 /* inode-item.c */
3574 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *root,
3576 const char *name, int name_len,
3577 u64 inode_objectid, u64 ref_objectid, u64 index);
3578 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *root,
3580 const char *name, int name_len,
3581 u64 inode_objectid, u64 ref_objectid, u64 *index);
3582 int btrfs_get_inode_ref_index(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root,
3584 struct btrfs_path *path,
3585 const char *name, int name_len,
3586 u64 inode_objectid, u64 ref_objectid, int mod,
3587 u64 *ret_index);
3588 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3589 struct btrfs_root *root,
3590 struct btrfs_path *path, u64 objectid);
3591 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3592 *root, struct btrfs_path *path,
3593 struct btrfs_key *location, int mod);
3594
3595 struct btrfs_inode_extref *
3596 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root,
3598 struct btrfs_path *path,
3599 const char *name, int name_len,
3600 u64 inode_objectid, u64 ref_objectid, int ins_len,
3601 int cow);
3602
3603 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3604 u64 ref_objectid, const char *name,
3605 int name_len,
3606 struct btrfs_inode_extref **extref_ret);
3607
3608 /* file-item.c */
3609 struct btrfs_dio_private;
3610 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3611 struct btrfs_root *root, u64 bytenr, u64 len);
3612 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3613 struct bio *bio, u32 *dst);
3614 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3615 struct btrfs_dio_private *dip, struct bio *bio,
3616 u64 logical_offset);
3617 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3618 struct btrfs_root *root,
3619 u64 objectid, u64 pos,
3620 u64 disk_offset, u64 disk_num_bytes,
3621 u64 num_bytes, u64 offset, u64 ram_bytes,
3622 u8 compression, u8 encryption, u16 other_encoding);
3623 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root,
3625 struct btrfs_path *path, u64 objectid,
3626 u64 bytenr, int mod);
3627 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3628 struct btrfs_root *root,
3629 struct btrfs_ordered_sum *sums);
3630 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3631 struct bio *bio, u64 file_start, int contig);
3632 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3633 struct list_head *list, int search_commit);
3634 /* inode.c */
3635 struct btrfs_delalloc_work {
3636 struct inode *inode;
3637 int wait;
3638 int delay_iput;
3639 struct completion completion;
3640 struct list_head list;
3641 struct btrfs_work work;
3642 };
3643
3644 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3645 int wait, int delay_iput);
3646 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3647
3648 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3649 size_t pg_offset, u64 start, u64 len,
3650 int create);
3651 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3652 u64 *orig_start, u64 *orig_block_len,
3653 u64 *ram_bytes);
3654
3655 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3656 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3657 #define ClearPageChecked ClearPageFsMisc
3658 #define SetPageChecked SetPageFsMisc
3659 #define PageChecked PageFsMisc
3660 #endif
3661
3662 /* This forces readahead on a given range of bytes in an inode */
3663 static inline void btrfs_force_ra(struct address_space *mapping,
3664 struct file_ra_state *ra, struct file *file,
3665 pgoff_t offset, unsigned long req_size)
3666 {
3667 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3668 }
3669
3670 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3671 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3672 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3673 struct btrfs_root *root,
3674 struct inode *dir, struct inode *inode,
3675 const char *name, int name_len);
3676 int btrfs_add_link(struct btrfs_trans_handle *trans,
3677 struct inode *parent_inode, struct inode *inode,
3678 const char *name, int name_len, int add_backref, u64 index);
3679 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3680 struct btrfs_root *root,
3681 struct inode *dir, u64 objectid,
3682 const char *name, int name_len);
3683 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3684 int front);
