Btrfs: groundwork for subvolume and snapshot roots
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/fs.h>
5 #include <linux/buffer_head.h>
6 #include <linux/kobject.h>
7 #include "bit-radix.h"
8
9 struct btrfs_trans_handle;
10 struct btrfs_transaction;
11 extern struct kmem_cache *btrfs_path_cachep;
12
13 #define BTRFS_MAGIC "_BtRfS_M"
14
15 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
16 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
17 #define BTRFS_INODE_MAP_OBJECTID 3ULL
18 #define BTRFS_FS_TREE_OBJECTID 4ULL
19 #define BTRFS_FIRST_FREE_OBJECTID 5ULL
20
21 /*
22 * we can actually store much bigger names, but lets not confuse the rest
23 * of linux
24 */
25 #define BTRFS_NAME_LEN 255
26
27 /* 32 bytes in various csum fields */
28 #define BTRFS_CSUM_SIZE 32
29
30 /*
31 * the key defines the order in the tree, and so it also defines (optimal)
32 * block layout. objectid corresonds to the inode number. The flags
33 * tells us things about the object, and is a kind of stream selector.
34 * so for a given inode, keys with flags of 1 might refer to the inode
35 * data, flags of 2 may point to file data in the btree and flags == 3
36 * may point to extents.
37 *
38 * offset is the starting byte offset for this key in the stream.
39 *
40 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
41 * in cpu native order. Otherwise they are identical and their sizes
42 * should be the same (ie both packed)
43 */
44 struct btrfs_disk_key {
45 __le64 objectid;
46 __le64 offset;
47 __le32 flags;
48 } __attribute__ ((__packed__));
49
50 struct btrfs_key {
51 u64 objectid;
52 u64 offset;
53 u32 flags;
54 } __attribute__ ((__packed__));
55
56 /*
57 * every tree block (leaf or node) starts with this header.
58 */
59 struct btrfs_header {
60 u8 csum[BTRFS_CSUM_SIZE];
61 u8 fsid[16]; /* FS specific uuid */
62 __le64 blocknr; /* which block this node is supposed to live in */
63 __le64 generation;
64 __le64 parentid; /* objectid of the tree root */
65 __le32 ham;
66 __le16 nritems;
67 __le16 flags;
68 u8 level;
69 } __attribute__ ((__packed__));
70
71 #define BTRFS_MAX_LEVEL 8
72 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
73 sizeof(struct btrfs_header)) / \
74 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
75 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
76 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
77
78 struct buffer_head;
79 /*
80 * the super block basically lists the main trees of the FS
81 * it currently lacks any block count etc etc
82 */
83 struct btrfs_super_block {
84 u8 csum[BTRFS_CSUM_SIZE];
85 /* the first 3 fields must match struct btrfs_header */
86 u8 fsid[16]; /* FS specific uuid */
87 __le64 blocknr; /* this block number */
88 __le64 magic;
89 __le32 blocksize;
90 __le64 generation;
91 __le64 root;
92 __le64 total_blocks;
93 __le64 blocks_used;
94 __le64 root_dir_objectid;
95 } __attribute__ ((__packed__));
96
97 /*
98 * A leaf is full of items. offset and size tell us where to find
99 * the item in the leaf (relative to the start of the data area)
100 */
101 struct btrfs_item {
102 struct btrfs_disk_key key;
103 __le32 offset;
104 __le16 size;
105 } __attribute__ ((__packed__));
106
107 /*
108 * leaves have an item area and a data area:
109 * [item0, item1....itemN] [free space] [dataN...data1, data0]
110 *
111 * The data is separate from the items to get the keys closer together
112 * during searches.
113 */
114 struct btrfs_leaf {
115 struct btrfs_header header;
116 struct btrfs_item items[];
117 } __attribute__ ((__packed__));
118
119 /*
120 * all non-leaf blocks are nodes, they hold only keys and pointers to
121 * other blocks
122 */
123 struct btrfs_key_ptr {
124 struct btrfs_disk_key key;
125 __le64 blockptr;
126 } __attribute__ ((__packed__));
127
128 struct btrfs_node {
129 struct btrfs_header header;
130 struct btrfs_key_ptr ptrs[];
131 } __attribute__ ((__packed__));
132
133 /*
134 * btrfs_paths remember the path taken from the root down to the leaf.
135 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
136 * to any other levels that are present.
137 *
138 * The slots array records the index of the item or block pointer
139 * used while walking the tree.
