Btrfs: node->blockptrs endian fixes
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __CTREE__
2 #define __CTREE__
3
4 #include "list.h"
5 #include "kerncompat.h"
6
7 #define CTREE_BLOCKSIZE 1024
8
9 /*
10 * the key defines the order in the tree, and so it also defines (optimal)
11 * block layout. objectid corresonds to the inode number. The flags
12 * tells us things about the object, and is a kind of stream selector.
13 * so for a given inode, keys with flags of 1 might refer to the inode
14 * data, flags of 2 may point to file data in the btree and flags == 3
15 * may point to extents.
16 *
17 * offset is the starting byte offset for this key in the stream.
18 *
19 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
20 * in cpu native order. Otherwise they are identical and their sizes
21 * should be the same (ie both packed)
22 */
23 struct btrfs_disk_key {
24 __le64 objectid;
25 __le32 flags;
26 __le64 offset;
27 } __attribute__ ((__packed__));
28
29 struct btrfs_key {
30 u64 objectid;
31 u32 flags;
32 u64 offset;
33 } __attribute__ ((__packed__));
34
35 /*
36 * every tree block (leaf or node) starts with this header.
37 */
38 struct btrfs_header {
39 __le64 fsid[2]; /* FS specific uuid */
40 __le64 blocknr; /* which block this node is supposed to live in */
41 __le64 parentid; /* objectid of the tree root */
42 __le32 csum;
43 __le32 ham;
44 __le16 nritems;
45 __le16 flags;
46 /* generation flags to be added */
47 } __attribute__ ((__packed__));
48
49 #define MAX_LEVEL 8
50 #define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
51 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
52
53 struct tree_buffer;
54
55 /*
56 * in ram representation of the tree. extent_root is used for all allocations
57 * and for the extent tree extent_root root. current_insert is used
58 * only for the extent tree.
59 */
60 struct ctree_root {
61 struct tree_buffer *node;
62 struct tree_buffer *commit_root;
63 struct ctree_root *extent_root;
64 struct btrfs_key current_insert;
65 struct btrfs_key last_insert;
66 int fp;
67 struct radix_tree_root cache_radix;
68 struct radix_tree_root pinned_radix;
69 struct list_head trans;
70 struct list_head cache;
71 int cache_size;
72 };
73
74 /*
75 * describes a tree on disk
76 */
77 struct ctree_root_info {
78 u64 fsid[2]; /* FS specific uuid */
79 u64 blocknr; /* blocknr of this block */
80 u64 objectid; /* inode number of this root */
81 u64 tree_root; /* the tree root block */
82 u32 csum;
83 u32 ham;
84 u64 snapuuid[2]; /* root specific uuid */
85 } __attribute__ ((__packed__));
86
87 /*
88 * the super block basically lists the main trees of the FS
89 * it currently lacks any block count etc etc
90 */
91 struct ctree_super_block {
92 struct ctree_root_info root_info;
93 struct ctree_root_info extent_info;
94 } __attribute__ ((__packed__));
95
96 /*
97 * A leaf is full of items. The exact type of item is defined by
98 * the key flags parameter. offset and size tell us where to find
99 * the item in the leaf (relative to the start of the data area)
100 */
101 struct btrfs_item {
102 struct btrfs_disk_key key;
103 __le16 offset;
104 __le16 size;
105 } __attribute__ ((__packed__));
106
107 /*
108 * leaves have an item area and a data area:
109 * [item0, item1....itemN] [free space] [dataN...data1, data0]
110 *
111 * The data is separate from the items to get the keys closer together
112 * during searches.
113 */
114 #define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
115 struct leaf {
116 struct btrfs_header header;
117 union {
118 struct btrfs_item items[LEAF_DATA_SIZE/
119 sizeof(struct btrfs_item)];
120 u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
121 };
122 } __attribute__ ((__packed__));
123
124 /*
125 * all non-leaf blocks are nodes, they hold only keys and pointers to
126 * other blocks
127 */
128 struct node {
129 struct btrfs_header header;
130 struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
131 __le64 blockptrs[NODEPTRS_PER_BLOCK];
132 } __attribute__ ((__packed__));
133
134 /*
135 * items in the extent btree are used to record the objectid of the
136 * owner of the block and the number of references
137 */
138 struct extent_item {
139 u32 refs;
140 u64 owner;
141 } __attribute__ ((__packed__));
142
143 /*
144 * ctree_paths remember the path taken from the root down to the leaf.
145 * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
146 * to any other levels that are present.
