btrfs_mkdir
[deliverable/linux.git] / fs / btrfs / ctree.h
1 #ifndef __BTRFS__
2 #define __BTRFS__
3
4 #include <linux/radix-tree.h>
5 #include <linux/fs.h>
6
7 struct btrfs_trans_handle;
8 struct btrfs_transaction;
9
10 #define BTRFS_MAGIC "_BtRfS_M"
11
12 #define BTRFS_ROOT_TREE_OBJECTID 1
13 #define BTRFS_EXTENT_TREE_OBJECTID 2
14 #define BTRFS_INODE_MAP_OBJECTID 3
15 #define BTRFS_FS_TREE_OBJECTID 4
16
17 /*
18 * we can actually store much bigger names, but lets not confuse the rest
19 * of linux
20 */
21 #define BTRFS_NAME_LEN 255
22
23 /*
24 * the key defines the order in the tree, and so it also defines (optimal)
25 * block layout. objectid corresonds to the inode number. The flags
26 * tells us things about the object, and is a kind of stream selector.
27 * so for a given inode, keys with flags of 1 might refer to the inode
28 * data, flags of 2 may point to file data in the btree and flags == 3
29 * may point to extents.
30 *
31 * offset is the starting byte offset for this key in the stream.
32 *
33 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
34 * in cpu native order. Otherwise they are identical and their sizes
35 * should be the same (ie both packed)
36 */
37 struct btrfs_disk_key {
38 __le64 objectid;
39 __le32 flags;
40 __le64 offset;
41 } __attribute__ ((__packed__));
42
43 struct btrfs_key {
44 u64 objectid;
45 u32 flags;
46 u64 offset;
47 } __attribute__ ((__packed__));
48
49 /*
50 * every tree block (leaf or node) starts with this header.
51 */
52 struct btrfs_header {
53 u8 fsid[16]; /* FS specific uuid */
54 __le64 blocknr; /* which block this node is supposed to live in */
55 __le64 generation;
56 __le64 parentid; /* objectid of the tree root */
57 __le32 csum;
58 __le32 ham;
59 __le16 nritems;
60 __le16 flags;
61 /* generation flags to be added */
62 } __attribute__ ((__packed__));
63
64 #define BTRFS_MAX_LEVEL 8
65 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
66 sizeof(struct btrfs_header)) / \
67 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
68 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
69 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
70
71 struct buffer_head;
72 /*
73 * the super block basically lists the main trees of the FS
74 * it currently lacks any block count etc etc
75 */
76 struct btrfs_super_block {
77 u8 fsid[16]; /* FS specific uuid */
78 __le64 blocknr; /* this block number */
79 __le32 csum;
80 __le64 magic;
81 __le32 blocksize;
82 __le64 generation;
83 __le64 root;
84 __le64 total_blocks;
85 __le64 blocks_used;
86 __le64 root_dir_objectid;
87 } __attribute__ ((__packed__));
88
89 /*
90 * A leaf is full of items. offset and size tell us where to find
91 * the item in the leaf (relative to the start of the data area)
92 */
93 struct btrfs_item {
94 struct btrfs_disk_key key;
95 __le32 offset;
96 __le16 size;
97 } __attribute__ ((__packed__));
98
99 /*
100 * leaves have an item area and a data area:
101 * [item0, item1....itemN] [free space] [dataN...data1, data0]
102 *
103 * The data is separate from the items to get the keys closer together
104 * during searches.
105 */
106 struct btrfs_leaf {
107 struct btrfs_header header;
108 struct btrfs_item items[];
109 } __attribute__ ((__packed__));
110
111 /*
112 * all non-leaf blocks are nodes, they hold only keys and pointers to
113 * other blocks
114 */
115 struct btrfs_key_ptr {
116 struct btrfs_disk_key key;
117 __le64 blockptr;
118 } __attribute__ ((__packed__));
119
120 struct btrfs_node {
121 struct btrfs_header header;
122 struct btrfs_key_ptr ptrs[];
123 } __attribute__ ((__packed__));
124
125 /*
126 * btrfs_paths remember the path taken from the root down to the leaf.
127 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
128 * to any other levels that are present.
129 *
130 * The slots array records the index of the item or block pointer
131 * used while walking the tree.