140 */
141 struct btrfs_path {
142 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
143 int slots[BTRFS_MAX_LEVEL];
144 };
145
146 /*
147 * items in the extent btree are used to record the objectid of the
148 * owner of the block and the number of references
149 */
150 struct btrfs_extent_item {
151 __le32 refs;
152 __le64 owner;
153 } __attribute__ ((__packed__));
154
155 struct btrfs_inode_timespec {
156 __le64 sec;
157 __le32 nsec;
158 } __attribute__ ((__packed__));
159
160 /*
161 * there is no padding here on purpose. If you want to extent the inode,
162 * make a new item type
163 */
164 struct btrfs_inode_item {
165 __le64 generation;
166 __le64 size;
167 __le64 nblocks;
168 __le32 nlink;
169 __le32 uid;
170 __le32 gid;
171 __le32 mode;
172 __le32 rdev;
173 __le16 flags;
174 __le16 compat_flags;
175 struct btrfs_inode_timespec atime;
176 struct btrfs_inode_timespec ctime;
177 struct btrfs_inode_timespec mtime;
178 struct btrfs_inode_timespec otime;
179 } __attribute__ ((__packed__));
180
181 /* inline data is just a blob of bytes */
182 struct btrfs_inline_data_item {
183 u8 data;
184 } __attribute__ ((__packed__));
185
186 struct btrfs_dir_item {
187 struct btrfs_disk_key location;
188 __le16 flags;
189 __le16 name_len;
190 u8 type;
191 } __attribute__ ((__packed__));
192
193 struct btrfs_root_item {
194 struct btrfs_inode_item inode;
195 __le64 root_dirid;
196 __le64 blocknr;
197 __le32 flags;
198 __le64 block_limit;
199 __le64 blocks_used;
200 __le32 refs;
201 } __attribute__ ((__packed__));
202
203 struct btrfs_file_extent_item {
204 __le64 generation;
205 /*
206 * disk space consumed by the extent, checksum blocks are included
207 * in these numbers
208 */
209 __le64 disk_blocknr;
210 __le64 disk_num_blocks;
211 /*
212 * the logical offset in file blocks (no csums)
213 * this extent record is for. This allows a file extent to point
214 * into the middle of an existing extent on disk, sharing it
215 * between two snapshots (useful if some bytes in the middle of the
216 * extent have changed
217 */
218 __le64 offset;
219 /*
220 * the logical number of file blocks (no csums included)
221 */
222 __le64 num_blocks;
223 } __attribute__ ((__packed__));
224
225 struct btrfs_csum_item {
226 u8 csum[BTRFS_CSUM_SIZE];
227 } __attribute__ ((__packed__));
228
229 struct btrfs_inode_map_item {
230 struct btrfs_disk_key key;
231 } __attribute__ ((__packed__));
232
233 struct crypto_hash;
234 struct btrfs_fs_info {
235 struct btrfs_root *extent_root;
236 struct btrfs_root *tree_root;
237 struct btrfs_root *inode_root;
238 struct btrfs_key current_insert;
239 struct btrfs_key last_insert;
240 struct radix_tree_root fs_roots_radix;
241 struct radix_tree_root pending_del_radix;
242 struct radix_tree_root pinned_radix;
243 u64 last_inode_alloc;
244 u64 generation;
245 u64 highest_inode;
246 struct btrfs_transaction *running_transaction;
247 struct btrfs_super_block *disk_super;
248 struct buffer_head *sb_buffer;
249 struct super_block *sb;
250 struct inode *btree_inode;
251 struct mutex trans_mutex;
252 struct mutex fs_mutex;
253 struct crypto_hash *hash_tfm;
254 spinlock_t hash_lock;
255 struct kobject kobj;
256 };
257
258 /*
259 * in ram representation of the tree. extent_root is used for all allocations
260 * and for the extent tree extent_root root. current_insert is used
261 * only for the extent tree.
