4b1f16dd9ce362ec3dfdb35a42cec6e2e6bcf8db
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179 {
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
201 int create)
202 {
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
213 goto out;
214 }
215 read_unlock(&em_tree->lock);
216
217 em = alloc_extent_map();
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
223 em->len = (u64)-1;
224 em->block_len = (u64)-1;
225 em->block_start = 0;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
231 free_extent_map(em);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (!em)
234 em = ERR_PTR(-EIO);
235 } else if (ret) {
236 free_extent_map(em);
237 em = ERR_PTR(ret);
238 }
239 write_unlock(&em_tree->lock);
240
241 out:
242 return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247 return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252 put_unaligned_le32(~crc, result);
253 }
254
255 /*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261 {
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 char *result = NULL;
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
272 unsigned long inline_result;
273
274 len = buf->len - offset;
275 while (len > 0) {
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
278 if (err)
279 return 1;
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
285 }
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
301
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
334
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 return 0;
337
338 if (atomic)
339 return -EAGAIN;
340
341 if (need_lock) {
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 }
345
346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
347 0, &cached_state);
348 if (extent_buffer_uptodate(eb) &&
349 btrfs_header_generation(eb) == parent_transid) {
350 ret = 0;
351 goto out;
352 }
353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
354 "found %llu\n",
355 eb->start, parent_transid, btrfs_header_generation(eb));
356 ret = 1;
357
358 /*
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
365 */
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
368 out:
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
371 btrfs_tree_read_unlock_blocking(eb);
372 return ret;
373 }
374
375 /*
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
378 */
379 static int btrfs_check_super_csum(char *raw_disk_sb)
380 {
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 int ret = 0;
385
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 u32 crc = ~(u32)0;
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
390
391 /*
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
395 */
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
399
400 if (memcmp(raw_disk_sb, result, csum_size))
401 ret = 1;
402
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
404 printk(KERN_WARNING
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
406 ret = 0;
407 }
408 }
409
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
412 csum_type);
413 ret = 1;
414 }
415
416 return ret;
417 }
418
419 /*
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
422 */
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
425 u64 start, u64 parent_transid)
426 {
427 struct extent_io_tree *io_tree;
428 int failed = 0;
429 int ret;
430 int num_copies = 0;
431 int mirror_num = 0;
432 int failed_mirror = 0;
433
434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 while (1) {
437 ret = read_extent_buffer_pages(io_tree, eb, start,
438 WAIT_COMPLETE,
439 btree_get_extent, mirror_num);
440 if (!ret) {
441 if (!verify_parent_transid(io_tree, eb,
442 parent_transid, 0))
443 break;
444 else
445 ret = -EIO;
446 }
447
448 /*
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
451 * any less wrong.
452 */
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
454 break;
455
456 num_copies = btrfs_num_copies(root->fs_info,
457 eb->start, eb->len);
458 if (num_copies == 1)
459 break;
460
461 if (!failed_mirror) {
462 failed = 1;
463 failed_mirror = eb->read_mirror;
464 }
465
466 mirror_num++;
467 if (mirror_num == failed_mirror)
468 mirror_num++;
469
470 if (mirror_num > num_copies)
471 break;
472 }
473
474 if (failed && !ret && failed_mirror)
475 repair_eb_io_failure(root, eb, failed_mirror);
476
477 return ret;
478 }
479
480 /*
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
483 */
484
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 {
487 u64 start = page_offset(page);
488 u64 found_start;
489 struct extent_buffer *eb;
490
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
493 return 0;
494 found_start = btrfs_header_bytenr(eb);
495 if (WARN_ON(found_start != start || !PageUptodate(page)))
496 return 0;
497 csum_tree_block(root, eb, 0);
498 return 0;
499 }
500
501 static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
503 {
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
506 int ret = 1;
507
508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509 while (fs_devices) {
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 ret = 0;
512 break;
513 }
514 fs_devices = fs_devices->seed;
515 }
516 return ret;
517 }
518
519 #define CORRUPT(reason, eb, root, slot) \
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
522 btrfs_header_bytenr(eb), root->objectid, slot)
523
524 static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
526 {
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
530 int slot;
531
532 if (nritems == 0)
533 return 0;
534
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
539 return -EIO;
540 }
541
542 /*
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
547 * offset is correct.
548 */
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
562 * front.