3685 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3686 struct btrfs_root *root,
3687 struct inode *inode, u64 new_size,
3688 u32 min_type);
3689
3690 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3691 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput);
3692 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3693 struct extent_state **cached_state);
3694 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3695 struct btrfs_root *new_root, u64 new_dirid);
3696 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3697 size_t size, struct bio *bio,
3698 unsigned long bio_flags);
3699 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3700 int btrfs_readpage(struct file *file, struct page *page);
3701 void btrfs_evict_inode(struct inode *inode);
3702 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3703 struct inode *btrfs_alloc_inode(struct super_block *sb);
3704 void btrfs_destroy_inode(struct inode *inode);
3705 int btrfs_drop_inode(struct inode *inode);
3706 int btrfs_init_cachep(void);
3707 void btrfs_destroy_cachep(void);
3708 long btrfs_ioctl_trans_end(struct file *file);
3709 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3710 struct btrfs_root *root, int *was_new);
3711 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3712 size_t pg_offset, u64 start, u64 end,
3713 int create);
3714 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3715 struct btrfs_root *root,
3716 struct inode *inode);
3717 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root, struct inode *inode);
3719 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3720 int btrfs_orphan_cleanup(struct btrfs_root *root);
3721 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3722 struct btrfs_root *root);
3723 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3724 void btrfs_invalidate_inodes(struct btrfs_root *root);
3725 void btrfs_add_delayed_iput(struct inode *inode);
3726 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3727 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3728 u64 start, u64 num_bytes, u64 min_size,
3729 loff_t actual_len, u64 *alloc_hint);
3730 int btrfs_prealloc_file_range_trans(struct inode *inode,
3731 struct btrfs_trans_handle *trans, int mode,
3732 u64 start, u64 num_bytes, u64 min_size,
3733 loff_t actual_len, u64 *alloc_hint);
3734 extern const struct dentry_operations btrfs_dentry_operations;
3735
3736 /* ioctl.c */
3737 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3738 void btrfs_update_iflags(struct inode *inode);
3739 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3740 int btrfs_is_empty_uuid(u8 *uuid);
3741 int btrfs_defrag_file(struct inode *inode, struct file *file,
3742 struct btrfs_ioctl_defrag_range_args *range,
3743 u64 newer_than, unsigned long max_pages);
3744 void btrfs_get_block_group_info(struct list_head *groups_list,
3745 struct btrfs_ioctl_space_info *space);
3746 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3747 struct btrfs_ioctl_balance_args *bargs);
3748
3749
3750 /* file.c */
3751 int btrfs_auto_defrag_init(void);
3752 void btrfs_auto_defrag_exit(void);
3753 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3754 struct inode *inode);
3755 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3756 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3757 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3758 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3759 int skip_pinned);
3760 extern const struct file_operations btrfs_file_operations;
3761 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3762 struct btrfs_root *root, struct inode *inode,
3763 struct btrfs_path *path, u64 start, u64 end,
3764 u64 *drop_end, int drop_cache);
3765 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root, struct inode *inode, u64 start,
3767 u64 end, int drop_cache);
3768 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3769 struct inode *inode, u64 start, u64 end);
3770 int btrfs_release_file(struct inode *inode, struct file *file);
3771 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3772 struct page **pages, size_t num_pages,
3773 loff_t pos, size_t write_bytes,
3774 struct extent_state **cached);
3775
3776 /* tree-defrag.c */
3777 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root);
