264f297260f85c96909c11d55ac9a6731cda5226
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 };
61
62 struct async_submit_bio {
63 struct inode *inode;
64 struct bio *bio;
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
67 int rw;
68 int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
73 int create)
74 {
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
77 int ret;
78
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 if (em) {
82 em->bdev =
83 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
84 spin_unlock(&em_tree->lock);
85 goto out;
86 }
87 spin_unlock(&em_tree->lock);
88
89 em = alloc_extent_map(GFP_NOFS);
90 if (!em) {
91 em = ERR_PTR(-ENOMEM);
92 goto out;
93 }
94 em->start = 0;
95 em->len = (u64)-1;
96 em->block_start = 0;
97 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
98
99 spin_lock(&em_tree->lock);
100 ret = add_extent_mapping(em_tree, em);
101 if (ret == -EEXIST) {
102 u64 failed_start = em->start;
103 u64 failed_len = em->len;
104
105 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
106 em->start, em->len, em->block_start);
107 free_extent_map(em);
108 em = lookup_extent_mapping(em_tree, start, len);
109 if (em) {
110 printk("after failing, found %Lu %Lu %Lu\n",
111 em->start, em->len, em->block_start);
112 ret = 0;
113 } else {
114 em = lookup_extent_mapping(em_tree, failed_start,
115 failed_len);
116 if (em) {
117 printk("double failure lookup gives us "
118 "%Lu %Lu -> %Lu\n", em->start,
119 em->len, em->block_start);
120 free_extent_map(em);
121 }
122 ret = -EIO;
123 }
124 } else if (ret) {
125 free_extent_map(em);
126 em = NULL;
127 }
128 spin_unlock(&em_tree->lock);
129
130 if (ret)
131 em = ERR_PTR(ret);
132 out:
133 return em;
134 }
135
136 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
137 {
138 return btrfs_crc32c(seed, data, len);
139 }
140
141 void btrfs_csum_final(u32 crc, char *result)
142 {
143 *(__le32 *)result = ~cpu_to_le32(crc);
144 }
145
146 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
147 int verify)
148 {
149 char result[BTRFS_CRC32_SIZE];
150 unsigned long len;
151 unsigned long cur_len;
152 unsigned long offset = BTRFS_CSUM_SIZE;
153 char *map_token = NULL;
154 char *kaddr;
155 unsigned long map_start;
156 unsigned long map_len;
157 int err;
158 u32 crc = ~(u32)0;
159
160 len = buf->len - offset;
161 while(len > 0) {
162 err = map_private_extent_buffer(buf, offset, 32,
163 &map_token, &kaddr,
164 &map_start, &map_len, KM_USER0);
165 if (err) {
166 printk("failed to map extent buffer! %lu\n",
167 offset);
168 return 1;
169 }
170 cur_len = min(len, map_len - (offset - map_start));
171 crc = btrfs_csum_data(root, kaddr + offset - map_start,
172 crc, cur_len);
173 len -= cur_len;
174 offset += cur_len;
175 unmap_extent_buffer(buf, map_token, KM_USER0);
176 }
177 btrfs_csum_final(crc, result);
178
179 if (verify) {
180 int from_this_trans = 0;
181
182 if (root->fs_info->running_transaction &&
183 btrfs_header_generation(buf) ==
184 root->fs_info->running_transaction->transid)
185 from_this_trans = 1;
186
187 /* FIXME, this is not good */
188 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
189 u32 val;
190 u32 found = 0;
191 memcpy(&found, result, BTRFS_CRC32_SIZE);
192
193 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
194 printk("btrfs: %s checksum verify failed on %llu "
195 "wanted %X found %X from_this_trans %d "
196 "level %d\n",
197 root->fs_info->sb->s_id,
198 buf->start, val, found, from_this_trans,
199 btrfs_header_level(buf));
200 return 1;
201 }
202 } else {
203 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
204 }
205 return 0;
206 }
207
208 static int verify_parent_transid(struct extent_io_tree *io_tree,
209 struct extent_buffer *eb, u64 parent_transid)
210 {
211 int ret;
212
213 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
214 return 0;
215
216 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
217 if (extent_buffer_uptodate(io_tree, eb) &&
218 btrfs_header_generation(eb) == parent_transid) {
219 ret = 0;
220 goto out;
221 }
222 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
223 (unsigned long long)eb->start,
224 (unsigned long long)parent_transid,
225 (unsigned long long)btrfs_header_generation(eb));
226 ret = 1;
227 out:
228 clear_extent_buffer_uptodate(io_tree, eb);
229 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
230 GFP_NOFS);
231 return ret;
232
233 }
234
235 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
236 struct extent_buffer *eb,
237 u64 start, u64 parent_transid)
238 {
239 struct extent_io_tree *io_tree;
240 int ret;
241 int num_copies = 0;
242 int mirror_num = 0;
243
244 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
245 while (1) {
246 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
247 btree_get_extent, mirror_num);
248 if (!ret &&
249 !verify_parent_transid(io_tree, eb, parent_transid))
250 return ret;
251
252 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
253 eb->start, eb->len);
254 if (num_copies == 1)
255 return ret;
256
257 mirror_num++;
258 if (mirror_num > num_copies)
259 return ret;
260 }
261 return -EIO;
262 }
263
264 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
265 {
266 struct extent_io_tree *tree;
267 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
268 u64 found_start;
269 int found_level;
270 unsigned long len;
271 struct extent_buffer *eb;
272 int ret;
273
274 tree = &BTRFS_I(page->mapping->host)->io_tree;
275
276 if (page->private == EXTENT_PAGE_PRIVATE)
277 goto out;
278 if (!page->private)
279 goto out;
280 len = page->private >> 2;
281 if (len == 0) {
282 WARN_ON(1);
283 }
284 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
285 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
286 btrfs_header_generation(eb));
287 BUG_ON(ret);
288 btrfs_clear_buffer_defrag(eb);
289 found_start = btrfs_header_bytenr(eb);
290 if (found_start != start) {
291 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
292 start, found_start, len);
293 WARN_ON(1);
294 goto err;
295 }
296 if (eb->first_page != page) {
297 printk("bad first page %lu %lu\n", eb->first_page->index,
298 page->index);
299 WARN_ON(1);
300 goto err;
301 }
302 if (!PageUptodate(page)) {
303 printk("csum not up to date page %lu\n", page->index);