563 */
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
567 return -EIO;
568 }
569
570 /*
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
574 */
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
578 return -EIO;
579 }
580 }
581
582 return 0;
583 }
584
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
588 {
589 u64 found_start;
590 int found_level;
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593 int ret = 0;
594 int reads_done;
595
596 if (!page->private)
597 goto out;
598
599 eb = (struct extent_buffer *)page->private;
600
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
607 if (!reads_done)
608 goto err;
609
610 eb->read_mirror = mirror;
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
616 found_start = btrfs_header_bytenr(eb);
617 if (found_start != eb->start) {
618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
619 "%llu %llu\n",
620 found_start, eb->start);
621 ret = -EIO;
622 goto err;
623 }
624 if (check_tree_block_fsid(root, eb)) {
625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
626 eb->start);
627 ret = -EIO;
628 goto err;
629 }
630 found_level = btrfs_header_level(eb);
631 if (found_level >= BTRFS_MAX_LEVEL) {
632 btrfs_info(root->fs_info, "bad tree block level %d",
633 (int)btrfs_header_level(eb));
634 ret = -EIO;
635 goto err;
636 }
637
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 eb, found_level);
640
641 ret = csum_tree_block(root, eb, 1);
642 if (ret) {
643 ret = -EIO;
644 goto err;
645 }
646
647 /*
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
650 * return -EIO.
651 */
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 ret = -EIO;
655 }
656
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
659 err:
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(root, eb, eb->start, ret);
663
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
671 clear_extent_buffer_uptodate(eb);
672 }
673 free_extent_buffer(eb);
674 out:
675 return ret;
676 }
677
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
683 eb = (struct extent_buffer *)page->private;
684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685 eb->read_mirror = failed_mirror;
686 atomic_dec(&eb->io_pages);
687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 btree_readahead_hook(root, eb, eb->start, -EIO);
689 return -EIO; /* we fixed nothing */
690 }
691
692 static void end_workqueue_bio(struct bio *bio, int err)
693 {
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
696
697 fs_info = end_io_wq->info;
698 end_io_wq->error = err;
699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
700
701 if (bio->bi_rw & REQ_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 btrfs_queue_work(fs_info->endio_freespace_worker,
707 &end_io_wq->work);
708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 btrfs_queue_work(fs_info->endio_raid56_workers,
710 &end_io_wq->work);
711 else
712 btrfs_queue_work(fs_info->endio_write_workers,
713 &end_io_wq->work);
714 } else {
715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716 btrfs_queue_work(fs_info->endio_raid56_workers,
717 &end_io_wq->work);
718 else if (end_io_wq->metadata)
719 btrfs_queue_work(fs_info->endio_meta_workers,
720 &end_io_wq->work);
721 else
722 btrfs_queue_work(fs_info->endio_workers,
723 &end_io_wq->work);
724 }
725 }
726
727 /*
728 * For the metadata arg you want
729 *
730 * 0 - if data
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
733 * 3 - raid parity work
734 */
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 int metadata)
737 {
738 struct end_io_wq *end_io_wq;
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 if (!end_io_wq)
741 return -ENOMEM;
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
745 end_io_wq->info = info;
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
748 end_io_wq->metadata = metadata;
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
752 return 0;
753 }
754
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
756 {
757 unsigned long limit = min_t(unsigned long,
758 info->thread_pool_size,
759 info->fs_devices->open_devices);
760 return 256 * limit;
761 }
762
763 static void run_one_async_start(struct btrfs_work *work)
764 {
765 struct async_submit_bio *async;
766 int ret;
767
768 async = container_of(work, struct async_submit_bio, work);
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 if (ret)
773 async->error = ret;
774 }
775
776 static void run_one_async_done(struct btrfs_work *work)