3779
3780 /* sysfs.c */
3781 int btrfs_init_sysfs(void);
3782 void btrfs_exit_sysfs(void);
3783 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3784 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3785
3786 /* xattr.c */
3787 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3788
3789 /* super.c */
3790 int btrfs_parse_options(struct btrfs_root *root, char *options);
3791 int btrfs_sync_fs(struct super_block *sb, int wait);
3792
3793 #ifdef CONFIG_PRINTK
3794 __printf(2, 3)
3795 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3796 #else
3797 static inline __printf(2, 3)
3798 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3799 {
3800 }
3801 #endif
3802
3803 #define btrfs_emerg(fs_info, fmt, args...) \
3804 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3805 #define btrfs_alert(fs_info, fmt, args...) \
3806 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3807 #define btrfs_crit(fs_info, fmt, args...) \
3808 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3809 #define btrfs_err(fs_info, fmt, args...) \
3810 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3811 #define btrfs_warn(fs_info, fmt, args...) \
3812 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3813 #define btrfs_notice(fs_info, fmt, args...) \
3814 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3815 #define btrfs_info(fs_info, fmt, args...) \
3816 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3817 #define btrfs_debug(fs_info, fmt, args...) \
3818 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3819
3820 #ifdef CONFIG_BTRFS_ASSERT
3821
3822 static inline void assfail(char *expr, char *file, int line)
3823 {
3824 printk(KERN_ERR "BTRFS assertion failed: %s, file: %s, line: %d",
3825 expr, file, line);
3826 BUG();
3827 }
3828
3829 #define ASSERT(expr) \
3830 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3831 #else
3832 #define ASSERT(expr) ((void)0)
3833 #endif
3834
3835 #define btrfs_assert()
3836 __printf(5, 6)
3837 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3838 unsigned int line, int errno, const char *fmt, ...);
3839
3840
3841 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3842 struct btrfs_root *root, const char *function,
3843 unsigned int line, int errno);
3844
3845 #define btrfs_set_fs_incompat(__fs_info, opt) \
3846 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3847
3848 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3849 u64 flag)
3850 {
3851 struct btrfs_super_block *disk_super;
3852 u64 features;
3853
3854 disk_super = fs_info->super_copy;
3855 features = btrfs_super_incompat_flags(disk_super);
3856 if (!(features & flag)) {
3857 spin_lock(&fs_info->super_lock);
3858 features = btrfs_super_incompat_flags(disk_super);
3859 if (!(features & flag)) {
3860 features |= flag;
3861 btrfs_set_super_incompat_flags(disk_super, features);
3862 printk(KERN_INFO "btrfs: setting %llu feature flag\n",
3863 flag);
3864 }
3865 spin_unlock(&fs_info->super_lock);
3866 }
3867 }
3868
3869 #define btrfs_fs_incompat(fs_info, opt) \
3870 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3871
3872 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3873 {
3874 struct btrfs_super_block *disk_super;
3875 disk_super = fs_info->super_copy;
3876 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3877 }
3878
3879 /*
3880 * Call btrfs_abort_transaction as early as possible when an error condition is
3881 * detected, that way the exact line number is reported.
3882 */
3883
3884 #define btrfs_abort_transaction(trans, root, errno) \
3885 do { \
3886 __btrfs_abort_transaction(trans, root, __func__, \
3887 __LINE__, errno); \
3888 } while (0)
3889
3890 #define btrfs_std_error(fs_info, errno) \
3891 do { \
3892 if ((errno)) \
3893 __btrfs_std_error((fs_info), __func__, \
3894 __LINE__, (errno), NULL); \
3895 } while (0)
3896
3897 #define btrfs_error(fs_info, errno, fmt, args...) \
3898 do { \
3899 __btrfs_std_error((fs_info), __func__, __LINE__, \
3900 (errno), fmt, ##args); \
3901 } while (0)
3902
3903 __printf(5, 6)
3904 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3905 unsigned int line, int errno, const char *fmt, ...);
3906
3907 /*
3908 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3909 * will panic(). Otherwise we BUG() here.