304 WARN_ON(1);
305 goto err;
306 }
307 found_level = btrfs_header_level(eb);
308 spin_lock(&root->fs_info->hash_lock);
309 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
310 spin_unlock(&root->fs_info->hash_lock);
311 csum_tree_block(root, eb, 0);
312 err:
313 free_extent_buffer(eb);
314 out:
315 return 0;
316 }
317
318 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
319 {
320 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
321
322 csum_dirty_buffer(root, page);
323 return 0;
324 }
325
326 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
327 struct extent_state *state)
328 {
329 struct extent_io_tree *tree;
330 u64 found_start;
331 int found_level;
332 unsigned long len;
333 struct extent_buffer *eb;
334 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
335 int ret = 0;
336
337 tree = &BTRFS_I(page->mapping->host)->io_tree;
338 if (page->private == EXTENT_PAGE_PRIVATE)
339 goto out;
340 if (!page->private)
341 goto out;
342 len = page->private >> 2;
343 if (len == 0) {
344 WARN_ON(1);
345 }
346 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
347
348 btrfs_clear_buffer_defrag(eb);
349 found_start = btrfs_header_bytenr(eb);
350 if (found_start != start) {
351 ret = -EIO;
352 goto err;
353 }
354 if (eb->first_page != page) {
355 printk("bad first page %lu %lu\n", eb->first_page->index,
356 page->index);
357 WARN_ON(1);
358 ret = -EIO;
359 goto err;
360 }
361 if (memcmp_extent_buffer(eb, root->fs_info->fsid,
362 (unsigned long)btrfs_header_fsid(eb),
363 BTRFS_FSID_SIZE)) {
364 printk("bad fsid on block %Lu\n", eb->start);
365 ret = -EIO;
366 goto err;
367 }
368 found_level = btrfs_header_level(eb);
369
370 ret = csum_tree_block(root, eb, 1);
371 if (ret)
372 ret = -EIO;
373
374 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
375 end = eb->start + end - 1;
376 release_extent_buffer_tail_pages(eb);
377 err:
378 free_extent_buffer(eb);
379 out:
380 return ret;
381 }
382
383 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
384 static void end_workqueue_bio(struct bio *bio, int err)
385 #else
386 static int end_workqueue_bio(struct bio *bio,
387 unsigned int bytes_done, int err)
388 #endif
389 {
390 struct end_io_wq *end_io_wq = bio->bi_private;
391 struct btrfs_fs_info *fs_info;
392 unsigned long flags;
393
394 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
395 if (bio->bi_size)
396 return 1;
397 #endif
398
399 fs_info = end_io_wq->info;
400 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
401 end_io_wq->error = err;
402 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
403 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
404 queue_work(end_io_workqueue, &fs_info->end_io_work);
405
406 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
407 return 0;
408 #endif
409 }
410
411 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
412 int metadata)
413 {
414 struct end_io_wq *end_io_wq;
415 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
416 if (!end_io_wq)
417 return -ENOMEM;
418
419 end_io_wq->private = bio->bi_private;
420 end_io_wq->end_io = bio->bi_end_io;
421 end_io_wq->info = info;
422 end_io_wq->error = 0;
423 end_io_wq->bio = bio;
424 end_io_wq->metadata = metadata;
425
426 bio->bi_private = end_io_wq;
427 bio->bi_end_io = end_workqueue_bio;
428 return 0;
429 }
430
431 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
432 int rw, struct bio *bio, int mirror_num,
433 extent_submit_bio_hook_t *submit_bio_hook)
434 {
435 struct async_submit_bio *async;
436
437 /*
438 * inline writerback should stay inline, only hop to the async
439 * queue if we're pdflush
440 */
441 if (!current_is_pdflush())
442 return submit_bio_hook(inode, rw, bio, mirror_num);
443
444 async = kmalloc(sizeof(*async), GFP_NOFS);
445 if (!async)
446 return -ENOMEM;
447
448 async->inode = inode;
449 async->rw = rw;
450 async->bio = bio;
451 async->mirror_num = mirror_num;
452 async->submit_bio_hook = submit_bio_hook;
453
454 spin_lock(&fs_info->async_submit_work_lock);
455 list_add_tail(&async->list, &fs_info->async_submit_work_list);
456 spin_unlock(&fs_info->async_submit_work_lock);
457
458 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
459 return 0;
460 }
461
462 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
463 int mirror_num)
464 {
465 struct btrfs_root *root = BTRFS_I(inode)->root;
466 u64 offset;
467 int ret;
468
469 offset = bio->bi_sector << 9;
470
471 if (rw & (1 << BIO_RW)) {
472 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
473 }
474
475 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
476 BUG_ON(ret);
477
478 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
479 }
480
481 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
482 int mirror_num)
483 {
484 if (!(rw & (1 << BIO_RW))) {
485 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
486 }
487 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
488 inode, rw, bio, mirror_num,
489 __btree_submit_bio_hook);
490 }
491
492 static int btree_writepage(struct page *page, struct writeback_control *wbc)
493 {
494 struct extent_io_tree *tree;
495 tree = &BTRFS_I(page->mapping->host)->io_tree;
496 return extent_write_full_page(tree, page, btree_get_extent, wbc);
497 }
498
499 static int btree_writepages(struct address_space *mapping,
500 struct writeback_control *wbc)
501 {
502 struct extent_io_tree *tree;
503 tree = &BTRFS_I(mapping->host)->io_tree;
504 if (wbc->sync_mode == WB_SYNC_NONE) {
505 u64 num_dirty;
506 u64 start = 0;
507 unsigned long thresh = 96 * 1024 * 1024;
508
509 if (wbc->for_kupdate)
510 return 0;
511
512 if (current_is_pdflush()) {
513 thresh = 96 * 1024 * 1024;
514 } else {
515 thresh = 8 * 1024 * 1024;
516 }
517 num_dirty = count_range_bits(tree, &start, (u64)-1,
518 thresh, EXTENT_DIRTY);
519 if (num_dirty < thresh) {
520 return 0;
521 }
522 }
523 return extent_writepages(tree, mapping, btree_get_extent, wbc);
524 }
525
526 int btree_readpage(struct file *file, struct page *page)
527 {
528 struct extent_io_tree *tree;
529 tree = &BTRFS_I(page->mapping->host)->io_tree;
530 return extent_read_full_page(tree, page, btree_get_extent);
531 }
532
533 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
534 {
535 struct extent_io_tree *tree;
