Btrfs: Audit callers and return codes to make sure -ENOSPC gets up the stack
[deliverable/linux.git] / fs / btrfs / ctree.h
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #ifndef __BTRFS__
20 #define __BTRFS__
21
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/workqueue.h>
25 #include "bit-radix.h"
26
27 struct btrfs_trans_handle;
28 struct btrfs_transaction;
29 extern struct kmem_cache *btrfs_trans_handle_cachep;
30 extern struct kmem_cache *btrfs_transaction_cachep;
31 extern struct kmem_cache *btrfs_bit_radix_cachep;
32 extern struct kmem_cache *btrfs_path_cachep;
33
34 #define BTRFS_MAGIC "_BtRfS_M"
35
36 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
37 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
38 #define BTRFS_FS_TREE_OBJECTID 3ULL
39 #define BTRFS_ROOT_TREE_DIR_OBJECTID 4ULL
40 #define BTRFS_FIRST_FREE_OBJECTID 5ULL
41
42 /*
43 * we can actually store much bigger names, but lets not confuse the rest
44 * of linux
45 */
46 #define BTRFS_NAME_LEN 255
47
48 /* 32 bytes in various csum fields */
49 #define BTRFS_CSUM_SIZE 32
50 /* four bytes for CRC32 */
51 #define BTRFS_CRC32_SIZE 4
52 #define BTRFS_EMPTY_DIR_SIZE 6
53
54 #define BTRFS_FT_UNKNOWN 0
55 #define BTRFS_FT_REG_FILE 1
56 #define BTRFS_FT_DIR 2
57 #define BTRFS_FT_CHRDEV 3
58 #define BTRFS_FT_BLKDEV 4
59 #define BTRFS_FT_FIFO 5
60 #define BTRFS_FT_SOCK 6
61 #define BTRFS_FT_SYMLINK 7
62 #define BTRFS_FT_MAX 8
63
64 /*
65 * the key defines the order in the tree, and so it also defines (optimal)
66 * block layout. objectid corresonds to the inode number. The flags
67 * tells us things about the object, and is a kind of stream selector.
68 * so for a given inode, keys with flags of 1 might refer to the inode
69 * data, flags of 2 may point to file data in the btree and flags == 3
70 * may point to extents.
71 *
72 * offset is the starting byte offset for this key in the stream.
73 *
74 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
75 * in cpu native order. Otherwise they are identical and their sizes
76 * should be the same (ie both packed)
77 */
78 struct btrfs_disk_key {
79 __le64 objectid;
80 __le32 flags;
81 __le64 offset;
82 } __attribute__ ((__packed__));
83
84 struct btrfs_key {
85 u64 objectid;
86 u32 flags;
87 u64 offset;
88 } __attribute__ ((__packed__));
89
90 /*
91 * every tree block (leaf or node) starts with this header.
92 */
93 struct btrfs_header {
94 u8 csum[BTRFS_CSUM_SIZE];
95 u8 fsid[16]; /* FS specific uuid */
96 __le64 blocknr; /* which block this node is supposed to live in */
97 __le64 generation;
98 __le64 owner;
99 __le16 nritems;
100 __le16 flags;
101 u8 level;
102 } __attribute__ ((__packed__));
103
104 #define BTRFS_MAX_LEVEL 8
105 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
106 sizeof(struct btrfs_header)) / \
107 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
108 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
109 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
110 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
111 sizeof(struct btrfs_item) - \
112 sizeof(struct btrfs_file_extent_item))
113
114 struct buffer_head;
115 /*
116 * the super block basically lists the main trees of the FS
117 * it currently lacks any block count etc etc
118 */
119 struct btrfs_super_block {
120 u8 csum[BTRFS_CSUM_SIZE];
121 /* the first 3 fields must match struct btrfs_header */
122 u8 fsid[16]; /* FS specific uuid */
123 __le64 blocknr; /* this block number */
124 __le64 magic;
125 __le32 blocksize;
126 __le64 generation;
127 __le64 root;
128 __le64 total_blocks;
129 __le64 blocks_used;
130 __le64 root_dir_objectid;
131 } __attribute__ ((__packed__));
132
133 /*
134 * A leaf is full of items. offset and size tell us where to find
135 * the item in the leaf (relative to the start of the data area)
136 */
137 struct btrfs_item {
138 struct btrfs_disk_key key;
139 __le32 offset;
140 __le16 size;
141 } __attribute__ ((__packed__));
142
143 /*
144 * leaves have an item area and a data area:
145 * [item0, item1....itemN] [free space] [dataN...data1, data0]
146 *
147 * The data is separate from the items to get the keys closer together
148 * during searches.