3910 */
3911 #define btrfs_panic(fs_info, errno, fmt, args...) \
3912 do { \
3913 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3914 BUG(); \
3915 } while (0)
3916
3917 /* acl.c */
3918 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3919 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3920 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3921 struct inode *inode, struct inode *dir);
3922 int btrfs_acl_chmod(struct inode *inode);
3923 #else
3924 #define btrfs_get_acl NULL
3925 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3926 struct inode *inode, struct inode *dir)
3927 {
3928 return 0;
3929 }
3930 static inline int btrfs_acl_chmod(struct inode *inode)
3931 {
3932 return 0;
3933 }
3934 #endif
3935
3936 /* relocation.c */
3937 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
3938 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root);
3940 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3941 struct btrfs_root *root);
3942 int btrfs_recover_relocation(struct btrfs_root *root);
3943 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3944 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3945 struct btrfs_root *root, struct extent_buffer *buf,
3946 struct extent_buffer *cow);
3947 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
3948 struct btrfs_pending_snapshot *pending,
3949 u64 *bytes_to_reserve);
3950 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3951 struct btrfs_pending_snapshot *pending);
3952
3953 /* scrub.c */
3954 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3955 u64 end, struct btrfs_scrub_progress *progress,
3956 int readonly, int is_dev_replace);
3957 void btrfs_scrub_pause(struct btrfs_root *root);
3958 void btrfs_scrub_continue(struct btrfs_root *root);
3959 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3960 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
3961 struct btrfs_device *dev);
3962 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3963 struct btrfs_scrub_progress *progress);
3964
3965 /* reada.c */
3966 struct reada_control {
3967 struct btrfs_root *root; /* tree to prefetch */
3968 struct btrfs_key key_start;
3969 struct btrfs_key key_end; /* exclusive */
3970 atomic_t elems;
3971 struct kref refcnt;
3972 wait_queue_head_t wait;
3973 };
3974 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3975 struct btrfs_key *start, struct btrfs_key *end);
3976 int btrfs_reada_wait(void *handle);
3977 void btrfs_reada_detach(void *handle);
3978 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
3979 u64 start, int err);
3980
3981 /* qgroup.c */
3982 struct qgroup_update {
3983 struct list_head list;
3984 struct btrfs_delayed_ref_node *node;
3985 struct btrfs_delayed_extent_op *extent_op;
3986 };
3987
3988 int btrfs_quota_enable(struct btrfs_trans_handle *trans,
3989 struct btrfs_fs_info *fs_info);
3990 int btrfs_quota_disable(struct btrfs_trans_handle *trans,
3991 struct btrfs_fs_info *fs_info);
3992 int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info);
3993 void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info);
3994 int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info);
3995 int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans,
3996 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
3997 int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans,
3998 struct btrfs_fs_info *fs_info, u64 src, u64 dst);
3999 int btrfs_create_qgroup(struct btrfs_trans_handle *trans,
4000 struct btrfs_fs_info *fs_info, u64 qgroupid,
4001 char *name);
4002 int btrfs_remove_qgroup(struct btrfs_trans_handle *trans,
4003 struct btrfs_fs_info *fs_info, u64 qgroupid);
4004 int btrfs_limit_qgroup(struct btrfs_trans_handle *trans,
4005 struct btrfs_fs_info *fs_info, u64 qgroupid,
4006 struct btrfs_qgroup_limit *limit);
4007 int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info);
4008 void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info);
4009 struct btrfs_delayed_extent_op;
4010 int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans,
4011 struct btrfs_delayed_ref_node *node,
4012 struct btrfs_delayed_extent_op *extent_op);
4013 int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans,
4014 struct btrfs_fs_info *fs_info,
4015 struct btrfs_delayed_ref_node *node,
4016 struct btrfs_delayed_extent_op *extent_op);
4017 int btrfs_run_qgroups(struct btrfs_trans_handle *trans,
4018 struct btrfs_fs_info *fs_info);
4019 int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans,
4020 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid,
4021 struct btrfs_qgroup_inherit *inherit);
4022 int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes);
4023 void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes);
4024
4025 void assert_qgroups_uptodate(struct btrfs_trans_handle *trans);
4026
4027 static inline int is_fstree(u64 rootid)
4028 {
4029 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4030 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4031 return 1;
4032 return 0;
4033 }
4034
4035 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4036 {
4037 return signal_pending(current);
4038 }
4039
4040 /* Sanity test specific functions */
4041 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4042 void btrfs_test_destroy_inode(struct inode *inode);
4043 #endif
4044
4045 #endif
This page took 0.120626 seconds and 5 git commands to generate.