777 {
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
780 int limit;
781
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
784
785 limit = btrfs_async_submit_limit(fs_info);
786 limit = limit * 2 / 3;
787
788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789 waitqueue_active(&fs_info->async_submit_wait))
790 wake_up(&fs_info->async_submit_wait);
791
792 /* If an error occured we just want to clean up the bio and move on */
793 if (async->error) {
794 bio_endio(async->bio, async->error);
795 return;
796 }
797
798 async->submit_bio_done(async->inode, async->rw, async->bio,
799 async->mirror_num, async->bio_flags,
800 async->bio_offset);
801 }
802
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
808 kfree(async);
809 }
810
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
813 unsigned long bio_flags,
814 u64 bio_offset,
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
817 {
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
822 return -ENOMEM;
823
824 async->inode = inode;
825 async->rw = rw;
826 async->bio = bio;
827 async->mirror_num = mirror_num;
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
830
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
833
834 async->bio_flags = bio_flags;
835 async->bio_offset = bio_offset;
836
837 async->error = 0;
838
839 atomic_inc(&fs_info->nr_async_submits);
840
841 if (rw & REQ_SYNC)
842 btrfs_set_work_high_priority(&async->work);
843
844 btrfs_queue_work(fs_info->workers, &async->work);
845
846 while (atomic_read(&fs_info->async_submit_draining) &&
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
852 return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857 struct bio_vec *bvec;
858 struct btrfs_root *root;
859 int i, ret = 0;
860
861 bio_for_each_segment_all(bvec, bio, i) {
862 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
863 ret = csum_dirty_buffer(root, bvec->bv_page);
864 if (ret)
865 break;
866 }
867
868 return ret;
869 }
870
871 static int __btree_submit_bio_start(struct inode *inode, int rw,
872 struct bio *bio, int mirror_num,
873 unsigned long bio_flags,
874 u64 bio_offset)
875 {
876 /*
877 * when we're called for a write, we're already in the async
878 * submission context. Just jump into btrfs_map_bio
879 */
880 return btree_csum_one_bio(bio);
881 }
882
883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
886 {
887 int ret;
888
889 /*
890 * when we're called for a write, we're already in the async
891 * submission context. Just jump into btrfs_map_bio
892 */
893 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894 if (ret)
895 bio_endio(bio, ret);
896 return ret;
897 }
898
899 static int check_async_write(struct inode *inode, unsigned long bio_flags)
900 {
901 if (bio_flags & EXTENT_BIO_TREE_LOG)
902 return 0;
903 #ifdef CONFIG_X86
904 if (cpu_has_xmm4_2)
905 return 0;
906 #endif
907 return 1;
908 }
909
910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
911 int mirror_num, unsigned long bio_flags,
912 u64 bio_offset)
913 {
914 int async = check_async_write(inode, bio_flags);
915 int ret;
916
917 if (!(rw & REQ_WRITE)) {
918 /*
919 * called for a read, do the setup so that checksum validation
920 * can happen in the async kernel threads
921 */
922 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923 bio, 1);
924 if (ret)
925 goto out_w_error;
926 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927 mirror_num, 0);
928 } else if (!async) {
929 ret = btree_csum_one_bio(bio);
930 if (ret)
931 goto out_w_error;
932 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933 mirror_num, 0);
934 } else {
935 /*
936 * kthread helpers are used to submit writes so that
937 * checksumming can happen in parallel across all CPUs
938 */
939 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940 inode, rw, bio, mirror_num, 0,
941 bio_offset,
942 __btree_submit_bio_start,
943 __btree_submit_bio_done);
944 }
945
946 if (ret) {
947 out_w_error:
948 bio_endio(bio, ret);
949 }
950 return ret;
951 }
952
953 #ifdef CONFIG_MIGRATION
954 static int btree_migratepage(struct address_space *mapping,
955 struct page *newpage, struct page *page,
956 enum migrate_mode mode)
957 {
958 /*
959 * we can't safely write a btree page from here,
960 * we haven't done the locking hook
961 */
962 if (PageDirty(page))
963 return -EAGAIN;
964 /*
965 * Buffers may be managed in a filesystem specific way.
966 * We must have no buffers or drop them.
