btrfs: hooks for readahead
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65 /*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
79 };
80
81 /*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
100 struct btrfs_work work;
101 };
102
103 /*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
113 *
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
117 *
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
121 *
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
125 */
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
128 # error
129 # endif
130
131 static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136 } btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
148 };
149
150 void __init btrfs_init_lockdep(void)
151 {
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162 }
163
164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166 {
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178 }
179
180 #endif
181
182 /*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
186 static struct extent_map *btree_get_extent(struct inode *inode,
187 struct page *page, size_t pg_offset, u64 start, u64 len,
188 int create)
189 {
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
194 read_lock(&em_tree->lock);
195 em = lookup_extent_mapping(em_tree, start, len);
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
199 read_unlock(&em_tree->lock);
200 goto out;
201 }
202 read_unlock(&em_tree->lock);
203
204 em = alloc_extent_map();
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
210 em->len = (u64)-1;
211 em->block_len = (u64)-1;
212 em->block_start = 0;
213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
214
215 write_lock(&em_tree->lock);
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
221 free_extent_map(em);
222 em = lookup_extent_mapping(em_tree, start, len);
223 if (em) {
224 ret = 0;
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
228 ret = -EIO;
229 }
230 } else if (ret) {
231 free_extent_map(em);
232 em = NULL;
233 }
234 write_unlock(&em_tree->lock);
235
236 if (ret)
237 em = ERR_PTR(ret);
238 out:
239 return em;
240 }
241
242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243 {
244 return crc32c(seed, data, len);
245 }
246
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249 put_unaligned_le32(~crc, result);
250 }
251
252 /*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258 {
259 u16 csum_size =
260 btrfs_super_csum_size(&root->fs_info->super_copy);
261 char *result = NULL;
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
270 unsigned long inline_result;
271
272 len = buf->len - offset;
273 while (len > 0) {
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
276 if (err)
277 return 1;
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
283 }
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 u32 val;
297 u32 found = 0;
298 memcpy(&found, result, csum_size);
299
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
308 kfree(result);
309 return 1;
310 }
311 } else {
312 write_extent_buffer(buf, result, 0, csum_size);
313 }
314 if (result != (char *)&inline_result)
315 kfree(result);
316 return 0;
317 }
318
319 /*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327 {
328 struct extent_state *cached_state = NULL;
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
346 ret = 1;
347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
351 return ret;
352 }
353
354 /*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
360 u64 start, u64 parent_transid)
361 {
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
372 btree_get_extent, mirror_num);
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
375 return ret;
376
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
387 if (num_copies == 1)
388 return ret;
389
390 mirror_num++;
391 if (mirror_num > num_copies)
392 return ret;
393 }
394 return -EIO;
395 }
396
397 /*
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
400 */
401
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404 struct extent_io_tree *tree;
405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406 u64 found_start;
407 unsigned long len;
408 struct extent_buffer *eb;
409 int ret;
410
411 tree = &BTRFS_I(page->mapping->host)->io_tree;
412
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
415 goto out;
416 }
417 if (!page->private) {
418 WARN_ON(1);
419 goto out;
420 }
421 len = page->private >> 2;
422 WARN_ON(len == 0);
423
424 eb = alloc_extent_buffer(tree, start, len, page);
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
431 BUG_ON(ret);
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
444 WARN_ON(1);
445 goto err;
446 }
447 csum_tree_block(root, eb, 0);
448 err:
449 free_extent_buffer(eb);
450 out:
451 return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456 {
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481 {
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538 }
539
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541 struct extent_state *state)
542 {
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549 int ret = 0;
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
556
557 len = page->private >> 2;
558 WARN_ON(len == 0);
559
560 eb = alloc_extent_buffer(tree, start, len, page);
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
565
566 found_start = btrfs_header_bytenr(eb);
567 if (found_start != start) {
568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
572 ret = -EIO;
573 goto err;
574 }
575 if (eb->first_page != page) {
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
578 WARN_ON(1);
579 ret = -EIO;
580 goto err;
581 }
582 if (check_tree_block_fsid(root, eb)) {
583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584 (unsigned long long)eb->start);
585 ret = -EIO;
586 goto err;
587 }
588 found_level = btrfs_header_level(eb);
589
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
592
593 ret = csum_tree_block(root, eb, 1);
594 if (ret) {
595 ret = -EIO;
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
611 err:
612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 btree_readahead_hook(root, eb, eb->start, ret);
615 }
616
617 free_extent_buffer(eb);
618 out:
619 return ret;
620 }
621
622 static int btree_io_failed_hook(struct bio *failed_bio,
623 struct page *page, u64 start, u64 end,
624 struct extent_state *state)
625 {
626 struct extent_io_tree *tree;
627 unsigned long len;
628 struct extent_buffer *eb;
629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
632 if (page->private == EXTENT_PAGE_PRIVATE)
633 goto out;
634 if (!page->private)
635 goto out;
636
637 len = page->private >> 2;
638 WARN_ON(len == 0);
639
640 eb = alloc_extent_buffer(tree, start, len, page);
641 if (eb == NULL)
642 goto out;
643
644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 btree_readahead_hook(root, eb, eb->start, -EIO);
647 }
648
649 out:
650 return -EIO; /* we fixed nothing */
651 }
652
653 static void end_workqueue_bio(struct bio *bio, int err)
654 {
655 struct end_io_wq *end_io_wq = bio->bi_private;
656 struct btrfs_fs_info *fs_info;
657
658 fs_info = end_io_wq->info;
659 end_io_wq->error = err;
660 end_io_wq->work.func = end_workqueue_fn;
661 end_io_wq->work.flags = 0;
662
663 if (bio->bi_rw & REQ_WRITE) {
664 if (end_io_wq->metadata == 1)
665 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
666 &end_io_wq->work);
667 else if (end_io_wq->metadata == 2)
668 btrfs_queue_worker(&fs_info->endio_freespace_worker,
669 &end_io_wq->work);
670 else
671 btrfs_queue_worker(&fs_info->endio_write_workers,
672 &end_io_wq->work);
673 } else {
674 if (end_io_wq->metadata)
675 btrfs_queue_worker(&fs_info->endio_meta_workers,
676 &end_io_wq->work);
677 else
678 btrfs_queue_worker(&fs_info->endio_workers,
679 &end_io_wq->work);
680 }
681 }
682
683 /*
684 * For the metadata arg you want
685 *
686 * 0 - if data
687 * 1 - if normal metadta
688 * 2 - if writing to the free space cache area
689 */
690 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
691 int metadata)
692 {
693 struct end_io_wq *end_io_wq;
694 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
695 if (!end_io_wq)
696 return -ENOMEM;
697
698 end_io_wq->private = bio->bi_private;
699 end_io_wq->end_io = bio->bi_end_io;
700 end_io_wq->info = info;
701 end_io_wq->error = 0;
702 end_io_wq->bio = bio;
703 end_io_wq->metadata = metadata;
704
705 bio->bi_private = end_io_wq;
706 bio->bi_end_io = end_workqueue_bio;
707 return 0;
708 }
709
710 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
711 {
712 unsigned long limit = min_t(unsigned long,
713 info->workers.max_workers,
714 info->fs_devices->open_devices);
715 return 256 * limit;
716 }
717
718 static void run_one_async_start(struct btrfs_work *work)
719 {
720 struct async_submit_bio *async;
721
722 async = container_of(work, struct async_submit_bio, work);
723 async->submit_bio_start(async->inode, async->rw, async->bio,
724 async->mirror_num, async->bio_flags,
725 async->bio_offset);
726 }
727
728 static void run_one_async_done(struct btrfs_work *work)
729 {
730 struct btrfs_fs_info *fs_info;
731 struct async_submit_bio *async;
732 int limit;
733
734 async = container_of(work, struct async_submit_bio, work);
735 fs_info = BTRFS_I(async->inode)->root->fs_info;
736
737 limit = btrfs_async_submit_limit(fs_info);
738 limit = limit * 2 / 3;
739
740 atomic_dec(&fs_info->nr_async_submits);
741
742 if (atomic_read(&fs_info->nr_async_submits) < limit &&
743 waitqueue_active(&fs_info->async_submit_wait))
744 wake_up(&fs_info->async_submit_wait);
745
746 async->submit_bio_done(async->inode, async->rw, async->bio,
747 async->mirror_num, async->bio_flags,
748 async->bio_offset);
749 }
750
751 static void run_one_async_free(struct btrfs_work *work)
752 {
753 struct async_submit_bio *async;
754
755 async = container_of(work, struct async_submit_bio, work);
756 kfree(async);
757 }
758
759 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
760 int rw, struct bio *bio, int mirror_num,
761 unsigned long bio_flags,
762 u64 bio_offset,
763 extent_submit_bio_hook_t *submit_bio_start,
764 extent_submit_bio_hook_t *submit_bio_done)
765 {
766 struct async_submit_bio *async;
767
768 async = kmalloc(sizeof(*async), GFP_NOFS);
769 if (!async)
770 return -ENOMEM;
771
772 async->inode = inode;
773 async->rw = rw;
774 async->bio = bio;
775 async->mirror_num = mirror_num;
776 async->submit_bio_start = submit_bio_start;
777 async->submit_bio_done = submit_bio_done;
778
779 async->work.func = run_one_async_start;
780 async->work.ordered_func = run_one_async_done;
781 async->work.ordered_free = run_one_async_free;
782
783 async->work.flags = 0;
784 async->bio_flags = bio_flags;
785 async->bio_offset = bio_offset;
786
787 atomic_inc(&fs_info->nr_async_submits);
788
789 if (rw & REQ_SYNC)
790 btrfs_set_work_high_prio(&async->work);
791
792 btrfs_queue_worker(&fs_info->workers, &async->work);
793
794 while (atomic_read(&fs_info->async_submit_draining) &&
795 atomic_read(&fs_info->nr_async_submits)) {
796 wait_event(fs_info->async_submit_wait,
797 (atomic_read(&fs_info->nr_async_submits) == 0));
798 }
799
800 return 0;
801 }
802
803 static int btree_csum_one_bio(struct bio *bio)
804 {
805 struct bio_vec *bvec = bio->bi_io_vec;
806 int bio_index = 0;
807 struct btrfs_root *root;
808
809 WARN_ON(bio->bi_vcnt <= 0);
810 while (bio_index < bio->bi_vcnt) {
811 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
812 csum_dirty_buffer(root, bvec->bv_page);
813 bio_index++;
814 bvec++;
815 }
816 return 0;
817 }
818
819 static int __btree_submit_bio_start(struct inode *inode, int rw,
820 struct bio *bio, int mirror_num,
821 unsigned long bio_flags,
822 u64 bio_offset)
823 {
824 /*
825 * when we're called for a write, we're already in the async
826 * submission context. Just jump into btrfs_map_bio
827 */
828 btree_csum_one_bio(bio);
829 return 0;
830 }
831
832 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
833 int mirror_num, unsigned long bio_flags,
834 u64 bio_offset)
835 {
836 /*
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
839 */
840 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
841 }
842
843 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
844 int mirror_num, unsigned long bio_flags,
845 u64 bio_offset)
846 {
847 int ret;
848
849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
850 bio, 1);
851 BUG_ON(ret);
852
853 if (!(rw & REQ_WRITE)) {
854 /*
855 * called for a read, do the setup so that checksum validation
856 * can happen in the async kernel threads
857 */
858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
859 mirror_num, 0);
860 }
861
862 /*
863 * kthread helpers are used to submit writes so that checksumming
864 * can happen in parallel across all CPUs
865 */
866 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
867 inode, rw, bio, mirror_num, 0,
868 bio_offset,
869 __btree_submit_bio_start,
870 __btree_submit_bio_done);
871 }
872
873 #ifdef CONFIG_MIGRATION
874 static int btree_migratepage(struct address_space *mapping,
875 struct page *newpage, struct page *page)
876 {
877 /*
878 * we can't safely write a btree page from here,
879 * we haven't done the locking hook
880 */
881 if (PageDirty(page))
882 return -EAGAIN;
883 /*
884 * Buffers may be managed in a filesystem specific way.