536 struct extent_map_tree *map;
537 int ret;
538
539 if (page_count(page) > 3) {
540 /* once for page->private, once for the caller, once
541 * once for the page cache
542 */
543 return 0;
544 }
545 tree = &BTRFS_I(page->mapping->host)->io_tree;
546 map = &BTRFS_I(page->mapping->host)->extent_tree;
547 ret = try_release_extent_state(map, tree, page, gfp_flags);
548 if (ret == 1) {
549 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
550 ClearPagePrivate(page);
551 set_page_private(page, 0);
552 page_cache_release(page);
553 }
554 return ret;
555 }
556
557 static void btree_invalidatepage(struct page *page, unsigned long offset)
558 {
559 struct extent_io_tree *tree;
560 tree = &BTRFS_I(page->mapping->host)->io_tree;
561 extent_invalidatepage(tree, page, offset);
562 btree_releasepage(page, GFP_NOFS);
563 if (PagePrivate(page)) {
564 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
565 ClearPagePrivate(page);
566 set_page_private(page, 0);
567 page_cache_release(page);
568 }
569 }
570
571 #if 0
572 static int btree_writepage(struct page *page, struct writeback_control *wbc)
573 {
574 struct buffer_head *bh;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 struct buffer_head *head;
577 if (!page_has_buffers(page)) {
578 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
579 (1 << BH_Dirty)|(1 << BH_Uptodate));
580 }
581 head = page_buffers(page);
582 bh = head;
583 do {
584 if (buffer_dirty(bh))
585 csum_tree_block(root, bh, 0);
586 bh = bh->b_this_page;
587 } while (bh != head);
588 return block_write_full_page(page, btree_get_block, wbc);
589 }
590 #endif
591
592 static struct address_space_operations btree_aops = {
593 .readpage = btree_readpage,
594 .writepage = btree_writepage,
595 .writepages = btree_writepages,
596 .releasepage = btree_releasepage,
597 .invalidatepage = btree_invalidatepage,
598 .sync_page = block_sync_page,
599 };
600
601 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
602 u64 parent_transid)
603 {
604 struct extent_buffer *buf = NULL;
605 struct inode *btree_inode = root->fs_info->btree_inode;
606 int ret = 0;
607
608 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
609 if (!buf)
610 return 0;
611 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
612 buf, 0, 0, btree_get_extent, 0);
613 free_extent_buffer(buf);
614 return ret;
615 }
616
617 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
618 u64 bytenr, u32 blocksize)
619 {
620 struct inode *btree_inode = root->fs_info->btree_inode;
621 struct extent_buffer *eb;
622 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
623 bytenr, blocksize, GFP_NOFS);
624 return eb;
625 }
626
627 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
628 u64 bytenr, u32 blocksize)
629 {
630 struct inode *btree_inode = root->fs_info->btree_inode;
631 struct extent_buffer *eb;
632
633 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
634 bytenr, blocksize, NULL, GFP_NOFS);
635 return eb;
636 }
637
638
639 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
640 u32 blocksize, u64 parent_transid)
641 {
642 struct extent_buffer *buf = NULL;
643 struct inode *btree_inode = root->fs_info->btree_inode;
644 struct extent_io_tree *io_tree;
645 int ret;
646
647 io_tree = &BTRFS_I(btree_inode)->io_tree;
648
649 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
650 if (!buf)
651 return NULL;
652
653 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
654
655 if (ret == 0) {
656 buf->flags |= EXTENT_UPTODATE;
657 }
658 return buf;
659
660 }
661
662 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
663 struct extent_buffer *buf)
664 {
665 struct inode *btree_inode = root->fs_info->btree_inode;
666 if (btrfs_header_generation(buf) ==
667 root->fs_info->running_transaction->transid)
668 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
669 buf);
670 return 0;
671 }
672
673 int wait_on_tree_block_writeback(struct btrfs_root *root,
674 struct extent_buffer *buf)
675 {
676 struct inode *btree_inode = root->fs_info->btree_inode;
677 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
678 buf);
679 return 0;
680 }
681
682 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
683 u32 stripesize, struct btrfs_root *root,
684 struct btrfs_fs_info *fs_info,
685 u64 objectid)
686 {
687 root->node = NULL;
688 root->inode = NULL;
689 root->commit_root = NULL;
690 root->sectorsize = sectorsize;
691 root->nodesize = nodesize;
692 root->leafsize = leafsize;
693 root->stripesize = stripesize;
694 root->ref_cows = 0;
695 root->track_dirty = 0;
696
697 root->fs_info = fs_info;
698 root->objectid = objectid;
699 root->last_trans = 0;
700 root->highest_inode = 0;
701 root->last_inode_alloc = 0;
702 root->name = NULL;
703 root->in_sysfs = 0;
704
705 INIT_LIST_HEAD(&root->dirty_list);
706 memset(&root->root_key, 0, sizeof(root->root_key));
707 memset(&root->root_item, 0, sizeof(root->root_item));
708 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
709 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
710 init_completion(&root->kobj_unregister);
711 root->defrag_running = 0;
712 root->defrag_level = 0;
713 root->root_key.objectid = objectid;
714 return 0;
715 }
716
717 static int find_and_setup_root(struct btrfs_root *tree_root,
718 struct btrfs_fs_info *fs_info,
719 u64 objectid,
720 struct btrfs_root *root)
721 {
722 int ret;
723 u32 blocksize;
724
725 __setup_root(tree_root->nodesize, tree_root->leafsize,
726 tree_root->sectorsize, tree_root->stripesize,
727 root, fs_info, objectid);
728 ret = btrfs_find_last_root(tree_root, objectid,
729 &root->root_item, &root->root_key);
730 BUG_ON(ret);
731
732 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
733 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
734 blocksize, 0);
735 BUG_ON(!root->node);
736 return 0;
737 }
738
739 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
740 struct btrfs_key *location)
741 {
742 struct btrfs_root *root;
743 struct btrfs_root *tree_root = fs_info->tree_root;
744 struct btrfs_path *path;
745 struct extent_buffer *l;
746 u64 highest_inode;
747 u32 blocksize;
748 int ret = 0;
749
750 root = kzalloc(sizeof(*root), GFP_NOFS);
751 if (!root)
752 return ERR_PTR(-ENOMEM);
753 if (location->offset == (u64)-1) {
754 ret = find_and_setup_root(tree_root, fs_info,