149 */
150 struct btrfs_leaf {
151 struct btrfs_header header;
152 struct btrfs_item items[];
153 } __attribute__ ((__packed__));
154
155 /*
156 * all non-leaf blocks are nodes, they hold only keys and pointers to
157 * other blocks
158 */
159 struct btrfs_key_ptr {
160 struct btrfs_disk_key key;
161 __le64 blockptr;
162 } __attribute__ ((__packed__));
163
164 struct btrfs_node {
165 struct btrfs_header header;
166 struct btrfs_key_ptr ptrs[];
167 } __attribute__ ((__packed__));
168
169 /*
170 * btrfs_paths remember the path taken from the root down to the leaf.
171 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
172 * to any other levels that are present.
173 *
174 * The slots array records the index of the item or block pointer
175 * used while walking the tree.
176 */
177 struct btrfs_path {
178 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
179 int slots[BTRFS_MAX_LEVEL];
180 };
181
182 /*
183 * items in the extent btree are used to record the objectid of the
184 * owner of the block and the number of references
185 */
186 struct btrfs_extent_item {
187 __le32 refs;
188 __le64 owner;
189 } __attribute__ ((__packed__));
190
191 struct btrfs_inode_timespec {
192 __le64 sec;
193 __le32 nsec;
194 } __attribute__ ((__packed__));
195
196 /*
197 * there is no padding here on purpose. If you want to extent the inode,
198 * make a new item type
199 */
200 struct btrfs_inode_item {
201 __le64 generation;
202 __le64 size;
203 __le64 nblocks;
204 __le64 block_group;
205 __le32 nlink;
206 __le32 uid;
207 __le32 gid;
208 __le32 mode;
209 __le32 rdev;
210 __le16 flags;
211 __le16 compat_flags;
212 struct btrfs_inode_timespec atime;
213 struct btrfs_inode_timespec ctime;
214 struct btrfs_inode_timespec mtime;
215 struct btrfs_inode_timespec otime;
216 } __attribute__ ((__packed__));
217
218 struct btrfs_dir_item {
219 struct btrfs_disk_key location;
220 __le16 flags;
221 __le16 name_len;
222 u8 type;
223 } __attribute__ ((__packed__));
224
225 struct btrfs_root_item {
226 struct btrfs_inode_item inode;
227 __le64 root_dirid;
228 __le64 blocknr;
229 __le32 flags;
230 __le64 block_limit;
231 __le64 blocks_used;
232 __le32 refs;
233 } __attribute__ ((__packed__));
234
235 #define BTRFS_FILE_EXTENT_REG 0
236 #define BTRFS_FILE_EXTENT_INLINE 1
237
238 struct btrfs_file_extent_item {
239 __le64 generation;
240 u8 type;
241 /*
242 * disk space consumed by the extent, checksum blocks are included
243 * in these numbers
244 */
245 __le64 disk_blocknr;
246 __le64 disk_num_blocks;
247 /*
248 * the logical offset in file blocks (no csums)
249 * this extent record is for. This allows a file extent to point
250 * into the middle of an existing extent on disk, sharing it
251 * between two snapshots (useful if some bytes in the middle of the
252 * extent have changed
253 */
254 __le64 offset;
255 /*
256 * the logical number of file blocks (no csums included)
257 */
258 __le64 num_blocks;
259 } __attribute__ ((__packed__));
260
261 struct btrfs_csum_item {
262 u8 csum;
263 } __attribute__ ((__packed__));
264
265 /* tag for the radix tree of block groups in ram */
266 #define BTRFS_BLOCK_GROUP_DIRTY 0
267 #define BTRFS_BLOCK_GROUP_AVAIL 1
268 #define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
269
270
271 #define BTRFS_BLOCK_GROUP_DATA 1
272 struct btrfs_block_group_item {
273 __le64 used;
274 u8 flags;
275 } __attribute__ ((__packed__));
276
277 struct btrfs_block_group_cache {
278 struct btrfs_key key;
279 struct btrfs_block_group_item item;
280 struct radix_tree_root *radix;
281 u64 first_free;
282 u64 last_alloc;
283 u64 pinned;
284 u64 last_prealloc;
285 int data;
286 int cached;
287 };
288
289 struct btrfs_fs_info {
290 struct btrfs_root *extent_root;
291 struct btrfs_root *tree_root;
292 struct radix_tree_root fs_roots_radix;
293 struct radix_tree_root pending_del_radix;
294 struct radix_tree_root pinned_radix;
295 struct radix_tree_root block_group_radix;
296 struct radix_tree_root block_group_data_radix;
297 struct radix_tree_root extent_map_radix;
298
299 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
300 int extent_tree_insert_nr;
301 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
302 int extent_tree_prealloc_nr;
303
304 u64 generation;
305 struct btrfs_transaction *running_transaction;
306 struct btrfs_super_block *disk_super;
307 struct buffer_head *sb_buffer;
308 struct super_block *sb;
309 struct inode *btree_inode;
310 struct mutex trans_mutex;
311 struct mutex fs_mutex;
312 struct list_head trans_list;
313 struct list_head dead_roots;