885 * We must have no buffers or drop them.
886 */
887 if (page_has_private(page) &&
888 !try_to_release_page(page, GFP_KERNEL))
889 return -EAGAIN;
890 return migrate_page(mapping, newpage, page);
891 }
892 #endif
893
894 static int btree_writepage(struct page *page, struct writeback_control *wbc)
895 {
896 struct extent_io_tree *tree;
897 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
898 struct extent_buffer *eb;
899 int was_dirty;
900
901 tree = &BTRFS_I(page->mapping->host)->io_tree;
902 if (!(current->flags & PF_MEMALLOC)) {
903 return extent_write_full_page(tree, page,
904 btree_get_extent, wbc);
905 }
906
907 redirty_page_for_writepage(wbc, page);
908 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
909 WARN_ON(!eb);
910
911 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
912 if (!was_dirty) {
913 spin_lock(&root->fs_info->delalloc_lock);
914 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
915 spin_unlock(&root->fs_info->delalloc_lock);
916 }
917 free_extent_buffer(eb);
918
919 unlock_page(page);
920 return 0;
921 }
922
923 static int btree_writepages(struct address_space *mapping,
924 struct writeback_control *wbc)
925 {
926 struct extent_io_tree *tree;
927 tree = &BTRFS_I(mapping->host)->io_tree;
928 if (wbc->sync_mode == WB_SYNC_NONE) {
929 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
930 u64 num_dirty;
931 unsigned long thresh = 32 * 1024 * 1024;
932
933 if (wbc->for_kupdate)
934 return 0;
935
936 /* this is a bit racy, but that's ok */
937 num_dirty = root->fs_info->dirty_metadata_bytes;
938 if (num_dirty < thresh)
939 return 0;
940 }
941 return extent_writepages(tree, mapping, btree_get_extent, wbc);
942 }
943
944 static int btree_readpage(struct file *file, struct page *page)
945 {
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
948 return extent_read_full_page(tree, page, btree_get_extent);
949 }
950
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 struct extent_io_tree *tree;
954 struct extent_map_tree *map;
955 int ret;
956
957 if (PageWriteback(page) || PageDirty(page))
958 return 0;
959
960 tree = &BTRFS_I(page->mapping->host)->io_tree;
961 map = &BTRFS_I(page->mapping->host)->extent_tree;
962
963 ret = try_release_extent_state(map, tree, page, gfp_flags);
964 if (!ret)
965 return 0;
966
967 ret = try_release_extent_buffer(tree, page);
968 if (ret == 1) {
969 ClearPagePrivate(page);
970 set_page_private(page, 0);
971 page_cache_release(page);
972 }
973
974 return ret;
975 }
976
977 static void btree_invalidatepage(struct page *page, unsigned long offset)
978 {
979 struct extent_io_tree *tree;
980 tree = &BTRFS_I(page->mapping->host)->io_tree;
981 extent_invalidatepage(tree, page, offset);
982 btree_releasepage(page, GFP_NOFS);
983 if (PagePrivate(page)) {
984 printk(KERN_WARNING "btrfs warning page private not zero "
985 "on page %llu\n", (unsigned long long)page_offset(page));
986 ClearPagePrivate(page);
987 set_page_private(page, 0);
988 page_cache_release(page);
989 }
990 }
991
992 static const struct address_space_operations btree_aops = {
993 .readpage = btree_readpage,
994 .writepage = btree_writepage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1000 #endif
1001 };
1002
1003 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004 u64 parent_transid)
1005 {
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = root->fs_info->btree_inode;
1008 int ret = 0;
1009
1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1011 if (!buf)
1012 return 0;
1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1014 buf, 0, WAIT_NONE, btree_get_extent, 0);
1015 free_extent_buffer(buf);
1016 return ret;
1017 }
1018
1019 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020 int mirror_num, struct extent_buffer **eb)
1021 {
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028 if (!buf)
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034 btree_get_extent, mirror_num);
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
1043 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049 }
1050
1051 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052 u64 bytenr, u32 blocksize)
1053 {
1054 struct inode *btree_inode = root->fs_info->btree_inode;
1055 struct extent_buffer *eb;
1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1057 bytenr, blocksize);
1058 return eb;
1059 }
1060
1061 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062 u64 bytenr, u32 blocksize)
1063 {
1064 struct inode *btree_inode = root->fs_info->btree_inode;
1065 struct extent_buffer *eb;
1066
1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1068 bytenr, blocksize, NULL);
1069 return eb;
1070 }
1071
1072
1073 int btrfs_write_tree_block(struct extent_buffer *buf)
1074 {
1075 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1076 buf->start + buf->len - 1);
1077 }
1078
1079 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080 {
1081 return filemap_fdatawait_range(buf->first_page->mapping,
1082 buf->start, buf->start + buf->len - 1);
1083 }
1084
1085 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1086 u32 blocksize, u64 parent_transid)
1087 {
1088 struct extent_buffer *buf = NULL;
1089 int ret;
1090
1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092 if (!buf)
1093 return NULL;
1094
1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1096
1097 if (ret == 0)
1098 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1099 return buf;
1100
1101 }
1102
1103 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1104 struct extent_buffer *buf)
1105 {
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 if (btrfs_header_generation(buf) ==
1108 root->fs_info->running_transaction->transid) {
1109 btrfs_assert_tree_locked(buf);
1110
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 spin_lock(&root->fs_info->delalloc_lock);
1113 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 root->fs_info->dirty_metadata_bytes -= buf->len;
1115 else
1116 WARN_ON(1);
1117 spin_unlock(&root->fs_info->delalloc_lock);
1118 }
1119
1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1121 btrfs_set_lock_blocking(buf);
1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1123 buf);
1124 }
1125 return 0;
1126 }
1127
1128 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1129 u32 stripesize, struct btrfs_root *root,
1130 struct btrfs_fs_info *fs_info,
1131 u64 objectid)
1132 {
1133 root->node = NULL;
1134 root->commit_root = NULL;
1135 root->sectorsize = sectorsize;
1136 root->nodesize = nodesize;
1137 root->leafsize = leafsize;
1138 root->stripesize = stripesize;
1139 root->ref_cows = 0;
1140 root->track_dirty = 0;
1141 root->in_radix = 0;
1142 root->orphan_item_inserted = 0;
1143 root->orphan_cleanup_state = 0;
1144
1145 root->fs_info = fs_info;
1146 root->objectid = objectid;
1147 root->last_trans = 0;
1148 root->highest_objectid = 0;
1149 root->name = NULL;
1150 root->inode_tree = RB_ROOT;
1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1152 root->block_rsv = NULL;
1153 root->orphan_block_rsv = NULL;
1154
1155 INIT_LIST_HEAD(&root->dirty_list);
1156 INIT_LIST_HEAD(&root->orphan_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 root->log_batch = 0;
1170 root->log_transid = 0;
1171 root->last_log_commit = 0;
1172 extent_io_tree_init(&root->dirty_log_pages,
1173 fs_info->btree_inode->i_mapping);
1174
1175 memset(&root->root_key, 0, sizeof(root->root_key));
1176 memset(&root->root_item, 0, sizeof(root->root_item));
1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1179 root->defrag_trans_start = fs_info->generation;
1180 init_completion(&root->kobj_unregister);
1181 root->defrag_running = 0;
1182 root->root_key.objectid = objectid;
1183 root->anon_dev = 0;
1184 return 0;
1185 }
1186
1187 static int find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191 {
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 BUG_ON(ret);
1204
1205 generation = btrfs_root_generation(&root->root_item);
1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1207 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1208 blocksize, generation);
1209 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1210 free_extent_buffer(root->node);
1211 return -EIO;
1212 }
1213 root->commit_root = btrfs_root_node(root);
1214 return 0;
1215 }
1216
1217 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1218 struct btrfs_fs_info *fs_info)
1219 {
1220 struct btrfs_root *root;
1221 struct btrfs_root *tree_root = fs_info->tree_root;
1222 struct extent_buffer *leaf;
1223
1224 root = kzalloc(sizeof(*root), GFP_NOFS);
1225 if (!root)
1226 return ERR_PTR(-ENOMEM);
1227
1228 __setup_root(tree_root->nodesize, tree_root->leafsize,
1229 tree_root->sectorsize, tree_root->stripesize,
1230 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1231
1232 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1233 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1234 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1235 /*
1236 * log trees do not get reference counted because they go away
1237 * before a real commit is actually done. They do store pointers
1238 * to file data extents, and those reference counts still get
1239 * updated (along with back refs to the log tree).