262 */
263 struct btrfs_root {
264 struct buffer_head *node;
265 struct buffer_head *commit_root;
266 struct btrfs_root_item root_item;
267 struct btrfs_key root_key;
268 struct btrfs_fs_info *fs_info;
269 struct inode *inode;
270 u64 objectid;
271 u64 last_trans;
272 u32 blocksize;
273 int ref_cows;
274 u32 type;
275 };
276
277 /* the lower bits in the key flags defines the item type */
278 #define BTRFS_KEY_TYPE_MAX 256
279 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
280
281 #define BTRFS_KEY_OVERFLOW_MAX 128
282 #define BTRFS_KEY_OVERFLOW_SHIFT 8
283 #define BTRFS_KEY_OVERFLOW_MASK (0x7FULL << BTRFS_KEY_OVERFLOW_SHIFT)
284
285 /*
286 * inode items have the data typically returned from stat and store other
287 * info about object characteristics. There is one for every file and dir in
288 * the FS
289 */
290 #define BTRFS_INODE_ITEM_KEY 1
291
292 /*
293 * dir items are the name -> inode pointers in a directory. There is one
294 * for every name in a directory.
295 */
296 #define BTRFS_DIR_ITEM_KEY 2
297 #define BTRFS_DIR_INDEX_KEY 3
298 /*
299 * inline data is file data that fits in the btree.
300 */
301 #define BTRFS_INLINE_DATA_KEY 4
302 /*
303 * extent data is for data that can't fit in the btree. It points to
304 * a (hopefully) huge chunk of disk
305 */
306 #define BTRFS_EXTENT_DATA_KEY 5
307 /*
308 * csum items have the checksums for data in the extents
309 */
310 #define BTRFS_CSUM_ITEM_KEY 6
311
312 /*
313 * root items point to tree roots. There are typically in the root
314 * tree used by the super block to find all the other trees
315 */
316 #define BTRFS_ROOT_ITEM_KEY 7
317 /*
318 * extent items are in the extent map tree. These record which blocks
319 * are used, and how many references there are to each block
320 */
321 #define BTRFS_EXTENT_ITEM_KEY 8
322
323 /*
324 * the inode map records which inode numbers are in use and where
325 * they actually live on disk
326 */
327 #define BTRFS_INODE_MAP_ITEM_KEY 9
328 /*
329 * string items are for debugging. They just store a short string of
330 * data in the FS
331 */
332 #define BTRFS_STRING_ITEM_KEY 10
333
334 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
335 {
336 return le64_to_cpu(i->generation);
337 }
338
339 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
340 u64 val)
341 {
342 i->generation = cpu_to_le64(val);
343 }
344
345 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
346 {
347 return le64_to_cpu(i->size);
348 }
349
350 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
351 {
352 i->size = cpu_to_le64(val);
353 }
354
355 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
356 {
357 return le64_to_cpu(i->nblocks);
358 }
359
360 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
361 {
362 i->nblocks = cpu_to_le64(val);
363 }
364
365 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
366 {
367 return le32_to_cpu(i->nlink);
368 }
369
370 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
371 {
372 i->nlink = cpu_to_le32(val);
373 }
374
375 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
376 {
377 return le32_to_cpu(i->uid);
378 }
379
380 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
381 {
382 i->uid = cpu_to_le32(val);
383 }
384
385 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
386 {
387 return le32_to_cpu(i->gid);
388 }
389
390 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
391 {
392 i->gid = cpu_to_le32(val);
393 }
394
395 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
396 {
397 return le32_to_cpu(i->mode);
398 }
399
400 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
401 {
402 i->mode = cpu_to_le32(val);
403 }
404
405 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
406 {
407 return le32_to_cpu(i->rdev);
408 }
409
410 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
411 {
412 i->rdev = cpu_to_le32(val);
413 }
414
415 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
416 {
417 return le16_to_cpu(i->flags);
418 }
419
420 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
421 {
422 i->flags = cpu_to_le16(val);
423 }
424
425 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
426 {
427 return le16_to_cpu(i->compat_flags);
428 }
429
430 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
431 u16 val)
432 {
433 i->compat_flags = cpu_to_le16(val);
434 }
435
436 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
437 {
438 return le64_to_cpu(ts->sec);
439 }
440
441 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
442 u64 val)
443 {
444 ts->sec = cpu_to_le64(val);
445 }
446
447 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
448 {
449 return le32_to_cpu(ts->nsec);
450 }
451
452 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
453 u32 val)
454 {
455 ts->nsec = cpu_to_le32(val);
456 }
457
458 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
459 {
460 return le64_to_cpu(ei->owner);
461 }
462
463 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
464 {
465 ei->owner = cpu_to_le64(val);
466 }
467
468 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