967 */
968 if (page_has_private(page) &&
969 !try_to_release_page(page, GFP_KERNEL))
970 return -EAGAIN;
971 return migrate_page(mapping, newpage, page, mode);
972 }
973 #endif
974
975
976 static int btree_writepages(struct address_space *mapping,
977 struct writeback_control *wbc)
978 {
979 struct btrfs_fs_info *fs_info;
980 int ret;
981
982 if (wbc->sync_mode == WB_SYNC_NONE) {
983
984 if (wbc->for_kupdate)
985 return 0;
986
987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 /* this is a bit racy, but that's ok */
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
991 if (ret < 0)
992 return 0;
993 }
994 return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006 if (PageWriteback(page) || PageDirty(page))
1007 return 0;
1008
1009 return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
1014 {
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
1019 if (PagePrivate(page)) {
1020 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021 "page private not zero on page %llu",
1022 (unsigned long long)page_offset(page));
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1026 }
1027 }
1028
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032 struct extent_buffer *eb;
1033
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
1040 #endif
1041 return __set_page_dirty_nobuffers(page);
1042 }
1043
1044 static const struct address_space_operations btree_aops = {
1045 .readpage = btree_readpage,
1046 .writepages = btree_writepages,
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050 .migratepage = btree_migratepage,
1051 #endif
1052 .set_page_dirty = btree_set_page_dirty,
1053 };
1054
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
1057 {
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
1060 int ret = 0;
1061
1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063 if (!buf)
1064 return 0;
1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067 free_extent_buffer(buf);
1068 return ret;
1069 }
1070
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1073 {
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1078
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1082
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1090 }
1091
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
1095 } else if (extent_buffer_uptodate(buf)) {
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1099 }
1100 return 0;
1101 }
1102
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1105 {
1106 return find_extent_buffer(root->fs_info, bytenr);
1107 }
1108
1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110 u64 bytenr, u32 blocksize)
1111 {
1112 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1113 }
1114
1115
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1117 {
1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119 buf->start + buf->len - 1);
1120 }
1121
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123 {
1124 return filemap_fdatawait_range(buf->pages[0]->mapping,
1125 buf->start, buf->start + buf->len - 1);
1126 }
1127
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129 u32 blocksize, u64 parent_transid)
1130 {
1131 struct extent_buffer *buf = NULL;
1132 int ret;
1133
1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 if (!buf)
1136 return NULL;
1137
1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139 if (ret) {
1140 free_extent_buffer(buf);
1141 return NULL;
1142 }
1143 return buf;
1144
1145 }
1146
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 struct extent_buffer *buf)
1149 {
1150 struct btrfs_fs_info *fs_info = root->fs_info;
1151
1152 if (btrfs_header_generation(buf) ==
1153 fs_info->running_transaction->transid) {
1154 btrfs_assert_tree_locked(buf);
1155
1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 -buf->len,
1159 fs_info->dirty_metadata_batch);
1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 btrfs_set_lock_blocking(buf);
1162 clear_extent_buffer_dirty(buf);
1163 }
1164 }
1165 }
1166
1167 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168 {
1169 struct btrfs_subvolume_writers *writers;
1170 int ret;
1171
1172 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173 if (!writers)
1174 return ERR_PTR(-ENOMEM);
1175
1176 ret = percpu_counter_init(&writers->counter, 0);
1177 if (ret < 0) {
1178 kfree(writers);
1179 return ERR_PTR(ret);
1180 }
1181
1182 init_waitqueue_head(&writers->wait);
1183 return writers;
1184 }
1185
1186 static void
1187 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188 {
1189 percpu_counter_destroy(&writers->counter);
1190 kfree(writers);
1191 }
1192
1193 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194 u32 stripesize, struct btrfs_root *root,
1195 struct btrfs_fs_info *fs_info,
1196 u64 objectid)
1197 {
1198 root->node = NULL;
1199 root->commit_root = NULL;
1200 root->sectorsize = sectorsize;
1201 root->nodesize = nodesize;
1202 root->leafsize = leafsize;
1203 root->stripesize = stripesize;
1204 root->ref_cows = 0;
1205 root->track_dirty = 0;
1206 root->in_radix = 0;
1207 root->orphan_item_inserted = 0;
1208 root->orphan_cleanup_state = 0;
1209
1210 root->objectid = objectid;
1211 root->last_trans = 0;
1212 root->highest_objectid = 0;
1213 root->nr_delalloc_inodes = 0;
1214 root->nr_ordered_extents = 0;
1215 root->name = NULL;
1216 root->inode_tree = RB_ROOT;
1217 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218 root->block_rsv = NULL;
1219 root->orphan_block_rsv = NULL;
1220
1221 INIT_LIST_HEAD(&root->dirty_list);
1222 INIT_LIST_HEAD(&root->root_list);
1223 INIT_LIST_HEAD(&root->delalloc_inodes);
1224 INIT_LIST_HEAD(&root->delalloc_root);
1225 INIT_LIST_HEAD(&root->ordered_extents);
1226 INIT_LIST_HEAD(&root->ordered_root);