314 struct delayed_work trans_work;
315 int do_barriers;
316 int closing;
317 };
318
319 /*
320 * in ram representation of the tree. extent_root is used for all allocations
321 * and for the extent tree extent_root root.
322 */
323 struct btrfs_root {
324 struct buffer_head *node;
325 struct buffer_head *commit_root;
326 struct btrfs_root_item root_item;
327 struct btrfs_key root_key;
328 struct btrfs_fs_info *fs_info;
329 struct inode *inode;
330 u64 objectid;
331 u64 last_trans;
332 u32 blocksize;
333 int ref_cows;
334 u32 type;
335 u64 highest_inode;
336 u64 last_inode_alloc;
337 };
338
339 /* the lower bits in the key flags defines the item type */
340 #define BTRFS_KEY_TYPE_MAX 256
341 #define BTRFS_KEY_TYPE_SHIFT 24
342 #define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
343 BTRFS_KEY_TYPE_SHIFT)
344
345 /*
346 * inode items have the data typically returned from stat and store other
347 * info about object characteristics. There is one for every file and dir in
348 * the FS
349 */
350 #define BTRFS_INODE_ITEM_KEY 1
351
352 /* reserve 2-15 close to the inode for later flexibility */
353
354 /*
355 * dir items are the name -> inode pointers in a directory. There is one
356 * for every name in a directory.
357 */
358 #define BTRFS_DIR_ITEM_KEY 16
359 #define BTRFS_DIR_INDEX_KEY 17
360 /*
361 * extent data is for file data
362 */
363 #define BTRFS_EXTENT_DATA_KEY 18
364 /*
365 * csum items have the checksums for data in the extents
366 */
367 #define BTRFS_CSUM_ITEM_KEY 19
368
369 /* reserve 20-31 for other file stuff */
370
371 /*
372 * root items point to tree roots. There are typically in the root
373 * tree used by the super block to find all the other trees
374 */
375 #define BTRFS_ROOT_ITEM_KEY 32
376 /*
377 * extent items are in the extent map tree. These record which blocks
378 * are used, and how many references there are to each block
379 */
380 #define BTRFS_EXTENT_ITEM_KEY 33
381
382 /*
383 * block groups give us hints into the extent allocation trees. Which
384 * blocks are free etc etc
385 */
386 #define BTRFS_BLOCK_GROUP_ITEM_KEY 34
387
388 /*
389 * string items are for debugging. They just store a short string of
390 * data in the FS
391 */
392 #define BTRFS_STRING_ITEM_KEY 253
393
394
395 static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
396 {
397 return le64_to_cpu(bi->used);
398 }
399
400 static inline void btrfs_set_block_group_used(struct
401 btrfs_block_group_item *bi,
402 u64 val)
403 {
404 bi->used = cpu_to_le64(val);
405 }
406
407 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
408 {
409 return le64_to_cpu(i->generation);
410 }
411
412 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
413 u64 val)
414 {
415 i->generation = cpu_to_le64(val);
416 }
417
418 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
419 {
420 return le64_to_cpu(i->size);
421 }
422
423 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
424 {
425 i->size = cpu_to_le64(val);
426 }
427
428 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
429 {
430 return le64_to_cpu(i->nblocks);
431 }
432
433 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
434 {
435 i->nblocks = cpu_to_le64(val);
436 }
437
438 static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
439 {
440 return le64_to_cpu(i->block_group);
441 }
442
443 static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
444 u64 val)
445 {
446 i->block_group = cpu_to_le64(val);
447 }
448
449 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
450 {
451 return le32_to_cpu(i->nlink);
452 }
453
454 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
455 {
456 i->nlink = cpu_to_le32(val);
457 }
458
459 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
460 {
461 return le32_to_cpu(i->uid);
462 }
463
464 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
465 {
466 i->uid = cpu_to_le32(val);
467 }
468
469 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
470 {
471 return le32_to_cpu(i->gid);
472 }
473
474 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
475 {
476 i->gid = cpu_to_le32(val);
477 }
478
479 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
480 {
481 return le32_to_cpu(i->mode);
482 }
483
484 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
485 {
486 i->mode = cpu_to_le32(val);
487 }
488
489 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
490 {
491 return le32_to_cpu(i->rdev);
492 }
493
494 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
495 {
496 i->rdev = cpu_to_le32(val);
497 }
498
499 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
