Btrfs: move read only block groups onto their own list V2
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include "extent_io.h"
39 #include "extent_map.h"
40 #include "async-thread.h"
41
42 struct btrfs_trans_handle;
43 struct btrfs_transaction;
44 struct btrfs_pending_snapshot;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_transaction_cachep;
47 extern struct kmem_cache *btrfs_bit_radix_cachep;
48 extern struct kmem_cache *btrfs_path_cachep;
49 extern struct kmem_cache *btrfs_free_space_cachep;
50 struct btrfs_ordered_sum;
51
52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
53 #define STATIC noinline
54 #else
55 #define STATIC static noinline
56 #endif
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 #define BTRFS_MAX_MIRRORS 3
61
62 #define BTRFS_MAX_LEVEL 8
63
64 #define BTRFS_COMPAT_EXTENT_TREE_V0
65
66 /* holds pointers to all of the tree roots */
67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
68
69 /* stores information about which extents are in use, and reference counts */
70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
71
72 /*
73 * chunk tree stores translations from logical -> physical block numbering
74 * the super block points to the chunk tree
75 */
76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
77
78 /*
79 * stores information about which areas of a given device are in use.
80 * one per device. The tree of tree roots points to the device tree
81 */
82 #define BTRFS_DEV_TREE_OBJECTID 4ULL
83
84 /* one per subvolume, storing files and directories */
85 #define BTRFS_FS_TREE_OBJECTID 5ULL
86
87 /* directory objectid inside the root tree */
88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
89
90 /* holds checksums of all the data extents */
91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
92
93 /* holds quota configuration and tracking */
94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
95
96 /* for storing items that use the BTRFS_UUID_KEY* types */
97 #define BTRFS_UUID_TREE_OBJECTID 9ULL
98
99 /* for storing balance parameters in the root tree */
100 #define BTRFS_BALANCE_OBJECTID -4ULL
101
102 /* orhpan objectid for tracking unlinked/truncated files */
103 #define BTRFS_ORPHAN_OBJECTID -5ULL
104
105 /* does write ahead logging to speed up fsyncs */
106 #define BTRFS_TREE_LOG_OBJECTID -6ULL
107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
108
109 /* for space balancing */
110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
112
113 /*
114 * extent checksums all have this objectid
115 * this allows them to share the logging tree
116 * for fsyncs
117 */
118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
119
120 /* For storing free space cache */
121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
122
123 /*
124 * The inode number assigned to the special inode for storing
125 * free ino cache
126 */
127 #define BTRFS_FREE_INO_OBJECTID -12ULL
128
129 /* dummy objectid represents multiple objectids */
130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
131
132 /*
133 * All files have objectids in this range.
134 */
135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
136 #define BTRFS_LAST_FREE_OBJECTID -256ULL
137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
138
139
140 /*
141 * the device items go into the chunk tree. The key is in the form
142 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
143 */
144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
145
146 #define BTRFS_BTREE_INODE_OBJECTID 1
147
148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
149
150 #define BTRFS_DEV_REPLACE_DEVID 0ULL
151
152 /*
153 * the max metadata block size. This limit is somewhat artificial,
154 * but the memmove costs go through the roof for larger blocks.
155 */
156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
157
158 /*
159 * we can actually store much bigger names, but lets not confuse the rest
160 * of linux
161 */
162 #define BTRFS_NAME_LEN 255
163
164 /*
165 * Theoretical limit is larger, but we keep this down to a sane
166 * value. That should limit greatly the possibility of collisions on
167 * inode ref items.
168 */
169 #define BTRFS_LINK_MAX 65535U
170
171 /* 32 bytes in various csum fields */
172 #define BTRFS_CSUM_SIZE 32
173
174 /* csum types */
175 #define BTRFS_CSUM_TYPE_CRC32 0
176
177 static int btrfs_csum_sizes[] = { 4, 0 };
178
179 /* four bytes for CRC32 */
180 #define BTRFS_EMPTY_DIR_SIZE 0
181
182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
183 #define REQ_GET_READ_MIRRORS (1 << 30)
184
185 #define BTRFS_FT_UNKNOWN 0
186 #define BTRFS_FT_REG_FILE 1
187 #define BTRFS_FT_DIR 2
188 #define BTRFS_FT_CHRDEV 3
189 #define BTRFS_FT_BLKDEV 4
190 #define BTRFS_FT_FIFO 5
191 #define BTRFS_FT_SOCK 6
192 #define BTRFS_FT_SYMLINK 7
193 #define BTRFS_FT_XATTR 8
194 #define BTRFS_FT_MAX 9
195
196 /* ioprio of readahead is set to idle */
197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
198
199 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024)
200
201 /*
202 * The key defines the order in the tree, and so it also defines (optimal)
203 * block layout.
204 *
205 * objectid corresponds to the inode number.
206 *
207 * type tells us things about the object, and is a kind of stream selector.
208 * so for a given inode, keys with type of 1 might refer to the inode data,
209 * type of 2 may point to file data in the btree and type == 3 may point to
210 * extents.
211 *
212 * offset is the starting byte offset for this key in the stream.
213 *
214 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
215 * in cpu native order. Otherwise they are identical and their sizes
216 * should be the same (ie both packed)
217 */
218 struct btrfs_disk_key {
219 __le64 objectid;
220 u8 type;
221 __le64 offset;
222 } __attribute__ ((__packed__));
223
224 struct btrfs_key {
225 u64 objectid;
226 u8 type;
227 u64 offset;
228 } __attribute__ ((__packed__));
229
230 struct btrfs_mapping_tree {
231 struct extent_map_tree map_tree;
232 };
233
234 struct btrfs_dev_item {
235 /* the internal btrfs device id */
236 __le64 devid;
237
238 /* size of the device */
239 __le64 total_bytes;
240
241 /* bytes used */
242 __le64 bytes_used;
243
244 /* optimal io alignment for this device */
245 __le32 io_align;
246
247 /* optimal io width for this device */
248 __le32 io_width;
249
250 /* minimal io size for this device */
251 __le32 sector_size;
252
253 /* type and info about this device */
254 __le64 type;
255
256 /* expected generation for this device */
257 __le64 generation;
258
259 /*
260 * starting byte of this partition on the device,
261 * to allow for stripe alignment in the future
262 */
263 __le64 start_offset;
264
265 /* grouping information for allocation decisions */
266 __le32 dev_group;
267
268 /* seek speed 0-100 where 100 is fastest */
269 u8 seek_speed;
270
271 /* bandwidth 0-100 where 100 is fastest */
272 u8 bandwidth;
273
274 /* btrfs generated uuid for this device */
275 u8 uuid[BTRFS_UUID_SIZE];
276
277 /* uuid of FS who owns this device */
278 u8 fsid[BTRFS_UUID_SIZE];
279 } __attribute__ ((__packed__));
280
281 struct btrfs_stripe {
282 __le64 devid;
283 __le64 offset;
284 u8 dev_uuid[BTRFS_UUID_SIZE];
285 } __attribute__ ((__packed__));
286
287 struct btrfs_chunk {
288 /* size of this chunk in bytes */
289 __le64 length;
290
291 /* objectid of the root referencing this chunk */
292 __le64 owner;
293
294 __le64 stripe_len;
295 __le64 type;
296
297 /* optimal io alignment for this chunk */
298 __le32 io_align;
299
300 /* optimal io width for this chunk */
301 __le32 io_width;
302
303 /* minimal io size for this chunk */
304 __le32 sector_size;
305
306 /* 2^16 stripes is quite a lot, a second limit is the size of a single
307 * item in the btree
308 */
309 __le16 num_stripes;
310
311 /* sub stripes only matter for raid10 */
312 __le16 sub_stripes;
313 struct btrfs_stripe stripe;
314 /* additional stripes go here */
315 } __attribute__ ((__packed__));
316
317 #define BTRFS_FREE_SPACE_EXTENT 1
318 #define BTRFS_FREE_SPACE_BITMAP 2
319
320 struct btrfs_free_space_entry {
321 __le64 offset;
322 __le64 bytes;
323 u8 type;
324 } __attribute__ ((__packed__));
325
326 struct btrfs_free_space_header {
327 struct btrfs_disk_key location;
328 __le64 generation;
329 __le64 num_entries;
330 __le64 num_bitmaps;
331 } __attribute__ ((__packed__));
332
333 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
334 {
335 BUG_ON(num_stripes == 0);
336 return sizeof(struct btrfs_chunk) +
337 sizeof(struct btrfs_stripe) * (num_stripes - 1);
338 }
339
340 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
341 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
342
343 /*
344 * File system states
345 */
346 #define BTRFS_FS_STATE_ERROR 0
347 #define BTRFS_FS_STATE_REMOUNTING 1
348 #define BTRFS_FS_STATE_TRANS_ABORTED 2
349 #define BTRFS_FS_STATE_DEV_REPLACING 3
350
351 /* Super block flags */
352 /* Errors detected */
353 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
354
355 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
356 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
357
358 #define BTRFS_BACKREF_REV_MAX 256
359 #define BTRFS_BACKREF_REV_SHIFT 56
360 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
361 BTRFS_BACKREF_REV_SHIFT)
362
363 #define BTRFS_OLD_BACKREF_REV 0
364 #define BTRFS_MIXED_BACKREF_REV 1
365
366 /*
367 * every tree block (leaf or node) starts with this header.
368 */
369 struct btrfs_header {
370 /* these first four must match the super block */
371 u8 csum[BTRFS_CSUM_SIZE];
372 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
373 __le64 bytenr; /* which block this node is supposed to live in */
374 __le64 flags;
375
376 /* allowed to be different from the super from here on down */
377 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
378 __le64 generation;
379 __le64 owner;
380 __le32 nritems;
381 u8 level;
382 } __attribute__ ((__packed__));
383
384 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
385 sizeof(struct btrfs_header)) / \
386 sizeof(struct btrfs_key_ptr))
387 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
388 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
389 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
390 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
391 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
392 sizeof(struct btrfs_item) - \
393 BTRFS_FILE_EXTENT_INLINE_DATA_START)
394 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
395 sizeof(struct btrfs_item) -\
396 sizeof(struct btrfs_dir_item))
397
398
399 /*
400 * this is a very generous portion of the super block, giving us
401 * room to translate 14 chunks with 3 stripes each.
402 */
403 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
404 #define BTRFS_LABEL_SIZE 256
405
406 /*
407 * just in case we somehow lose the roots and are not able to mount,
408 * we store an array of the roots from previous transactions
409 * in the super.
410 */
411 #define BTRFS_NUM_BACKUP_ROOTS 4
412 struct btrfs_root_backup {
413 __le64 tree_root;
414 __le64 tree_root_gen;
415
416 __le64 chunk_root;
417 __le64 chunk_root_gen;
418
419 __le64 extent_root;
420 __le64 extent_root_gen;
421
422 __le64 fs_root;
423 __le64 fs_root_gen;
424
425 __le64 dev_root;
426 __le64 dev_root_gen;
427
428 __le64 csum_root;
429 __le64 csum_root_gen;
430
431 __le64 total_bytes;
432 __le64 bytes_used;
433 __le64 num_devices;
434 /* future */
435 __le64 unused_64[4];
436
437 u8 tree_root_level;
438 u8 chunk_root_level;
439 u8 extent_root_level;
440 u8 fs_root_level;
441 u8 dev_root_level;
442 u8 csum_root_level;
443 /* future and to align */
444 u8 unused_8[10];
445 } __attribute__ ((__packed__));
446
447 /*
448 * the super block basically lists the main trees of the FS
449 * it currently lacks any block count etc etc
450 */
451 struct btrfs_super_block {
452 u8 csum[BTRFS_CSUM_SIZE];
453 /* the first 4 fields must match struct btrfs_header */
454 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
455 __le64 bytenr; /* this block number */
456 __le64 flags;
457
458 /* allowed to be different from the btrfs_header from here own down */
459 __le64 magic;
460 __le64 generation;
461 __le64 root;
462 __le64 chunk_root;
463 __le64 log_root;
464
465 /* this will help find the new super based on the log root */
466 __le64 log_root_transid;
467 __le64 total_bytes;
468 __le64 bytes_used;
469 __le64 root_dir_objectid;
470 __le64 num_devices;
471 __le32 sectorsize;
472 __le32 nodesize;
473 __le32 __unused_leafsize;
474 __le32 stripesize;
475 __le32 sys_chunk_array_size;
476 __le64 chunk_root_generation;
477 __le64 compat_flags;
478 __le64 compat_ro_flags;
479 __le64 incompat_flags;
480 __le16 csum_type;
481 u8 root_level;
482 u8 chunk_root_level;
483 u8 log_root_level;
484 struct btrfs_dev_item dev_item;
485
486 char label[BTRFS_LABEL_SIZE];
487
488 __le64 cache_generation;
489 __le64 uuid_tree_generation;
490
491 /* future expansion */
492 __le64 reserved[30];
493 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
494 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
495 } __attribute__ ((__packed__));
496
497 /*
498 * Compat flags that we support. If any incompat flags are set other than the
499 * ones specified below then we will fail to mount
500 */
501 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
502 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
504 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
505 /*
506 * some patches floated around with a second compression method
507 * lets save that incompat here for when they do get in
508 * Note we don't actually support it, we're just reserving the
509 * number
510 */
511 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
512
513 /*
514 * older kernels tried to do bigger metadata blocks, but the
515 * code was pretty buggy. Lets not let them try anymore.
516 */
517 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
518
519 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
520 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
521 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
522 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
523
524 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
525 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
526 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
527 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
528 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
530
531 #define BTRFS_FEATURE_INCOMPAT_SUPP \
532 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
533 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
534 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
535 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
536 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
537 BTRFS_FEATURE_INCOMPAT_RAID56 | \
538 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
539 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
540 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
541
542 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
543 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
545
546 /*
547 * A leaf is full of items. offset and size tell us where to find
548 * the item in the leaf (relative to the start of the data area)
549 */
550 struct btrfs_item {
551 struct btrfs_disk_key key;
552 __le32 offset;
553 __le32 size;
554 } __attribute__ ((__packed__));
555
556 /*
557 * leaves have an item area and a data area:
558 * [item0, item1....itemN] [free space] [dataN...data1, data0]
559 *
560 * The data is separate from the items to get the keys closer together
561 * during searches.
562 */
563 struct btrfs_leaf {
564 struct btrfs_header header;
565 struct btrfs_item items[];
566 } __attribute__ ((__packed__));
567
568 /*
569 * all non-leaf blocks are nodes, they hold only keys and pointers to
570 * other blocks
571 */
572 struct btrfs_key_ptr {
573 struct btrfs_disk_key key;
574 __le64 blockptr;
575 __le64 generation;
576 } __attribute__ ((__packed__));
577
578 struct btrfs_node {
579 struct btrfs_header header;
580 struct btrfs_key_ptr ptrs[];
581 } __attribute__ ((__packed__));
582
583 /*
584 * btrfs_paths remember the path taken from the root down to the leaf.
585 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
586 * to any other levels that are present.
587 *
588 * The slots array records the index of the item or block pointer
589 * used while walking the tree.