469 {
470 return le32_to_cpu(ei->refs);
471 }
472
473 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
474 {
475 ei->refs = cpu_to_le32(val);
476 }
477
478 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
479 {
480 return le64_to_cpu(n->ptrs[nr].blockptr);
481 }
482
483 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
484 u64 val)
485 {
486 n->ptrs[nr].blockptr = cpu_to_le64(val);
487 }
488
489 static inline u32 btrfs_item_offset(struct btrfs_item *item)
490 {
491 return le32_to_cpu(item->offset);
492 }
493
494 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
495 {
496 item->offset = cpu_to_le32(val);
497 }
498
499 static inline u32 btrfs_item_end(struct btrfs_item *item)
500 {
501 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
502 }
503
504 static inline u16 btrfs_item_size(struct btrfs_item *item)
505 {
506 return le16_to_cpu(item->size);
507 }
508
509 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
510 {
511 item->size = cpu_to_le16(val);
512 }
513
514 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
515 {
516 return le16_to_cpu(d->flags);
517 }
518
519 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
520 {
521 d->flags = cpu_to_le16(val);
522 }
523
524 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
525 {
526 return d->type;
527 }
528
529 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
530 {
531 d->type = val;
532 }
533
534 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
535 {
536 return le16_to_cpu(d->name_len);
537 }
538
539 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
540 {
541 d->name_len = cpu_to_le16(val);
542 }
543
544 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
545 struct btrfs_disk_key *disk)
546 {
547 cpu->offset = le64_to_cpu(disk->offset);
548 cpu->flags = le32_to_cpu(disk->flags);
549 cpu->objectid = le64_to_cpu(disk->objectid);
550 }
551
552 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
553 struct btrfs_key *cpu)
554 {
555 disk->offset = cpu_to_le64(cpu->offset);
556 disk->flags = cpu_to_le32(cpu->flags);
557 disk->objectid = cpu_to_le64(cpu->objectid);
558 }
559
560 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
561 {
562 return le64_to_cpu(disk->objectid);
563 }
564
565 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
566 u64 val)
567 {
568 disk->objectid = cpu_to_le64(val);
569 }
570
571 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
572 {
573 return le64_to_cpu(disk->offset);
574 }
575
576 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
577 u64 val)
578 {
579 disk->offset = cpu_to_le64(val);
580 }
581
582 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
583 {
584 return le32_to_cpu(disk->flags);
585 }
586
587 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
588 u32 val)
589 {
590 disk->flags = cpu_to_le32(val);
591 }
592
593 static inline u32 btrfs_key_overflow(struct btrfs_key *key)
594 {
595 u32 over = key->flags & BTRFS_KEY_OVERFLOW_MASK;
596 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
597 }
598
599 static inline void btrfs_set_key_overflow(struct btrfs_key *key, u32 over)
600 {
601 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
602 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
603 key->flags = (key->flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
604 }
605
606 static inline u32 btrfs_key_type(struct btrfs_key *key)
607 {
608 return key->flags & BTRFS_KEY_TYPE_MASK;
609 }
610
611 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
612 {
613 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
614 }
615
616 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
617 {
618 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
619 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
620 }
621
622 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
623 {
624 u32 flags = btrfs_disk_key_flags(key);
625 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
626 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
627 btrfs_set_disk_key_flags(key, flags);
628 }
629
630 static inline u32 btrfs_disk_key_overflow(struct btrfs_disk_key *key)
631 {
632 u32 over = le32_to_cpu(key->flags) & BTRFS_KEY_OVERFLOW_MASK;
633 return over >> BTRFS_KEY_OVERFLOW_SHIFT;
634 }
635
636 static inline void btrfs_set_disK_key_overflow(struct btrfs_disk_key *key,
637 u32 over)
638 {
639 u32 flags = btrfs_disk_key_flags(key);
640 BUG_ON(over >= BTRFS_KEY_OVERFLOW_MAX);
641 over = over << BTRFS_KEY_OVERFLOW_SHIFT;
642 flags = (flags & ~((u64)BTRFS_KEY_OVERFLOW_MASK)) | over;
643 btrfs_set_disk_key_flags(key, flags);
644 }
645
646 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
647 {
648 return le64_to_cpu(h->blocknr);
649 }
650
651 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
652 {
653 h->blocknr = cpu_to_le64(blocknr);
654 }
655
656 static inline u64 btrfs_header_generation(struct btrfs_header *h)
657 {
658 return le64_to_cpu(h->generation);
659 }
660
661 static inline void btrfs_set_header_generation(struct btrfs_header *h,
662 u64 val)