1240 */
1241 root->ref_cows = 0;
1242
1243 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1244 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1245 if (IS_ERR(leaf)) {
1246 kfree(root);
1247 return ERR_CAST(leaf);
1248 }
1249
1250 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1251 btrfs_set_header_bytenr(leaf, leaf->start);
1252 btrfs_set_header_generation(leaf, trans->transid);
1253 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1254 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1255 root->node = leaf;
1256
1257 write_extent_buffer(root->node, root->fs_info->fsid,
1258 (unsigned long)btrfs_header_fsid(root->node),
1259 BTRFS_FSID_SIZE);
1260 btrfs_mark_buffer_dirty(root->node);
1261 btrfs_tree_unlock(root->node);
1262 return root;
1263 }
1264
1265 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1266 struct btrfs_fs_info *fs_info)
1267 {
1268 struct btrfs_root *log_root;
1269
1270 log_root = alloc_log_tree(trans, fs_info);
1271 if (IS_ERR(log_root))
1272 return PTR_ERR(log_root);
1273 WARN_ON(fs_info->log_root_tree);
1274 fs_info->log_root_tree = log_root;
1275 return 0;
1276 }
1277
1278 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_root *root)
1280 {
1281 struct btrfs_root *log_root;
1282 struct btrfs_inode_item *inode_item;
1283
1284 log_root = alloc_log_tree(trans, root->fs_info);
1285 if (IS_ERR(log_root))
1286 return PTR_ERR(log_root);
1287
1288 log_root->last_trans = trans->transid;
1289 log_root->root_key.offset = root->root_key.objectid;
1290
1291 inode_item = &log_root->root_item.inode;
1292 inode_item->generation = cpu_to_le64(1);
1293 inode_item->size = cpu_to_le64(3);
1294 inode_item->nlink = cpu_to_le32(1);
1295 inode_item->nbytes = cpu_to_le64(root->leafsize);
1296 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1297
1298 btrfs_set_root_node(&log_root->root_item, log_root->node);
1299
1300 WARN_ON(root->log_root);
1301 root->log_root = log_root;
1302 root->log_transid = 0;
1303 root->last_log_commit = 0;
1304 return 0;
1305 }
1306
1307 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1308 struct btrfs_key *location)
1309 {
1310 struct btrfs_root *root;
1311 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1312 struct btrfs_path *path;
1313 struct extent_buffer *l;
1314 u64 generation;
1315 u32 blocksize;
1316 int ret = 0;
1317
1318 root = kzalloc(sizeof(*root), GFP_NOFS);
1319 if (!root)
1320 return ERR_PTR(-ENOMEM);
1321 if (location->offset == (u64)-1) {
1322 ret = find_and_setup_root(tree_root, fs_info,
1323 location->objectid, root);
1324 if (ret) {
1325 kfree(root);
1326 return ERR_PTR(ret);
1327 }
1328 goto out;
1329 }
1330
1331 __setup_root(tree_root->nodesize, tree_root->leafsize,
1332 tree_root->sectorsize, tree_root->stripesize,
1333 root, fs_info, location->objectid);
1334
1335 path = btrfs_alloc_path();
1336 if (!path) {
1337 kfree(root);
1338 return ERR_PTR(-ENOMEM);
1339 }
1340 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1341 if (ret == 0) {
1342 l = path->nodes[0];
1343 read_extent_buffer(l, &root->root_item,
1344 btrfs_item_ptr_offset(l, path->slots[0]),
1345 sizeof(root->root_item));
1346 memcpy(&root->root_key, location, sizeof(*location));
1347 }
1348 btrfs_free_path(path);
1349 if (ret) {
1350 kfree(root);
1351 if (ret > 0)
1352 ret = -ENOENT;
1353 return ERR_PTR(ret);
1354 }
1355
1356 generation = btrfs_root_generation(&root->root_item);
1357 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1358 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1359 blocksize, generation);
1360 root->commit_root = btrfs_root_node(root);
1361 BUG_ON(!root->node);
1362 out:
1363 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1364 root->ref_cows = 1;
1365 btrfs_check_and_init_root_item(&root->root_item);
1366 }
1367
1368 return root;
1369 }
1370
1371 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1372 struct btrfs_key *location)
1373 {
1374 struct btrfs_root *root;
1375 int ret;
1376
1377 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1378 return fs_info->tree_root;
1379 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1380 return fs_info->extent_root;
1381 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1382 return fs_info->chunk_root;
1383 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1384 return fs_info->dev_root;
1385 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1386 return fs_info->csum_root;
1387 again:
1388 spin_lock(&fs_info->fs_roots_radix_lock);
1389 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1390 (unsigned long)location->objectid);
1391 spin_unlock(&fs_info->fs_roots_radix_lock);
1392 if (root)
1393 return root;
1394
1395 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1396 if (IS_ERR(root))
1397 return root;
1398
1399 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1400 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1401 GFP_NOFS);
1402 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1403 ret = -ENOMEM;
1404 goto fail;
1405 }
1406
1407 btrfs_init_free_ino_ctl(root);
1408 mutex_init(&root->fs_commit_mutex);
1409 spin_lock_init(&root->cache_lock);
1410 init_waitqueue_head(&root->cache_wait);
1411
1412 ret = get_anon_bdev(&root->anon_dev);
1413 if (ret)
1414 goto fail;
1415
1416 if (btrfs_root_refs(&root->root_item) == 0) {
1417 ret = -ENOENT;
1418 goto fail;
1419 }
1420
1421 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1422 if (ret < 0)
1423 goto fail;
1424 if (ret == 0)
1425 root->orphan_item_inserted = 1;
1426
1427 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1428 if (ret)
1429 goto fail;
1430
1431 spin_lock(&fs_info->fs_roots_radix_lock);
1432 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1433 (unsigned long)root->root_key.objectid,
1434 root);
1435 if (ret == 0)
1436 root->in_radix = 1;
1437
1438 spin_unlock(&fs_info->fs_roots_radix_lock);
1439 radix_tree_preload_end();
1440 if (ret) {
1441 if (ret == -EEXIST) {
1442 free_fs_root(root);
1443 goto again;
1444 }
1445 goto fail;
1446 }
1447
1448 ret = btrfs_find_dead_roots(fs_info->tree_root,
1449 root->root_key.objectid);
1450 WARN_ON(ret);
1451 return root;
1452 fail:
1453 free_fs_root(root);
1454 return ERR_PTR(ret);
1455 }
1456
1457 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1458 {
1459 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1460 int ret = 0;
1461 struct btrfs_device *device;
1462 struct backing_dev_info *bdi;
1463
1464 rcu_read_lock();
1465 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1466 if (!device->bdev)
1467 continue;
1468 bdi = blk_get_backing_dev_info(device->bdev);
1469 if (bdi && bdi_congested(bdi, bdi_bits)) {
1470 ret = 1;
1471 break;
1472 }
1473 }
1474 rcu_read_unlock();
1475 return ret;
1476 }
1477
1478 /*
1479 * If this fails, caller must call bdi_destroy() to get rid of the
1480 * bdi again.
1481 */
1482 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1483 {
1484 int err;
1485
1486 bdi->capabilities = BDI_CAP_MAP_COPY;
1487 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1488 if (err)
1489 return err;
1490
1491 bdi->ra_pages = default_backing_dev_info.ra_pages;
1492 bdi->congested_fn = btrfs_congested_fn;
1493 bdi->congested_data = info;
1494 return 0;
1495 }
1496
1497 static int bio_ready_for_csum(struct bio *bio)
1498 {
1499 u64 length = 0;
1500 u64 buf_len = 0;
1501 u64 start = 0;
1502 struct page *page;
1503 struct extent_io_tree *io_tree = NULL;
1504 struct bio_vec *bvec;
1505 int i;
1506 int ret;
1507
1508 bio_for_each_segment(bvec, bio, i) {
1509 page = bvec->bv_page;
1510 if (page->private == EXTENT_PAGE_PRIVATE) {
1511 length += bvec->bv_len;
1512 continue;
1513 }
1514 if (!page->private) {
1515 length += bvec->bv_len;
1516 continue;
1517 }
1518 length = bvec->bv_len;
1519 buf_len = page->private >> 2;
1520 start = page_offset(page) + bvec->bv_offset;
1521 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1522 }
1523 /* are we fully contained in this bio? */
1524 if (buf_len <= length)
1525 return 1;
1526
1527 ret = extent_range_uptodate(io_tree, start + length,
1528 start + buf_len - 1);
1529 return ret;
1530 }
1531
1532 /*
1533 * called by the kthread helper functions to finally call the bio end_io
1534 * functions. This is where read checksum verification actually happens
1535 */
1536 static void end_workqueue_fn(struct btrfs_work *work)
1537 {
1538 struct bio *bio;
1539 struct end_io_wq *end_io_wq;
1540 struct btrfs_fs_info *fs_info;
1541 int error;
1542
1543 end_io_wq = container_of(work, struct end_io_wq, work);
1544 bio = end_io_wq->bio;
1545 fs_info = end_io_wq->info;
1546
1547 /* metadata bio reads are special because the whole tree block must
1548 * be checksummed at once. This makes sure the entire block is in
1549 * ram and up to date before trying to verify things. For
1550 * blocksize <= pagesize, it is basically a noop
1551 */
1552 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1553 !bio_ready_for_csum(bio)) {
1554 btrfs_queue_worker(&fs_info->endio_meta_workers,
1555 &end_io_wq->work);
1556 return;
1557 }
1558 error = end_io_wq->error;
1559 bio->bi_private = end_io_wq->private;
1560 bio->bi_end_io = end_io_wq->end_io;
1561 kfree(end_io_wq);
1562 bio_endio(bio, error);
1563 }
1564
1565 static int cleaner_kthread(void *arg)
1566 {
1567 struct btrfs_root *root = arg;
1568
1569 do {
1570 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1571
1572 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1573 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1574 btrfs_run_delayed_iputs(root);