590 */
591 struct btrfs_path {
592 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
593 int slots[BTRFS_MAX_LEVEL];
594 /* if there is real range locking, this locks field will change */
595 int locks[BTRFS_MAX_LEVEL];
596 int reada;
597 /* keep some upper locks as we walk down */
598 int lowest_level;
599
600 /*
601 * set by btrfs_split_item, tells search_slot to keep all locks
602 * and to force calls to keep space in the nodes
603 */
604 unsigned int search_for_split:1;
605 unsigned int keep_locks:1;
606 unsigned int skip_locking:1;
607 unsigned int leave_spinning:1;
608 unsigned int search_commit_root:1;
609 unsigned int need_commit_sem:1;
610 };
611
612 /*
613 * items in the extent btree are used to record the objectid of the
614 * owner of the block and the number of references
615 */
616
617 struct btrfs_extent_item {
618 __le64 refs;
619 __le64 generation;
620 __le64 flags;
621 } __attribute__ ((__packed__));
622
623 struct btrfs_extent_item_v0 {
624 __le32 refs;
625 } __attribute__ ((__packed__));
626
627 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
628 sizeof(struct btrfs_item))
629
630 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
631 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
632
633 /* following flags only apply to tree blocks */
634
635 /* use full backrefs for extent pointers in the block */
636 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
637
638 /*
639 * this flag is only used internally by scrub and may be changed at any time
640 * it is only declared here to avoid collisions
641 */
642 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
643
644 struct btrfs_tree_block_info {
645 struct btrfs_disk_key key;
646 u8 level;
647 } __attribute__ ((__packed__));
648
649 struct btrfs_extent_data_ref {
650 __le64 root;
651 __le64 objectid;
652 __le64 offset;
653 __le32 count;
654 } __attribute__ ((__packed__));
655
656 struct btrfs_shared_data_ref {
657 __le32 count;
658 } __attribute__ ((__packed__));
659
660 struct btrfs_extent_inline_ref {
661 u8 type;
662 __le64 offset;
663 } __attribute__ ((__packed__));
664
665 /* old style backrefs item */
666 struct btrfs_extent_ref_v0 {
667 __le64 root;
668 __le64 generation;
669 __le64 objectid;
670 __le32 count;
671 } __attribute__ ((__packed__));
672
673
674 /* dev extents record free space on individual devices. The owner
675 * field points back to the chunk allocation mapping tree that allocated
676 * the extent. The chunk tree uuid field is a way to double check the owner
677 */
678 struct btrfs_dev_extent {
679 __le64 chunk_tree;
680 __le64 chunk_objectid;
681 __le64 chunk_offset;
682 __le64 length;
683 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
684 } __attribute__ ((__packed__));
685
686 struct btrfs_inode_ref {
687 __le64 index;
688 __le16 name_len;
689 /* name goes here */
690 } __attribute__ ((__packed__));
691
692 struct btrfs_inode_extref {
693 __le64 parent_objectid;
694 __le64 index;
695 __le16 name_len;
696 __u8 name[0];
697 /* name goes here */
698 } __attribute__ ((__packed__));
699
700 struct btrfs_timespec {
701 __le64 sec;
702 __le32 nsec;
703 } __attribute__ ((__packed__));
704
705 enum btrfs_compression_type {
706 BTRFS_COMPRESS_NONE = 0,
707 BTRFS_COMPRESS_ZLIB = 1,
708 BTRFS_COMPRESS_LZO = 2,
709 BTRFS_COMPRESS_TYPES = 2,
710 BTRFS_COMPRESS_LAST = 3,
711 };
712
713 struct btrfs_inode_item {
714 /* nfs style generation number */
715 __le64 generation;
716 /* transid that last touched this inode */
717 __le64 transid;
718 __le64 size;
719 __le64 nbytes;
720 __le64 block_group;
721 __le32 nlink;
722 __le32 uid;
723 __le32 gid;
724 __le32 mode;
725 __le64 rdev;
726 __le64 flags;
727
728 /* modification sequence number for NFS */
729 __le64 sequence;
730
731 /*
732 * a little future expansion, for more than this we can
733 * just grow the inode item and version it
734 */
735 __le64 reserved[4];
736 struct btrfs_timespec atime;
737 struct btrfs_timespec ctime;
738 struct btrfs_timespec mtime;
739 struct btrfs_timespec otime;
740 } __attribute__ ((__packed__));
741
742 struct btrfs_dir_log_item {
743 __le64 end;
744 } __attribute__ ((__packed__));
745
746 struct btrfs_dir_item {
747 struct btrfs_disk_key location;
748 __le64 transid;
749 __le16 data_len;
750 __le16 name_len;
751 u8 type;
752 } __attribute__ ((__packed__));
753
754 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
755
756 /*
757 * Internal in-memory flag that a subvolume has been marked for deletion but
758 * still visible as a directory
759 */
760 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
761
762 struct btrfs_root_item {
763 struct btrfs_inode_item inode;
764 __le64 generation;
765 __le64 root_dirid;
766 __le64 bytenr;
767 __le64 byte_limit;
768 __le64 bytes_used;
769 __le64 last_snapshot;
770 __le64 flags;
771 __le32 refs;
772 struct btrfs_disk_key drop_progress;
773 u8 drop_level;
774 u8 level;
775
776 /*
777 * The following fields appear after subvol_uuids+subvol_times
778 * were introduced.
779 */
780
781 /*
782 * This generation number is used to test if the new fields are valid
783 * and up to date while reading the root item. Everytime the root item
784 * is written out, the "generation" field is copied into this field. If
785 * anyone ever mounted the fs with an older kernel, we will have
786 * mismatching generation values here and thus must invalidate the
787 * new fields. See btrfs_update_root and btrfs_find_last_root for
788 * details.
789 * the offset of generation_v2 is also used as the start for the memset
790 * when invalidating the fields.
791 */
792 __le64 generation_v2;
793 u8 uuid[BTRFS_UUID_SIZE];
794 u8 parent_uuid[BTRFS_UUID_SIZE];
795 u8 received_uuid[BTRFS_UUID_SIZE];
796 __le64 ctransid; /* updated when an inode changes */
797 __le64 otransid; /* trans when created */
798 __le64 stransid; /* trans when sent. non-zero for received subvol */
799 __le64 rtransid; /* trans when received. non-zero for received subvol */
800 struct btrfs_timespec ctime;
801 struct btrfs_timespec otime;
802 struct btrfs_timespec stime;
803 struct btrfs_timespec rtime;
804 __le64 reserved[8]; /* for future */
805 } __attribute__ ((__packed__));
806
807 /*
808 * this is used for both forward and backward root refs
809 */
810 struct btrfs_root_ref {
811 __le64 dirid;
812 __le64 sequence;
813 __le16 name_len;
814 } __attribute__ ((__packed__));
815
816 struct btrfs_disk_balance_args {
817 /*
818 * profiles to operate on, single is denoted by
819 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
820 */
821 __le64 profiles;
822
823 /* usage filter */
824 __le64 usage;
825
826 /* devid filter */
827 __le64 devid;
828
829 /* devid subset filter [pstart..pend) */
830 __le64 pstart;
831 __le64 pend;
832
833 /* btrfs virtual address space subset filter [vstart..vend) */
834 __le64 vstart;
835 __le64 vend;
836
837 /*
838 * profile to convert to, single is denoted by
839 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
840 */
841 __le64 target;
842
843 /* BTRFS_BALANCE_ARGS_* */
844 __le64 flags;
845
846 /* BTRFS_BALANCE_ARGS_LIMIT value */
847 __le64 limit;
848
849 __le64 unused[7];
850 } __attribute__ ((__packed__));
851
852 /*
853 * store balance parameters to disk so that balance can be properly
854 * resumed after crash or unmount
855 */
856 struct btrfs_balance_item {
857 /* BTRFS_BALANCE_* */
858 __le64 flags;
859
860 struct btrfs_disk_balance_args data;
861 struct btrfs_disk_balance_args meta;
862 struct btrfs_disk_balance_args sys;
863
864 __le64 unused[4];
865 } __attribute__ ((__packed__));
866
867 #define BTRFS_FILE_EXTENT_INLINE 0
868 #define BTRFS_FILE_EXTENT_REG 1
869 #define BTRFS_FILE_EXTENT_PREALLOC 2
870
871 struct btrfs_file_extent_item {
872 /*
873 * transaction id that created this extent
874 */
875 __le64 generation;
876 /*
877 * max number of bytes to hold this extent in ram
878 * when we split a compressed extent we can't know how big
879 * each of the resulting pieces will be. So, this is
880 * an upper limit on the size of the extent in ram instead of
881 * an exact limit.
882 */
883 __le64 ram_bytes;
884
885 /*
886 * 32 bits for the various ways we might encode the data,
887 * including compression and encryption. If any of these
888 * are set to something a given disk format doesn't understand
889 * it is treated like an incompat flag for reading and writing,
890 * but not for stat.
891 */
892 u8 compression;
893 u8 encryption;
894 __le16 other_encoding; /* spare for later use */
895
896 /* are we inline data or a real extent? */
897 u8 type;
898
899 /*
900 * disk space consumed by the extent, checksum blocks are included
901 * in these numbers
902 *
903 * At this offset in the structure, the inline extent data start.
904 */
905 __le64 disk_bytenr;
906 __le64 disk_num_bytes;
907 /*
908 * the logical offset in file blocks (no csums)
909 * this extent record is for. This allows a file extent to point
910 * into the middle of an existing extent on disk, sharing it
911 * between two snapshots (useful if some bytes in the middle of the
912 * extent have changed
913 */
914 __le64 offset;
915 /*
916 * the logical number of file blocks (no csums included). This
917 * always reflects the size uncompressed and without encoding.
918 */
919 __le64 num_bytes;
920
921 } __attribute__ ((__packed__));
922
923 struct btrfs_csum_item {
924 u8 csum;
925 } __attribute__ ((__packed__));
926
927 struct btrfs_dev_stats_item {
928 /*
929 * grow this item struct at the end for future enhancements and keep
930 * the existing values unchanged
931 */
932 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
933 } __attribute__ ((__packed__));
934
935 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
936 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
937 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
938 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
939 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
940 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
941 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
942
943 struct btrfs_dev_replace {
944 u64 replace_state; /* see #define above */
945 u64 time_started; /* seconds since 1-Jan-1970 */
946 u64 time_stopped; /* seconds since 1-Jan-1970 */
947 atomic64_t num_write_errors;
948 atomic64_t num_uncorrectable_read_errors;
949
950 u64 cursor_left;
951 u64 committed_cursor_left;
952 u64 cursor_left_last_write_of_item;
953 u64 cursor_right;
954
955 u64 cont_reading_from_srcdev_mode; /* see #define above */
956
957 int is_valid;
958 int item_needs_writeback;
959 struct btrfs_device *srcdev;
960 struct btrfs_device *tgtdev;
961
962 pid_t lock_owner;
963 atomic_t nesting_level;
964 struct mutex lock_finishing_cancel_unmount;
965 struct mutex lock_management_lock;
966 struct mutex lock;
967
968 struct btrfs_scrub_progress scrub_progress;
969 };
970
971 struct btrfs_dev_replace_item {
972 /*
973 * grow this item struct at the end for future enhancements and keep
974 * the existing values unchanged
975 */
976 __le64 src_devid;
977 __le64 cursor_left;
978 __le64 cursor_right;
979 __le64 cont_reading_from_srcdev_mode;
980
981 __le64 replace_state;
982 __le64 time_started;
983 __le64 time_stopped;
984 __le64 num_write_errors;
985 __le64 num_uncorrectable_read_errors;
986 } __attribute__ ((__packed__));
987
988 /* different types of block groups (and chunks) */
989 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
990 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
991 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
992 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
993 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
994 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
995 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
996 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
997 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
998 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
999 BTRFS_SPACE_INFO_GLOBAL_RSV)
1000
1001 enum btrfs_raid_types {
1002 BTRFS_RAID_RAID10,
1003 BTRFS_RAID_RAID1,
1004 BTRFS_RAID_DUP,
1005 BTRFS_RAID_RAID0,
1006 BTRFS_RAID_SINGLE,
1007 BTRFS_RAID_RAID5,
1008 BTRFS_RAID_RAID6,
1009 BTRFS_NR_RAID_TYPES
1010 };
1011
1012 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
1013 BTRFS_BLOCK_GROUP_SYSTEM | \
1014 BTRFS_BLOCK_GROUP_METADATA)
1015
1016 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
1017 BTRFS_BLOCK_GROUP_RAID1 | \
1018 BTRFS_BLOCK_GROUP_RAID5 | \
1019 BTRFS_BLOCK_GROUP_RAID6 | \
1020 BTRFS_BLOCK_GROUP_DUP | \
1021 BTRFS_BLOCK_GROUP_RAID10)
1022 /*
1023 * We need a bit for restriper to be able to tell when chunks of type
1024 * SINGLE are available. This "extended" profile format is used in
1025 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1026 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
1027 * to avoid remappings between two formats in future.
1028 */
1029 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
1030
1031 /*
1032 * A fake block group type that is used to communicate global block reserve
1033 * size to userspace via the SPACE_INFO ioctl.
1034 */
1035 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
1036
1037 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1038 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1039
1040 static inline u64 chunk_to_extended(u64 flags)
1041 {
1042 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1043 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1044
1045 return flags;
1046 }
1047 static inline u64 extended_to_chunk(u64 flags)
1048 {
1049 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1050 }
1051
1052 struct btrfs_block_group_item {
1053 __le64 used;
1054 __le64 chunk_objectid;
1055 __le64 flags;
1056 } __attribute__ ((__packed__));
1057
1058 /*
1059 * is subvolume quota turned on?
1060 */
1061 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
1062 /*
1063 * RESCAN is set during the initialization phase
1064 */
1065 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
1066 /*
1067 * Some qgroup entries are known to be out of date,
1068 * either because the configuration has changed in a way that
1069 * makes a rescan necessary, or because the fs has been mounted
1070 * with a non-qgroup-aware version.
1071 * Turning qouta off and on again makes it inconsistent, too.