147 *
148 * The slots array records the index of the item or block pointer
149 * used while walking the tree.
150 */
151 struct ctree_path {
152 struct tree_buffer *nodes[MAX_LEVEL];
153 int slots[MAX_LEVEL];
154 };
155
156 static inline u64 btrfs_node_blockptr(struct node *n, int nr)
157 {
158 return le64_to_cpu(n->blockptrs[nr]);
159 }
160
161 static inline void btrfs_set_node_blockptr(struct node *n, int nr, u64 val)
162 {
163 n->blockptrs[nr] = cpu_to_le64(val);
164 }
165
166 static inline u16 btrfs_item_offset(struct btrfs_item *item)
167 {
168 return le16_to_cpu(item->offset);
169 }
170
171 static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val)
172 {
173 item->offset = cpu_to_le16(val);
174 }
175
176 static inline u16 btrfs_item_end(struct btrfs_item *item)
177 {
178 return le16_to_cpu(item->offset) + le16_to_cpu(item->size);
179 }
180
181 static inline u16 btrfs_item_size(struct btrfs_item *item)
182 {
183 return le16_to_cpu(item->size);
184 }
185
186 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
187 {
188 item->size = cpu_to_le16(val);
189 }
190
191 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
192 struct btrfs_disk_key *disk)
193 {
194 cpu->offset = le64_to_cpu(disk->offset);
195 cpu->flags = le32_to_cpu(disk->flags);
196 cpu->objectid = le64_to_cpu(disk->objectid);
197 }
198
199 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
200 struct btrfs_key *cpu)
201 {
202 disk->offset = cpu_to_le64(cpu->offset);
203 disk->flags = cpu_to_le32(cpu->flags);
204 disk->objectid = cpu_to_le64(cpu->objectid);
205 }
206
207 static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
208 {
209 return le64_to_cpu(disk->objectid);
210 }
211
212 static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
213 u64 val)
214 {
215 disk->objectid = cpu_to_le64(val);
216 }
217
218 static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
219 {
220 return le64_to_cpu(disk->offset);
221 }
222
223 static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
224 u64 val)
225 {
226 disk->offset = cpu_to_le64(val);
227 }
228
229 static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
230 {
231 return le32_to_cpu(disk->flags);
232 }
233
234 static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
235 u32 val)
236 {
237 disk->flags = cpu_to_le32(val);
238 }
239
240 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
241 {
242 return le64_to_cpu(h->blocknr);
243 }
244
245 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
246 {
247 h->blocknr = cpu_to_le64(blocknr);
248 }
249
250 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
251 {
252 return le64_to_cpu(h->parentid);
253 }
254
255 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
256 u64 parentid)
257 {
258 h->parentid = cpu_to_le64(parentid);
259 }
260
261 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
262 {
263 return le16_to_cpu(h->nritems);
264 }
265
266 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
267 {
268 h->nritems = cpu_to_le16(val);
269 }
270
271 static inline u16 btrfs_header_flags(struct btrfs_header *h)
272 {
273 return le16_to_cpu(h->flags);
274 }
275
276 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
277 {
278 h->flags = cpu_to_le16(val);
279 }
280
281 static inline int btrfs_header_level(struct btrfs_header *h)
282 {
283 return btrfs_header_flags(h) & (MAX_LEVEL - 1);
284 }
285
286 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
287 {
288 u16 flags;
289 BUG_ON(level > MAX_LEVEL);
290 flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
291 btrfs_set_header_flags(h, flags | level);
292 }
293
294 static inline int btrfs_is_leaf(struct node *n)
295 {
296 return (btrfs_header_level(&n->header) == 0);
297 }
298
299 struct tree_buffer *alloc_free_block(struct ctree_root *root);
300 int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
301 int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
302 int search_slot(struct ctree_root *root, struct btrfs_key *key,
303 struct ctree_path *p, int ins_len, int cow);
304 void release_path(struct ctree_root *root, struct ctree_path *p);
305 void init_path(struct ctree_path *p);
306 int del_item(struct ctree_root *root, struct ctree_path *path);
307 int insert_item(struct ctree_root *root, struct btrfs_key *key,
308 void *data, int data_size);
309 int next_leaf(struct ctree_root *root, struct ctree_path *path);
310 int leaf_free_space(struct leaf *leaf);
311 int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
312 int btrfs_finish_extent_commit(struct ctree_root *root);
313 #endif
This page took 0.041552 seconds and 6 git commands to generate.