1575 btrfs_clean_old_snapshots(root);
1576 mutex_unlock(&root->fs_info->cleaner_mutex);
1577 btrfs_run_defrag_inodes(root->fs_info);
1578 }
1579
1580 if (freezing(current)) {
1581 refrigerator();
1582 } else {
1583 set_current_state(TASK_INTERRUPTIBLE);
1584 if (!kthread_should_stop())
1585 schedule();
1586 __set_current_state(TASK_RUNNING);
1587 }
1588 } while (!kthread_should_stop());
1589 return 0;
1590 }
1591
1592 static int transaction_kthread(void *arg)
1593 {
1594 struct btrfs_root *root = arg;
1595 struct btrfs_trans_handle *trans;
1596 struct btrfs_transaction *cur;
1597 u64 transid;
1598 unsigned long now;
1599 unsigned long delay;
1600 int ret;
1601
1602 do {
1603 delay = HZ * 30;
1604 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1605 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1606
1607 spin_lock(&root->fs_info->trans_lock);
1608 cur = root->fs_info->running_transaction;
1609 if (!cur) {
1610 spin_unlock(&root->fs_info->trans_lock);
1611 goto sleep;
1612 }
1613
1614 now = get_seconds();
1615 if (!cur->blocked &&
1616 (now < cur->start_time || now - cur->start_time < 30)) {
1617 spin_unlock(&root->fs_info->trans_lock);
1618 delay = HZ * 5;
1619 goto sleep;
1620 }
1621 transid = cur->transid;
1622 spin_unlock(&root->fs_info->trans_lock);
1623
1624 trans = btrfs_join_transaction(root);
1625 BUG_ON(IS_ERR(trans));
1626 if (transid == trans->transid) {
1627 ret = btrfs_commit_transaction(trans, root);
1628 BUG_ON(ret);
1629 } else {
1630 btrfs_end_transaction(trans, root);
1631 }
1632 sleep:
1633 wake_up_process(root->fs_info->cleaner_kthread);
1634 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1635
1636 if (freezing(current)) {
1637 refrigerator();
1638 } else {
1639 set_current_state(TASK_INTERRUPTIBLE);
1640 if (!kthread_should_stop() &&
1641 !btrfs_transaction_blocked(root->fs_info))
1642 schedule_timeout(delay);
1643 __set_current_state(TASK_RUNNING);
1644 }
1645 } while (!kthread_should_stop());
1646 return 0;
1647 }
1648
1649 struct btrfs_root *open_ctree(struct super_block *sb,
1650 struct btrfs_fs_devices *fs_devices,
1651 char *options)
1652 {
1653 u32 sectorsize;
1654 u32 nodesize;
1655 u32 leafsize;
1656 u32 blocksize;
1657 u32 stripesize;
1658 u64 generation;
1659 u64 features;
1660 struct btrfs_key location;
1661 struct buffer_head *bh;
1662 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1663 GFP_NOFS);
1664 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1665 GFP_NOFS);
1666 struct btrfs_root *tree_root = btrfs_sb(sb);
1667 struct btrfs_fs_info *fs_info = NULL;
1668 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1669 GFP_NOFS);
1670 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1671 GFP_NOFS);
1672 struct btrfs_root *log_tree_root;
1673
1674 int ret;
1675 int err = -EINVAL;
1676
1677 struct btrfs_super_block *disk_super;
1678
1679 if (!extent_root || !tree_root || !tree_root->fs_info ||
1680 !chunk_root || !dev_root || !csum_root) {
1681 err = -ENOMEM;
1682 goto fail;
1683 }
1684 fs_info = tree_root->fs_info;
1685
1686 ret = init_srcu_struct(&fs_info->subvol_srcu);
1687 if (ret) {
1688 err = ret;
1689 goto fail;
1690 }
1691
1692 ret = setup_bdi(fs_info, &fs_info->bdi);
1693 if (ret) {
1694 err = ret;
1695 goto fail_srcu;
1696 }
1697
1698 fs_info->btree_inode = new_inode(sb);
1699 if (!fs_info->btree_inode) {
1700 err = -ENOMEM;
1701 goto fail_bdi;
1702 }
1703
1704 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1705
1706 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1707 INIT_LIST_HEAD(&fs_info->trans_list);
1708 INIT_LIST_HEAD(&fs_info->dead_roots);
1709 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1710 INIT_LIST_HEAD(&fs_info->hashers);
1711 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1712 INIT_LIST_HEAD(&fs_info->ordered_operations);
1713 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1714 spin_lock_init(&fs_info->delalloc_lock);
1715 spin_lock_init(&fs_info->trans_lock);
1716 spin_lock_init(&fs_info->ref_cache_lock);
1717 spin_lock_init(&fs_info->fs_roots_radix_lock);
1718 spin_lock_init(&fs_info->delayed_iput_lock);
1719 spin_lock_init(&fs_info->defrag_inodes_lock);
1720 mutex_init(&fs_info->reloc_mutex);
1721
1722 init_completion(&fs_info->kobj_unregister);
1723 fs_info->tree_root = tree_root;
1724 fs_info->extent_root = extent_root;
1725 fs_info->csum_root = csum_root;
1726 fs_info->chunk_root = chunk_root;
1727 fs_info->dev_root = dev_root;
1728 fs_info->fs_devices = fs_devices;
1729 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1730 INIT_LIST_HEAD(&fs_info->space_info);
1731 btrfs_mapping_init(&fs_info->mapping_tree);
1732 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1733 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1734 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1735 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1736 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1737 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1738 mutex_init(&fs_info->durable_block_rsv_mutex);
1739 atomic_set(&fs_info->nr_async_submits, 0);
1740 atomic_set(&fs_info->async_delalloc_pages, 0);
1741 atomic_set(&fs_info->async_submit_draining, 0);
1742 atomic_set(&fs_info->nr_async_bios, 0);
1743 atomic_set(&fs_info->defrag_running, 0);
1744 fs_info->sb = sb;
1745 fs_info->max_inline = 8192 * 1024;
1746 fs_info->metadata_ratio = 0;
1747 fs_info->defrag_inodes = RB_ROOT;
1748 fs_info->trans_no_join = 0;
1749
1750 /* readahead state */
1751 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1752 spin_lock_init(&fs_info->reada_lock);
1753
1754 fs_info->thread_pool_size = min_t(unsigned long,
1755 num_online_cpus() + 2, 8);
1756
1757 INIT_LIST_HEAD(&fs_info->ordered_extents);
1758 spin_lock_init(&fs_info->ordered_extent_lock);
1759 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1760 GFP_NOFS);
1761 if (!fs_info->delayed_root) {
1762 err = -ENOMEM;
1763 goto fail_iput;
1764 }
1765 btrfs_init_delayed_root(fs_info->delayed_root);
1766
1767 mutex_init(&fs_info->scrub_lock);
1768 atomic_set(&fs_info->scrubs_running, 0);
1769 atomic_set(&fs_info->scrub_pause_req, 0);
1770 atomic_set(&fs_info->scrubs_paused, 0);
1771 atomic_set(&fs_info->scrub_cancel_req, 0);
1772 init_waitqueue_head(&fs_info->scrub_pause_wait);
1773 init_rwsem(&fs_info->scrub_super_lock);
1774 fs_info->scrub_workers_refcnt = 0;
1775
1776 sb->s_blocksize = 4096;
1777 sb->s_blocksize_bits = blksize_bits(4096);
1778 sb->s_bdi = &fs_info->bdi;
1779
1780 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1781 fs_info->btree_inode->i_nlink = 1;
1782 /*
1783 * we set the i_size on the btree inode to the max possible int.
1784 * the real end of the address space is determined by all of
1785 * the devices in the system
1786 */
1787 fs_info->btree_inode->i_size = OFFSET_MAX;
1788 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1789 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1790
1791 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1792 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1793 fs_info->btree_inode->i_mapping);
1794 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1795
1796 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1797
1798 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1799 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1800 sizeof(struct btrfs_key));
1801 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1802 insert_inode_hash(fs_info->btree_inode);
1803
1804 spin_lock_init(&fs_info->block_group_cache_lock);
1805 fs_info->block_group_cache_tree = RB_ROOT;
1806
1807 extent_io_tree_init(&fs_info->freed_extents[0],
1808 fs_info->btree_inode->i_mapping);
1809 extent_io_tree_init(&fs_info->freed_extents[1],
1810 fs_info->btree_inode->i_mapping);
1811 fs_info->pinned_extents = &fs_info->freed_extents[0];
1812 fs_info->do_barriers = 1;
1813
1814
1815 mutex_init(&fs_info->ordered_operations_mutex);
1816 mutex_init(&fs_info->tree_log_mutex);
1817 mutex_init(&fs_info->chunk_mutex);
1818 mutex_init(&fs_info->transaction_kthread_mutex);
1819 mutex_init(&fs_info->cleaner_mutex);
1820 mutex_init(&fs_info->volume_mutex);
1821 init_rwsem(&fs_info->extent_commit_sem);
1822 init_rwsem(&fs_info->cleanup_work_sem);
1823 init_rwsem(&fs_info->subvol_sem);
1824
1825 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1826 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1827
1828 init_waitqueue_head(&fs_info->transaction_throttle);
1829 init_waitqueue_head(&fs_info->transaction_wait);
1830 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1831 init_waitqueue_head(&fs_info->async_submit_wait);
1832
1833 __setup_root(4096, 4096, 4096, 4096, tree_root,
1834 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1835
1836 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1837 if (!bh) {
1838 err = -EINVAL;
1839 goto fail_alloc;
1840 }
1841
1842 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1843 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1844 sizeof(fs_info->super_for_commit));
1845 brelse(bh);
1846
1847 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1848
1849 disk_super = &fs_info->super_copy;
1850 if (!btrfs_super_root(disk_super))
1851 goto fail_alloc;
1852
1853 /* check FS state, whether FS is broken. */
1854 fs_info->fs_state |= btrfs_super_flags(disk_super);
1855
1856 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1857
1858 /*
1859 * In the long term, we'll store the compression type in the super
1860 * block, and it'll be used for per file compression control.