1072 */
1073 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
1074
1075 #define BTRFS_QGROUP_STATUS_VERSION 1
1076
1077 struct btrfs_qgroup_status_item {
1078 __le64 version;
1079 /*
1080 * the generation is updated during every commit. As older
1081 * versions of btrfs are not aware of qgroups, it will be
1082 * possible to detect inconsistencies by checking the
1083 * generation on mount time
1084 */
1085 __le64 generation;
1086
1087 /* flag definitions see above */
1088 __le64 flags;
1089
1090 /*
1091 * only used during scanning to record the progress
1092 * of the scan. It contains a logical address
1093 */
1094 __le64 rescan;
1095 } __attribute__ ((__packed__));
1096
1097 struct btrfs_qgroup_info_item {
1098 __le64 generation;
1099 __le64 rfer;
1100 __le64 rfer_cmpr;
1101 __le64 excl;
1102 __le64 excl_cmpr;
1103 } __attribute__ ((__packed__));
1104
1105 /* flags definition for qgroup limits */
1106 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
1107 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
1108 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
1109 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
1110 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
1111 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
1112
1113 struct btrfs_qgroup_limit_item {
1114 /*
1115 * only updated when any of the other values change
1116 */
1117 __le64 flags;
1118 __le64 max_rfer;
1119 __le64 max_excl;
1120 __le64 rsv_rfer;
1121 __le64 rsv_excl;
1122 } __attribute__ ((__packed__));
1123
1124 /* For raid type sysfs entries */
1125 struct raid_kobject {
1126 int raid_type;
1127 struct kobject kobj;
1128 };
1129
1130 struct btrfs_space_info {
1131 spinlock_t lock;
1132
1133 u64 total_bytes; /* total bytes in the space,
1134 this doesn't take mirrors into account */
1135 u64 bytes_used; /* total bytes used,
1136 this doesn't take mirrors into account */
1137 u64 bytes_pinned; /* total bytes pinned, will be freed when the
1138 transaction finishes */
1139 u64 bytes_reserved; /* total bytes the allocator has reserved for
1140 current allocations */
1141 u64 bytes_may_use; /* number of bytes that may be used for
1142 delalloc/allocations */
1143 u64 bytes_readonly; /* total bytes that are read only */
1144
1145 unsigned int full:1; /* indicates that we cannot allocate any more
1146 chunks for this space */
1147 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
1148
1149 unsigned int flush:1; /* set if we are trying to make space */
1150
1151 unsigned int force_alloc; /* set if we need to force a chunk
1152 alloc for this space */
1153
1154 u64 disk_used; /* total bytes used on disk */
1155 u64 disk_total; /* total bytes on disk, takes mirrors into
1156 account */
1157
1158 u64 flags;
1159
1160 /*
1161 * bytes_pinned is kept in line with what is actually pinned, as in
1162 * we've called update_block_group and dropped the bytes_used counter
1163 * and increased the bytes_pinned counter. However this means that
1164 * bytes_pinned does not reflect the bytes that will be pinned once the
1165 * delayed refs are flushed, so this counter is inc'ed everytime we call
1166 * btrfs_free_extent so it is a realtime count of what will be freed
1167 * once the transaction is committed. It will be zero'ed everytime the
1168 * transaction commits.
1169 */
1170 struct percpu_counter total_bytes_pinned;
1171
1172 struct list_head list;
1173 struct list_head ro_bgs;
1174
1175 struct rw_semaphore groups_sem;
1176 /* for block groups in our same type */
1177 struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1178 wait_queue_head_t wait;
1179
1180 struct kobject kobj;
1181 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1182 };
1183
1184 #define BTRFS_BLOCK_RSV_GLOBAL 1
1185 #define BTRFS_BLOCK_RSV_DELALLOC 2
1186 #define BTRFS_BLOCK_RSV_TRANS 3
1187 #define BTRFS_BLOCK_RSV_CHUNK 4
1188 #define BTRFS_BLOCK_RSV_DELOPS 5
1189 #define BTRFS_BLOCK_RSV_EMPTY 6
1190 #define BTRFS_BLOCK_RSV_TEMP 7
1191
1192 struct btrfs_block_rsv {
1193 u64 size;
1194 u64 reserved;
1195 struct btrfs_space_info *space_info;
1196 spinlock_t lock;
1197 unsigned short full;
1198 unsigned short type;
1199 unsigned short failfast;
1200 };
1201
1202 /*
1203 * free clusters are used to claim free space in relatively large chunks,
1204 * allowing us to do less seeky writes. They are used for all metadata
1205 * allocations and data allocations in ssd mode.
1206 */
1207 struct btrfs_free_cluster {
1208 spinlock_t lock;
1209 spinlock_t refill_lock;
1210 struct rb_root root;
1211
1212 /* largest extent in this cluster */
1213 u64 max_size;
1214
1215 /* first extent starting offset */
1216 u64 window_start;
1217
1218 struct btrfs_block_group_cache *block_group;
1219 /*
1220 * when a cluster is allocated from a block group, we put the
1221 * cluster onto a list in the block group so that it can
1222 * be freed before the block group is freed.
1223 */
1224 struct list_head block_group_list;
1225 };
1226
1227 enum btrfs_caching_type {
1228 BTRFS_CACHE_NO = 0,
1229 BTRFS_CACHE_STARTED = 1,
1230 BTRFS_CACHE_FAST = 2,
1231 BTRFS_CACHE_FINISHED = 3,
1232 BTRFS_CACHE_ERROR = 4,
1233 };
1234
1235 enum btrfs_disk_cache_state {
1236 BTRFS_DC_WRITTEN = 0,
1237 BTRFS_DC_ERROR = 1,
1238 BTRFS_DC_CLEAR = 2,
1239 BTRFS_DC_SETUP = 3,
1240 BTRFS_DC_NEED_WRITE = 4,
1241 };
1242
1243 struct btrfs_caching_control {
1244 struct list_head list;
1245 struct mutex mutex;
1246 wait_queue_head_t wait;
1247 struct btrfs_work work;
1248 struct btrfs_block_group_cache *block_group;
1249 u64 progress;
1250 atomic_t count;
1251 };
1252
1253 struct btrfs_block_group_cache {
1254 struct btrfs_key key;
1255 struct btrfs_block_group_item item;
1256 struct btrfs_fs_info *fs_info;
1257 struct inode *inode;
1258 spinlock_t lock;
1259 u64 pinned;
1260 u64 reserved;
1261 u64 delalloc_bytes;
1262 u64 bytes_super;
1263 u64 flags;
1264 u64 sectorsize;
1265 u64 cache_generation;
1266
1267 /*
1268 * It is just used for the delayed data space allocation because
1269 * only the data space allocation and the relative metadata update
1270 * can be done cross the transaction.
1271 */
1272 struct rw_semaphore data_rwsem;
1273
1274 /* for raid56, this is a full stripe, without parity */
1275 unsigned long full_stripe_len;
1276
1277 unsigned int ro:1;
1278 unsigned int dirty:1;
1279 unsigned int iref:1;
1280
1281 int disk_cache_state;
1282
1283 /* cache tracking stuff */
1284 int cached;
1285 struct btrfs_caching_control *caching_ctl;
1286 u64 last_byte_to_unpin;
1287
1288 struct btrfs_space_info *space_info;
1289
1290 /* free space cache stuff */
1291 struct btrfs_free_space_ctl *free_space_ctl;
1292
1293 /* block group cache stuff */
1294 struct rb_node cache_node;
1295
1296 /* for block groups in the same raid type */
1297 struct list_head list;
1298
1299 /* usage count */
1300 atomic_t count;
1301
1302 /* List of struct btrfs_free_clusters for this block group.
1303 * Today it will only have one thing on it, but that may change
1304 */
1305 struct list_head cluster_list;
1306
1307 /* For delayed block group creation or deletion of empty block groups */
1308 struct list_head bg_list;
1309
1310 /* For read-only block groups */
1311 struct list_head ro_list;
1312 };
1313
1314 /* delayed seq elem */
1315 struct seq_list {
1316 struct list_head list;
1317 u64 seq;
1318 };
1319
1320 enum btrfs_orphan_cleanup_state {
1321 ORPHAN_CLEANUP_STARTED = 1,
1322 ORPHAN_CLEANUP_DONE = 2,
1323 };
1324
1325 /* used by the raid56 code to lock stripes for read/modify/write */
1326 struct btrfs_stripe_hash {
1327 struct list_head hash_list;
1328 wait_queue_head_t wait;
1329 spinlock_t lock;
1330 };
1331
1332 /* used by the raid56 code to lock stripes for read/modify/write */
1333 struct btrfs_stripe_hash_table {
1334 struct list_head stripe_cache;
1335 spinlock_t cache_lock;
1336 int cache_size;
1337 struct btrfs_stripe_hash table[];
1338 };
1339
1340 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1341
1342 void btrfs_init_async_reclaim_work(struct work_struct *work);
1343
1344 /* fs_info */
1345 struct reloc_control;
1346 struct btrfs_device;
1347 struct btrfs_fs_devices;
1348 struct btrfs_balance_control;
1349 struct btrfs_delayed_root;
1350 struct btrfs_fs_info {
1351 u8 fsid[BTRFS_FSID_SIZE];
1352 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1353 struct btrfs_root *extent_root;
1354 struct btrfs_root *tree_root;
1355 struct btrfs_root *chunk_root;
1356 struct btrfs_root *dev_root;
1357 struct btrfs_root *fs_root;
1358 struct btrfs_root *csum_root;
1359 struct btrfs_root *quota_root;
1360 struct btrfs_root *uuid_root;
1361
1362 /* the log root tree is a directory of all the other log roots */
1363 struct btrfs_root *log_root_tree;
1364
1365 spinlock_t fs_roots_radix_lock;
1366 struct radix_tree_root fs_roots_radix;
1367
1368 /* block group cache stuff */
1369 spinlock_t block_group_cache_lock;
1370 u64 first_logical_byte;
1371 struct rb_root block_group_cache_tree;
1372
1373 /* keep track of unallocated space */
1374 spinlock_t free_chunk_lock;
1375 u64 free_chunk_space;
1376
1377 struct extent_io_tree freed_extents[2];
1378 struct extent_io_tree *pinned_extents;
1379
1380 /* logical->physical extent mapping */
1381 struct btrfs_mapping_tree mapping_tree;
1382
1383 /*
1384 * block reservation for extent, checksum, root tree and
1385 * delayed dir index item
1386 */
1387 struct btrfs_block_rsv global_block_rsv;
1388 /* block reservation for delay allocation */
1389 struct btrfs_block_rsv delalloc_block_rsv;
1390 /* block reservation for metadata operations */
1391 struct btrfs_block_rsv trans_block_rsv;
1392 /* block reservation for chunk tree */
1393 struct btrfs_block_rsv chunk_block_rsv;
1394 /* block reservation for delayed operations */
1395 struct btrfs_block_rsv delayed_block_rsv;
1396
1397 struct btrfs_block_rsv empty_block_rsv;
1398
1399 u64 generation;
1400 u64 last_trans_committed;
1401 u64 avg_delayed_ref_runtime;
1402
1403 /*
1404 * this is updated to the current trans every time a full commit
1405 * is required instead of the faster short fsync log commits
1406 */
1407 u64 last_trans_log_full_commit;
1408 unsigned long mount_opt;
1409 unsigned long compress_type:4;
1410 int commit_interval;
1411 /*
1412 * It is a suggestive number, the read side is safe even it gets a
1413 * wrong number because we will write out the data into a regular
1414 * extent. The write side(mount/remount) is under ->s_umount lock,
1415 * so it is also safe.
1416 */
1417 u64 max_inline;
1418 /*
1419 * Protected by ->chunk_mutex and sb->s_umount.
1420 *
1421 * The reason that we use two lock to protect it is because only
1422 * remount and mount operations can change it and these two operations
1423 * are under sb->s_umount, but the read side (chunk allocation) can not
1424 * acquire sb->s_umount or the deadlock would happen. So we use two
1425 * locks to protect it. On the write side, we must acquire two locks,
1426 * and on the read side, we just need acquire one of them.
1427 */
1428 u64 alloc_start;
1429 struct btrfs_transaction *running_transaction;
1430 wait_queue_head_t transaction_throttle;
1431 wait_queue_head_t transaction_wait;
1432 wait_queue_head_t transaction_blocked_wait;
1433 wait_queue_head_t async_submit_wait;
1434
1435 /*
1436 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1437 * when they are updated.
1438 *
1439 * Because we do not clear the flags for ever, so we needn't use
1440 * the lock on the read side.
1441 *
1442 * We also needn't use the lock when we mount the fs, because
1443 * there is no other task which will update the flag.
1444 */
1445 spinlock_t super_lock;
1446 struct btrfs_super_block *super_copy;
1447 struct btrfs_super_block *super_for_commit;
1448 struct block_device *__bdev;
1449 struct super_block *sb;
1450 struct inode *btree_inode;
1451 struct backing_dev_info bdi;
1452 struct mutex tree_log_mutex;
1453 struct mutex transaction_kthread_mutex;
1454 struct mutex cleaner_mutex;
1455 struct mutex chunk_mutex;
1456 struct mutex volume_mutex;
1457
1458 /* this is used during read/modify/write to make sure
1459 * no two ios are trying to mod the same stripe at the same
1460 * time
1461 */
1462 struct btrfs_stripe_hash_table *stripe_hash_table;
1463
1464 /*
1465 * this protects the ordered operations list only while we are
1466 * processing all of the entries on it. This way we make
1467 * sure the commit code doesn't find the list temporarily empty
1468 * because another function happens to be doing non-waiting preflush
1469 * before jumping into the main commit.
1470 */
1471 struct mutex ordered_operations_mutex;
1472
1473 /*
1474 * Same as ordered_operations_mutex except this is for ordered extents
1475 * and not the operations.
1476 */
1477 struct mutex ordered_extent_flush_mutex;
1478
1479 struct rw_semaphore commit_root_sem;
1480
1481 struct rw_semaphore cleanup_work_sem;
1482
1483 struct rw_semaphore subvol_sem;
1484 struct srcu_struct subvol_srcu;
1485
1486 spinlock_t trans_lock;
1487 /*
1488 * the reloc mutex goes with the trans lock, it is taken
1489 * during commit to protect us from the relocation code
1490 */
1491 struct mutex reloc_mutex;
1492
1493 struct list_head trans_list;
1494 struct list_head dead_roots;
1495 struct list_head caching_block_groups;
1496
1497 spinlock_t delayed_iput_lock;
1498 struct list_head delayed_iputs;
1499
1500 /* this protects tree_mod_seq_list */
1501 spinlock_t tree_mod_seq_lock;
1502 atomic64_t tree_mod_seq;
1503 struct list_head tree_mod_seq_list;
1504
1505 /* this protects tree_mod_log */
1506 rwlock_t tree_mod_log_lock;
1507 struct rb_root tree_mod_log;
1508
1509 atomic_t nr_async_submits;
1510 atomic_t async_submit_draining;
1511 atomic_t nr_async_bios;
1512 atomic_t async_delalloc_pages;
1513 atomic_t open_ioctl_trans;
1514
1515 /*
1516 * this is used to protect the following list -- ordered_roots.
1517 */
1518 spinlock_t ordered_root_lock;
1519
1520 /*
1521 * all fs/file tree roots in which there are data=ordered extents
1522 * pending writeback are added into this list.
1523 *
1524 * these can span multiple transactions and basically include
1525 * every dirty data page that isn't from nodatacow
1526 */
1527 struct list_head ordered_roots;
1528
1529 struct mutex delalloc_root_mutex;
1530 spinlock_t delalloc_root_lock;
1531 /* all fs/file tree roots that have delalloc inodes. */
1532 struct list_head delalloc_roots;
1533
1534 /*
1535 * there is a pool of worker threads for checksumming during writes
1536 * and a pool for checksumming after reads. This is because readers
1537 * can run with FS locks held, and the writers may be waiting for
1538 * those locks. We don't want ordering in the pending list to cause
1539 * deadlocks, and so the two are serviced separately.