500 {
501 return le16_to_cpu(i->flags);
502 }
503
504 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
505 {
506 i->flags = cpu_to_le16(val);
507 }
508
509 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
510 {
511 return le16_to_cpu(i->compat_flags);
512 }
513
514 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
515 u16 val)
516 {
517 i->compat_flags = cpu_to_le16(val);
518 }
519
520 static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
521 {
522 return le64_to_cpu(ts->sec);
523 }
524
525 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
526 u64 val)
527 {
528 ts->sec = cpu_to_le64(val);
529 }
530
531 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
532 {
533 return le32_to_cpu(ts->nsec);
534 }
535
536 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
537 u32 val)
538 {
539 ts->nsec = cpu_to_le32(val);
540 }
541
542 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
543 {
544 return le32_to_cpu(ei->refs);
545 }
546
547 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
548 {
549 ei->refs = cpu_to_le32(val);
550 }
551
552 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
553 {
554 return le64_to_cpu(ei->owner);
555 }
556
557 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
558 {
559 ei->owner = cpu_to_le64(val);
560 }
561
562 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
563 {
564 return le64_to_cpu(n->ptrs[nr].blockptr);
565 }
566
567
568 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
569 u64 val)
570 {
571 n->ptrs[nr].blockptr = cpu_to_le64(val);
572 }
573
574 static inline u32 btrfs_item_offset(struct btrfs_item *item)
575 {
576 return le32_to_cpu(item->offset);
577 }
578
579 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
580 {
581 item->offset = cpu_to_le32(val);
582 }
583
584 static inline u32 btrfs_item_end(struct btrfs_item *item)
585 {
586 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
587 }
588
589 static inline u16 btrfs_item_size(struct btrfs_item *item)
590 {
591 return le16_to_cpu(item->size);
592 }
593
594 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
595 {
596 item->size = cpu_to_le16(val);
597 }
598
599 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
600 {
601 return le16_to_cpu(d->flags);
602 }
603
604 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
605 {
606 d->flags = cpu_to_le16(val);
607 }
608
609 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
610 {
611 return d->type;
612 }
613
614 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
615 {
616 d->type = val;
617 }
618
619 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
620 {
621 return le16_to_cpu(d->name_len);
622 }
623
624 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
625 {
626 d->name_len = cpu_to_le16(val);
627 }
628
629 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
630 struct btrfs_disk_key *disk)
631 {
632 cpu->offset = le64_to_cpu(disk->offset);
633 cpu->flags = le32_to_cpu(disk->flags);
634 cpu->objectid = le64_to_cpu(disk->objectid);
635 }
636
637 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
638 struct btrfs_key *cpu)
639 {
640 disk->offset = cpu_to_le64(cpu->offset);
641 disk->flags = cpu_to_le32(cpu->flags);
642 disk->objectid = cpu_to_le64(cpu->objectid);
643 }
644
645 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
646 {
647 return le64_to_cpu(disk->objectid);
648 }
649
650 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
651 u64 val)
652 {
653 disk->objectid = cpu_to_le64(val);
654 }
655
656 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
657 {
658 return le64_to_cpu(disk->offset);
659 }
660
661 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
662 u64 val)
663 {
664 disk->offset = cpu_to_le64(val);
665 }
666
667 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
668 {
669 return le32_to_cpu(disk->flags);
670 }
671
672 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
673 u32 val)
674 {
675 disk->flags = cpu_to_le32(val);
676 }
677
678 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
679 {
680 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
681 }
682
683 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
684 u32 val)
685 {
686 u32 flags = btrfs_disk_key_flags(key);
687 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
688 val = val << BTRFS_KEY_TYPE_SHIFT;
689 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
690 btrfs_set_disk_key_flags(key, flags);
691 }
692
693 static inline u32 btrfs_key_type(struct btrfs_key *key)
694 {
695 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
696 }
697