132 */
133 struct btrfs_path {
134 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
135 int slots[BTRFS_MAX_LEVEL];
136 };
137
138 /*
139 * items in the extent btree are used to record the objectid of the
140 * owner of the block and the number of references
141 */
142 struct btrfs_extent_item {
143 __le32 refs;
144 __le64 owner;
145 } __attribute__ ((__packed__));
146
147 struct btrfs_inode_timespec {
148 __le32 sec;
149 __le32 nsec;
150 } __attribute__ ((__packed__));
151
152 /*
153 * there is no padding here on purpose. If you want to extent the inode,
154 * make a new item type
155 */
156 struct btrfs_inode_item {
157 __le64 generation;
158 __le64 size;
159 __le64 nblocks;
160 __le32 nlink;
161 __le32 uid;
162 __le32 gid;
163 __le32 mode;
164 __le32 rdev;
165 __le16 flags;
166 __le16 compat_flags;
167 struct btrfs_inode_timespec atime;
168 struct btrfs_inode_timespec ctime;
169 struct btrfs_inode_timespec mtime;
170 struct btrfs_inode_timespec otime;
171 } __attribute__ ((__packed__));
172
173 /* inline data is just a blob of bytes */
174 struct btrfs_inline_data_item {
175 u8 data;
176 } __attribute__ ((__packed__));
177
178 struct btrfs_dir_item {
179 __le64 objectid;
180 __le16 flags;
181 __le16 name_len;
182 u8 type;
183 } __attribute__ ((__packed__));
184
185 struct btrfs_root_item {
186 __le64 blocknr;
187 __le32 flags;
188 __le64 block_limit;
189 __le64 blocks_used;
190 __le32 refs;
191 } __attribute__ ((__packed__));
192
193 struct btrfs_file_extent_item {
194 /*
195 * disk space consumed by the extent, checksum blocks are included
196 * in these numbers
197 */
198 __le64 disk_blocknr;
199 __le64 disk_num_blocks;
200 /*
201 * the logical offset in file bytes (no csums)
202 * this extent record is for. This allows a file extent to point
203 * into the middle of an existing extent on disk, sharing it
204 * between two snapshots (useful if some bytes in the middle of the
205 * extent have changed
206 */
207 __le64 offset;
208 /*
209 * the logical number of file blocks (no csums included)
210 */
211 __le64 num_blocks;
212 } __attribute__ ((__packed__));
213
214 struct btrfs_inode_map_item {
215 struct btrfs_disk_key key;
216 } __attribute__ ((__packed__));
217
218 struct btrfs_fs_info {
219 struct btrfs_root *fs_root;
220 struct btrfs_root *extent_root;
221 struct btrfs_root *tree_root;
222 struct btrfs_root *inode_root;
223 struct btrfs_key current_insert;
224 struct btrfs_key last_insert;
225 struct radix_tree_root pinned_radix;
226 u64 last_inode_alloc;
227 u64 last_inode_alloc_dirid;
228 u64 generation;
229 struct btrfs_transaction *running_transaction;
230 struct btrfs_super_block *disk_super;
231 struct buffer_head *sb_buffer;
232 struct super_block *sb;
233 struct mutex trans_mutex;
234 struct mutex fs_mutex;
235 };
236
237 /*
238 * in ram representation of the tree. extent_root is used for all allocations
239 * and for the extent tree extent_root root. current_insert is used
240 * only for the extent tree.
241 */
242 struct btrfs_root {
243 struct buffer_head *node;
244 struct buffer_head *commit_root;
245 struct btrfs_root_item root_item;
246 struct btrfs_key root_key;
247 struct btrfs_fs_info *fs_info;
248 u32 blocksize;
249 int ref_cows;
250 u32 type;
251 };
252
253 /* the lower bits in the key flags defines the item type */
254 #define BTRFS_KEY_TYPE_MAX 256
255 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1)
256
257 /*
258 * inode items have the data typically returned from stat and store other
259 * info about object characteristics. There is one for every file and dir in
260 * the FS
261 */
262 #define BTRFS_INODE_ITEM_KEY 1
263
264 /*
265 * dir items are the name -> inode pointers in a directory. There is one
266 * for every name in a directory.
267 */
268 #define BTRFS_DIR_ITEM_KEY 2
269 /*
270 * inline data is file data that fits in the btree.