1540 *
1541 * A third pool does submit_bio to avoid deadlocking with the other
1542 * two
1543 */
1544 struct btrfs_workqueue *workers;
1545 struct btrfs_workqueue *delalloc_workers;
1546 struct btrfs_workqueue *flush_workers;
1547 struct btrfs_workqueue *endio_workers;
1548 struct btrfs_workqueue *endio_meta_workers;
1549 struct btrfs_workqueue *endio_raid56_workers;
1550 struct btrfs_workqueue *endio_repair_workers;
1551 struct btrfs_workqueue *rmw_workers;
1552 struct btrfs_workqueue *endio_meta_write_workers;
1553 struct btrfs_workqueue *endio_write_workers;
1554 struct btrfs_workqueue *endio_freespace_worker;
1555 struct btrfs_workqueue *submit_workers;
1556 struct btrfs_workqueue *caching_workers;
1557 struct btrfs_workqueue *readahead_workers;
1558
1559 /*
1560 * fixup workers take dirty pages that didn't properly go through
1561 * the cow mechanism and make them safe to write. It happens
1562 * for the sys_munmap function call path
1563 */
1564 struct btrfs_workqueue *fixup_workers;
1565 struct btrfs_workqueue *delayed_workers;
1566
1567 /* the extent workers do delayed refs on the extent allocation tree */
1568 struct btrfs_workqueue *extent_workers;
1569 struct task_struct *transaction_kthread;
1570 struct task_struct *cleaner_kthread;
1571 int thread_pool_size;
1572
1573 struct kobject super_kobj;
1574 struct kobject *space_info_kobj;
1575 struct kobject *device_dir_kobj;
1576 struct completion kobj_unregister;
1577 int do_barriers;
1578 int closing;
1579 int log_root_recovering;
1580 int open;
1581
1582 u64 total_pinned;
1583
1584 /* used to keep from writing metadata until there is a nice batch */
1585 struct percpu_counter dirty_metadata_bytes;
1586 struct percpu_counter delalloc_bytes;
1587 s32 dirty_metadata_batch;
1588 s32 delalloc_batch;
1589
1590 struct list_head dirty_cowonly_roots;
1591
1592 struct btrfs_fs_devices *fs_devices;
1593
1594 /*
1595 * the space_info list is almost entirely read only. It only changes
1596 * when we add a new raid type to the FS, and that happens
1597 * very rarely. RCU is used to protect it.
1598 */
1599 struct list_head space_info;
1600
1601 struct btrfs_space_info *data_sinfo;
1602
1603 struct reloc_control *reloc_ctl;
1604
1605 /* data_alloc_cluster is only used in ssd mode */
1606 struct btrfs_free_cluster data_alloc_cluster;
1607
1608 /* all metadata allocations go through this cluster */
1609 struct btrfs_free_cluster meta_alloc_cluster;
1610
1611 /* auto defrag inodes go here */
1612 spinlock_t defrag_inodes_lock;
1613 struct rb_root defrag_inodes;
1614 atomic_t defrag_running;
1615
1616 /* Used to protect avail_{data, metadata, system}_alloc_bits */
1617 seqlock_t profiles_lock;
1618 /*
1619 * these three are in extended format (availability of single
1620 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1621 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1622 */
1623 u64 avail_data_alloc_bits;
1624 u64 avail_metadata_alloc_bits;
1625 u64 avail_system_alloc_bits;
1626
1627 /* restriper state */
1628 spinlock_t balance_lock;
1629 struct mutex balance_mutex;
1630 atomic_t balance_running;
1631 atomic_t balance_pause_req;
1632 atomic_t balance_cancel_req;
1633 struct btrfs_balance_control *balance_ctl;
1634 wait_queue_head_t balance_wait_q;
1635
1636 unsigned data_chunk_allocations;
1637 unsigned metadata_ratio;
1638
1639 void *bdev_holder;
1640
1641 /* private scrub information */
1642 struct mutex scrub_lock;
1643 atomic_t scrubs_running;
1644 atomic_t scrub_pause_req;
1645 atomic_t scrubs_paused;
1646 atomic_t scrub_cancel_req;
1647 wait_queue_head_t scrub_pause_wait;
1648 int scrub_workers_refcnt;
1649 struct btrfs_workqueue *scrub_workers;
1650 struct btrfs_workqueue *scrub_wr_completion_workers;
1651 struct btrfs_workqueue *scrub_nocow_workers;
1652
1653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1654 u32 check_integrity_print_mask;
1655 #endif
1656 /*
1657 * quota information
1658 */
1659 unsigned int quota_enabled:1;
1660
1661 /*
1662 * quota_enabled only changes state after a commit. This holds the
1663 * next state.
1664 */
1665 unsigned int pending_quota_state:1;
1666
1667 /* is qgroup tracking in a consistent state? */
1668 u64 qgroup_flags;
1669
1670 /* holds configuration and tracking. Protected by qgroup_lock */
1671 struct rb_root qgroup_tree;
1672 struct rb_root qgroup_op_tree;
1673 spinlock_t qgroup_lock;
1674 spinlock_t qgroup_op_lock;
1675 atomic_t qgroup_op_seq;
1676
1677 /*
1678 * used to avoid frequently calling ulist_alloc()/ulist_free()
1679 * when doing qgroup accounting, it must be protected by qgroup_lock.
1680 */
1681 struct ulist *qgroup_ulist;
1682
1683 /* protect user change for quota operations */
1684 struct mutex qgroup_ioctl_lock;
1685
1686 /* list of dirty qgroups to be written at next commit */
1687 struct list_head dirty_qgroups;
1688
1689 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */
1690 u64 qgroup_seq;
1691
1692 /* qgroup rescan items */
1693 struct mutex qgroup_rescan_lock; /* protects the progress item */
1694 struct btrfs_key qgroup_rescan_progress;
1695 struct btrfs_workqueue *qgroup_rescan_workers;
1696 struct completion qgroup_rescan_completion;
1697 struct btrfs_work qgroup_rescan_work;
1698
1699 /* filesystem state */
1700 unsigned long fs_state;
1701
1702 struct btrfs_delayed_root *delayed_root;
1703
1704 /* readahead tree */
1705 spinlock_t reada_lock;
1706 struct radix_tree_root reada_tree;
1707
1708 /* Extent buffer radix tree */
1709 spinlock_t buffer_lock;
1710 struct radix_tree_root buffer_radix;
1711
1712 /* next backup root to be overwritten */
1713 int backup_root_index;
1714
1715 int num_tolerated_disk_barrier_failures;
1716
1717 /* device replace state */
1718 struct btrfs_dev_replace dev_replace;
1719
1720 atomic_t mutually_exclusive_operation_running;
1721
1722 struct percpu_counter bio_counter;
1723 wait_queue_head_t replace_wait;
1724
1725 struct semaphore uuid_tree_rescan_sem;
1726 unsigned int update_uuid_tree_gen:1;
1727
1728 /* Used to reclaim the metadata space in the background. */
1729 struct work_struct async_reclaim_work;
1730
1731 spinlock_t unused_bgs_lock;
1732 struct list_head unused_bgs;
1733
1734 /* For btrfs to record security options */
1735 struct security_mnt_opts security_opts;
1736 };
1737
1738 struct btrfs_subvolume_writers {
1739 struct percpu_counter counter;
1740 wait_queue_head_t wait;
1741 };
1742
1743 /*
1744 * The state of btrfs root
1745 */
1746 /*
1747 * btrfs_record_root_in_trans is a multi-step process,
1748 * and it can race with the balancing code. But the
1749 * race is very small, and only the first time the root
1750 * is added to each transaction. So IN_TRANS_SETUP
1751 * is used to tell us when more checks are required
1752 */
1753 #define BTRFS_ROOT_IN_TRANS_SETUP 0
1754 #define BTRFS_ROOT_REF_COWS 1
1755 #define BTRFS_ROOT_TRACK_DIRTY 2
1756 #define BTRFS_ROOT_IN_RADIX 3
1757 #define BTRFS_ROOT_DUMMY_ROOT 4
1758 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5
1759 #define BTRFS_ROOT_DEFRAG_RUNNING 6
1760 #define BTRFS_ROOT_FORCE_COW 7
1761 #define BTRFS_ROOT_MULTI_LOG_TASKS 8
1762
1763 /*
1764 * in ram representation of the tree. extent_root is used for all allocations
1765 * and for the extent tree extent_root root.
1766 */
1767 struct btrfs_root {
1768 struct extent_buffer *node;
1769
1770 struct extent_buffer *commit_root;
1771 struct btrfs_root *log_root;
1772 struct btrfs_root *reloc_root;
1773
1774 unsigned long state;
1775 struct btrfs_root_item root_item;
1776 struct btrfs_key root_key;
1777 struct btrfs_fs_info *fs_info;
1778 struct extent_io_tree dirty_log_pages;
1779
1780 struct kobject root_kobj;
1781 struct completion kobj_unregister;
1782 struct mutex objectid_mutex;
1783
1784 spinlock_t accounting_lock;
1785 struct btrfs_block_rsv *block_rsv;
1786
1787 /* free ino cache stuff */
1788 struct btrfs_free_space_ctl *free_ino_ctl;
1789 enum btrfs_caching_type ino_cache_state;
1790 spinlock_t ino_cache_lock;
1791 wait_queue_head_t ino_cache_wait;
1792 struct btrfs_free_space_ctl *free_ino_pinned;
1793 u64 ino_cache_progress;
1794 struct inode *ino_cache_inode;
1795
1796 struct mutex log_mutex;
1797 wait_queue_head_t log_writer_wait;
1798 wait_queue_head_t log_commit_wait[2];
1799 struct list_head log_ctxs[2];
1800 atomic_t log_writers;
1801 atomic_t log_commit[2];
1802 atomic_t log_batch;
1803 int log_transid;
1804 /* No matter the commit succeeds or not*/
1805 int log_transid_committed;
1806 /* Just be updated when the commit succeeds. */
1807 int last_log_commit;
1808 pid_t log_start_pid;
1809
1810 u64 objectid;
1811 u64 last_trans;
1812
1813 /* data allocations are done in sectorsize units */
1814 u32 sectorsize;
1815
1816 /* node allocations are done in nodesize units */
1817 u32 nodesize;
1818
1819 u32 stripesize;
1820
1821 u32 type;
1822
1823 u64 highest_objectid;
1824
1825 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1826 u64 alloc_bytenr;
1827
1828 u64 defrag_trans_start;
1829 struct btrfs_key defrag_progress;
1830 struct btrfs_key defrag_max;
1831 char *name;
1832
1833 /* the dirty list is only used by non-reference counted roots */
1834 struct list_head dirty_list;
1835
1836 struct list_head root_list;
1837
1838 spinlock_t log_extents_lock[2];
1839 struct list_head logged_list[2];
1840
1841 spinlock_t orphan_lock;
1842 atomic_t orphan_inodes;
1843 struct btrfs_block_rsv *orphan_block_rsv;
1844 int orphan_cleanup_state;
1845
1846 spinlock_t inode_lock;
1847 /* red-black tree that keeps track of in-memory inodes */
1848 struct rb_root inode_tree;
1849
1850 /*
1851 * radix tree that keeps track of delayed nodes of every inode,
1852 * protected by inode_lock
1853 */
1854 struct radix_tree_root delayed_nodes_tree;
1855 /*
1856 * right now this just gets used so that a root has its own devid
1857 * for stat. It may be used for more later
1858 */
1859 dev_t anon_dev;
1860
1861 spinlock_t root_item_lock;
1862 atomic_t refs;
1863
1864 struct mutex delalloc_mutex;
1865 spinlock_t delalloc_lock;
1866 /*
1867 * all of the inodes that have delalloc bytes. It is possible for
1868 * this list to be empty even when there is still dirty data=ordered
1869 * extents waiting to finish IO.
1870 */
1871 struct list_head delalloc_inodes;
1872 struct list_head delalloc_root;
1873 u64 nr_delalloc_inodes;
1874
1875 struct mutex ordered_extent_mutex;
1876 /*
1877 * this is used by the balancing code to wait for all the pending
1878 * ordered extents
1879 */
1880 spinlock_t ordered_extent_lock;
1881
1882 /*
1883 * all of the data=ordered extents pending writeback
1884 * these can span multiple transactions and basically include
1885 * every dirty data page that isn't from nodatacow
1886 */
1887 struct list_head ordered_extents;
1888 struct list_head ordered_root;
1889 u64 nr_ordered_extents;
1890
1891 /*
1892 * Number of currently running SEND ioctls to prevent
1893 * manipulation with the read-only status via SUBVOL_SETFLAGS
1894 */
1895 int send_in_progress;
1896 struct btrfs_subvolume_writers *subv_writers;
1897 atomic_t will_be_snapshoted;
1898 };
1899
1900 struct btrfs_ioctl_defrag_range_args {
1901 /* start of the defrag operation */
1902 __u64 start;
1903
1904 /* number of bytes to defrag, use (u64)-1 to say all */
1905 __u64 len;
1906
1907 /*
1908 * flags for the operation, which can include turning
1909 * on compression for this one defrag
1910 */
1911 __u64 flags;
1912
1913 /*
1914 * any extent bigger than this will be considered
1915 * already defragged. Use 0 to take the kernel default
1916 * Use 1 to say every single extent must be rewritten
1917 */
1918 __u32 extent_thresh;
1919
1920 /*
1921 * which compression method to use if turning on compression
1922 * for this defrag operation. If unspecified, zlib will
1923 * be used
1924 */
1925 __u32 compress_type;
1926
1927 /* spare for later */
1928 __u32 unused[4];
1929 };
1930
1931
1932 /*
1933 * inode items have the data typically returned from stat and store other
1934 * info about object characteristics. There is one for every file and dir in
1935 * the FS
1936 */
1937 #define BTRFS_INODE_ITEM_KEY 1
1938 #define BTRFS_INODE_REF_KEY 12
1939 #define BTRFS_INODE_EXTREF_KEY 13
1940 #define BTRFS_XATTR_ITEM_KEY 24
1941 #define BTRFS_ORPHAN_ITEM_KEY 48
1942 /* reserve 2-15 close to the inode for later flexibility */
1943
1944 /*
1945 * dir items are the name -> inode pointers in a directory. There is one
1946 * for every name in a directory.
1947 */
1948 #define BTRFS_DIR_LOG_ITEM_KEY 60
1949 #define BTRFS_DIR_LOG_INDEX_KEY 72
1950 #define BTRFS_DIR_ITEM_KEY 84
1951 #define BTRFS_DIR_INDEX_KEY 96
1952 /*
1953 * extent data is for file data
1954 */
1955 #define BTRFS_EXTENT_DATA_KEY 108
1956
1957 /*
1958 * extent csums are stored in a separate tree and hold csums for
1959 * an entire extent on disk.