698 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
699 {
700 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
701 val = val << BTRFS_KEY_TYPE_SHIFT;
702 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
703 }
704
705 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
706 {
707 return le64_to_cpu(h->blocknr);
708 }
709
710 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
711 {
712 h->blocknr = cpu_to_le64(blocknr);
713 }
714
715 static inline u64 btrfs_header_generation(struct btrfs_header *h)
716 {
717 return le64_to_cpu(h->generation);
718 }
719
720 static inline void btrfs_set_header_generation(struct btrfs_header *h,
721 u64 val)
722 {
723 h->generation = cpu_to_le64(val);
724 }
725
726 static inline u64 btrfs_header_owner(struct btrfs_header *h)
727 {
728 return le64_to_cpu(h->owner);
729 }
730
731 static inline void btrfs_set_header_owner(struct btrfs_header *h,
732 u64 val)
733 {
734 h->owner = cpu_to_le64(val);
735 }
736
737 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
738 {
739 return le16_to_cpu(h->nritems);
740 }
741
742 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
743 {
744 h->nritems = cpu_to_le16(val);
745 }
746
747 static inline u16 btrfs_header_flags(struct btrfs_header *h)
748 {
749 return le16_to_cpu(h->flags);
750 }
751
752 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
753 {
754 h->flags = cpu_to_le16(val);
755 }
756
757 static inline int btrfs_header_level(struct btrfs_header *h)
758 {
759 return h->level;
760 }
761
762 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
763 {
764 BUG_ON(level > BTRFS_MAX_LEVEL);
765 h->level = level;
766 }
767
768 static inline int btrfs_is_leaf(struct btrfs_node *n)
769 {
770 return (btrfs_header_level(&n->header) == 0);
771 }
772
773 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
774 {
775 return le64_to_cpu(item->blocknr);
776 }
777
778 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
779 {
780 item->blocknr = cpu_to_le64(val);
781 }
782
783 static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
784 {
785 return le64_to_cpu(item->root_dirid);
786 }
787
788 static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
789 {
790 item->root_dirid = cpu_to_le64(val);
791 }
792
793 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
794 {
795 return le32_to_cpu(item->refs);
796 }
797
798 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
799 {
800 item->refs = cpu_to_le32(val);
801 }
802
803 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
804 {
805 return le64_to_cpu(s->blocknr);
806 }
807
808 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
809 {
810 s->blocknr = cpu_to_le64(val);
811 }
812
813 static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
814 {
815 return le64_to_cpu(s->generation);
816 }
817
818 static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
819 u64 val)
820 {
821 s->generation = cpu_to_le64(val);
822 }
823
824 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
825 {
826 return le64_to_cpu(s->root);
827 }
828
829 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
830 {
831 s->root = cpu_to_le64(val);
832 }
833
834 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
835 {
836 return le64_to_cpu(s->total_blocks);
837 }
838
839 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
840 u64 val)
841 {
842 s->total_blocks = cpu_to_le64(val);
843 }
844
845 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
846 {
847 return le64_to_cpu(s->blocks_used);
848 }
849
850 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
851 u64 val)
852 {
853 s->blocks_used = cpu_to_le64(val);
854 }
855
856 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
857 {
858 return le32_to_cpu(s->blocksize);
859 }
860
861 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
862 u32 val)
863 {
864 s->blocksize = cpu_to_le32(val);
865 }
866
867 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
868 {
869 return le64_to_cpu(s->root_dir_objectid);
870 }
871
872 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
873 val)
874 {
875 s->root_dir_objectid = cpu_to_le64(val);
876 }
877
878 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
879 {
880 return (u8 *)l->items;
881 }
882
883 static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
884 {
885 return e->type;
886 }
887 static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
888 u8 val)
889 {
890 e->type = val;
891 }
892
893 static inline char *btrfs_file_extent_inline_start(struct
894 btrfs_file_extent_item *e)
895 {
896 return (char *)(&e->disk_blocknr);
897 }
898