755 location->objectid, root);
756 if (ret) {
757 kfree(root);
758 return ERR_PTR(ret);
759 }
760 goto insert;
761 }
762
763 __setup_root(tree_root->nodesize, tree_root->leafsize,
764 tree_root->sectorsize, tree_root->stripesize,
765 root, fs_info, location->objectid);
766
767 path = btrfs_alloc_path();
768 BUG_ON(!path);
769 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
770 if (ret != 0) {
771 if (ret > 0)
772 ret = -ENOENT;
773 goto out;
774 }
775 l = path->nodes[0];
776 read_extent_buffer(l, &root->root_item,
777 btrfs_item_ptr_offset(l, path->slots[0]),
778 sizeof(root->root_item));
779 memcpy(&root->root_key, location, sizeof(*location));
780 ret = 0;
781 out:
782 btrfs_release_path(root, path);
783 btrfs_free_path(path);
784 if (ret) {
785 kfree(root);
786 return ERR_PTR(ret);
787 }
788 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
789 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
790 blocksize, 0);
791 BUG_ON(!root->node);
792 insert:
793 root->ref_cows = 1;
794 ret = btrfs_find_highest_inode(root, &highest_inode);
795 if (ret == 0) {
796 root->highest_inode = highest_inode;
797 root->last_inode_alloc = highest_inode;
798 }
799 return root;
800 }
801
802 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
803 u64 root_objectid)
804 {
805 struct btrfs_root *root;
806
807 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
808 return fs_info->tree_root;
809 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
810 return fs_info->extent_root;
811
812 root = radix_tree_lookup(&fs_info->fs_roots_radix,
813 (unsigned long)root_objectid);
814 return root;
815 }
816
817 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
818 struct btrfs_key *location)
819 {
820 struct btrfs_root *root;
821 int ret;
822
823 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
824 return fs_info->tree_root;
825 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
826 return fs_info->extent_root;
827 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
828 return fs_info->chunk_root;
829 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
830 return fs_info->dev_root;
831
832 root = radix_tree_lookup(&fs_info->fs_roots_radix,
833 (unsigned long)location->objectid);
834 if (root)
835 return root;
836
837 root = btrfs_read_fs_root_no_radix(fs_info, location);
838 if (IS_ERR(root))
839 return root;
840 ret = radix_tree_insert(&fs_info->fs_roots_radix,
841 (unsigned long)root->root_key.objectid,
842 root);
843 if (ret) {
844 free_extent_buffer(root->node);
845 kfree(root);
846 return ERR_PTR(ret);
847 }
848 ret = btrfs_find_dead_roots(fs_info->tree_root,
849 root->root_key.objectid, root);
850 BUG_ON(ret);
851
852 return root;
853 }
854
855 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
856 struct btrfs_key *location,
857 const char *name, int namelen)
858 {
859 struct btrfs_root *root;
860 int ret;
861
862 root = btrfs_read_fs_root_no_name(fs_info, location);
863 if (!root)
864 return NULL;
865
866 if (root->in_sysfs)
867 return root;
868
869 ret = btrfs_set_root_name(root, name, namelen);
870 if (ret) {
871 free_extent_buffer(root->node);
872 kfree(root);
873 return ERR_PTR(ret);
874 }
875
876 ret = btrfs_sysfs_add_root(root);
877 if (ret) {
878 free_extent_buffer(root->node);
879 kfree(root->name);
880 kfree(root);
881 return ERR_PTR(ret);
882 }
883 root->in_sysfs = 1;
884 return root;
885 }
886 #if 0
887 static int add_hasher(struct btrfs_fs_info *info, char *type) {
888 struct btrfs_hasher *hasher;
889
890 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
891 if (!hasher)
892 return -ENOMEM;
893 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
894 if (!hasher->hash_tfm) {
895 kfree(hasher);
896 return -EINVAL;
897 }
898 spin_lock(&info->hash_lock);
899 list_add(&hasher->list, &info->hashers);
900 spin_unlock(&info->hash_lock);
901 return 0;
902 }
903 #endif
904
905 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
906 {
907 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
908 int ret = 0;
909 struct list_head *cur;
910 struct btrfs_device *device;
911 struct backing_dev_info *bdi;
912
913 list_for_each(cur, &info->fs_devices->devices) {
914 device = list_entry(cur, struct btrfs_device, dev_list);
915 if (!device->bdev)
916 continue;
917 bdi = blk_get_backing_dev_info(device->bdev);
918 if (bdi && bdi_congested(bdi, bdi_bits)) {
919 ret = 1;
920 break;
921 }
922 }
923 return ret;
924 }
925
926 /*
927 * this unplugs every device on the box, and it is only used when page
928 * is null
929 */
930 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
931 {
932 struct list_head *cur;
933 struct btrfs_device *device;
934 struct btrfs_fs_info *info;
935
936 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
937 list_for_each(cur, &info->fs_devices->devices) {
938 device = list_entry(cur, struct btrfs_device, dev_list);
939 bdi = blk_get_backing_dev_info(device->bdev);
940 if (bdi->unplug_io_fn) {
941 bdi->unplug_io_fn(bdi, page);
942 }
943 }
944 }
945
946 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
947 {
948 struct inode *inode;
949 struct extent_map_tree *em_tree;
950 struct extent_map *em;
951 struct address_space *mapping;
952 u64 offset;
953
954 /* the generic O_DIRECT read code does this */
955 if (!page) {
956 __unplug_io_fn(bdi, page);
957 return;
958 }
959
960 /*
961 * page->mapping may change at any time. Get a consistent copy
962 * and use that for everything below
963 */
964 smp_mb();
965 mapping = page->mapping;
966 if (!mapping)
967 return;
968
969 inode = mapping->host;
970 offset = page_offset(page);
971
972 em_tree = &BTRFS_I(inode)->extent_tree;
973 spin_lock(&em_tree->lock);
974 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
975 spin_unlock(&em_tree->lock);
976 if (!em)
977 return;
978
979 offset = offset - em->start;
980 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
981 em->block_start + offset, page);
982 free_extent_map(em);
983 }
984
985 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
986 {
987 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
988 bdi_init(bdi);
989 #endif
990 bdi->ra_pages = default_backing_dev_info.ra_pages;
991 bdi->state = 0;
992 bdi->capabilities = default_backing_dev_info.capabilities;