1960 */
1961 #define BTRFS_EXTENT_CSUM_KEY 128
1962
1963 /*
1964 * root items point to tree roots. They are typically in the root
1965 * tree used by the super block to find all the other trees
1966 */
1967 #define BTRFS_ROOT_ITEM_KEY 132
1968
1969 /*
1970 * root backrefs tie subvols and snapshots to the directory entries that
1971 * reference them
1972 */
1973 #define BTRFS_ROOT_BACKREF_KEY 144
1974
1975 /*
1976 * root refs make a fast index for listing all of the snapshots and
1977 * subvolumes referenced by a given root. They point directly to the
1978 * directory item in the root that references the subvol
1979 */
1980 #define BTRFS_ROOT_REF_KEY 156
1981
1982 /*
1983 * extent items are in the extent map tree. These record which blocks
1984 * are used, and how many references there are to each block
1985 */
1986 #define BTRFS_EXTENT_ITEM_KEY 168
1987
1988 /*
1989 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
1990 * the length, so we save the level in key->offset instead of the length.
1991 */
1992 #define BTRFS_METADATA_ITEM_KEY 169
1993
1994 #define BTRFS_TREE_BLOCK_REF_KEY 176
1995
1996 #define BTRFS_EXTENT_DATA_REF_KEY 178
1997
1998 #define BTRFS_EXTENT_REF_V0_KEY 180
1999
2000 #define BTRFS_SHARED_BLOCK_REF_KEY 182
2001
2002 #define BTRFS_SHARED_DATA_REF_KEY 184
2003
2004 /*
2005 * block groups give us hints into the extent allocation trees. Which
2006 * blocks are free etc etc
2007 */
2008 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2009
2010 #define BTRFS_DEV_EXTENT_KEY 204
2011 #define BTRFS_DEV_ITEM_KEY 216
2012 #define BTRFS_CHUNK_ITEM_KEY 228
2013
2014 /*
2015 * Records the overall state of the qgroups.
2016 * There's only one instance of this key present,
2017 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2018 */
2019 #define BTRFS_QGROUP_STATUS_KEY 240
2020 /*
2021 * Records the currently used space of the qgroup.
2022 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2023 */
2024 #define BTRFS_QGROUP_INFO_KEY 242
2025 /*
2026 * Contains the user configured limits for the qgroup.
2027 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2028 */
2029 #define BTRFS_QGROUP_LIMIT_KEY 244
2030 /*
2031 * Records the child-parent relationship of qgroups. For
2032 * each relation, 2 keys are present:
2033 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2034 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2035 */
2036 #define BTRFS_QGROUP_RELATION_KEY 246
2037
2038 #define BTRFS_BALANCE_ITEM_KEY 248
2039
2040 /*
2041 * Persistantly stores the io stats in the device tree.
2042 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2043 */
2044 #define BTRFS_DEV_STATS_KEY 249
2045
2046 /*
2047 * Persistantly stores the device replace state in the device tree.
2048 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2049 */
2050 #define BTRFS_DEV_REPLACE_KEY 250
2051
2052 /*
2053 * Stores items that allow to quickly map UUIDs to something else.
2054 * These items are part of the filesystem UUID tree.
2055 * The key is built like this:
2056 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2057 */
2058 #if BTRFS_UUID_SIZE != 16
2059 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2060 #endif
2061 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
2062 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
2063 * received subvols */
2064
2065 /*
2066 * string items are for debugging. They just store a short string of
2067 * data in the FS
2068 */
2069 #define BTRFS_STRING_ITEM_KEY 253
2070
2071 /*
2072 * Flags for mount options.
2073 *
2074 * Note: don't forget to add new options to btrfs_show_options()
2075 */
2076 #define BTRFS_MOUNT_NODATASUM (1 << 0)
2077 #define BTRFS_MOUNT_NODATACOW (1 << 1)
2078 #define BTRFS_MOUNT_NOBARRIER (1 << 2)
2079 #define BTRFS_MOUNT_SSD (1 << 3)
2080 #define BTRFS_MOUNT_DEGRADED (1 << 4)
2081 #define BTRFS_MOUNT_COMPRESS (1 << 5)
2082 #define BTRFS_MOUNT_NOTREELOG (1 << 6)
2083 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
2084 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
2085 #define BTRFS_MOUNT_NOSSD (1 << 9)
2086 #define BTRFS_MOUNT_DISCARD (1 << 10)
2087 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
2088 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
2089 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
2090 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2091 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
2092 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
2093 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
2094 #define BTRFS_MOUNT_RECOVERY (1 << 18)
2095 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
2096 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
2097 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2098 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
2099 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
2100 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24)
2101
2102 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
2103 #define BTRFS_DEFAULT_MAX_INLINE (8192)
2104
2105 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
2106 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
2107 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
2108 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
2109 BTRFS_MOUNT_##opt)
2110 #define btrfs_set_and_info(root, opt, fmt, args...) \
2111 { \
2112 if (!btrfs_test_opt(root, opt)) \
2113 btrfs_info(root->fs_info, fmt, ##args); \
2114 btrfs_set_opt(root->fs_info->mount_opt, opt); \
2115 }
2116
2117 #define btrfs_clear_and_info(root, opt, fmt, args...) \
2118 { \
2119 if (btrfs_test_opt(root, opt)) \
2120 btrfs_info(root->fs_info, fmt, ##args); \
2121 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
2122 }
2123
2124 /*
2125 * Inode flags
2126 */
2127 #define BTRFS_INODE_NODATASUM (1 << 0)
2128 #define BTRFS_INODE_NODATACOW (1 << 1)
2129 #define BTRFS_INODE_READONLY (1 << 2)
2130 #define BTRFS_INODE_NOCOMPRESS (1 << 3)
2131 #define BTRFS_INODE_PREALLOC (1 << 4)
2132 #define BTRFS_INODE_SYNC (1 << 5)
2133 #define BTRFS_INODE_IMMUTABLE (1 << 6)
2134 #define BTRFS_INODE_APPEND (1 << 7)
2135 #define BTRFS_INODE_NODUMP (1 << 8)
2136 #define BTRFS_INODE_NOATIME (1 << 9)
2137 #define BTRFS_INODE_DIRSYNC (1 << 10)
2138 #define BTRFS_INODE_COMPRESS (1 << 11)
2139
2140 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
2141
2142 struct btrfs_map_token {
2143 struct extent_buffer *eb;
2144 char *kaddr;
2145 unsigned long offset;
2146 };
2147
2148 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2149 {
2150 token->kaddr = NULL;
2151 }
2152
2153 /* some macros to generate set/get funcs for the struct fields. This
2154 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2155 * one for u8:
2156 */
2157 #define le8_to_cpu(v) (v)
2158 #define cpu_to_le8(v) (v)
2159 #define __le8 u8
2160
2161 #define read_eb_member(eb, ptr, type, member, result) ( \
2162 read_extent_buffer(eb, (char *)(result), \
2163 ((unsigned long)(ptr)) + \
2164 offsetof(type, member), \
2165 sizeof(((type *)0)->member)))
2166
2167 #define write_eb_member(eb, ptr, type, member, result) ( \
2168 write_extent_buffer(eb, (char *)(result), \
2169 ((unsigned long)(ptr)) + \
2170 offsetof(type, member), \
2171 sizeof(((type *)0)->member)))
2172
2173 #define DECLARE_BTRFS_SETGET_BITS(bits) \
2174 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \
2175 unsigned long off, \
2176 struct btrfs_map_token *token); \
2177 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \
2178 unsigned long off, u##bits val, \
2179 struct btrfs_map_token *token); \
2180 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2181 unsigned long off) \
2182 { \
2183 return btrfs_get_token_##bits(eb, ptr, off, NULL); \
2184 } \
2185 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2186 unsigned long off, u##bits val) \
2187 { \
2188 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \
2189 }
2190
2191 DECLARE_BTRFS_SETGET_BITS(8)
2192 DECLARE_BTRFS_SETGET_BITS(16)
2193 DECLARE_BTRFS_SETGET_BITS(32)
2194 DECLARE_BTRFS_SETGET_BITS(64)
2195
2196 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
2197 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \
2198 { \
2199 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2200 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
2201 } \
2202 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
2203 u##bits val) \
2204 { \
2205 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2206 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
2207 } \
2208 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2209 struct btrfs_map_token *token) \
2210 { \
2211 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2212 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2213 } \
2214 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
2215 type *s, u##bits val, \
2216 struct btrfs_map_token *token) \
2217 { \
2218 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
2219 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2220 }
2221
2222 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
2223 static inline u##bits btrfs_##name(struct extent_buffer *eb) \
2224 { \
2225 type *p = page_address(eb->pages[0]); \
2226 u##bits res = le##bits##_to_cpu(p->member); \
2227 return res; \
2228 } \
2229 static inline void btrfs_set_##name(struct extent_buffer *eb, \
2230 u##bits val) \
2231 { \
2232 type *p = page_address(eb->pages[0]); \
2233 p->member = cpu_to_le##bits(val); \
2234 }
2235
2236 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
2237 static inline u##bits btrfs_##name(type *s) \
2238 { \
2239 return le##bits##_to_cpu(s->member); \
2240 } \
2241 static inline void btrfs_set_##name(type *s, u##bits val) \
2242 { \
2243 s->member = cpu_to_le##bits(val); \
2244 }
2245
2246 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2247 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2248 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2249 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2250 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2251 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2252 start_offset, 64);
2253 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2254 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2255 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2256 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2257 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2258 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2259
2260 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2261 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2262 total_bytes, 64);
2263 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2264 bytes_used, 64);
2265 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2266 io_align, 32);
2267 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2268 io_width, 32);
2269 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2270 sector_size, 32);
2271 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2272 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2273 dev_group, 32);
2274 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2275 seek_speed, 8);
2276 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2277 bandwidth, 8);
2278 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2279 generation, 64);
2280
2281 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2282 {
2283 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2284 }
2285
2286 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2287 {
2288 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2289 }
2290
2291 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2292 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2293 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2294 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2295 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2296 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2297 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2298 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2299 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2300 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2301 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2302
2303 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2304 {
2305 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2306 }
2307
2308 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2309 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2310 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2311 stripe_len, 64);
2312 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2313 io_align, 32);
2314 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2315 io_width, 32);
2316 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2317 sector_size, 32);
2318 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2319 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2320 num_stripes, 16);
2321 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2322 sub_stripes, 16);
2323 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2324 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2325
2326 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2327 int nr)
2328 {
2329 unsigned long offset = (unsigned long)c;
2330 offset += offsetof(struct btrfs_chunk, stripe);
2331 offset += nr * sizeof(struct btrfs_stripe);
2332 return (struct btrfs_stripe *)offset;
2333 }
2334
2335 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2336 {
2337 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2338 }
2339
2340 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2341 struct btrfs_chunk *c, int nr)
2342 {
2343 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2344 }
2345
2346 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2347 struct btrfs_chunk *c, int nr)
2348 {
2349 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2350 }
2351
2352 /* struct btrfs_block_group_item */
2353 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2354 used, 64);
2355 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2356 used, 64);
2357 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2358 struct btrfs_block_group_item, chunk_objectid, 64);
2359
2360 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2361 struct btrfs_block_group_item, chunk_objectid, 64);
2362 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2363 struct btrfs_block_group_item, flags, 64);
2364 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2365 struct btrfs_block_group_item, flags, 64);
2366
2367 /* struct btrfs_inode_ref */
2368 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2369 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2370
2371 /* struct btrfs_inode_extref */
2372 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2373 parent_objectid, 64);
2374 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2375 name_len, 16);
2376 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2377
2378 /* struct btrfs_inode_item */
2379 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2380 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2381 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2382 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2383 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2384 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2385 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2386 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2387 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2388 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2389 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2390 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2391 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2392 generation, 64);
2393 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2394 sequence, 64);
2395 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2396 transid, 64);
2397 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2398 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2399 nbytes, 64);
2400 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2401 block_group, 64);
2402 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2403 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2404 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2405 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2406 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2407 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2408
2409 static inline struct btrfs_timespec *
2410 btrfs_inode_atime(struct btrfs_inode_item *inode_item)
2411 {
2412 unsigned long ptr = (unsigned long)inode_item;
2413 ptr += offsetof(struct btrfs_inode_item, atime);
2414 return (struct btrfs_timespec *)ptr;
2415 }
2416
2417 static inline struct btrfs_timespec *
2418 btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
2419 {
2420 unsigned long ptr = (unsigned long)inode_item;
2421 ptr += offsetof(struct btrfs_inode_item, mtime);
2422 return (struct btrfs_timespec *)ptr;
2423 }
2424
2425 static inline struct btrfs_timespec *
2426 btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
2427 {
2428 unsigned long ptr = (unsigned long)inode_item;
2429 ptr += offsetof(struct btrfs_inode_item, ctime);
2430 return (struct btrfs_timespec *)ptr;
2431 }
2432
2433 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2434 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2435 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2436 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2437
2438 /* struct btrfs_dev_extent */
2439 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2440 chunk_tree, 64);
2441 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2442 chunk_objectid, 64);
2443 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2444 chunk_offset, 64);
2445 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2446
2447 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2448 {
2449 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2450 return (unsigned long)dev + ptr;
2451 }
2452
2453 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2454 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2455 generation, 64);
2456 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2457
2458 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2459
2460
2461 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2462
2463 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2464 struct btrfs_tree_block_info *item,
2465 struct btrfs_disk_key *key)
2466 {
2467 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2468 }
2469
2470 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2471 struct btrfs_tree_block_info *item,
2472 struct btrfs_disk_key *key)
2473 {
2474 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2475 }
2476
2477 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2478 root, 64);
2479 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2480 objectid, 64);
2481 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2482 offset, 64);
2483 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2484 count, 32);
2485
2486 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2487 count, 32);
2488
2489 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2490 type, 8);
2491 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2492 offset, 64);
2493
2494 static inline u32 btrfs_extent_inline_ref_size(int type)
2495 {
2496 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2497 type == BTRFS_SHARED_BLOCK_REF_KEY)
2498 return sizeof(struct btrfs_extent_inline_ref);
2499 if (type == BTRFS_SHARED_DATA_REF_KEY)
2500 return sizeof(struct btrfs_shared_data_ref) +
2501 sizeof(struct btrfs_extent_inline_ref);
2502 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2503 return sizeof(struct btrfs_extent_data_ref) +
2504 offsetof(struct btrfs_extent_inline_ref, offset);
2505 BUG();
2506 return 0;
2507 }
2508