899 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
900 {
901 return (unsigned long)(&((struct
902 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
903 }
904
905 static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
906 {
907 struct btrfs_file_extent_item *fe = NULL;
908 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
909 }
910
911 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
912 *e)
913 {
914 return le64_to_cpu(e->disk_blocknr);
915 }
916
917 static inline void btrfs_set_file_extent_disk_blocknr(struct
918 btrfs_file_extent_item
919 *e, u64 val)
920 {
921 e->disk_blocknr = cpu_to_le64(val);
922 }
923
924 static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
925 {
926 return le64_to_cpu(e->generation);
927 }
928
929 static inline void btrfs_set_file_extent_generation(struct
930 btrfs_file_extent_item *e,
931 u64 val)
932 {
933 e->generation = cpu_to_le64(val);
934 }
935
936 static inline u64 btrfs_file_extent_disk_num_blocks(struct
937 btrfs_file_extent_item *e)
938 {
939 return le64_to_cpu(e->disk_num_blocks);
940 }
941
942 static inline void btrfs_set_file_extent_disk_num_blocks(struct
943 btrfs_file_extent_item
944 *e, u64 val)
945 {
946 e->disk_num_blocks = cpu_to_le64(val);
947 }
948
949 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
950 {
951 return le64_to_cpu(e->offset);
952 }
953
954 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
955 *e, u64 val)
956 {
957 e->offset = cpu_to_le64(val);
958 }
959
960 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
961 *e)
962 {
963 return le64_to_cpu(e->num_blocks);
964 }
965
966 static inline void btrfs_set_file_extent_num_blocks(struct
967 btrfs_file_extent_item *e,
968 u64 val)
969 {
970 e->num_blocks = cpu_to_le64(val);
971 }
972
973 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
974 {
975 return sb->s_fs_info;
976 }
977
978 static inline void btrfs_check_bounds(void *vptr, size_t len,
979 void *vcontainer, size_t container_len)
980 {
981 char *ptr = vptr;
982 char *container = vcontainer;
983 WARN_ON(ptr < container);
984 WARN_ON(ptr + len > container + container_len);
985 }
986
987 static inline void btrfs_memcpy(struct btrfs_root *root,
988 void *dst_block,
989 void *dst, const void *src, size_t nr)
990 {
991 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
992 memcpy(dst, src, nr);
993 }
994
995 static inline void btrfs_memmove(struct btrfs_root *root,
996 void *dst_block,
997 void *dst, void *src, size_t nr)
998 {
999 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1000 memmove(dst, src, nr);
1001 }
1002
1003 static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1004 {
1005 WARN_ON(!atomic_read(&bh->b_count));
1006 mark_buffer_dirty(bh);
1007 }
1008
1009 /* helper function to cast into the data area of the leaf. */
1010 #define btrfs_item_ptr(leaf, slot, type) \
1011 ((type *)(btrfs_leaf_data(leaf) + \
1012 btrfs_item_offset((leaf)->items + (slot))))
1013
1014 /* extent-tree.c */
1015 struct btrfs_block_group_cache *btrfs_lookup_block_group(struct
1016 btrfs_fs_info *info,
1017 u64 blocknr);
1018 struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1019 struct btrfs_block_group_cache
1020 *hint, u64 search_start,
1021 int data, int owner);
1022 int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1023 struct btrfs_root *root);
1024 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root, u64 hint);
1026 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1027 struct btrfs_root *root, u64 owner,
1028 u64 num_blocks, u64 search_start,
1029 u64 search_end, struct btrfs_key *ins, int data);
1030 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1031 struct buffer_head *buf);
1032 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1033 *root, u64 blocknr, u64 num_blocks, int pin);
1034 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1035 btrfs_root *root);
1036 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1037 struct btrfs_root *root,
1038 u64 blocknr, u64 num_blocks);
1039 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1040 struct btrfs_root *root);
1041 int btrfs_free_block_groups(struct btrfs_fs_info *info);
1042 int btrfs_read_block_groups(struct btrfs_root *root);
1043 /* ctree.c */
1044 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1045 *root, struct btrfs_path *path, u32 data_size);
1046 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 u32 new_size);
1050 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1051 *root, struct btrfs_key *key, struct btrfs_path *p, int
1052 ins_len, int cow);