993 bdi->unplug_io_fn = btrfs_unplug_io_fn;
994 bdi->unplug_io_data = info;
995 bdi->congested_fn = btrfs_congested_fn;
996 bdi->congested_data = info;
997 return 0;
998 }
999
1000 static int bio_ready_for_csum(struct bio *bio)
1001 {
1002 u64 length = 0;
1003 u64 buf_len = 0;
1004 u64 start = 0;
1005 struct page *page;
1006 struct extent_io_tree *io_tree = NULL;
1007 struct btrfs_fs_info *info = NULL;
1008 struct bio_vec *bvec;
1009 int i;
1010 int ret;
1011
1012 bio_for_each_segment(bvec, bio, i) {
1013 page = bvec->bv_page;
1014 if (page->private == EXTENT_PAGE_PRIVATE) {
1015 length += bvec->bv_len;
1016 continue;
1017 }
1018 if (!page->private) {
1019 length += bvec->bv_len;
1020 continue;
1021 }
1022 length = bvec->bv_len;
1023 buf_len = page->private >> 2;
1024 start = page_offset(page) + bvec->bv_offset;
1025 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1026 info = BTRFS_I(page->mapping->host)->root->fs_info;
1027 }
1028 /* are we fully contained in this bio? */
1029 if (buf_len <= length)
1030 return 1;
1031
1032 ret = extent_range_uptodate(io_tree, start + length,
1033 start + buf_len - 1);
1034 if (ret == 1)
1035 return ret;
1036 return ret;
1037 }
1038
1039 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1040 static void btrfs_end_io_csum(void *p)
1041 #else
1042 static void btrfs_end_io_csum(struct work_struct *work)
1043 #endif
1044 {
1045 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1046 struct btrfs_fs_info *fs_info = p;
1047 #else
1048 struct btrfs_fs_info *fs_info = container_of(work,
1049 struct btrfs_fs_info,
1050 end_io_work);
1051 #endif
1052 unsigned long flags;
1053 struct end_io_wq *end_io_wq;
1054 struct bio *bio;
1055 struct list_head *next;
1056 int error;
1057 int was_empty;
1058
1059 while(1) {
1060 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1061 if (list_empty(&fs_info->end_io_work_list)) {
1062 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1063 flags);
1064 return;
1065 }
1066 next = fs_info->end_io_work_list.next;
1067 list_del(next);
1068 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1069
1070 end_io_wq = list_entry(next, struct end_io_wq, list);
1071
1072 bio = end_io_wq->bio;
1073 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1074 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1075 was_empty = list_empty(&fs_info->end_io_work_list);
1076 list_add_tail(&end_io_wq->list,
1077 &fs_info->end_io_work_list);
1078 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1079 flags);
1080 if (was_empty)
1081 return;
1082 continue;
1083 }
1084 error = end_io_wq->error;
1085 bio->bi_private = end_io_wq->private;
1086 bio->bi_end_io = end_io_wq->end_io;
1087 kfree(end_io_wq);
1088 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1089 bio_endio(bio, bio->bi_size, error);
1090 #else
1091 bio_endio(bio, error);
1092 #endif
1093 }
1094 }
1095
1096 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1097 static void btrfs_async_submit_work(void *p)
1098 #else
1099 static void btrfs_async_submit_work(struct work_struct *work)
1100 #endif
1101 {
1102 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1103 struct btrfs_fs_info *fs_info = p;
1104 #else
1105 struct btrfs_fs_info *fs_info = container_of(work,
1106 struct btrfs_fs_info,
1107 async_submit_work);
1108 #endif
1109 struct async_submit_bio *async;
1110 struct list_head *next;
1111
1112 while(1) {
1113 spin_lock(&fs_info->async_submit_work_lock);
1114 if (list_empty(&fs_info->async_submit_work_list)) {
1115 spin_unlock(&fs_info->async_submit_work_lock);
1116 return;
1117 }
1118 next = fs_info->async_submit_work_list.next;
1119 list_del(next);
1120 spin_unlock(&fs_info->async_submit_work_lock);
1121
1122 async = list_entry(next, struct async_submit_bio, list);
1123 async->submit_bio_hook(async->inode, async->rw, async->bio,
1124 async->mirror_num);
1125 kfree(async);
1126 }
1127 }
1128
1129 struct btrfs_root *open_ctree(struct super_block *sb,
1130 struct btrfs_fs_devices *fs_devices,
1131 char *options)
1132 {
1133 u32 sectorsize;
1134 u32 nodesize;
1135 u32 leafsize;
1136 u32 blocksize;
1137 u32 stripesize;
1138 struct buffer_head *bh;
1139 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1140 GFP_NOFS);
1141 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1142 GFP_NOFS);
1143 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1144 GFP_NOFS);
1145 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1146 GFP_NOFS);
1147 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1148 GFP_NOFS);
1149 int ret;
1150 int err = -EINVAL;
1151 struct btrfs_super_block *disk_super;
1152
1153 if (!extent_root || !tree_root || !fs_info) {
1154 err = -ENOMEM;
1155 goto fail;
1156 }
1157 end_io_workqueue = create_workqueue("btrfs-end-io");
1158 BUG_ON(!end_io_workqueue);
1159 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1160
1161 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1162 INIT_LIST_HEAD(&fs_info->trans_list);
1163 INIT_LIST_HEAD(&fs_info->dead_roots);
1164 INIT_LIST_HEAD(&fs_info->hashers);
1165 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1166 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1167 spin_lock_init(&fs_info->hash_lock);
1168 spin_lock_init(&fs_info->end_io_work_lock);
1169 spin_lock_init(&fs_info->async_submit_work_lock);
1170 spin_lock_init(&fs_info->delalloc_lock);
1171 spin_lock_init(&fs_info->new_trans_lock);
1172
1173 init_completion(&fs_info->kobj_unregister);
1174 fs_info->tree_root = tree_root;
1175 fs_info->extent_root = extent_root;
1176 fs_info->chunk_root = chunk_root;
1177 fs_info->dev_root = dev_root;
1178 fs_info->fs_devices = fs_devices;
1179 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1180 INIT_LIST_HEAD(&fs_info->space_info);
1181 btrfs_mapping_init(&fs_info->mapping_tree);
1182 fs_info->sb = sb;
1183 fs_info->max_extent = (u64)-1;
1184 fs_info->max_inline = 8192 * 1024;
1185 setup_bdi(fs_info, &fs_info->bdi);
1186 fs_info->btree_inode = new_inode(sb);
1187 fs_info->btree_inode->i_ino = 1;
1188 fs_info->btree_inode->i_nlink = 1;
1189
1190 sb->s_blocksize = 4096;
1191 sb->s_blocksize_bits = blksize_bits(4096);
1192
1193 /*
1194 * we set the i_size on the btree inode to the max possible int.