1227 INIT_LIST_HEAD(&root->logged_list[0]);
1228 INIT_LIST_HEAD(&root->logged_list[1]);
1229 spin_lock_init(&root->orphan_lock);
1230 spin_lock_init(&root->inode_lock);
1231 spin_lock_init(&root->delalloc_lock);
1232 spin_lock_init(&root->ordered_extent_lock);
1233 spin_lock_init(&root->accounting_lock);
1234 spin_lock_init(&root->log_extents_lock[0]);
1235 spin_lock_init(&root->log_extents_lock[1]);
1236 mutex_init(&root->objectid_mutex);
1237 mutex_init(&root->log_mutex);
1238 mutex_init(&root->ordered_extent_mutex);
1239 mutex_init(&root->delalloc_mutex);
1240 init_waitqueue_head(&root->log_writer_wait);
1241 init_waitqueue_head(&root->log_commit_wait[0]);
1242 init_waitqueue_head(&root->log_commit_wait[1]);
1243 INIT_LIST_HEAD(&root->log_ctxs[0]);
1244 INIT_LIST_HEAD(&root->log_ctxs[1]);
1245 atomic_set(&root->log_commit[0], 0);
1246 atomic_set(&root->log_commit[1], 0);
1247 atomic_set(&root->log_writers, 0);
1248 atomic_set(&root->log_batch, 0);
1249 atomic_set(&root->orphan_inodes, 0);
1250 atomic_set(&root->refs, 1);
1251 atomic_set(&root->will_be_snapshoted, 0);
1252 root->log_transid = 0;
1253 root->log_transid_committed = -1;
1254 root->last_log_commit = 0;
1255 if (fs_info)
1256 extent_io_tree_init(&root->dirty_log_pages,
1257 fs_info->btree_inode->i_mapping);
1258
1259 memset(&root->root_key, 0, sizeof(root->root_key));
1260 memset(&root->root_item, 0, sizeof(root->root_item));
1261 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1263 if (fs_info)
1264 root->defrag_trans_start = fs_info->generation;
1265 else
1266 root->defrag_trans_start = 0;
1267 init_completion(&root->kobj_unregister);
1268 root->defrag_running = 0;
1269 root->root_key.objectid = objectid;
1270 root->anon_dev = 0;
1271
1272 spin_lock_init(&root->root_item_lock);
1273 }
1274
1275 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1276 {
1277 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278 if (root)
1279 root->fs_info = fs_info;
1280 return root;
1281 }
1282
1283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284 /* Should only be used by the testing infrastructure */
1285 struct btrfs_root *btrfs_alloc_dummy_root(void)
1286 {
1287 struct btrfs_root *root;
1288
1289 root = btrfs_alloc_root(NULL);
1290 if (!root)
1291 return ERR_PTR(-ENOMEM);
1292 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293 root->dummy_root = 1;
1294
1295 return root;
1296 }
1297 #endif
1298
1299 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300 struct btrfs_fs_info *fs_info,
1301 u64 objectid)
1302 {
1303 struct extent_buffer *leaf;
1304 struct btrfs_root *tree_root = fs_info->tree_root;
1305 struct btrfs_root *root;
1306 struct btrfs_key key;
1307 int ret = 0;
1308 uuid_le uuid;
1309
1310 root = btrfs_alloc_root(fs_info);
1311 if (!root)
1312 return ERR_PTR(-ENOMEM);
1313
1314 __setup_root(tree_root->nodesize, tree_root->leafsize,
1315 tree_root->sectorsize, tree_root->stripesize,
1316 root, fs_info, objectid);
1317 root->root_key.objectid = objectid;
1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 root->root_key.offset = 0;
1320
1321 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322 0, objectid, NULL, 0, 0, 0);
1323 if (IS_ERR(leaf)) {
1324 ret = PTR_ERR(leaf);
1325 leaf = NULL;
1326 goto fail;
1327 }
1328
1329 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330 btrfs_set_header_bytenr(leaf, leaf->start);
1331 btrfs_set_header_generation(leaf, trans->transid);
1332 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333 btrfs_set_header_owner(leaf, objectid);
1334 root->node = leaf;
1335
1336 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1337 BTRFS_FSID_SIZE);
1338 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339 btrfs_header_chunk_tree_uuid(leaf),
1340 BTRFS_UUID_SIZE);
1341 btrfs_mark_buffer_dirty(leaf);
1342
1343 root->commit_root = btrfs_root_node(root);
1344 root->track_dirty = 1;
1345
1346
1347 root->root_item.flags = 0;
1348 root->root_item.byte_limit = 0;
1349 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350 btrfs_set_root_generation(&root->root_item, trans->transid);
1351 btrfs_set_root_level(&root->root_item, 0);
1352 btrfs_set_root_refs(&root->root_item, 1);
1353 btrfs_set_root_used(&root->root_item, leaf->len);
1354 btrfs_set_root_last_snapshot(&root->root_item, 0);
1355 btrfs_set_root_dirid(&root->root_item, 0);
1356 uuid_le_gen(&uuid);
1357 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358 root->root_item.drop_level = 0;
1359
1360 key.objectid = objectid;
1361 key.type = BTRFS_ROOT_ITEM_KEY;
1362 key.offset = 0;
1363 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364 if (ret)
1365 goto fail;
1366
1367 btrfs_tree_unlock(leaf);
1368
1369 return root;
1370
1371 fail:
1372 if (leaf) {
1373 btrfs_tree_unlock(leaf);
1374 free_extent_buffer(leaf);
1375 }
1376 kfree(root);
1377
1378 return ERR_PTR(ret);
1379 }
1380
1381 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382 struct btrfs_fs_info *fs_info)
1383 {
1384 struct btrfs_root *root;
1385 struct btrfs_root *tree_root = fs_info->tree_root;
1386 struct extent_buffer *leaf;
1387
1388 root = btrfs_alloc_root(fs_info);
1389 if (!root)
1390 return ERR_PTR(-ENOMEM);
1391
1392 __setup_root(tree_root->nodesize, tree_root->leafsize,
1393 tree_root->sectorsize, tree_root->stripesize,
1394 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395
1396 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1399 /*
1400 * log trees do not get reference counted because they go away
1401 * before a real commit is actually done. They do store pointers
1402 * to file data extents, and those reference counts still get
1403 * updated (along with back refs to the log tree).