1053 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
1054 struct btrfs_path *btrfs_alloc_path(void);
1055 void btrfs_free_path(struct btrfs_path *p);
1056 void btrfs_init_path(struct btrfs_path *p);
1057 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1058 struct btrfs_path *path);
1059 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1060 *root, struct btrfs_key *key, void *data, u32 data_size);
1061 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1062 *root, struct btrfs_path *path, struct btrfs_key
1063 *cpu_key, u32 data_size);
1064 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
1065 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
1066 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
1067 *root, struct buffer_head *snap);
1068 /* root-item.c */
1069 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1070 struct btrfs_key *key);
1071 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1072 *root, struct btrfs_key *key, struct btrfs_root_item
1073 *item);
1074 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1075 *root, struct btrfs_key *key, struct btrfs_root_item
1076 *item);
1077 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1078 btrfs_root_item *item, struct btrfs_key *key);
1079 /* dir-item.c */
1080 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
1081 *root, const char *name, int name_len, u64 dir,
1082 struct btrfs_key *location, u8 type);
1083 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root,
1085 struct btrfs_path *path, u64 dir,
1086 const char *name, int name_len,
1087 int mod);
1088 struct btrfs_dir_item *
1089 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root,
1091 struct btrfs_path *path, u64 dir,
1092 u64 objectid, const char *name, int name_len,
1093 int mod);
1094 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1095 struct btrfs_path *path,
1096 const char *name, int name_len);
1097 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 struct btrfs_dir_item *di);
1101 /* inode-map.c */
1102 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *fs_root,
1104 u64 dirid, u64 *objectid);
1105 int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1106
1107 /* inode-item.c */
1108 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1109 *root, u64 objectid, struct btrfs_inode_item
1110 *inode_item);
1111 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1112 *root, struct btrfs_path *path,
1113 struct btrfs_key *location, int mod);
1114
1115 /* file-item.c */
1116 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root,
1118 u64 objectid, u64 pos, u64 offset,
1119 u64 disk_num_blocks,
1120 u64 num_blocks);
1121 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root,
1123 struct btrfs_path *path, u64 objectid,
1124 u64 blocknr, int mod);
1125 int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1126 struct btrfs_root *root,
1127 u64 objectid, u64 offset,
1128 char *data, size_t len);
1129 struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1130 struct btrfs_root *root,
1131 struct btrfs_path *path,
1132 u64 objectid, u64 offset,
1133 int cow);
1134 int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
1135 struct btrfs_root *root, struct btrfs_path *path,
1136 u64 isize);
1137 /* inode.c */
1138 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page);
1139 int btrfs_readpage(struct file *file, struct page *page);
1140 void btrfs_delete_inode(struct inode *inode);
1141 void btrfs_read_locked_inode(struct inode *inode);
1142 int btrfs_write_inode(struct inode *inode, int wait);
1143 void btrfs_dirty_inode(struct inode *inode);
1144 struct inode *btrfs_alloc_inode(struct super_block *sb);
1145 void btrfs_destroy_inode(struct inode *inode);
1146 int btrfs_init_cachep(void);
1147 void btrfs_destroy_cachep(void);
1148 int btrfs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
1149 unsigned long arg);
1150 long btrfs_compat_ioctl(struct file *file, unsigned int cmd,
1151 unsigned long arg);
1152 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1153 struct btrfs_root *root);
1154 int btrfs_commit_write(struct file *file, struct page *page,
1155 unsigned from, unsigned to);
1156 int btrfs_get_block(struct inode *inode, sector_t iblock,
1157 struct buffer_head *result, int create);
1158 /* file.c */
1159 extern struct file_operations btrfs_file_operations;
1160 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root, struct inode *inode,
1162 u64 start, u64 end, u64 *hint_block);
1163 #endif
This page took 0.055562 seconds and 6 git commands to generate.