1861 */
1862 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1863
1864 ret = btrfs_parse_options(tree_root, options);
1865 if (ret) {
1866 err = ret;
1867 goto fail_alloc;
1868 }
1869
1870 features = btrfs_super_incompat_flags(disk_super) &
1871 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1872 if (features) {
1873 printk(KERN_ERR "BTRFS: couldn't mount because of "
1874 "unsupported optional features (%Lx).\n",
1875 (unsigned long long)features);
1876 err = -EINVAL;
1877 goto fail_alloc;
1878 }
1879
1880 features = btrfs_super_incompat_flags(disk_super);
1881 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1882 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1883 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1884 btrfs_set_super_incompat_flags(disk_super, features);
1885
1886 features = btrfs_super_compat_ro_flags(disk_super) &
1887 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1888 if (!(sb->s_flags & MS_RDONLY) && features) {
1889 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1890 "unsupported option features (%Lx).\n",
1891 (unsigned long long)features);
1892 err = -EINVAL;
1893 goto fail_alloc;
1894 }
1895
1896 btrfs_init_workers(&fs_info->generic_worker,
1897 "genwork", 1, NULL);
1898
1899 btrfs_init_workers(&fs_info->workers, "worker",
1900 fs_info->thread_pool_size,
1901 &fs_info->generic_worker);
1902
1903 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1904 fs_info->thread_pool_size,
1905 &fs_info->generic_worker);
1906
1907 btrfs_init_workers(&fs_info->submit_workers, "submit",
1908 min_t(u64, fs_devices->num_devices,
1909 fs_info->thread_pool_size),
1910 &fs_info->generic_worker);
1911
1912 btrfs_init_workers(&fs_info->caching_workers, "cache",
1913 2, &fs_info->generic_worker);
1914
1915 /* a higher idle thresh on the submit workers makes it much more
1916 * likely that bios will be send down in a sane order to the
1917 * devices
1918 */
1919 fs_info->submit_workers.idle_thresh = 64;
1920
1921 fs_info->workers.idle_thresh = 16;
1922 fs_info->workers.ordered = 1;
1923
1924 fs_info->delalloc_workers.idle_thresh = 2;
1925 fs_info->delalloc_workers.ordered = 1;
1926
1927 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1928 &fs_info->generic_worker);
1929 btrfs_init_workers(&fs_info->endio_workers, "endio",
1930 fs_info->thread_pool_size,
1931 &fs_info->generic_worker);
1932 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1933 fs_info->thread_pool_size,
1934 &fs_info->generic_worker);
1935 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1936 "endio-meta-write", fs_info->thread_pool_size,
1937 &fs_info->generic_worker);
1938 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1939 fs_info->thread_pool_size,
1940 &fs_info->generic_worker);
1941 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1942 1, &fs_info->generic_worker);
1943 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1944 fs_info->thread_pool_size,
1945 &fs_info->generic_worker);
1946 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
1947 fs_info->thread_pool_size,
1948 &fs_info->generic_worker);
1949
1950 /*
1951 * endios are largely parallel and should have a very
1952 * low idle thresh
1953 */
1954 fs_info->endio_workers.idle_thresh = 4;
1955 fs_info->endio_meta_workers.idle_thresh = 4;
1956
1957 fs_info->endio_write_workers.idle_thresh = 2;
1958 fs_info->endio_meta_write_workers.idle_thresh = 2;
1959 fs_info->readahead_workers.idle_thresh = 2;
1960
1961 btrfs_start_workers(&fs_info->workers, 1);
1962 btrfs_start_workers(&fs_info->generic_worker, 1);
1963 btrfs_start_workers(&fs_info->submit_workers, 1);
1964 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1965 btrfs_start_workers(&fs_info->fixup_workers, 1);
1966 btrfs_start_workers(&fs_info->endio_workers, 1);
1967 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1968 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1969 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1970 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1971 btrfs_start_workers(&fs_info->delayed_workers, 1);
1972 btrfs_start_workers(&fs_info->caching_workers, 1);
1973 btrfs_start_workers(&fs_info->readahead_workers, 1);
1974
1975 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1976 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1977 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1978
1979 nodesize = btrfs_super_nodesize(disk_super);
1980 leafsize = btrfs_super_leafsize(disk_super);
1981 sectorsize = btrfs_super_sectorsize(disk_super);
1982 stripesize = btrfs_super_stripesize(disk_super);
1983 tree_root->nodesize = nodesize;
1984 tree_root->leafsize = leafsize;
1985 tree_root->sectorsize = sectorsize;
1986 tree_root->stripesize = stripesize;
1987
1988 sb->s_blocksize = sectorsize;
1989 sb->s_blocksize_bits = blksize_bits(sectorsize);
1990
1991 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1992 sizeof(disk_super->magic))) {
1993 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1994 goto fail_sb_buffer;
1995 }
1996
1997 mutex_lock(&fs_info->chunk_mutex);
1998 ret = btrfs_read_sys_array(tree_root);
1999 mutex_unlock(&fs_info->chunk_mutex);
2000 if (ret) {
2001 printk(KERN_WARNING "btrfs: failed to read the system "
2002 "array on %s\n", sb->s_id);
2003 goto fail_sb_buffer;
2004 }
2005
2006 blocksize = btrfs_level_size(tree_root,
2007 btrfs_super_chunk_root_level(disk_super));
2008 generation = btrfs_super_chunk_root_generation(disk_super);
2009
2010 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2011 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2012
2013 chunk_root->node = read_tree_block(chunk_root,
2014 btrfs_super_chunk_root(disk_super),
2015 blocksize, generation);
2016 BUG_ON(!chunk_root->node);
2017 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2018 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2019 sb->s_id);
2020 goto fail_chunk_root;
2021 }
2022 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2023 chunk_root->commit_root = btrfs_root_node(chunk_root);
2024
2025 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2026 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2027 BTRFS_UUID_SIZE);
2028
2029 mutex_lock(&fs_info->chunk_mutex);
2030 ret = btrfs_read_chunk_tree(chunk_root);
2031 mutex_unlock(&fs_info->chunk_mutex);
2032 if (ret) {
2033 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2034 sb->s_id);
2035 goto fail_chunk_root;
2036 }
2037
2038 btrfs_close_extra_devices(fs_devices);
2039
2040 blocksize = btrfs_level_size(tree_root,
2041 btrfs_super_root_level(disk_super));
2042 generation = btrfs_super_generation(disk_super);
2043
2044 tree_root->node = read_tree_block(tree_root,
2045 btrfs_super_root(disk_super),
2046 blocksize, generation);
2047 if (!tree_root->node)
2048 goto fail_chunk_root;
2049 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2050 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2051 sb->s_id);
2052 goto fail_tree_root;
2053 }
2054 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2055 tree_root->commit_root = btrfs_root_node(tree_root);
2056
2057 ret = find_and_setup_root(tree_root, fs_info,
2058 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2059 if (ret)
2060 goto fail_tree_root;
2061 extent_root->track_dirty = 1;
2062
2063 ret = find_and_setup_root(tree_root, fs_info,
2064 BTRFS_DEV_TREE_OBJECTID, dev_root);
2065 if (ret)
2066 goto fail_extent_root;
2067 dev_root->track_dirty = 1;
2068
2069 ret = find_and_setup_root(tree_root, fs_info,
2070 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2071 if (ret)
2072 goto fail_dev_root;
2073
2074 csum_root->track_dirty = 1;
2075
2076 fs_info->generation = generation;
2077 fs_info->last_trans_committed = generation;
2078 fs_info->data_alloc_profile = (u64)-1;
2079 fs_info->metadata_alloc_profile = (u64)-1;
2080 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2081
2082 ret = btrfs_init_space_info(fs_info);
2083 if (ret) {
2084 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2085 goto fail_block_groups;
2086 }
2087
2088 ret = btrfs_read_block_groups(extent_root);
2089 if (ret) {
2090 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2091 goto fail_block_groups;
2092 }
2093
2094 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2095 "btrfs-cleaner");
2096 if (IS_ERR(fs_info->cleaner_kthread))
2097 goto fail_block_groups;
2098
2099 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2100 tree_root,
2101 "btrfs-transaction");
2102 if (IS_ERR(fs_info->transaction_kthread))
2103 goto fail_cleaner;
2104
2105 if (!btrfs_test_opt(tree_root, SSD) &&
2106 !btrfs_test_opt(tree_root, NOSSD) &&
2107 !fs_info->fs_devices->rotating) {
2108 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2109 "mode\n");
2110 btrfs_set_opt(fs_info->mount_opt, SSD);
2111 }
2112
2113 /* do not make disk changes in broken FS */
2114 if (btrfs_super_log_root(disk_super) != 0 &&
2115 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2116 u64 bytenr = btrfs_super_log_root(disk_super);
2117
2118 if (fs_devices->rw_devices == 0) {
2119 printk(KERN_WARNING "Btrfs log replay required "
2120 "on RO media\n");
2121 err = -EIO;
2122 goto fail_trans_kthread;
2123 }
2124 blocksize =
2125 btrfs_level_size(tree_root,
2126 btrfs_super_log_root_level(disk_super));
2127
2128 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2129 if (!log_tree_root) {
2130 err = -ENOMEM;
2131 goto fail_trans_kthread;
2132 }
2133
2134 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2135 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2136
2137 log_tree_root->node = read_tree_block(tree_root, bytenr,
2138 blocksize,
2139 generation + 1);
2140 ret = btrfs_recover_log_trees(log_tree_root);
2141 BUG_ON(ret);
2142
2143 if (sb->s_flags & MS_RDONLY) {
2144 ret = btrfs_commit_super(tree_root);
2145 BUG_ON(ret);
2146 }
2147 }
2148
2149 ret = btrfs_find_orphan_roots(tree_root);
2150 BUG_ON(ret);
2151
2152 if (!(sb->s_flags & MS_RDONLY)) {
2153 ret = btrfs_cleanup_fs_roots(fs_info);
2154 BUG_ON(ret);
2155
2156 ret = btrfs_recover_relocation(tree_root);
2157 if (ret < 0) {
2158 printk(KERN_WARNING
2159 "btrfs: failed to recover relocation\n");
2160 err = -EINVAL;
2161 goto fail_trans_kthread;
2162 }
2163 }
2164
2165 location.objectid = BTRFS_FS_TREE_OBJECTID;
2166 location.type = BTRFS_ROOT_ITEM_KEY;
2167 location.offset = (u64)-1;
2168
2169 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2170 if (!fs_info->fs_root)
2171 goto fail_trans_kthread;
2172 if (IS_ERR(fs_info->fs_root)) {
2173 err = PTR_ERR(fs_info->fs_root);
2174 goto fail_trans_kthread;
2175 }
2176
2177 if (!(sb->s_flags & MS_RDONLY)) {
2178 down_read(&fs_info->cleanup_work_sem);
2179 err = btrfs_orphan_cleanup(fs_info->fs_root);
2180 if (!err)
2181 err = btrfs_orphan_cleanup(fs_info->tree_root);
2182 up_read(&fs_info->cleanup_work_sem);
2183 if (err) {
2184 close_ctree(tree_root);
2185 return ERR_PTR(err);
2186 }
2187 }
2188
2189 return tree_root;
2190
2191 fail_trans_kthread:
2192 kthread_stop(fs_info->transaction_kthread);
2193 fail_cleaner:
2194 kthread_stop(fs_info->cleaner_kthread);
2195
2196 /*
2197 * make sure we're done with the btree inode before we stop our
2198 * kthreads
2199 */
2200 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2201 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2202
2203 fail_block_groups:
2204 btrfs_free_block_groups(fs_info);
2205 free_extent_buffer(csum_root->node);
2206 free_extent_buffer(csum_root->commit_root);
2207 fail_dev_root:
2208 free_extent_buffer(dev_root->node);
2209 free_extent_buffer(dev_root->commit_root);
2210 fail_extent_root:
2211 free_extent_buffer(extent_root->node);
2212 free_extent_buffer(extent_root->commit_root);
2213 fail_tree_root:
2214 free_extent_buffer(tree_root->node);
2215 free_extent_buffer(tree_root->commit_root);
2216 fail_chunk_root:
2217 free_extent_buffer(chunk_root->node);
2218 free_extent_buffer(chunk_root->commit_root);
2219 fail_sb_buffer:
2220 btrfs_stop_workers(&fs_info->generic_worker);
2221 btrfs_stop_workers(&fs_info->fixup_workers);
2222 btrfs_stop_workers(&fs_info->delalloc_workers);
2223 btrfs_stop_workers(&fs_info->workers);
2224 btrfs_stop_workers(&fs_info->endio_workers);
2225 btrfs_stop_workers(&fs_info->endio_meta_workers);
2226 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2227 btrfs_stop_workers(&fs_info->endio_write_workers);
2228 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2229 btrfs_stop_workers(&fs_info->submit_workers);
2230 btrfs_stop_workers(&fs_info->delayed_workers);
2231 btrfs_stop_workers(&fs_info->caching_workers);
2232 fail_alloc:
2233 kfree(fs_info->delayed_root);
2234 fail_iput:
2235 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2236 iput(fs_info->btree_inode);
2237
2238 btrfs_close_devices(fs_info->fs_devices);
2239 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2240 fail_bdi:
2241 bdi_destroy(&fs_info->bdi);
2242 fail_srcu:
2243 cleanup_srcu_struct(&fs_info->subvol_srcu);
2244 fail:
2245 kfree(extent_root);
2246 kfree(tree_root);
2247 kfree(fs_info);
2248 kfree(chunk_root);
2249 kfree(dev_root);
2250 kfree(csum_root);
2251 return ERR_PTR(err);
2252 }
2253
2254 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2255 {
2256 char b[BDEVNAME_SIZE];
2257
2258 if (uptodate) {
2259 set_buffer_uptodate(bh);
2260 } else {
2261 printk_ratelimited(KERN_WARNING "lost page write due to "
2262 "I/O error on %s\n",
2263 bdevname(bh->b_bdev, b));
2264 /* note, we dont' set_buffer_write_io_error because we have
2265 * our own ways of dealing with the IO errors
2266 */
2267 clear_buffer_uptodate(bh);
2268 }
2269 unlock_buffer(bh);
2270 put_bh(bh);
2271 }
2272
2273 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2274 {
2275 struct buffer_head *bh;
2276 struct buffer_head *latest = NULL;
2277 struct btrfs_super_block *super;
2278 int i;
2279 u64 transid = 0;
2280 u64 bytenr;
2281
2282 /* we would like to check all the supers, but that would make
2283 * a btrfs mount succeed after a mkfs from a different FS.