271 */
272 #define BTRFS_INLINE_DATA_KEY 3
273 /*
274 * extent data is for data that can't fit in the btree. It points to
275 * a (hopefully) huge chunk of disk
276 */
277 #define BTRFS_EXTENT_DATA_KEY 4
278 /*
279 * root items point to tree roots. There are typically in the root
280 * tree used by the super block to find all the other trees
281 */
282 #define BTRFS_ROOT_ITEM_KEY 5
283 /*
284 * extent items are in the extent map tree. These record which blocks
285 * are used, and how many references there are to each block
286 */
287 #define BTRFS_EXTENT_ITEM_KEY 6
288
289 /*
290 * the inode map records which inode numbers are in use and where
291 * they actually live on disk
292 */
293 #define BTRFS_INODE_MAP_ITEM_KEY 7
294 /*
295 * string items are for debugging. They just store a short string of
296 * data in the FS
297 */
298 #define BTRFS_STRING_ITEM_KEY 8
299
300 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
301 {
302 return le64_to_cpu(i->generation);
303 }
304
305 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
306 u64 val)
307 {
308 i->generation = cpu_to_le64(val);
309 }
310
311 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
312 {
313 return le64_to_cpu(i->size);
314 }
315
316 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
317 {
318 i->size = cpu_to_le64(val);
319 }
320
321 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
322 {
323 return le64_to_cpu(i->nblocks);
324 }
325
326 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
327 {
328 i->nblocks = cpu_to_le64(val);
329 }
330
331 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
332 {
333 return le32_to_cpu(i->nlink);
334 }
335
336 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
337 {
338 i->nlink = cpu_to_le32(val);
339 }
340
341 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
342 {
343 return le32_to_cpu(i->uid);
344 }
345
346 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
347 {
348 i->uid = cpu_to_le32(val);
349 }
350
351 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
352 {
353 return le32_to_cpu(i->gid);
354 }
355
356 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
357 {
358 i->gid = cpu_to_le32(val);
359 }
360
361 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
362 {
363 return le32_to_cpu(i->mode);
364 }
365
366 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
367 {
368 i->mode = cpu_to_le32(val);
369 }
370
371 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
372 {
373 return le32_to_cpu(i->rdev);
374 }
375
376 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
377 {
378 i->rdev = cpu_to_le32(val);
379 }
380
381 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
382 {
383 return le16_to_cpu(i->flags);
384 }
385
386 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
387 {
388 i->flags = cpu_to_le16(val);
389 }
390
391 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
392 {
393 return le16_to_cpu(i->compat_flags);
394 }
395
396 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
397 u16 val)
398 {
399 i->compat_flags = cpu_to_le16(val);
400 }
401
402 static inline u32 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
403 {
404 return le32_to_cpu(ts->sec);
405 }
406
407 static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
408 u32 val)
409 {
410 ts->sec = cpu_to_le32(val);
411 }
412
413 static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
414 {
415 return le32_to_cpu(ts->nsec);
416 }
417
418 static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
419 u32 val)
420 {
421 ts->nsec = cpu_to_le32(val);
422 }
423
424
425
426 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
427 {
428 return le64_to_cpu(ei->owner);
429 }
430
431 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
432 {
433 ei->owner = cpu_to_le64(val);
434 }
435
436 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
437 {
438 return le32_to_cpu(ei->refs);
439 }
440
441 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
442 {
443 ei->refs = cpu_to_le32(val);
444 }
445
446 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
447 {
448 return le64_to_cpu(n->ptrs[nr].blockptr);
449 }
450
451 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
452 u64 val)
453 {
454 n->ptrs[nr].blockptr = cpu_to_le64(val);
455 }
456
457 static inline u32 btrfs_item_offset(struct btrfs_item *item)
458 {
459 return le32_to_cpu(item->offset);
460 }
461
462 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
463 {
464 item->offset = cpu_to_le32(val);
465 }
466
467 static inline u32 btrfs_item_end(struct btrfs_item *item)
468 {
469 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
470 }
471
472 static inline u16 btrfs_item_size(struct btrfs_item *item)
473 {
474 return le16_to_cpu(item->size);
475 }
476
477 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
478 {
479 item->size = cpu_to_le16(val);
480 }
481
482 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
483 {
484 return le64_to_cpu(d->objectid);
485 }
486
487 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
488 {
489 d->objectid = cpu_to_le64(val);
490 }
491
492 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
493 {
494 return le16_to_cpu(d->flags);