663 {
664 h->generation = cpu_to_le64(val);
665 }
666
667 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
668 {
669 return le64_to_cpu(h->parentid);
670 }
671
672 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
673 u64 parentid)
674 {
675 h->parentid = cpu_to_le64(parentid);
676 }
677
678 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
679 {
680 return le16_to_cpu(h->nritems);
681 }
682
683 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
684 {
685 h->nritems = cpu_to_le16(val);
686 }
687
688 static inline u16 btrfs_header_flags(struct btrfs_header *h)
689 {
690 return le16_to_cpu(h->flags);
691 }
692
693 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
694 {
695 h->flags = cpu_to_le16(val);
696 }
697
698 static inline int btrfs_header_level(struct btrfs_header *h)
699 {
700 return h->level;
701 }
702
703 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
704 {
705 BUG_ON(level > BTRFS_MAX_LEVEL);
706 h->level = level;
707 }
708
709 static inline int btrfs_is_leaf(struct btrfs_node *n)
710 {
711 return (btrfs_header_level(&n->header) == 0);
712 }
713
714 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
715 {
716 return le64_to_cpu(item->blocknr);
717 }
718
719 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
720 {
721 item->blocknr = cpu_to_le64(val);
722 }
723
724 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
725 {
726 return le64_to_cpu(item->root_dirid);
727 }
728
729 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
730 {
731 item->root_dirid = cpu_to_le64(val);
732 }
733
734 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
735 {
736 return le32_to_cpu(item->refs);
737 }
738
739 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
740 {
741 item->refs = cpu_to_le32(val);
742 }
743
744 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
745 {
746 return le64_to_cpu(s->blocknr);
747 }
748
749 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
750 {
751 s->blocknr = cpu_to_le64(val);
752 }
753
754 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
755 {
756 return le64_to_cpu(s->generation);
757 }
758
759 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
760 u64 val)
761 {
762 s->generation = cpu_to_le64(val);
763 }
764
765 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
766 {
767 return le64_to_cpu(s->root);
768 }
769
770 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
771 {
772 s->root = cpu_to_le64(val);
773 }
774
775 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
776 {
777 return le64_to_cpu(s->total_blocks);
778 }
779
780 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
781 u64 val)
782 {
783 s->total_blocks = cpu_to_le64(val);
784 }
785
786 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
787 {
788 return le64_to_cpu(s->blocks_used);
789 }
790
791 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
792 u64 val)
793 {
794 s->blocks_used = cpu_to_le64(val);
795 }
796
797 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
798 {
799 return le32_to_cpu(s->blocksize);
800 }
801
802 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
803 u32 val)
804 {
805 s->blocksize = cpu_to_le32(val);
806 }
807
808 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
809 {
810 return le64_to_cpu(s->root_dir_objectid);
811 }
812
813 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
814 val)
815 {
816 s->root_dir_objectid = cpu_to_le64(val);
817 }
818
819 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
820 {
821 return (u8 *)l->items;
822 }
823
824 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
825 *e)
826 {
827 return le64_to_cpu(e->disk_blocknr);
828 }
829
830 static inline void btrfs_set_file_extent_disk_blocknr(struct
831 btrfs_file_extent_item
832 *e, u64 val)
833 {
834 e->disk_blocknr = cpu_to_le64(val);
835 }
836
837 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
838 {
839 return le64_to_cpu(e->generation);
840 }
841
842 static inline void btrfs_set_file_extent_generation(struct
843 btrfs_file_extent_item *e,
844 u64 val)
845 {
846 e->generation = cpu_to_le64(val);
847 }
848
849 static inline u64 btrfs_file_extent_disk_num_blocks(struct
850 btrfs_file_extent_item *e)
851 {
852 return le64_to_cpu(e->disk_num_blocks);
853 }
854
855 static inline void btrfs_set_file_extent_disk_num_blocks(struct
856 btrfs_file_extent_item
857 *e, u64 val)
858 {
859 e->disk_num_blocks = cpu_to_le64(val);
860 }
861
862 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
863 {
864 return le64_to_cpu(e->offset);
865 }
866
867 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
868 *e, u64 val)
869 {
870 e->offset = cpu_to_le64(val);
871 }
872
873 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
874 *e)
875 {
876 return le64_to_cpu(e->num_blocks);
877 }
878
879 static inline void btrfs_set_file_extent_num_blocks(struct
880 btrfs_file_extent_item *e,
881 u64 val)
882 {
883 e->num_blocks = cpu_to_le64(val);
884 }
885
886 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
887 {
888 return sb->s_fs_info;
889 }
890