2284 * So, we need to add a special mount option to scan for
2285 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2286 */
2287 for (i = 0; i < 1; i++) {
2288 bytenr = btrfs_sb_offset(i);
2289 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2290 break;
2291 bh = __bread(bdev, bytenr / 4096, 4096);
2292 if (!bh)
2293 continue;
2294
2295 super = (struct btrfs_super_block *)bh->b_data;
2296 if (btrfs_super_bytenr(super) != bytenr ||
2297 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2298 sizeof(super->magic))) {
2299 brelse(bh);
2300 continue;
2301 }
2302
2303 if (!latest || btrfs_super_generation(super) > transid) {
2304 brelse(latest);
2305 latest = bh;
2306 transid = btrfs_super_generation(super);
2307 } else {
2308 brelse(bh);
2309 }
2310 }
2311 return latest;
2312 }
2313
2314 /*
2315 * this should be called twice, once with wait == 0 and
2316 * once with wait == 1. When wait == 0 is done, all the buffer heads
2317 * we write are pinned.
2318 *
2319 * They are released when wait == 1 is done.
2320 * max_mirrors must be the same for both runs, and it indicates how
2321 * many supers on this one device should be written.
2322 *
2323 * max_mirrors == 0 means to write them all.
2324 */
2325 static int write_dev_supers(struct btrfs_device *device,
2326 struct btrfs_super_block *sb,
2327 int do_barriers, int wait, int max_mirrors)
2328 {
2329 struct buffer_head *bh;
2330 int i;
2331 int ret;
2332 int errors = 0;
2333 u32 crc;
2334 u64 bytenr;
2335 int last_barrier = 0;
2336
2337 if (max_mirrors == 0)
2338 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2339
2340 /* make sure only the last submit_bh does a barrier */
2341 if (do_barriers) {
2342 for (i = 0; i < max_mirrors; i++) {
2343 bytenr = btrfs_sb_offset(i);
2344 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2345 device->total_bytes)
2346 break;
2347 last_barrier = i;
2348 }
2349 }
2350
2351 for (i = 0; i < max_mirrors; i++) {
2352 bytenr = btrfs_sb_offset(i);
2353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2354 break;
2355
2356 if (wait) {
2357 bh = __find_get_block(device->bdev, bytenr / 4096,
2358 BTRFS_SUPER_INFO_SIZE);
2359 BUG_ON(!bh);
2360 wait_on_buffer(bh);
2361 if (!buffer_uptodate(bh))
2362 errors++;
2363
2364 /* drop our reference */
2365 brelse(bh);
2366
2367 /* drop the reference from the wait == 0 run */
2368 brelse(bh);
2369 continue;
2370 } else {
2371 btrfs_set_super_bytenr(sb, bytenr);
2372
2373 crc = ~(u32)0;
2374 crc = btrfs_csum_data(NULL, (char *)sb +
2375 BTRFS_CSUM_SIZE, crc,
2376 BTRFS_SUPER_INFO_SIZE -
2377 BTRFS_CSUM_SIZE);
2378 btrfs_csum_final(crc, sb->csum);
2379
2380 /*
2381 * one reference for us, and we leave it for the
2382 * caller
2383 */
2384 bh = __getblk(device->bdev, bytenr / 4096,
2385 BTRFS_SUPER_INFO_SIZE);
2386 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2387
2388 /* one reference for submit_bh */
2389 get_bh(bh);
2390
2391 set_buffer_uptodate(bh);
2392 lock_buffer(bh);
2393 bh->b_end_io = btrfs_end_buffer_write_sync;
2394 }
2395
2396 if (i == last_barrier && do_barriers)
2397 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2398 else
2399 ret = submit_bh(WRITE_SYNC, bh);
2400
2401 if (ret)
2402 errors++;
2403 }
2404 return errors < i ? 0 : -1;
2405 }
2406
2407 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2408 {
2409 struct list_head *head;
2410 struct btrfs_device *dev;
2411 struct btrfs_super_block *sb;
2412 struct btrfs_dev_item *dev_item;
2413 int ret;
2414 int do_barriers;
2415 int max_errors;
2416 int total_errors = 0;
2417 u64 flags;
2418
2419 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2420 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2421
2422 sb = &root->fs_info->super_for_commit;
2423 dev_item = &sb->dev_item;
2424
2425 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2426 head = &root->fs_info->fs_devices->devices;
2427 list_for_each_entry_rcu(dev, head, dev_list) {
2428 if (!dev->bdev) {
2429 total_errors++;
2430 continue;
2431 }
2432 if (!dev->in_fs_metadata || !dev->writeable)
2433 continue;
2434
2435 btrfs_set_stack_device_generation(dev_item, 0);
2436 btrfs_set_stack_device_type(dev_item, dev->type);
2437 btrfs_set_stack_device_id(dev_item, dev->devid);
2438 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2439 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2440 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2441 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2442 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2443 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2444 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2445
2446 flags = btrfs_super_flags(sb);
2447 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2448
2449 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2450 if (ret)
2451 total_errors++;
2452 }
2453 if (total_errors > max_errors) {
2454 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2455 total_errors);
2456 BUG();
2457 }
2458
2459 total_errors = 0;
2460 list_for_each_entry_rcu(dev, head, dev_list) {
2461 if (!dev->bdev)
2462 continue;
2463 if (!dev->in_fs_metadata || !dev->writeable)
2464 continue;
2465
2466 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2467 if (ret)
2468 total_errors++;
2469 }
2470 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2471 if (total_errors > max_errors) {
2472 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2473 total_errors);
2474 BUG();
2475 }
2476 return 0;
2477 }
2478
2479 int write_ctree_super(struct btrfs_trans_handle *trans,
2480 struct btrfs_root *root, int max_mirrors)
2481 {
2482 int ret;
2483
2484 ret = write_all_supers(root, max_mirrors);
2485 return ret;
2486 }
2487
2488 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2489 {
2490 spin_lock(&fs_info->fs_roots_radix_lock);
2491 radix_tree_delete(&fs_info->fs_roots_radix,
2492 (unsigned long)root->root_key.objectid);
2493 spin_unlock(&fs_info->fs_roots_radix_lock);
2494
2495 if (btrfs_root_refs(&root->root_item) == 0)
2496 synchronize_srcu(&fs_info->subvol_srcu);
2497
2498 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2499 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2500 free_fs_root(root);
2501 return 0;
2502 }
2503
2504 static void free_fs_root(struct btrfs_root *root)
2505 {
2506 iput(root->cache_inode);
2507 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2508 if (root->anon_dev)
2509 free_anon_bdev(root->anon_dev);
2510 free_extent_buffer(root->node);
2511 free_extent_buffer(root->commit_root);
2512 kfree(root->free_ino_ctl);
2513 kfree(root->free_ino_pinned);
2514 kfree(root->name);
2515 kfree(root);
2516 }
2517
2518 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2519 {
2520 int ret;
2521 struct btrfs_root *gang[8];
2522 int i;
2523
2524 while (!list_empty(&fs_info->dead_roots)) {
2525 gang[0] = list_entry(fs_info->dead_roots.next,
2526 struct btrfs_root, root_list);
2527 list_del(&gang[0]->root_list);
2528
2529 if (gang[0]->in_radix) {
2530 btrfs_free_fs_root(fs_info, gang[0]);
2531 } else {
2532 free_extent_buffer(gang[0]->node);
2533 free_extent_buffer(gang[0]->commit_root);
2534 kfree(gang[0]);
2535 }
2536 }
2537
2538 while (1) {
2539 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2540 (void **)gang, 0,
2541 ARRAY_SIZE(gang));
2542 if (!ret)
2543 break;
2544 for (i = 0; i < ret; i++)
2545 btrfs_free_fs_root(fs_info, gang[i]);
2546 }
2547 return 0;
2548 }
2549
2550 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2551 {
2552 u64 root_objectid = 0;
2553 struct btrfs_root *gang[8];
2554 int i;
2555 int ret;
2556
2557 while (1) {
2558 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2559 (void **)gang, root_objectid,
2560 ARRAY_SIZE(gang));
2561 if (!ret)
2562 break;
2563
2564 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2565 for (i = 0; i < ret; i++) {
2566 int err;
2567
2568 root_objectid = gang[i]->root_key.objectid;
2569 err = btrfs_orphan_cleanup(gang[i]);
2570 if (err)
2571 return err;
2572 }
2573 root_objectid++;
2574 }
2575 return 0;
2576 }
2577
2578 int btrfs_commit_super(struct btrfs_root *root)
2579 {
2580 struct btrfs_trans_handle *trans;
2581 int ret;
2582
2583 mutex_lock(&root->fs_info->cleaner_mutex);
2584 btrfs_run_delayed_iputs(root);
2585 btrfs_clean_old_snapshots(root);
2586 mutex_unlock(&root->fs_info->cleaner_mutex);
2587
2588 /* wait until ongoing cleanup work done */
2589 down_write(&root->fs_info->cleanup_work_sem);
2590 up_write(&root->fs_info->cleanup_work_sem);
2591
2592 trans = btrfs_join_transaction(root);
2593 if (IS_ERR(trans))
2594 return PTR_ERR(trans);
2595 ret = btrfs_commit_transaction(trans, root);
2596 BUG_ON(ret);
2597 /* run commit again to drop the original snapshot */
2598 trans = btrfs_join_transaction(root);
2599 if (IS_ERR(trans))
2600 return PTR_ERR(trans);
2601 btrfs_commit_transaction(trans, root);
2602 ret = btrfs_write_and_wait_transaction(NULL, root);
2603 BUG_ON(ret);
2604
2605 ret = write_ctree_super(NULL, root, 0);
2606 return ret;
2607 }
2608
2609 int close_ctree(struct btrfs_root *root)
2610 {
2611 struct btrfs_fs_info *fs_info = root->fs_info;
2612 int ret;
2613
2614 fs_info->closing = 1;
2615 smp_mb();
2616
2617 btrfs_scrub_cancel(root);
2618
2619 /* wait for any defraggers to finish */
2620 wait_event(fs_info->transaction_wait,
2621 (atomic_read(&fs_info->defrag_running) == 0));
2622
2623 /* clear out the rbtree of defraggable inodes */
2624 btrfs_run_defrag_inodes(root->fs_info);
2625
2626 btrfs_put_block_group_cache(fs_info);
2627
2628 /*
2629 * Here come 2 situations when btrfs is broken to flip readonly:
2630 *
2631 * 1. when btrfs flips readonly somewhere else before
2632 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2633 * and btrfs will skip to write sb directly to keep
2634 * ERROR state on disk.