1195 * the real end of the address space is determined by all of
1196 * the devices in the system
1197 */
1198 fs_info->btree_inode->i_size = OFFSET_MAX;
1199 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1200 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1201
1202 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1203 fs_info->btree_inode->i_mapping,
1204 GFP_NOFS);
1205 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1206 GFP_NOFS);
1207
1208 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1209
1210 extent_io_tree_init(&fs_info->free_space_cache,
1211 fs_info->btree_inode->i_mapping, GFP_NOFS);
1212 extent_io_tree_init(&fs_info->block_group_cache,
1213 fs_info->btree_inode->i_mapping, GFP_NOFS);
1214 extent_io_tree_init(&fs_info->pinned_extents,
1215 fs_info->btree_inode->i_mapping, GFP_NOFS);
1216 extent_io_tree_init(&fs_info->pending_del,
1217 fs_info->btree_inode->i_mapping, GFP_NOFS);
1218 extent_io_tree_init(&fs_info->extent_ins,
1219 fs_info->btree_inode->i_mapping, GFP_NOFS);
1220 fs_info->do_barriers = 1;
1221
1222 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1223 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1224 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1225 fs_info);
1226 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1227 #else
1228 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1229 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1230 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1231 #endif
1232 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1233 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1234 sizeof(struct btrfs_key));
1235 insert_inode_hash(fs_info->btree_inode);
1236 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1237
1238 mutex_init(&fs_info->trans_mutex);
1239 mutex_init(&fs_info->fs_mutex);
1240
1241 #if 0
1242 ret = add_hasher(fs_info, "crc32c");
1243 if (ret) {
1244 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1245 err = -ENOMEM;
1246 goto fail_iput;
1247 }
1248 #endif
1249 __setup_root(4096, 4096, 4096, 4096, tree_root,
1250 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1251
1252
1253 bh = __bread(fs_devices->latest_bdev,
1254 BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1255 if (!bh)
1256 goto fail_iput;
1257
1258 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1259 brelse(bh);
1260
1261 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1262
1263 disk_super = &fs_info->super_copy;
1264 if (!btrfs_super_root(disk_super))
1265 goto fail_sb_buffer;
1266
1267 btrfs_parse_options(options, tree_root, NULL);
1268
1269 if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1270 printk("Btrfs: wanted %llu devices, but found %llu\n",
1271 (unsigned long long)btrfs_super_num_devices(disk_super),
1272 (unsigned long long)fs_devices->open_devices);
1273 if (btrfs_test_opt(tree_root, DEGRADED))
1274 printk("continuing in degraded mode\n");
1275 else {
1276 goto fail_sb_buffer;
1277 }
1278 }
1279
1280 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1281
1282 nodesize = btrfs_super_nodesize(disk_super);
1283 leafsize = btrfs_super_leafsize(disk_super);
1284 sectorsize = btrfs_super_sectorsize(disk_super);
1285 stripesize = btrfs_super_stripesize(disk_super);
1286 tree_root->nodesize = nodesize;
1287 tree_root->leafsize = leafsize;
1288 tree_root->sectorsize = sectorsize;
1289 tree_root->stripesize = stripesize;
1290
1291 sb->s_blocksize = sectorsize;
1292 sb->s_blocksize_bits = blksize_bits(sectorsize);
1293
1294 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1295 sizeof(disk_super->magic))) {
1296 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1297 goto fail_sb_buffer;
1298 }
1299
1300 mutex_lock(&fs_info->fs_mutex);
1301
1302 ret = btrfs_read_sys_array(tree_root);
1303 if (ret) {
1304 printk("btrfs: failed to read the system array on %s\n",
1305 sb->s_id);
1306 goto fail_sys_array;
1307 }
1308
1309 blocksize = btrfs_level_size(tree_root,
1310 btrfs_super_chunk_root_level(disk_super));
1311
1312 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1313 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1314
1315 chunk_root->node = read_tree_block(chunk_root,
1316 btrfs_super_chunk_root(disk_super),
1317 blocksize, 0);
1318 BUG_ON(!chunk_root->node);
1319
1320 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1322 BTRFS_UUID_SIZE);
1323
1324 ret = btrfs_read_chunk_tree(chunk_root);
1325 BUG_ON(ret);
1326
1327 btrfs_close_extra_devices(fs_devices);
1328
1329 blocksize = btrfs_level_size(tree_root,
1330 btrfs_super_root_level(disk_super));
1331
1332
1333 tree_root->node = read_tree_block(tree_root,
1334 btrfs_super_root(disk_super),
1335 blocksize, 0);
1336 if (!tree_root->node)
1337 goto fail_sb_buffer;
1338
1339
1340 ret = find_and_setup_root(tree_root, fs_info,
1341 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1342 if (ret)
1343 goto fail_tree_root;
1344 extent_root->track_dirty = 1;
1345
1346 ret = find_and_setup_root(tree_root, fs_info,
1347 BTRFS_DEV_TREE_OBJECTID, dev_root);
1348 dev_root->track_dirty = 1;
1349
1350 if (ret)
1351 goto fail_extent_root;
1352
1353 btrfs_read_block_groups(extent_root);
1354
1355 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1356 fs_info->data_alloc_profile = (u64)-1;
1357 fs_info->metadata_alloc_profile = (u64)-1;
1358 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1359
1360 mutex_unlock(&fs_info->fs_mutex);
1361 return tree_root;
1362
1363 fail_extent_root:
1364 free_extent_buffer(extent_root->node);
1365 fail_tree_root:
1366 free_extent_buffer(tree_root->node);
1367 fail_sys_array:
1368 mutex_unlock(&fs_info->fs_mutex);
1369 fail_sb_buffer:
1370 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1371 fail_iput:
1372 iput(fs_info->btree_inode);
1373 fail:
1374 btrfs_close_devices(fs_info->fs_devices);
1375 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1376
1377 kfree(extent_root);
1378 kfree(tree_root);
1379 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1380 bdi_destroy(&fs_info->bdi);
1381 #endif
1382 kfree(fs_info);
1383 return ERR_PTR(err);
1384 }
1385
1386 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1387 {
1388 char b[BDEVNAME_SIZE];
1389