891 static inline void btrfs_check_bounds(void *vptr, size_t len,
892 void *vcontainer, size_t container_len)
893 {
894 char *ptr = vptr;
895 char *container = vcontainer;
896 WARN_ON(ptr < container);
897 WARN_ON(ptr + len > container + container_len);
898 }
899
900 static inline void btrfs_memcpy(struct btrfs_root *root,
901 void *dst_block,
902 void *dst, const void *src, size_t nr)
903 {
904 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
905 memcpy(dst, src, nr);
906 }
907
908 static inline void btrfs_memmove(struct btrfs_root *root,
909 void *dst_block,
910 void *dst, void *src, size_t nr)
911 {
912 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
913 memmove(dst, src, nr);
914 }
915
916 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
917 {
918 WARN_ON(!atomic_read(&bh->b_count));
919 mark_buffer_dirty(bh);
920 }
921
922 /* helper function to cast into the data area of the leaf. */
923 #define btrfs_item_ptr(leaf, slot, type) \
924 ((type *)(btrfs_leaf_data(leaf) + \
925 btrfs_item_offset((leaf)->items + (slot))))
926
927 /* extent-item.c */
928 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
929 struct btrfs_root *root);
930 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, struct btrfs_root
931 *root, u64 num_blocks, u64 search_start, u64
932 search_end, u64 owner, struct btrfs_key *ins);
933 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
934 struct buffer_head *buf);
935 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
936 *root, u64 blocknr, u64 num_blocks, int pin);
937 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
938 btrfs_root *root);
939 /* ctree.c */
940 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
941 *root, struct btrfs_key *key, struct btrfs_path *p, int
942 ins_len, int cow);
943 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
944 struct btrfs_path *btrfs_alloc_path(void);
945 void btrfs_free_path(struct btrfs_path *p);
946 void btrfs_init_path(struct btrfs_path *p);
947 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
948 struct btrfs_path *path);
949 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
950 *root, struct btrfs_key *key, void *data, u32 data_size);
951 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
952 *root, struct btrfs_path *path, struct btrfs_key
953 *cpu_key, u32 data_size);
954 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
955 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
956 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
957 *root, struct buffer_head *snap);
958 /* root-item.c */
959 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
960 struct btrfs_key *key);
961 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
962 *root, struct btrfs_key *key, struct btrfs_root_item
963 *item);
964 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
965 *root, struct btrfs_key *key, struct btrfs_root_item
966 *item);
967 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
968 btrfs_root_item *item, struct btrfs_key *key);
969 /* dir-item.c */
970 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
971 *root, const char *name, int name_len, u64 dir,
972 struct btrfs_key *location, u8 type);
973 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
974 *root, struct btrfs_path *path, u64 dir,
975 const char *name, int name_len, int mod);
976 int btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct btrfs_path *path, u64 dir,
979 u64 objectid, int mod);
980 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
981 const char *name, int name_len);
982 /* inode-map.c */
983 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
984 struct btrfs_root *fs_root,
985 u64 dirid, u64 *objectid);
986 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 u64 objectid, struct btrfs_key *location);
989 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root, struct btrfs_path *path,
991 u64 objectid, int mod);
992 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
993
994 /* inode-item.c */
995 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
996 *root, u64 objectid, struct btrfs_inode_item
997 *inode_item);
998 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
999 *root, struct btrfs_path *path,
1000 struct btrfs_key *location, int mod);
1001
1002 /* file-item.c */
1003 int btrfs_alloc_file_extent(struct btrfs_trans_handle *trans,
1004 struct btrfs_root *root,
1005 u64 objectid, u64 offset,
1006 u64 num_blocks, u64 hint_block,
1007 u64 *result);
1008 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1009 struct btrfs_root *root,
1010 struct btrfs_path *path, u64 objectid,
1011 u64 blocknr, int mod);
1012 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 u64 objectid, u64 offset,
1015 char *data, size_t len);
1016 int btrfs_csum_verify_file_block(struct btrfs_root *root,
1017 u64 objectid, u64 offset,
1018 char *data, size_t len);
1019 /* super.c */
1020 extern struct subsystem btrfs_subsys;
1021
1022 #endif
This page took 0.05184 seconds and 6 git commands to generate.