495 }
496
497 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
498 {
499 d->flags = cpu_to_le16(val);
500 }
501
502 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
503 {
504 return d->type;
505 }
506
507 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
508 {
509 d->type = val;
510 }
511
512 static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
513 {
514 return le16_to_cpu(d->name_len);
515 }
516
517 static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
518 {
519 d->name_len = cpu_to_le16(val);
520 }
521
522 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
523 struct btrfs_disk_key *disk)
524 {
525 cpu->offset = le64_to_cpu(disk->offset);
526 cpu->flags = le32_to_cpu(disk->flags);
527 cpu->objectid = le64_to_cpu(disk->objectid);
528 }
529
530 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
531 struct btrfs_key *cpu)
532 {
533 disk->offset = cpu_to_le64(cpu->offset);
534 disk->flags = cpu_to_le32(cpu->flags);
535 disk->objectid = cpu_to_le64(cpu->objectid);
536 }
537
538 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
539 {
540 return le64_to_cpu(disk->objectid);
541 }
542
543 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
544 u64 val)
545 {
546 disk->objectid = cpu_to_le64(val);
547 }
548
549 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
550 {
551 return le64_to_cpu(disk->offset);
552 }
553
554 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
555 u64 val)
556 {
557 disk->offset = cpu_to_le64(val);
558 }
559
560 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
561 {
562 return le32_to_cpu(disk->flags);
563 }
564
565 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
566 u32 val)
567 {
568 disk->flags = cpu_to_le32(val);
569 }
570
571 static inline u32 btrfs_key_type(struct btrfs_key *key)
572 {
573 return key->flags & BTRFS_KEY_TYPE_MASK;
574 }
575
576 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
577 {
578 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
579 }
580
581 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
582 {
583 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
584 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
585 }
586
587 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
588 {
589 u32 flags = btrfs_disk_key_flags(key);
590 BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
591 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
592 btrfs_set_disk_key_flags(key, flags);
593 }
594
595 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
596 {
597 return le64_to_cpu(h->blocknr);
598 }
599
600 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
601 {
602 h->blocknr = cpu_to_le64(blocknr);
603 }
604
605 static inline u64 btrfs_header_generation(struct btrfs_header *h)
606 {
607 return le64_to_cpu(h->generation);
608 }
609
610 static inline void btrfs_set_header_generation(struct btrfs_header *h,
611 u64 val)
612 {
613 h->generation = cpu_to_le64(val);
614 }
615
616 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
617 {
618 return le64_to_cpu(h->parentid);
619 }
620
621 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
622 u64 parentid)
623 {
624 h->parentid = cpu_to_le64(parentid);
625 }
626
627 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
628 {
629 return le16_to_cpu(h->nritems);
630 }
631
632 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
633 {
634 h->nritems = cpu_to_le16(val);
635 }
636
637 static inline u16 btrfs_header_flags(struct btrfs_header *h)
638 {
639 return le16_to_cpu(h->flags);
640 }
641
642 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
643 {
644 h->flags = cpu_to_le16(val);
645 }
646
647 static inline int btrfs_header_level(struct btrfs_header *h)
648 {
649 return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1);
650 }
651
652 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
653 {
654 u16 flags;
655 BUG_ON(level > BTRFS_MAX_LEVEL);
656 flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1);
657 btrfs_set_header_flags(h, flags | level);
658 }
659
660 static inline int btrfs_is_leaf(struct btrfs_node *n)
661 {
662 return (btrfs_header_level(&n->header) == 0);
663 }
664
665 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
666 {
667 return le64_to_cpu(item->blocknr);
668 }
669
670 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
671 {
672 item->blocknr = cpu_to_le64(val);
673 }
674
675 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
676 {
677 return le32_to_cpu(item->refs);
678 }
679
680 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
681 {
682 item->refs = cpu_to_le32(val);
683 }
684
685 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
686 {
687 return le64_to_cpu(s->blocknr);
688 }
689
690 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
691 {
692 s->blocknr = cpu_to_le64(val);
693 }
694
695 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
696 {
697 return le64_to_cpu(s->root);
698 }
699
700 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
701 {
702 s->root = cpu_to_le64(val);
703 }
704
705 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
706 {
707 return le64_to_cpu(s->total_blocks);
708 }
709