2509 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2510 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2511 generation, 64);
2512 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2513 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2514
2515 /* struct btrfs_node */
2516 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2517 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2518 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2519 blockptr, 64);
2520 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2521 generation, 64);
2522
2523 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2524 {
2525 unsigned long ptr;
2526 ptr = offsetof(struct btrfs_node, ptrs) +
2527 sizeof(struct btrfs_key_ptr) * nr;
2528 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2529 }
2530
2531 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2532 int nr, u64 val)
2533 {
2534 unsigned long ptr;
2535 ptr = offsetof(struct btrfs_node, ptrs) +
2536 sizeof(struct btrfs_key_ptr) * nr;
2537 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2538 }
2539
2540 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2541 {
2542 unsigned long ptr;
2543 ptr = offsetof(struct btrfs_node, ptrs) +
2544 sizeof(struct btrfs_key_ptr) * nr;
2545 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2546 }
2547
2548 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2549 int nr, u64 val)
2550 {
2551 unsigned long ptr;
2552 ptr = offsetof(struct btrfs_node, ptrs) +
2553 sizeof(struct btrfs_key_ptr) * nr;
2554 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2555 }
2556
2557 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2558 {
2559 return offsetof(struct btrfs_node, ptrs) +
2560 sizeof(struct btrfs_key_ptr) * nr;
2561 }
2562
2563 void btrfs_node_key(struct extent_buffer *eb,
2564 struct btrfs_disk_key *disk_key, int nr);
2565
2566 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2567 struct btrfs_disk_key *disk_key, int nr)
2568 {
2569 unsigned long ptr;
2570 ptr = btrfs_node_key_ptr_offset(nr);
2571 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2572 struct btrfs_key_ptr, key, disk_key);
2573 }
2574
2575 /* struct btrfs_item */
2576 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2577 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2578 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2579 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2580
2581 static inline unsigned long btrfs_item_nr_offset(int nr)
2582 {
2583 return offsetof(struct btrfs_leaf, items) +
2584 sizeof(struct btrfs_item) * nr;
2585 }
2586
2587 static inline struct btrfs_item *btrfs_item_nr(int nr)
2588 {
2589 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2590 }
2591
2592 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2593 struct btrfs_item *item)
2594 {
2595 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2596 }
2597
2598 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2599 {
2600 return btrfs_item_end(eb, btrfs_item_nr(nr));
2601 }
2602
2603 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2604 {
2605 return btrfs_item_offset(eb, btrfs_item_nr(nr));
2606 }
2607
2608 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2609 {
2610 return btrfs_item_size(eb, btrfs_item_nr(nr));
2611 }
2612
2613 static inline void btrfs_item_key(struct extent_buffer *eb,
2614 struct btrfs_disk_key *disk_key, int nr)
2615 {
2616 struct btrfs_item *item = btrfs_item_nr(nr);
2617 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2618 }
2619
2620 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2621 struct btrfs_disk_key *disk_key, int nr)
2622 {
2623 struct btrfs_item *item = btrfs_item_nr(nr);
2624 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2625 }
2626
2627 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2628
2629 /*
2630 * struct btrfs_root_ref
2631 */
2632 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2633 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2634 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2635
2636 /* struct btrfs_dir_item */
2637 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2638 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2639 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2640 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2641 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2642 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2643 data_len, 16);
2644 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2645 name_len, 16);
2646 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2647 transid, 64);
2648
2649 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2650 struct btrfs_dir_item *item,
2651 struct btrfs_disk_key *key)
2652 {
2653 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2654 }
2655
2656 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2657 struct btrfs_dir_item *item,
2658 struct btrfs_disk_key *key)
2659 {
2660 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2661 }
2662
2663 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2664 num_entries, 64);
2665 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2666 num_bitmaps, 64);
2667 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2668 generation, 64);
2669
2670 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2671 struct btrfs_free_space_header *h,
2672 struct btrfs_disk_key *key)
2673 {
2674 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2675 }
2676
2677 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2678 struct btrfs_free_space_header *h,
2679 struct btrfs_disk_key *key)
2680 {
2681 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2682 }
2683
2684 /* struct btrfs_disk_key */
2685 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2686 objectid, 64);
2687 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2688 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2689
2690 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2691 struct btrfs_disk_key *disk)
2692 {
2693 cpu->offset = le64_to_cpu(disk->offset);
2694 cpu->type = disk->type;
2695 cpu->objectid = le64_to_cpu(disk->objectid);
2696 }
2697
2698 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2699 struct btrfs_key *cpu)
2700 {
2701 disk->offset = cpu_to_le64(cpu->offset);
2702 disk->type = cpu->type;
2703 disk->objectid = cpu_to_le64(cpu->objectid);
2704 }
2705
2706 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2707 struct btrfs_key *key, int nr)
2708 {
2709 struct btrfs_disk_key disk_key;
2710 btrfs_node_key(eb, &disk_key, nr);
2711 btrfs_disk_key_to_cpu(key, &disk_key);
2712 }
2713
2714 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2715 struct btrfs_key *key, int nr)
2716 {
2717 struct btrfs_disk_key disk_key;
2718 btrfs_item_key(eb, &disk_key, nr);
2719 btrfs_disk_key_to_cpu(key, &disk_key);
2720 }
2721
2722 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2723 struct btrfs_dir_item *item,
2724 struct btrfs_key *key)
2725 {
2726 struct btrfs_disk_key disk_key;
2727 btrfs_dir_item_key(eb, item, &disk_key);
2728 btrfs_disk_key_to_cpu(key, &disk_key);
2729 }
2730
2731
2732 static inline u8 btrfs_key_type(struct btrfs_key *key)
2733 {
2734 return key->type;
2735 }
2736
2737 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2738 {
2739 key->type = val;
2740 }
2741
2742 /* struct btrfs_header */
2743 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2744 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2745 generation, 64);
2746 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2747 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2748 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2749 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2750 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2751 generation, 64);
2752 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2753 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2754 nritems, 32);
2755 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2756
2757 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2758 {
2759 return (btrfs_header_flags(eb) & flag) == flag;
2760 }
2761
2762 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2763 {
2764 u64 flags = btrfs_header_flags(eb);
2765 btrfs_set_header_flags(eb, flags | flag);
2766 return (flags & flag) == flag;
2767 }
2768
2769 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2770 {
2771 u64 flags = btrfs_header_flags(eb);
2772 btrfs_set_header_flags(eb, flags & ~flag);
2773 return (flags & flag) == flag;
2774 }
2775
2776 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2777 {
2778 u64 flags = btrfs_header_flags(eb);
2779 return flags >> BTRFS_BACKREF_REV_SHIFT;
2780 }
2781
2782 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2783 int rev)
2784 {
2785 u64 flags = btrfs_header_flags(eb);
2786 flags &= ~BTRFS_BACKREF_REV_MASK;
2787 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2788 btrfs_set_header_flags(eb, flags);
2789 }
2790
2791 static inline unsigned long btrfs_header_fsid(void)
2792 {
2793 return offsetof(struct btrfs_header, fsid);
2794 }
2795
2796 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2797 {
2798 return offsetof(struct btrfs_header, chunk_tree_uuid);
2799 }
2800
2801 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2802 {
2803 return btrfs_header_level(eb) == 0;
2804 }
2805
2806 /* struct btrfs_root_item */
2807 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2808 generation, 64);
2809 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2810 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2811 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2812
2813 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2814 generation, 64);
2815 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2816 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2817 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2818 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2819 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2820 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2821 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2822 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2823 last_snapshot, 64);
2824 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2825 generation_v2, 64);
2826 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2827 ctransid, 64);
2828 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2829 otransid, 64);
2830 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2831 stransid, 64);
2832 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2833 rtransid, 64);
2834
2835 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2836 {
2837 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2838 }
2839
2840 static inline bool btrfs_root_dead(struct btrfs_root *root)
2841 {
2842 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2843 }
2844
2845 /* struct btrfs_root_backup */
2846 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2847 tree_root, 64);
2848 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2849 tree_root_gen, 64);
2850 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2851 tree_root_level, 8);
2852
2853 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2854 chunk_root, 64);
2855 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2856 chunk_root_gen, 64);
2857 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2858 chunk_root_level, 8);
2859
2860 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2861 extent_root, 64);
2862 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2863 extent_root_gen, 64);
2864 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2865 extent_root_level, 8);
2866
2867 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2868 fs_root, 64);
2869 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2870 fs_root_gen, 64);
2871 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2872 fs_root_level, 8);
2873
2874 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2875 dev_root, 64);
2876 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2877 dev_root_gen, 64);
2878 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2879 dev_root_level, 8);
2880
2881 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2882 csum_root, 64);
2883 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2884 csum_root_gen, 64);
2885 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2886 csum_root_level, 8);
2887 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2888 total_bytes, 64);
2889 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2890 bytes_used, 64);
2891 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2892 num_devices, 64);
2893
2894 /* struct btrfs_balance_item */
2895 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2896
2897 static inline void btrfs_balance_data(struct extent_buffer *eb,
2898 struct btrfs_balance_item *bi,
2899 struct btrfs_disk_balance_args *ba)
2900 {
2901 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2902 }
2903
2904 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2905 struct btrfs_balance_item *bi,
2906 struct btrfs_disk_balance_args *ba)
2907 {
2908 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2909 }
2910
2911 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2912 struct btrfs_balance_item *bi,
2913 struct btrfs_disk_balance_args *ba)
2914 {
2915 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2916 }
2917
2918 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2919 struct btrfs_balance_item *bi,
2920 struct btrfs_disk_balance_args *ba)
2921 {
2922 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2923 }
2924
2925 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2926 struct btrfs_balance_item *bi,
2927 struct btrfs_disk_balance_args *ba)
2928 {
2929 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2930 }
2931
2932 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2933 struct btrfs_balance_item *bi,
2934 struct btrfs_disk_balance_args *ba)
2935 {
2936 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2937 }
2938
2939 static inline void
2940 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2941 struct btrfs_disk_balance_args *disk)
2942 {
2943 memset(cpu, 0, sizeof(*cpu));
2944
2945 cpu->profiles = le64_to_cpu(disk->profiles);
2946 cpu->usage = le64_to_cpu(disk->usage);
2947 cpu->devid = le64_to_cpu(disk->devid);
2948 cpu->pstart = le64_to_cpu(disk->pstart);
2949 cpu->pend = le64_to_cpu(disk->pend);
2950 cpu->vstart = le64_to_cpu(disk->vstart);
2951 cpu->vend = le64_to_cpu(disk->vend);
2952 cpu->target = le64_to_cpu(disk->target);
2953 cpu->flags = le64_to_cpu(disk->flags);
2954 cpu->limit = le64_to_cpu(disk->limit);
2955 }
2956
2957 static inline void
2958 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2959 struct btrfs_balance_args *cpu)
2960 {
2961 memset(disk, 0, sizeof(*disk));
2962
2963 disk->profiles = cpu_to_le64(cpu->profiles);
2964 disk->usage = cpu_to_le64(cpu->usage);
2965 disk->devid = cpu_to_le64(cpu->devid);
2966 disk->pstart = cpu_to_le64(cpu->pstart);
2967 disk->pend = cpu_to_le64(cpu->pend);
2968 disk->vstart = cpu_to_le64(cpu->vstart);
2969 disk->vend = cpu_to_le64(cpu->vend);
2970 disk->target = cpu_to_le64(cpu->target);
2971 disk->flags = cpu_to_le64(cpu->flags);
2972 disk->limit = cpu_to_le64(cpu->limit);
2973 }
2974
2975 /* struct btrfs_super_block */
2976 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2977 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2978 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2979 generation, 64);
2980 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2981 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2982 struct btrfs_super_block, sys_chunk_array_size, 32);
2983 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2984 struct btrfs_super_block, chunk_root_generation, 64);
2985 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2986 root_level, 8);
2987 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2988 chunk_root, 64);
2989 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2990 chunk_root_level, 8);
2991 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2992 log_root, 64);
2993 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2994 log_root_transid, 64);
2995 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2996 log_root_level, 8);
2997 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2998 total_bytes, 64);
2999 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3000 bytes_used, 64);
3001 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3002 sectorsize, 32);
3003 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3004 nodesize, 32);
3005 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3006 stripesize, 32);
3007 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3008 root_dir_objectid, 64);
3009 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3010 num_devices, 64);
3011 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3012 compat_flags, 64);
3013 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3014 compat_ro_flags, 64);
3015 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3016 incompat_flags, 64);
3017 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3018 csum_type, 16);
3019 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3020 cache_generation, 64);
3021 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3022 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3023 uuid_tree_generation, 64);
3024
3025 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3026 {
3027 u16 t = btrfs_super_csum_type(s);
3028 /*
3029 * csum type is validated at mount time
3030 */
3031 return btrfs_csum_sizes[t];
3032 }
3033
3034 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3035 {
3036 return offsetof(struct btrfs_leaf, items);
3037 }
3038
3039 /* struct btrfs_file_extent_item */
3040 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3041 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3042 struct btrfs_file_extent_item, disk_bytenr, 64);
3043 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3044 struct btrfs_file_extent_item, offset, 64);
3045 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3046 struct btrfs_file_extent_item, generation, 64);
3047 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3048 struct btrfs_file_extent_item, num_bytes, 64);
3049 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3050 struct btrfs_file_extent_item, disk_num_bytes, 64);
3051 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3052 struct btrfs_file_extent_item, compression, 8);
3053
3054 static inline unsigned long
3055 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3056 {
3057 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3058 }
3059
3060 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3061 {
3062 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3063 }
3064
3065 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3066 disk_bytenr, 64);
3067 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3068 generation, 64);
3069 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3070 disk_num_bytes, 64);
3071 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3072 offset, 64);
3073 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3074 num_bytes, 64);
3075 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3076 ram_bytes, 64);
3077 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3078 compression, 8);
3079 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3080 encryption, 8);
3081 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3082 other_encoding, 16);
3083
3084 /*
3085 * this returns the number of bytes used by the item on disk, minus the
3086 * size of any extent headers. If a file is compressed on disk, this is
3087 * the compressed size
3088 */
3089 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3090 struct btrfs_item *e)
3091 {
3092 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3093 }
3094
3095 /* this returns the number of file bytes represented by the inline item.