2635 *
2636 * 2. when btrfs flips readonly just in btrfs_commit_super,
2637 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2638 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2639 * btrfs will cleanup all FS resources first and write sb then.
2640 */
2641 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2642 ret = btrfs_commit_super(root);
2643 if (ret)
2644 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2645 }
2646
2647 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2648 ret = btrfs_error_commit_super(root);
2649 if (ret)
2650 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2651 }
2652
2653 kthread_stop(root->fs_info->transaction_kthread);
2654 kthread_stop(root->fs_info->cleaner_kthread);
2655
2656 fs_info->closing = 2;
2657 smp_mb();
2658
2659 if (fs_info->delalloc_bytes) {
2660 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2661 (unsigned long long)fs_info->delalloc_bytes);
2662 }
2663 if (fs_info->total_ref_cache_size) {
2664 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2665 (unsigned long long)fs_info->total_ref_cache_size);
2666 }
2667
2668 free_extent_buffer(fs_info->extent_root->node);
2669 free_extent_buffer(fs_info->extent_root->commit_root);
2670 free_extent_buffer(fs_info->tree_root->node);
2671 free_extent_buffer(fs_info->tree_root->commit_root);
2672 free_extent_buffer(root->fs_info->chunk_root->node);
2673 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2674 free_extent_buffer(root->fs_info->dev_root->node);
2675 free_extent_buffer(root->fs_info->dev_root->commit_root);
2676 free_extent_buffer(root->fs_info->csum_root->node);
2677 free_extent_buffer(root->fs_info->csum_root->commit_root);
2678
2679 btrfs_free_block_groups(root->fs_info);
2680
2681 del_fs_roots(fs_info);
2682
2683 iput(fs_info->btree_inode);
2684 kfree(fs_info->delayed_root);
2685
2686 btrfs_stop_workers(&fs_info->generic_worker);
2687 btrfs_stop_workers(&fs_info->fixup_workers);
2688 btrfs_stop_workers(&fs_info->delalloc_workers);
2689 btrfs_stop_workers(&fs_info->workers);
2690 btrfs_stop_workers(&fs_info->endio_workers);
2691 btrfs_stop_workers(&fs_info->endio_meta_workers);
2692 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2693 btrfs_stop_workers(&fs_info->endio_write_workers);
2694 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2695 btrfs_stop_workers(&fs_info->submit_workers);
2696 btrfs_stop_workers(&fs_info->delayed_workers);
2697 btrfs_stop_workers(&fs_info->caching_workers);
2698 btrfs_stop_workers(&fs_info->readahead_workers);
2699
2700 btrfs_close_devices(fs_info->fs_devices);
2701 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2702
2703 bdi_destroy(&fs_info->bdi);
2704 cleanup_srcu_struct(&fs_info->subvol_srcu);
2705
2706 kfree(fs_info->extent_root);
2707 kfree(fs_info->tree_root);
2708 kfree(fs_info->chunk_root);
2709 kfree(fs_info->dev_root);
2710 kfree(fs_info->csum_root);
2711 kfree(fs_info);
2712
2713 return 0;
2714 }
2715
2716 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2717 {
2718 int ret;
2719 struct inode *btree_inode = buf->first_page->mapping->host;
2720
2721 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2722 NULL);
2723 if (!ret)
2724 return ret;
2725
2726 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2727 parent_transid);
2728 return !ret;
2729 }
2730
2731 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2732 {
2733 struct inode *btree_inode = buf->first_page->mapping->host;
2734 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2735 buf);
2736 }
2737
2738 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2739 {
2740 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2741 u64 transid = btrfs_header_generation(buf);
2742 struct inode *btree_inode = root->fs_info->btree_inode;
2743 int was_dirty;
2744
2745 btrfs_assert_tree_locked(buf);
2746 if (transid != root->fs_info->generation) {
2747 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2748 "found %llu running %llu\n",
2749 (unsigned long long)buf->start,
2750 (unsigned long long)transid,
2751 (unsigned long long)root->fs_info->generation);
2752 WARN_ON(1);
2753 }
2754 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2755 buf);
2756 if (!was_dirty) {
2757 spin_lock(&root->fs_info->delalloc_lock);
2758 root->fs_info->dirty_metadata_bytes += buf->len;
2759 spin_unlock(&root->fs_info->delalloc_lock);
2760 }
2761 }
2762
2763 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2764 {
2765 /*
2766 * looks as though older kernels can get into trouble with
2767 * this code, they end up stuck in balance_dirty_pages forever
2768 */
2769 u64 num_dirty;
2770 unsigned long thresh = 32 * 1024 * 1024;
2771
2772 if (current->flags & PF_MEMALLOC)
2773 return;
2774
2775 btrfs_balance_delayed_items(root);
2776
2777 num_dirty = root->fs_info->dirty_metadata_bytes;
2778
2779 if (num_dirty > thresh) {
2780 balance_dirty_pages_ratelimited_nr(
2781 root->fs_info->btree_inode->i_mapping, 1);
2782 }
2783 return;
2784 }
2785
2786 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2787 {
2788 /*
2789 * looks as though older kernels can get into trouble with
2790 * this code, they end up stuck in balance_dirty_pages forever
2791 */
2792 u64 num_dirty;
2793 unsigned long thresh = 32 * 1024 * 1024;
2794
2795 if (current->flags & PF_MEMALLOC)
2796 return;
2797
2798 num_dirty = root->fs_info->dirty_metadata_bytes;
2799
2800 if (num_dirty > thresh) {
2801 balance_dirty_pages_ratelimited_nr(
2802 root->fs_info->btree_inode->i_mapping, 1);
2803 }
2804 return;
2805 }
2806
2807 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2808 {
2809 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2810 int ret;
2811 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2812 if (ret == 0)
2813 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2814 return ret;
2815 }
2816
2817 int btree_lock_page_hook(struct page *page)
2818 {
2819 struct inode *inode = page->mapping->host;
2820 struct btrfs_root *root = BTRFS_I(inode)->root;
2821 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2822 struct extent_buffer *eb;
2823 unsigned long len;
2824 u64 bytenr = page_offset(page);
2825
2826 if (page->private == EXTENT_PAGE_PRIVATE)
2827 goto out;
2828
2829 len = page->private >> 2;
2830 eb = find_extent_buffer(io_tree, bytenr, len);
2831 if (!eb)
2832 goto out;
2833
2834 btrfs_tree_lock(eb);
2835 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2836
2837 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2838 spin_lock(&root->fs_info->delalloc_lock);
2839 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2840 root->fs_info->dirty_metadata_bytes -= eb->len;
2841 else
2842 WARN_ON(1);
2843 spin_unlock(&root->fs_info->delalloc_lock);
2844 }
2845
2846 btrfs_tree_unlock(eb);
2847 free_extent_buffer(eb);
2848 out:
2849 lock_page(page);
2850 return 0;
2851 }
2852
2853 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2854 int read_only)
2855 {
2856 if (read_only)
2857 return;
2858
2859 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2860 printk(KERN_WARNING "warning: mount fs with errors, "
2861 "running btrfsck is recommended\n");
2862 }
2863
2864 int btrfs_error_commit_super(struct btrfs_root *root)
2865 {
2866 int ret;
2867
2868 mutex_lock(&root->fs_info->cleaner_mutex);
2869 btrfs_run_delayed_iputs(root);
2870 mutex_unlock(&root->fs_info->cleaner_mutex);
2871
2872 down_write(&root->fs_info->cleanup_work_sem);
2873 up_write(&root->fs_info->cleanup_work_sem);
2874
2875 /* cleanup FS via transaction */
2876 btrfs_cleanup_transaction(root);
2877
2878 ret = write_ctree_super(NULL, root, 0);
2879
2880 return ret;
2881 }
2882
2883 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2884 {
2885 struct btrfs_inode *btrfs_inode;
2886 struct list_head splice;
2887
2888 INIT_LIST_HEAD(&splice);
2889
2890 mutex_lock(&root->fs_info->ordered_operations_mutex);
2891 spin_lock(&root->fs_info->ordered_extent_lock);
2892
2893 list_splice_init(&root->fs_info->ordered_operations, &splice);
2894 while (!list_empty(&splice)) {
2895 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2896 ordered_operations);
2897
2898 list_del_init(&btrfs_inode->ordered_operations);
2899
2900 btrfs_invalidate_inodes(btrfs_inode->root);
2901 }
2902
2903 spin_unlock(&root->fs_info->ordered_extent_lock);