710 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
711 u64 val)
712 {
713 s->total_blocks = cpu_to_le64(val);
714 }
715
716 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
717 {
718 return le64_to_cpu(s->blocks_used);
719 }
720
721 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
722 u64 val)
723 {
724 s->blocks_used = cpu_to_le64(val);
725 }
726
727 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
728 {
729 return le32_to_cpu(s->blocksize);
730 }
731
732 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
733 u32 val)
734 {
735 s->blocksize = cpu_to_le32(val);
736 }
737
738 static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
739 {
740 return le64_to_cpu(s->root_dir_objectid);
741 }
742
743 static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
744 val)
745 {
746 s->root_dir_objectid = cpu_to_le64(val);
747 }
748
749 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
750 {
751 return (u8 *)l->items;
752 }
753
754 static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
755 *e)
756 {
757 return le64_to_cpu(e->disk_blocknr);
758 }
759
760 static inline void btrfs_set_file_extent_disk_blocknr(struct
761 btrfs_file_extent_item
762 *e, u64 val)
763 {
764 e->disk_blocknr = cpu_to_le64(val);
765 }
766
767 static inline u64 btrfs_file_extent_disk_num_blocks(struct
768 btrfs_file_extent_item *e)
769 {
770 return le64_to_cpu(e->disk_num_blocks);
771 }
772
773 static inline void btrfs_set_file_extent_disk_num_blocks(struct
774 btrfs_file_extent_item
775 *e, u64 val)
776 {
777 e->disk_num_blocks = cpu_to_le64(val);
778 }
779
780 static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
781 {
782 return le64_to_cpu(e->offset);
783 }
784
785 static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
786 *e, u64 val)
787 {
788 e->offset = cpu_to_le64(val);
789 }
790
791 static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
792 *e)
793 {
794 return le64_to_cpu(e->num_blocks);
795 }
796
797 static inline void btrfs_set_file_extent_num_blocks(struct
798 btrfs_file_extent_item *e,
799 u64 val)
800 {
801 e->num_blocks = cpu_to_le64(val);
802 }
803
804 static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
805 {
806 return sb->s_fs_info;
807 }
808
809 /* helper function to cast into the data area of the leaf. */
810 #define btrfs_item_ptr(leaf, slot, type) \
811 ((type *)(btrfs_leaf_data(leaf) + \
812 btrfs_item_offset((leaf)->items + (slot))))
813
814 struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
815 struct btrfs_root *root);
816 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
817 struct buffer_head *buf);
818 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
819 *root, u64 blocknr, u64 num_blocks, int pin);
820 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
821 *root, struct btrfs_key *key, struct btrfs_path *p, int
822 ins_len, int cow);
823 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
824 void btrfs_init_path(struct btrfs_path *p);
825 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
826 struct btrfs_path *path);
827 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
828 *root, struct btrfs_key *key, void *data, u32 data_size);
829 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
830 *root, struct btrfs_path *path, struct btrfs_key
831 *cpu_key, u32 data_size);
832 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
833 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
834 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
835 *root, struct buffer_head *snap);
836 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
837 btrfs_root *root);
838 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
839 struct btrfs_key *key);
840 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
841 *root, struct btrfs_key *key, struct btrfs_root_item
842 *item);
843 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
844 *root, struct btrfs_key *key, struct btrfs_root_item
845 *item);
846 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
847 btrfs_root_item *item, struct btrfs_key *key);
848 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
849 *root, const char *name, int name_len, u64 dir, u64
850 objectid, u8 type);
851 int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
852 *root, struct btrfs_path *path, u64 dir,
853 const char *name, int name_len, int mod);
854 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
855 const char *name, int name_len);
856 int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
857 struct btrfs_root *fs_root,
858 u64 dirid, u64 *objectid);
859 int btrfs_insert_inode_map(struct btrfs_trans_handle *trans,
860 struct btrfs_root *root,
861 u64 objectid, struct btrfs_key *location);
862 int btrfs_lookup_inode_map(struct btrfs_trans_handle *trans,
863 struct btrfs_root *root, struct btrfs_path *path,
864 u64 objectid, int mod);
865 int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
866 *root, u64 objectid, struct btrfs_inode_item
867 *inode_item);
868 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
869 *root, struct btrfs_path *path, u64 objectid, int mod);
870 #endif
This page took 0.075296 seconds and 6 git commands to generate.