3096 * If an item is compressed, this is the uncompressed size
3097 */
3098 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3099 int slot,
3100 struct btrfs_file_extent_item *fi)
3101 {
3102 struct btrfs_map_token token;
3103
3104 btrfs_init_map_token(&token);
3105 /*
3106 * return the space used on disk if this item isn't
3107 * compressed or encoded
3108 */
3109 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3110 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3111 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3112 return btrfs_file_extent_inline_item_len(eb,
3113 btrfs_item_nr(slot));
3114 }
3115
3116 /* otherwise use the ram bytes field */
3117 return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3118 }
3119
3120
3121 /* btrfs_dev_stats_item */
3122 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3123 struct btrfs_dev_stats_item *ptr,
3124 int index)
3125 {
3126 u64 val;
3127
3128 read_extent_buffer(eb, &val,
3129 offsetof(struct btrfs_dev_stats_item, values) +
3130 ((unsigned long)ptr) + (index * sizeof(u64)),
3131 sizeof(val));
3132 return val;
3133 }
3134
3135 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3136 struct btrfs_dev_stats_item *ptr,
3137 int index, u64 val)
3138 {
3139 write_extent_buffer(eb, &val,
3140 offsetof(struct btrfs_dev_stats_item, values) +
3141 ((unsigned long)ptr) + (index * sizeof(u64)),
3142 sizeof(val));
3143 }
3144
3145 /* btrfs_qgroup_status_item */
3146 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3147 generation, 64);
3148 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3149 version, 64);
3150 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3151 flags, 64);
3152 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3153 rescan, 64);
3154
3155 /* btrfs_qgroup_info_item */
3156 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3157 generation, 64);
3158 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3159 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3160 rfer_cmpr, 64);
3161 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3162 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3163 excl_cmpr, 64);
3164
3165 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3166 struct btrfs_qgroup_info_item, generation, 64);
3167 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3168 rfer, 64);
3169 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3170 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3171 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3172 excl, 64);
3173 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3174 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3175
3176 /* btrfs_qgroup_limit_item */
3177 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3178 flags, 64);
3179 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3180 max_rfer, 64);
3181 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3182 max_excl, 64);
3183 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3184 rsv_rfer, 64);
3185 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3186 rsv_excl, 64);
3187
3188 /* btrfs_dev_replace_item */
3189 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3190 struct btrfs_dev_replace_item, src_devid, 64);
3191 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3192 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3193 64);
3194 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3195 replace_state, 64);
3196 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3197 time_started, 64);
3198 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3199 time_stopped, 64);
3200 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3201 num_write_errors, 64);
3202 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3203 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3204 64);
3205 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3206 cursor_left, 64);
3207 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3208 cursor_right, 64);
3209
3210 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3211 struct btrfs_dev_replace_item, src_devid, 64);
3212 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3213 struct btrfs_dev_replace_item,
3214 cont_reading_from_srcdev_mode, 64);
3215 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3216 struct btrfs_dev_replace_item, replace_state, 64);
3217 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3218 struct btrfs_dev_replace_item, time_started, 64);
3219 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3220 struct btrfs_dev_replace_item, time_stopped, 64);
3221 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3222 struct btrfs_dev_replace_item, num_write_errors, 64);
3223 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3224 struct btrfs_dev_replace_item,
3225 num_uncorrectable_read_errors, 64);
3226 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3227 struct btrfs_dev_replace_item, cursor_left, 64);
3228 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3229 struct btrfs_dev_replace_item, cursor_right, 64);
3230
3231 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3232 {
3233 return sb->s_fs_info;
3234 }
3235
3236 /* helper function to cast into the data area of the leaf. */
3237 #define btrfs_item_ptr(leaf, slot, type) \
3238 ((type *)(btrfs_leaf_data(leaf) + \
3239 btrfs_item_offset_nr(leaf, slot)))
3240
3241 #define btrfs_item_ptr_offset(leaf, slot) \
3242 ((unsigned long)(btrfs_leaf_data(leaf) + \
3243 btrfs_item_offset_nr(leaf, slot)))
3244
3245 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3246 {
3247 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3248 (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3249 }
3250
3251 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3252 {
3253 return mapping_gfp_mask(mapping) & ~__GFP_FS;
3254 }
3255
3256 /* extent-tree.c */
3257 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3258 unsigned num_items)
3259 {
3260 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3261 2 * num_items;
3262 }
3263
3264 /*
3265 * Doing a truncate won't result in new nodes or leaves, just what we need for
3266 * COW.
3267 */
3268 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3269 unsigned num_items)
3270 {
3271 return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3272 }
3273
3274 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root);
3276 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3277 struct btrfs_root *root);
3278 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3279 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *root, unsigned long count);
3281 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3282 unsigned long count, int wait);
3283 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3284 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3285 struct btrfs_root *root, u64 bytenr,
3286 u64 offset, int metadata, u64 *refs, u64 *flags);
3287 int btrfs_pin_extent(struct btrfs_root *root,
3288 u64 bytenr, u64 num, int reserved);
3289 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3290 u64 bytenr, u64 num_bytes);
3291 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3292 struct extent_buffer *eb);
3293 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3294 struct btrfs_root *root,
3295 u64 objectid, u64 offset, u64 bytenr);
3296 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3297 struct btrfs_fs_info *info,
3298 u64 bytenr);
3299 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3300 int get_block_group_index(struct btrfs_block_group_cache *cache);
3301 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3302 struct btrfs_root *root, u64 parent,
3303 u64 root_objectid,
3304 struct btrfs_disk_key *key, int level,
3305 u64 hint, u64 empty_size);
3306 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3307 struct btrfs_root *root,
3308 struct extent_buffer *buf,
3309 u64 parent, int last_ref);
3310 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3311 struct btrfs_root *root,
3312 u64 root_objectid, u64 owner,
3313 u64 offset, struct btrfs_key *ins);
3314 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3315 struct btrfs_root *root,
3316 u64 root_objectid, u64 owner, u64 offset,
3317 struct btrfs_key *ins);
3318 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3319 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3320 struct btrfs_key *ins, int is_data, int delalloc);
3321 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3322 struct extent_buffer *buf, int full_backref);
3323 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3324 struct extent_buffer *buf, int full_backref);
3325 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root,
3327 u64 bytenr, u64 num_bytes, u64 flags,
3328 int level, int is_data);
3329 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3332 u64 owner, u64 offset, int no_quota);
3333
3334 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3335 int delalloc);
3336 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3337 u64 start, u64 len);
3338 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3339 struct btrfs_root *root);
3340 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3341 struct btrfs_root *root);
3342 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root,
3344 u64 bytenr, u64 num_bytes, u64 parent,
3345 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3346
3347 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3348 struct btrfs_root *root);
3349 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3350 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3351 int btrfs_read_block_groups(struct btrfs_root *root);
3352 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3353 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3354 struct btrfs_root *root, u64 bytes_used,
3355 u64 type, u64 chunk_objectid, u64 chunk_offset,
3356 u64 size);
3357 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3358 struct btrfs_root *root, u64 group_start);
3359 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3360 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3361 struct btrfs_root *root);
3362 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3363 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3364
3365 enum btrfs_reserve_flush_enum {
3366 /* If we are in the transaction, we can't flush anything.*/
3367 BTRFS_RESERVE_NO_FLUSH,
3368 /*
3369 * Flushing delalloc may cause deadlock somewhere, in this
3370 * case, use FLUSH LIMIT
3371 */
3372 BTRFS_RESERVE_FLUSH_LIMIT,
3373 BTRFS_RESERVE_FLUSH_ALL,
3374 };
3375
3376 int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
3377 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3378 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3379 struct btrfs_root *root);
3380 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3381 struct inode *inode);
3382 void btrfs_orphan_release_metadata(struct inode *inode);
3383 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3384 struct btrfs_block_rsv *rsv,
3385 int nitems,
3386 u64 *qgroup_reserved, bool use_global_rsv);
3387 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3388 struct btrfs_block_rsv *rsv,
3389 u64 qgroup_reserved);
3390 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3391 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3392 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3393 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3394 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3395 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3396 unsigned short type);
3397 void btrfs_free_block_rsv(struct btrfs_root *root,
3398 struct btrfs_block_rsv *rsv);
3399 int btrfs_block_rsv_add(struct btrfs_root *root,
3400 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3401 enum btrfs_reserve_flush_enum flush);
3402 int btrfs_block_rsv_check(struct btrfs_root *root,
3403 struct btrfs_block_rsv *block_rsv, int min_factor);
3404 int btrfs_block_rsv_refill(struct btrfs_root *root,
3405 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3406 enum btrfs_reserve_flush_enum flush);
3407 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3408 struct btrfs_block_rsv *dst_rsv,
3409 u64 num_bytes);
3410 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3411 struct btrfs_block_rsv *dest, u64 num_bytes,
3412 int min_factor);
3413 void btrfs_block_rsv_release(struct btrfs_root *root,
3414 struct btrfs_block_rsv *block_rsv,
3415 u64 num_bytes);
3416 int btrfs_set_block_group_ro(struct btrfs_root *root,
3417 struct btrfs_block_group_cache *cache);
3418 void btrfs_set_block_group_rw(struct btrfs_root *root,
3419 struct btrfs_block_group_cache *cache);
3420 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3421 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3422 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3423 u64 start, u64 end);
3424 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
3425 u64 num_bytes, u64 *actual_bytes);
3426 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3427 struct btrfs_root *root, u64 type);
3428 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3429
3430 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3431 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3432 struct btrfs_fs_info *fs_info);
3433 int __get_raid_index(u64 flags);
3434 int btrfs_start_nocow_write(struct btrfs_root *root);
3435 void btrfs_end_nocow_write(struct btrfs_root *root);
3436 /* ctree.c */
3437 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3438 int level, int *slot);
3439 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3440 int btrfs_previous_item(struct btrfs_root *root,
3441 struct btrfs_path *path, u64 min_objectid,
3442 int type);
3443 int btrfs_previous_extent_item(struct btrfs_root *root,
3444 struct btrfs_path *path, u64 min_objectid);
3445 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3446 struct btrfs_key *new_key);
3447 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3448 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3449 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3450 struct btrfs_key *key, int lowest_level,
3451 u64 min_trans);
3452 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3453 struct btrfs_path *path,
3454 u64 min_trans);
3455 enum btrfs_compare_tree_result {
3456 BTRFS_COMPARE_TREE_NEW,
3457 BTRFS_COMPARE_TREE_DELETED,
3458 BTRFS_COMPARE_TREE_CHANGED,
3459 BTRFS_COMPARE_TREE_SAME,
3460 };
3461 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3462 struct btrfs_root *right_root,
3463 struct btrfs_path *left_path,
3464 struct btrfs_path *right_path,
3465 struct btrfs_key *key,
3466 enum btrfs_compare_tree_result result,
3467 void *ctx);
3468 int btrfs_compare_trees(struct btrfs_root *left_root,
3469 struct btrfs_root *right_root,
3470 btrfs_changed_cb_t cb, void *ctx);
3471 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root, struct extent_buffer *buf,
3473 struct extent_buffer *parent, int parent_slot,
3474 struct extent_buffer **cow_ret);
3475 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3476 struct btrfs_root *root,
3477 struct extent_buffer *buf,
3478 struct extent_buffer **cow_ret, u64 new_root_objectid);
3479 int btrfs_block_can_be_shared(struct btrfs_root *root,
3480 struct extent_buffer *buf);
3481 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3482 u32 data_size);
3483 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3484 u32 new_size, int from_end);
3485 int btrfs_split_item(struct btrfs_trans_handle *trans,
3486 struct btrfs_root *root,
3487 struct btrfs_path *path,
3488 struct btrfs_key *new_key,
3489 unsigned long split_offset);
3490 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *root,
3492 struct btrfs_path *path,
3493 struct btrfs_key *new_key);
3494 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3495 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3496 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3497 *root, struct btrfs_key *key, struct btrfs_path *p, int
3498 ins_len, int cow);
3499 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3500 struct btrfs_path *p, u64 time_seq);
3501 int btrfs_search_slot_for_read(struct btrfs_root *root,
3502 struct btrfs_key *key, struct btrfs_path *p,
3503 int find_higher, int return_any);
3504 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *root, struct extent_buffer *parent,
3506 int start_slot, u64 *last_ret,
3507 struct btrfs_key *progress);
3508 void btrfs_release_path(struct btrfs_path *p);
3509 struct btrfs_path *btrfs_alloc_path(void);
3510 void btrfs_free_path(struct btrfs_path *p);
3511 void btrfs_set_path_blocking(struct btrfs_path *p);
3512 void btrfs_clear_path_blocking(struct btrfs_path *p,
3513 struct extent_buffer *held, int held_rw);
3514 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3515
3516 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3517 struct btrfs_path *path, int slot, int nr);
3518 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3519 struct btrfs_root *root,
3520 struct btrfs_path *path)
3521 {
3522 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3523 }
3524
3525 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3526 struct btrfs_key *cpu_key, u32 *data_size,
3527 u32 total_data, u32 total_size, int nr);
3528 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3529 *root, struct btrfs_key *key, void *data, u32 data_size);
3530 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root,
3532 struct btrfs_path *path,
3533 struct btrfs_key *cpu_key, u32 *data_size, int nr);
3534
3535 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root,
3537 struct btrfs_path *path,
3538 struct btrfs_key *key,
3539 u32 data_size)
3540 {
3541 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3542 }
3543
3544 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3545 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3546 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3547 u64 time_seq);
3548 static inline int btrfs_next_old_item(struct btrfs_root *root,
3549 struct btrfs_path *p, u64 time_seq)
3550 {
3551 ++p->slots[0];
3552 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3553 return btrfs_next_old_leaf(root, p, time_seq);
3554 return 0;
3555 }
3556 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3557 {
3558 return btrfs_next_old_item(root, p, 0);
3559 }
3560 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3561 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3562 struct btrfs_block_rsv *block_rsv,
3563 int update_ref, int for_reloc);
3564 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3565 struct btrfs_root *root,
3566 struct extent_buffer *node,
3567 struct extent_buffer *parent);
3568 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3569 {
3570 /*
3571 * Get synced with close_ctree()
3572 */
3573 smp_mb();
3574 return fs_info->closing;
3575 }
3576
3577 /*
3578 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3579 * anything except sleeping. This function is used to check the status of
3580 * the fs.