2904 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2905
2906 return 0;
2907 }
2908
2909 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2910 {
2911 struct list_head splice;
2912 struct btrfs_ordered_extent *ordered;
2913 struct inode *inode;
2914
2915 INIT_LIST_HEAD(&splice);
2916
2917 spin_lock(&root->fs_info->ordered_extent_lock);
2918
2919 list_splice_init(&root->fs_info->ordered_extents, &splice);
2920 while (!list_empty(&splice)) {
2921 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2922 root_extent_list);
2923
2924 list_del_init(&ordered->root_extent_list);
2925 atomic_inc(&ordered->refs);
2926
2927 /* the inode may be getting freed (in sys_unlink path). */
2928 inode = igrab(ordered->inode);
2929
2930 spin_unlock(&root->fs_info->ordered_extent_lock);
2931 if (inode)
2932 iput(inode);
2933
2934 atomic_set(&ordered->refs, 1);
2935 btrfs_put_ordered_extent(ordered);
2936
2937 spin_lock(&root->fs_info->ordered_extent_lock);
2938 }
2939
2940 spin_unlock(&root->fs_info->ordered_extent_lock);
2941
2942 return 0;
2943 }
2944
2945 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2946 struct btrfs_root *root)
2947 {
2948 struct rb_node *node;
2949 struct btrfs_delayed_ref_root *delayed_refs;
2950 struct btrfs_delayed_ref_node *ref;
2951 int ret = 0;
2952
2953 delayed_refs = &trans->delayed_refs;
2954
2955 spin_lock(&delayed_refs->lock);
2956 if (delayed_refs->num_entries == 0) {
2957 spin_unlock(&delayed_refs->lock);
2958 printk(KERN_INFO "delayed_refs has NO entry\n");
2959 return ret;
2960 }
2961
2962 node = rb_first(&delayed_refs->root);
2963 while (node) {
2964 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2965 node = rb_next(node);
2966
2967 ref->in_tree = 0;
2968 rb_erase(&ref->rb_node, &delayed_refs->root);
2969 delayed_refs->num_entries--;
2970
2971 atomic_set(&ref->refs, 1);
2972 if (btrfs_delayed_ref_is_head(ref)) {
2973 struct btrfs_delayed_ref_head *head;
2974
2975 head = btrfs_delayed_node_to_head(ref);
2976 mutex_lock(&head->mutex);
2977 kfree(head->extent_op);
2978 delayed_refs->num_heads--;
2979 if (list_empty(&head->cluster))
2980 delayed_refs->num_heads_ready--;
2981 list_del_init(&head->cluster);
2982 mutex_unlock(&head->mutex);
2983 }
2984
2985 spin_unlock(&delayed_refs->lock);
2986 btrfs_put_delayed_ref(ref);
2987
2988 cond_resched();
2989 spin_lock(&delayed_refs->lock);
2990 }
2991
2992 spin_unlock(&delayed_refs->lock);
2993
2994 return ret;
2995 }
2996
2997 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2998 {
2999 struct btrfs_pending_snapshot *snapshot;
3000 struct list_head splice;
3001
3002 INIT_LIST_HEAD(&splice);
3003
3004 list_splice_init(&t->pending_snapshots, &splice);
3005
3006 while (!list_empty(&splice)) {
3007 snapshot = list_entry(splice.next,
3008 struct btrfs_pending_snapshot,
3009 list);
3010
3011 list_del_init(&snapshot->list);
3012
3013 kfree(snapshot);
3014 }
3015
3016 return 0;
3017 }
3018
3019 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3020 {
3021 struct btrfs_inode *btrfs_inode;
3022 struct list_head splice;
3023
3024 INIT_LIST_HEAD(&splice);
3025
3026 spin_lock(&root->fs_info->delalloc_lock);
3027 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3028
3029 while (!list_empty(&splice)) {
3030 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3031 delalloc_inodes);
3032
3033 list_del_init(&btrfs_inode->delalloc_inodes);
3034
3035 btrfs_invalidate_inodes(btrfs_inode->root);
3036 }
3037
3038 spin_unlock(&root->fs_info->delalloc_lock);
3039
3040 return 0;
3041 }
3042
3043 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3044 struct extent_io_tree *dirty_pages,
3045 int mark)
3046 {
3047 int ret;
3048 struct page *page;
3049 struct inode *btree_inode = root->fs_info->btree_inode;
3050 struct extent_buffer *eb;
3051 u64 start = 0;
3052 u64 end;
3053 u64 offset;
3054 unsigned long index;
3055
3056 while (1) {
3057 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3058 mark);
3059 if (ret)
3060 break;
3061
3062 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3063 while (start <= end) {
3064 index = start >> PAGE_CACHE_SHIFT;
3065 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3066 page = find_get_page(btree_inode->i_mapping, index);
3067 if (!page)
3068 continue;
3069 offset = page_offset(page);
3070
3071 spin_lock(&dirty_pages->buffer_lock);
3072 eb = radix_tree_lookup(
3073 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3074 offset >> PAGE_CACHE_SHIFT);
3075 spin_unlock(&dirty_pages->buffer_lock);
3076 if (eb) {
3077 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3078 &eb->bflags);
3079 atomic_set(&eb->refs, 1);
3080 }
3081 if (PageWriteback(page))
3082 end_page_writeback(page);
3083
3084 lock_page(page);
3085 if (PageDirty(page)) {
3086 clear_page_dirty_for_io(page);
3087 spin_lock_irq(&page->mapping->tree_lock);
3088 radix_tree_tag_clear(&page->mapping->page_tree,
3089 page_index(page),
3090 PAGECACHE_TAG_DIRTY);
3091 spin_unlock_irq(&page->mapping->tree_lock);
3092 }
3093
3094 page->mapping->a_ops->invalidatepage(page, 0);
3095 unlock_page(page);
3096 }
3097 }
3098
3099 return ret;
3100 }
3101
3102 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3103 struct extent_io_tree *pinned_extents)
3104 {
3105 struct extent_io_tree *unpin;
3106 u64 start;
3107 u64 end;
3108 int ret;
3109
3110 unpin = pinned_extents;
3111 while (1) {
3112 ret = find_first_extent_bit(unpin, 0, &start, &end,
3113 EXTENT_DIRTY);
3114 if (ret)
3115 break;
3116
3117 /* opt_discard */
3118 if (btrfs_test_opt(root, DISCARD))
3119 ret = btrfs_error_discard_extent(root, start,
3120 end + 1 - start,
3121 NULL);
3122
3123 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3124 btrfs_error_unpin_extent_range(root, start, end);
3125 cond_resched();
3126 }
3127
3128 return 0;
3129 }
3130
3131 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3132 {
3133 struct btrfs_transaction *t;
3134 LIST_HEAD(list);
3135
3136 WARN_ON(1);
3137
3138 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3139
3140 spin_lock(&root->fs_info->trans_lock);
3141 list_splice_init(&root->fs_info->trans_list, &list);
3142 root->fs_info->trans_no_join = 1;
3143 spin_unlock(&root->fs_info->trans_lock);
3144
3145 while (!list_empty(&list)) {
3146 t = list_entry(list.next, struct btrfs_transaction, list);
3147 if (!t)
3148 break;
3149
3150 btrfs_destroy_ordered_operations(root);
3151
3152 btrfs_destroy_ordered_extents(root);
3153
3154 btrfs_destroy_delayed_refs(t, root);
3155
3156 btrfs_block_rsv_release(root,
3157 &root->fs_info->trans_block_rsv,
3158 t->dirty_pages.dirty_bytes);
3159
3160 /* FIXME: cleanup wait for commit */
3161 t->in_commit = 1;
3162 t->blocked = 1;
3163 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3164 wake_up(&root->fs_info->transaction_blocked_wait);
3165
3166 t->blocked = 0;
3167 if (waitqueue_active(&root->fs_info->transaction_wait))
3168 wake_up(&root->fs_info->transaction_wait);
3169
3170 t->commit_done = 1;
3171 if (waitqueue_active(&t->commit_wait))
3172 wake_up(&t->commit_wait);
3173
3174 btrfs_destroy_pending_snapshots(t);
3175
3176 btrfs_destroy_delalloc_inodes(root);
3177
3178 spin_lock(&root->fs_info->trans_lock);
3179 root->fs_info->running_transaction = NULL;
3180 spin_unlock(&root->fs_info->trans_lock);
3181
3182 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3183 EXTENT_DIRTY);
3184
3185 btrfs_destroy_pinned_extent(root,
3186 root->fs_info->pinned_extents);
3187
3188 atomic_set(&t->use_count, 0);
3189 list_del_init(&t->list);
3190 memset(t, 0, sizeof(*t));
3191 kmem_cache_free(btrfs_transaction_cachep, t);
3192 }
3193
3194 spin_lock(&root->fs_info->trans_lock);
3195 root->fs_info->trans_no_join = 0;
3196 spin_unlock(&root->fs_info->trans_lock);
3197 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3198
3199 return 0;
3200 }
3201
3202 static struct extent_io_ops btree_extent_io_ops = {
3203 .write_cache_pages_lock_hook = btree_lock_page_hook,
3204 .readpage_end_io_hook = btree_readpage_end_io_hook,
3205 .readpage_io_failed_hook = btree_io_failed_hook,
3206 .submit_bio_hook = btree_submit_bio_hook,
3207 /* note we're sharing with inode.c for the merge bio hook */
3208 .merge_bio_hook = btrfs_merge_bio_hook,
3209 };
This page took 0.099771 seconds and 5 git commands to generate.