1390 if (uptodate) {
1391 set_buffer_uptodate(bh);
1392 } else {
1393 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1394 printk(KERN_WARNING "lost page write due to "
1395 "I/O error on %s\n",
1396 bdevname(bh->b_bdev, b));
1397 }
1398 /* note, we dont' set_buffer_write_io_error because we have
1399 * our own ways of dealing with the IO errors
1400 */
1401 clear_buffer_uptodate(bh);
1402 }
1403 unlock_buffer(bh);
1404 put_bh(bh);
1405 }
1406
1407 int write_all_supers(struct btrfs_root *root)
1408 {
1409 struct list_head *cur;
1410 struct list_head *head = &root->fs_info->fs_devices->devices;
1411 struct btrfs_device *dev;
1412 struct btrfs_super_block *sb;
1413 struct btrfs_dev_item *dev_item;
1414 struct buffer_head *bh;
1415 int ret;
1416 int do_barriers;
1417 int max_errors;
1418 int total_errors = 0;
1419 u32 crc;
1420 u64 flags;
1421
1422 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1423 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1424
1425 sb = &root->fs_info->super_for_commit;
1426 dev_item = &sb->dev_item;
1427 list_for_each(cur, head) {
1428 dev = list_entry(cur, struct btrfs_device, dev_list);
1429 if (!dev->bdev) {
1430 total_errors++;
1431 continue;
1432 }
1433 if (!dev->in_fs_metadata)
1434 continue;
1435
1436 btrfs_set_stack_device_type(dev_item, dev->type);
1437 btrfs_set_stack_device_id(dev_item, dev->devid);
1438 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1439 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1440 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1441 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1442 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1443 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1444 flags = btrfs_super_flags(sb);
1445 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1446
1447
1448 crc = ~(u32)0;
1449 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1450 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1451 btrfs_csum_final(crc, sb->csum);
1452
1453 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1454 BTRFS_SUPER_INFO_SIZE);
1455
1456 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1457 dev->pending_io = bh;
1458
1459 get_bh(bh);
1460 set_buffer_uptodate(bh);
1461 lock_buffer(bh);
1462 bh->b_end_io = btrfs_end_buffer_write_sync;
1463
1464 if (do_barriers && dev->barriers) {
1465 ret = submit_bh(WRITE_BARRIER, bh);
1466 if (ret == -EOPNOTSUPP) {
1467 printk("btrfs: disabling barriers on dev %s\n",
1468 dev->name);
1469 set_buffer_uptodate(bh);
1470 dev->barriers = 0;
1471 get_bh(bh);
1472 lock_buffer(bh);
1473 ret = submit_bh(WRITE, bh);
1474 }
1475 } else {
1476 ret = submit_bh(WRITE, bh);
1477 }
1478 if (ret)
1479 total_errors++;
1480 }
1481 if (total_errors > max_errors) {
1482 printk("btrfs: %d errors while writing supers\n", total_errors);
1483 BUG();
1484 }
1485 total_errors = 0;
1486
1487 list_for_each(cur, head) {
1488 dev = list_entry(cur, struct btrfs_device, dev_list);
1489 if (!dev->bdev)
1490 continue;
1491 if (!dev->in_fs_metadata)
1492 continue;
1493
1494 BUG_ON(!dev->pending_io);
1495 bh = dev->pending_io;
1496 wait_on_buffer(bh);
1497 if (!buffer_uptodate(dev->pending_io)) {
1498 if (do_barriers && dev->barriers) {
1499 printk("btrfs: disabling barriers on dev %s\n",
1500 dev->name);
1501 set_buffer_uptodate(bh);
1502 get_bh(bh);
1503 lock_buffer(bh);
1504 dev->barriers = 0;
1505 ret = submit_bh(WRITE, bh);
1506 BUG_ON(ret);
1507 wait_on_buffer(bh);
1508 if (!buffer_uptodate(bh))
1509 total_errors++;
1510 } else {
1511 total_errors++;
1512 }
1513
1514 }
1515 dev->pending_io = NULL;
1516 brelse(bh);
1517 }
1518 if (total_errors > max_errors) {
1519 printk("btrfs: %d errors while writing supers\n", total_errors);
1520 BUG();
1521 }
1522 return 0;
1523 }
1524
1525 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1526 *root)
1527 {
1528 int ret;
1529
1530 ret = write_all_supers(root);
1531 return ret;
1532 }
1533
1534 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1535 {
1536 radix_tree_delete(&fs_info->fs_roots_radix,
1537 (unsigned long)root->root_key.objectid);
1538 if (root->in_sysfs)
1539 btrfs_sysfs_del_root(root);
1540 if (root->inode)
1541 iput(root->inode);
1542 if (root->node)
1543 free_extent_buffer(root->node);
1544 if (root->commit_root)
1545 free_extent_buffer(root->commit_root);
1546 if (root->name)
1547 kfree(root->name);
1548 kfree(root);
1549 return 0;
1550 }
1551
1552 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1553 {
1554 int ret;
1555 struct btrfs_root *gang[8];
1556 int i;
1557
1558 while(1) {
1559 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1560 (void **)gang, 0,
1561 ARRAY_SIZE(gang));
1562 if (!ret)
1563 break;
1564 for (i = 0; i < ret; i++)
1565 btrfs_free_fs_root(fs_info, gang[i]);
1566 }
1567 return 0;
1568 }
1569
1570 int close_ctree(struct btrfs_root *root)
1571 {
1572 int ret;
1573 struct btrfs_trans_handle *trans;
1574 struct btrfs_fs_info *fs_info = root->fs_info;
1575
1576 fs_info->closing = 1;
1577 btrfs_transaction_flush_work(root);
1578 mutex_lock(&fs_info->fs_mutex);
1579 btrfs_defrag_dirty_roots(root->fs_info);
1580 trans = btrfs_start_transaction(root, 1);
1581 ret = btrfs_commit_transaction(trans, root);
1582 /* run commit again to drop the original snapshot */
1583 trans = btrfs_start_transaction(root, 1);
1584 btrfs_commit_transaction(trans, root);
1585 ret = btrfs_write_and_wait_transaction(NULL, root);
1586 BUG_ON(ret);
1587
1588 write_ctree_super(NULL, root);
1589 mutex_unlock(&fs_info->fs_mutex);
1590
1591 btrfs_transaction_flush_work(root);
1592
1593 if (fs_info->delalloc_bytes) {
1594 printk("btrfs: at unmount delalloc count %Lu\n",
1595 fs_info->delalloc_bytes);
1596 }
1597 if (fs_info->extent_root->node)
1598 free_extent_buffer(fs_info->extent_root->node);
1599
1600 if (fs_info->tree_root->node)
1601 free_extent_buffer(fs_info->tree_root->node);
1602
1603 if (root->fs_info->chunk_root->node);
1604 free_extent_buffer(root->fs_info->chunk_root->node);
1605
1606 if (root->fs_info->dev_root->node);
1607 free_extent_buffer(root->fs_info->dev_root->node);
1608
1609 btrfs_free_block_groups(root->fs_info);
1610 del_fs_roots(fs_info);
1611
1612 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1613