3581 */
3582 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3583 {
3584 return (root->fs_info->sb->s_flags & MS_RDONLY ||
3585 btrfs_fs_closing(root->fs_info));
3586 }
3587
3588 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3589 {
3590 kfree(fs_info->balance_ctl);
3591 kfree(fs_info->delayed_root);
3592 kfree(fs_info->extent_root);
3593 kfree(fs_info->tree_root);
3594 kfree(fs_info->chunk_root);
3595 kfree(fs_info->dev_root);
3596 kfree(fs_info->csum_root);
3597 kfree(fs_info->quota_root);
3598 kfree(fs_info->uuid_root);
3599 kfree(fs_info->super_copy);
3600 kfree(fs_info->super_for_commit);
3601 security_free_mnt_opts(&fs_info->security_opts);
3602 kfree(fs_info);
3603 }
3604
3605 /* tree mod log functions from ctree.c */
3606 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3607 struct seq_list *elem);
3608 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3609 struct seq_list *elem);
3610 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3611
3612 /* root-item.c */
3613 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3614 struct btrfs_path *path,
3615 u64 root_id, u64 ref_id);
3616 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3617 struct btrfs_root *tree_root,
3618 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3619 const char *name, int name_len);
3620 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3621 struct btrfs_root *tree_root,
3622 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3623 const char *name, int name_len);
3624 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3625 struct btrfs_key *key);
3626 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3627 *root, struct btrfs_key *key, struct btrfs_root_item
3628 *item);
3629 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3630 struct btrfs_root *root,
3631 struct btrfs_key *key,
3632 struct btrfs_root_item *item);
3633 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3634 struct btrfs_path *path, struct btrfs_root_item *root_item,
3635 struct btrfs_key *root_key);
3636 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3637 void btrfs_set_root_node(struct btrfs_root_item *item,
3638 struct extent_buffer *node);
3639 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3640 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *root);
3642
3643 /* uuid-tree.c */
3644 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3645 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3646 u64 subid);
3647 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3648 struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3649 u64 subid);
3650 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3651 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3652 u64));
3653
3654 /* dir-item.c */
3655 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3656 const char *name, int name_len);
3657 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3658 struct btrfs_root *root, const char *name,
3659 int name_len, struct inode *dir,
3660 struct btrfs_key *location, u8 type, u64 index);
3661 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root,
3663 struct btrfs_path *path, u64 dir,
3664 const char *name, int name_len,
3665 int mod);
3666 struct btrfs_dir_item *
3667 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3668 struct btrfs_root *root,
3669 struct btrfs_path *path, u64 dir,
3670 u64 objectid, const char *name, int name_len,
3671 int mod);
3672 struct btrfs_dir_item *
3673 btrfs_search_dir_index_item(struct btrfs_root *root,
3674 struct btrfs_path *path, u64 dirid,
3675 const char *name, int name_len);
3676 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3677 struct btrfs_root *root,
3678 struct btrfs_path *path,
3679 struct btrfs_dir_item *di);
3680 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root,
3682 struct btrfs_path *path, u64 objectid,
3683 const char *name, u16 name_len,
3684 const void *data, u16 data_len);
3685 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3686 struct btrfs_root *root,
3687 struct btrfs_path *path, u64 dir,
3688 const char *name, u16 name_len,
3689 int mod);
3690 int verify_dir_item(struct btrfs_root *root,
3691 struct extent_buffer *leaf,
3692 struct btrfs_dir_item *dir_item);
3693
3694 /* orphan.c */
3695 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3696 struct btrfs_root *root, u64 offset);
3697 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3698 struct btrfs_root *root, u64 offset);
3699 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3700
3701 /* inode-item.c */
3702 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3703 struct btrfs_root *root,
3704 const char *name, int name_len,
3705 u64 inode_objectid, u64 ref_objectid, u64 index);
3706 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3707 struct btrfs_root *root,
3708 const char *name, int name_len,
3709 u64 inode_objectid, u64 ref_objectid, u64 *index);
3710 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3711 struct btrfs_root *root,
3712 struct btrfs_path *path, u64 objectid);
3713 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3714 *root, struct btrfs_path *path,
3715 struct btrfs_key *location, int mod);
3716
3717 struct btrfs_inode_extref *
3718 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3719 struct btrfs_root *root,
3720 struct btrfs_path *path,
3721 const char *name, int name_len,
3722 u64 inode_objectid, u64 ref_objectid, int ins_len,
3723 int cow);
3724
3725 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3726 u64 ref_objectid, const char *name,
3727 int name_len,
3728 struct btrfs_inode_extref **extref_ret);
3729
3730 /* file-item.c */
3731 struct btrfs_dio_private;
3732 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3733 struct btrfs_root *root, u64 bytenr, u64 len);
3734 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3735 struct bio *bio, u32 *dst);
3736 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3737 struct bio *bio, u64 logical_offset);
3738 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3739 struct btrfs_root *root,
3740 u64 objectid, u64 pos,
3741 u64 disk_offset, u64 disk_num_bytes,
3742 u64 num_bytes, u64 offset, u64 ram_bytes,
3743 u8 compression, u8 encryption, u16 other_encoding);
3744 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3745 struct btrfs_root *root,
3746 struct btrfs_path *path, u64 objectid,
3747 u64 bytenr, int mod);
3748 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3749 struct btrfs_root *root,
3750 struct btrfs_ordered_sum *sums);
3751 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3752 struct bio *bio, u64 file_start, int contig);
3753 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3754 struct list_head *list, int search_commit);
3755 void btrfs_extent_item_to_extent_map(struct inode *inode,
3756 const struct btrfs_path *path,
3757 struct btrfs_file_extent_item *fi,
3758 const bool new_inline,
3759 struct extent_map *em);
3760
3761 /* inode.c */
3762 struct btrfs_delalloc_work {
3763 struct inode *inode;
3764 int wait;
3765 int delay_iput;
3766 struct completion completion;
3767 struct list_head list;
3768 struct btrfs_work work;
3769 };
3770
3771 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3772 int wait, int delay_iput);
3773 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3774
3775 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3776 size_t pg_offset, u64 start, u64 len,
3777 int create);
3778 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3779 u64 *orig_start, u64 *orig_block_len,
3780 u64 *ram_bytes);
3781
3782 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3783 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3784 #define ClearPageChecked ClearPageFsMisc
3785 #define SetPageChecked SetPageFsMisc
3786 #define PageChecked PageFsMisc
3787 #endif
3788
3789 /* This forces readahead on a given range of bytes in an inode */
3790 static inline void btrfs_force_ra(struct address_space *mapping,
3791 struct file_ra_state *ra, struct file *file,
3792 pgoff_t offset, unsigned long req_size)
3793 {
3794 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3795 }
3796
3797 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3798 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3799 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3800 struct btrfs_root *root,
3801 struct inode *dir, struct inode *inode,
3802 const char *name, int name_len);
3803 int btrfs_add_link(struct btrfs_trans_handle *trans,
3804 struct inode *parent_inode, struct inode *inode,
3805 const char *name, int name_len, int add_backref, u64 index);
3806 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3807 struct btrfs_root *root,
3808 struct inode *dir, u64 objectid,
3809 const char *name, int name_len);
3810 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3811 int front);
3812 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3813 struct btrfs_root *root,
3814 struct inode *inode, u64 new_size,
3815 u32 min_type);
3816
3817 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3818 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3819 int nr);
3820 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3821 struct extent_state **cached_state);
3822 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3823 struct btrfs_root *new_root,
3824 struct btrfs_root *parent_root,
3825 u64 new_dirid);
3826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3827 size_t size, struct bio *bio,
3828 unsigned long bio_flags);
3829 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3830 int btrfs_readpage(struct file *file, struct page *page);
3831 void btrfs_evict_inode(struct inode *inode);
3832 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3833 struct inode *btrfs_alloc_inode(struct super_block *sb);
3834 void btrfs_destroy_inode(struct inode *inode);
3835 int btrfs_drop_inode(struct inode *inode);
3836 int btrfs_init_cachep(void);
3837 void btrfs_destroy_cachep(void);
3838 long btrfs_ioctl_trans_end(struct file *file);
3839 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3840 struct btrfs_root *root, int *was_new);
3841 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3842 size_t pg_offset, u64 start, u64 end,
3843 int create);
3844 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3845 struct btrfs_root *root,
3846 struct inode *inode);
3847 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3848 struct btrfs_root *root, struct inode *inode);
3849 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3850 int btrfs_orphan_cleanup(struct btrfs_root *root);
3851 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3852 struct btrfs_root *root);
3853 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3854 void btrfs_invalidate_inodes(struct btrfs_root *root);
3855 void btrfs_add_delayed_iput(struct inode *inode);
3856 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3857 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3858 u64 start, u64 num_bytes, u64 min_size,
3859 loff_t actual_len, u64 *alloc_hint);
3860 int btrfs_prealloc_file_range_trans(struct inode *inode,
3861 struct btrfs_trans_handle *trans, int mode,
3862 u64 start, u64 num_bytes, u64 min_size,
3863 loff_t actual_len, u64 *alloc_hint);
3864 extern const struct dentry_operations btrfs_dentry_operations;
3865
3866 /* ioctl.c */
3867 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3868 void btrfs_update_iflags(struct inode *inode);
3869 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3870 int btrfs_is_empty_uuid(u8 *uuid);
3871 int btrfs_defrag_file(struct inode *inode, struct file *file,
3872 struct btrfs_ioctl_defrag_range_args *range,
3873 u64 newer_than, unsigned long max_pages);
3874 void btrfs_get_block_group_info(struct list_head *groups_list,
3875 struct btrfs_ioctl_space_info *space);
3876 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3877 struct btrfs_ioctl_balance_args *bargs);
3878
3879
3880 /* file.c */
3881 int btrfs_auto_defrag_init(void);
3882 void btrfs_auto_defrag_exit(void);
3883 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3884 struct inode *inode);
3885 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3886 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3887 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3888 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3889 int skip_pinned);
3890 extern const struct file_operations btrfs_file_operations;
3891 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root, struct inode *inode,
3893 struct btrfs_path *path, u64 start, u64 end,
3894 u64 *drop_end, int drop_cache,
3895 int replace_extent,
3896 u32 extent_item_size,
3897 int *key_inserted);
3898 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root, struct inode *inode, u64 start,
3900 u64 end, int drop_cache);
3901 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3902 struct inode *inode, u64 start, u64 end);
3903 int btrfs_release_file(struct inode *inode, struct file *file);
3904 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3905 struct page **pages, size_t num_pages,
3906 loff_t pos, size_t write_bytes,
3907 struct extent_state **cached);
3908 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3909
3910 /* tree-defrag.c */
3911 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3912 struct btrfs_root *root);
3913
3914 /* sysfs.c */
3915 int btrfs_init_sysfs(void);
3916 void btrfs_exit_sysfs(void);
3917 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
3918 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
3919
3920 /* xattr.c */
3921 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3922
3923 /* super.c */
3924 int btrfs_parse_options(struct btrfs_root *root, char *options);
3925 int btrfs_sync_fs(struct super_block *sb, int wait);
3926
3927 #ifdef CONFIG_PRINTK
3928 __printf(2, 3)
3929 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3930 #else
3931 static inline __printf(2, 3)
3932 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3933 {
3934 }
3935 #endif
3936
3937 #define btrfs_emerg(fs_info, fmt, args...) \
3938 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3939 #define btrfs_alert(fs_info, fmt, args...) \
3940 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3941 #define btrfs_crit(fs_info, fmt, args...) \
3942 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3943 #define btrfs_err(fs_info, fmt, args...) \
3944 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3945 #define btrfs_warn(fs_info, fmt, args...) \
3946 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3947 #define btrfs_notice(fs_info, fmt, args...) \
3948 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3949 #define btrfs_info(fs_info, fmt, args...) \
3950 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3951
3952 #ifdef DEBUG
3953 #define btrfs_debug(fs_info, fmt, args...) \
3954 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3955 #else
3956 #define btrfs_debug(fs_info, fmt, args...) \
3957 no_printk(KERN_DEBUG fmt, ##args)
3958 #endif
3959
3960 #ifdef CONFIG_BTRFS_ASSERT
3961
3962 static inline void assfail(char *expr, char *file, int line)
3963 {
3964 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
3965 expr, file, line);
3966 BUG();
3967 }
3968
3969 #define ASSERT(expr) \
3970 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3971 #else
3972 #define ASSERT(expr) ((void)0)
3973 #endif
3974
3975 #define btrfs_assert()
3976 __printf(5, 6)
3977 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3978 unsigned int line, int errno, const char *fmt, ...);
3979
3980
3981 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3982 struct btrfs_root *root, const char *function,
3983 unsigned int line, int errno);
3984
3985 #define btrfs_set_fs_incompat(__fs_info, opt) \
3986 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3987
3988 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3989 u64 flag)
3990 {
3991 struct btrfs_super_block *disk_super;
3992 u64 features;
3993
3994 disk_super = fs_info->super_copy;
3995 features = btrfs_super_incompat_flags(disk_super);
3996 if (!(features & flag)) {
3997 spin_lock(&fs_info->super_lock);
3998 features = btrfs_super_incompat_flags(disk_super);
3999 if (!(features & flag)) {
4000 features |= flag;
4001 btrfs_set_super_incompat_flags(disk_super, features);
4002 btrfs_info(fs_info, "setting %llu feature flag",
4003 flag);
4004 }
4005 spin_unlock(&fs_info->super_lock);
4006 }
4007 }
4008
4009 #define btrfs_fs_incompat(fs_info, opt) \
4010 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4011
4012 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4013 {
4014 struct btrfs_super_block *disk_super;
4015 disk_super = fs_info->super_copy;
4016 return !!(btrfs_super_incompat_flags(disk_super) & flag);
4017 }
4018
4019 /*
4020 * Call btrfs_abort_transaction as early as possible when an error condition is
4021 * detected, that way the exact line number is reported.
4022 */
4023
4024 #define btrfs_abort_transaction(trans, root, errno) \
4025 do { \
4026 __btrfs_abort_transaction(trans, root, __func__, \
4027 __LINE__, errno); \
4028 } while (0)
4029
4030 #define btrfs_std_error(fs_info, errno) \
4031 do { \
4032 if ((errno)) \
4033 __btrfs_std_error((fs_info), __func__, \
4034 __LINE__, (errno), NULL); \
4035 } while (0)
4036
4037 #define btrfs_error(fs_info, errno, fmt, args...) \
4038 do { \
4039 __btrfs_std_error((fs_info), __func__, __LINE__, \
4040 (errno), fmt, ##args); \
4041 } while (0)
4042
4043 __printf(5, 6)
4044 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4045 unsigned int line, int errno, const char *fmt, ...);
4046
4047 /*
4048 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4049 * will panic(). Otherwise we BUG() here.
4050 */
4051 #define btrfs_panic(fs_info, errno, fmt, args...) \
4052 do { \
4053 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
4054 BUG(); \
4055 } while (0)
4056
4057 /* acl.c */
4058 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4059 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4060 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4061 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4062 struct inode *inode, struct inode *dir);
4063 #else
4064 #define btrfs_get_acl NULL
4065 #define btrfs_set_acl NULL
4066 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4067 struct inode *inode, struct inode *dir)
4068 {
4069 return 0;
4070 }
4071 #endif
4072
4073 /* relocation.c */
4074 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4075 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4076 struct btrfs_root *root);
4077 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4078 struct btrfs_root *root);
4079 int btrfs_recover_relocation(struct btrfs_root *root);
4080 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4081 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *root, struct extent_buffer *buf,
4083 struct extent_buffer *cow);
4084 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4085 struct btrfs_pending_snapshot *pending,
4086 u64 *bytes_to_reserve);
4087 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4088 struct btrfs_pending_snapshot *pending);
4089
4090 /* scrub.c */
4091 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4092 u64 end, struct btrfs_scrub_progress *progress,
4093 int readonly, int is_dev_replace);
4094 void btrfs_scrub_pause(struct btrfs_root *root);
4095 void btrfs_scrub_continue(struct btrfs_root *root);
4096 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4097 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4098 struct btrfs_device *dev);
4099 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4100 struct btrfs_scrub_progress *progress);
4101
4102 /* dev-replace.c */
4103 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4104 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4105 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info);
4106
4107 /* reada.c */
4108 struct reada_control {
4109 struct btrfs_root *root; /* tree to prefetch */
4110 struct btrfs_key key_start;
4111 struct btrfs_key key_end; /* exclusive */
4112 atomic_t elems;
4113 struct kref refcnt;
4114 wait_queue_head_t wait;
4115 };
4116 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4117 struct btrfs_key *start, struct btrfs_key *end);
4118 int btrfs_reada_wait(void *handle);
4119 void btrfs_reada_detach(void *handle);
4120 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4121 u64 start, int err);
4122
4123 static inline int is_fstree(u64 rootid)
4124 {
4125 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4126 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
4127 return 1;
4128 return 0;
4129 }
4130
4131 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4132 {
4133 return signal_pending(current);
4134 }
4135
4136 /* Sanity test specific functions */
4137 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4138 void btrfs_test_destroy_inode(struct inode *inode);
4139 #endif
4140
4141 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4142 {
4143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4144 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4145 return 1;
4146 #endif
4147 return 0;
4148 }
4149
4150 #endif
This page took 0.178536 seconds and 5 git commands to generate.