1614 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1615 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1616 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1617 extent_io_tree_empty_lru(&fs_info->pending_del);
1618 extent_io_tree_empty_lru(&fs_info->extent_ins);
1619 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1620
1621 flush_workqueue(async_submit_workqueue);
1622 flush_workqueue(end_io_workqueue);
1623
1624 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1625
1626 flush_workqueue(async_submit_workqueue);
1627 destroy_workqueue(async_submit_workqueue);
1628
1629 flush_workqueue(end_io_workqueue);
1630 destroy_workqueue(end_io_workqueue);
1631
1632 iput(fs_info->btree_inode);
1633 #if 0
1634 while(!list_empty(&fs_info->hashers)) {
1635 struct btrfs_hasher *hasher;
1636 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1637 hashers);
1638 list_del(&hasher->hashers);
1639 crypto_free_hash(&fs_info->hash_tfm);
1640 kfree(hasher);
1641 }
1642 #endif
1643 btrfs_close_devices(fs_info->fs_devices);
1644 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1645
1646 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1647 bdi_destroy(&fs_info->bdi);
1648 #endif
1649
1650 kfree(fs_info->extent_root);
1651 kfree(fs_info->tree_root);
1652 kfree(fs_info->chunk_root);
1653 kfree(fs_info->dev_root);
1654 return 0;
1655 }
1656
1657 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1658 {
1659 int ret;
1660 struct inode *btree_inode = buf->first_page->mapping->host;
1661
1662 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1663 if (!ret)
1664 return ret;
1665
1666 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1667 parent_transid);
1668 return !ret;
1669 }
1670
1671 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1672 {
1673 struct inode *btree_inode = buf->first_page->mapping->host;
1674 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1675 buf);
1676 }
1677
1678 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1679 {
1680 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1681 u64 transid = btrfs_header_generation(buf);
1682 struct inode *btree_inode = root->fs_info->btree_inode;
1683
1684 if (transid != root->fs_info->generation) {
1685 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1686 (unsigned long long)buf->start,
1687 transid, root->fs_info->generation);
1688 WARN_ON(1);
1689 }
1690 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1691 }
1692
1693 void btrfs_throttle(struct btrfs_root *root)
1694 {
1695 struct backing_dev_info *bdi;
1696
1697 bdi = &root->fs_info->bdi;
1698 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1699 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1700 congestion_wait(WRITE, HZ/20);
1701 #else
1702 blk_congestion_wait(WRITE, HZ/20);
1703 #endif
1704 }
1705 }
1706
1707 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1708 {
1709 /*
1710 * looks as though older kernels can get into trouble with
1711 * this code, they end up stuck in balance_dirty_pages forever
1712 */
1713 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1714 struct extent_io_tree *tree;
1715 u64 num_dirty;
1716 u64 start = 0;
1717 unsigned long thresh = 16 * 1024 * 1024;
1718 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1719
1720 if (current_is_pdflush())
1721 return;
1722
1723 num_dirty = count_range_bits(tree, &start, (u64)-1,
1724 thresh, EXTENT_DIRTY);
1725 if (num_dirty > thresh) {
1726 balance_dirty_pages_ratelimited_nr(
1727 root->fs_info->btree_inode->i_mapping, 1);
1728 }
1729 #else
1730 return;
1731 #endif
1732 }
1733
1734 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1735 {
1736 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1737 struct inode *btree_inode = root->fs_info->btree_inode;
1738 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1739 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1740 }
1741
1742 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1743 {
1744 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1745 struct inode *btree_inode = root->fs_info->btree_inode;
1746 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1747 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1748 GFP_NOFS);
1749 }
1750
1751 int btrfs_buffer_defrag(struct extent_buffer *buf)
1752 {
1753 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1754 struct inode *btree_inode = root->fs_info->btree_inode;
1755 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1756 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1757 }
1758
1759 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1760 {
1761 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1762 struct inode *btree_inode = root->fs_info->btree_inode;
1763 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1764 buf->start, buf->start + buf->len - 1,
1765 EXTENT_DEFRAG_DONE, 0);
1766 }
1767
1768 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1769 {
1770 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1771 struct inode *btree_inode = root->fs_info->btree_inode;
1772 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1773 buf->start, buf->start + buf->len - 1,
1774 EXTENT_DEFRAG_DONE, GFP_NOFS);
1775 }
1776
1777 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1778 {
1779 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1780 struct inode *btree_inode = root->fs_info->btree_inode;
1781 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1782 buf->start, buf->start + buf->len - 1,
1783 EXTENT_DEFRAG, GFP_NOFS);
1784 }
1785
1786 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1787 {
1788 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1789 int ret;
1790 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1791 if (ret == 0) {
1792 buf->flags |= EXTENT_UPTODATE;
1793 }
1794 return ret;
1795 }
1796
1797 static struct extent_io_ops btree_extent_io_ops = {
1798 .writepage_io_hook = btree_writepage_io_hook,
1799 .readpage_end_io_hook = btree_readpage_end_io_hook,
1800 .submit_bio_hook = btree_submit_bio_hook,
1801 /* note we're sharing with inode.c for the merge bio hook */
1802 .merge_bio_hook = btrfs_merge_bio_hook,
1803 };
This page took 0.12088 seconds and 5 git commands to generate.