1404 */
1405 root->ref_cows = 0;
1406
1407 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408 BTRFS_TREE_LOG_OBJECTID, NULL,
1409 0, 0, 0);
1410 if (IS_ERR(leaf)) {
1411 kfree(root);
1412 return ERR_CAST(leaf);
1413 }
1414
1415 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416 btrfs_set_header_bytenr(leaf, leaf->start);
1417 btrfs_set_header_generation(leaf, trans->transid);
1418 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1420 root->node = leaf;
1421
1422 write_extent_buffer(root->node, root->fs_info->fsid,
1423 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1424 btrfs_mark_buffer_dirty(root->node);
1425 btrfs_tree_unlock(root->node);
1426 return root;
1427 }
1428
1429 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430 struct btrfs_fs_info *fs_info)
1431 {
1432 struct btrfs_root *log_root;
1433
1434 log_root = alloc_log_tree(trans, fs_info);
1435 if (IS_ERR(log_root))
1436 return PTR_ERR(log_root);
1437 WARN_ON(fs_info->log_root_tree);
1438 fs_info->log_root_tree = log_root;
1439 return 0;
1440 }
1441
1442 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root)
1444 {
1445 struct btrfs_root *log_root;
1446 struct btrfs_inode_item *inode_item;
1447
1448 log_root = alloc_log_tree(trans, root->fs_info);
1449 if (IS_ERR(log_root))
1450 return PTR_ERR(log_root);
1451
1452 log_root->last_trans = trans->transid;
1453 log_root->root_key.offset = root->root_key.objectid;
1454
1455 inode_item = &log_root->root_item.inode;
1456 btrfs_set_stack_inode_generation(inode_item, 1);
1457 btrfs_set_stack_inode_size(inode_item, 3);
1458 btrfs_set_stack_inode_nlink(inode_item, 1);
1459 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1461
1462 btrfs_set_root_node(&log_root->root_item, log_root->node);
1463
1464 WARN_ON(root->log_root);
1465 root->log_root = log_root;
1466 root->log_transid = 0;
1467 root->log_transid_committed = -1;
1468 root->last_log_commit = 0;
1469 return 0;
1470 }
1471
1472 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473 struct btrfs_key *key)
1474 {
1475 struct btrfs_root *root;
1476 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477 struct btrfs_path *path;
1478 u64 generation;
1479 u32 blocksize;
1480 int ret;
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return ERR_PTR(-ENOMEM);
1485
1486 root = btrfs_alloc_root(fs_info);
1487 if (!root) {
1488 ret = -ENOMEM;
1489 goto alloc_fail;
1490 }
1491
1492 __setup_root(tree_root->nodesize, tree_root->leafsize,
1493 tree_root->sectorsize, tree_root->stripesize,
1494 root, fs_info, key->objectid);
1495
1496 ret = btrfs_find_root(tree_root, key, path,
1497 &root->root_item, &root->root_key);
1498 if (ret) {
1499 if (ret > 0)
1500 ret = -ENOENT;
1501 goto find_fail;
1502 }
1503
1504 generation = btrfs_root_generation(&root->root_item);
1505 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507 blocksize, generation);
1508 if (!root->node) {
1509 ret = -ENOMEM;
1510 goto find_fail;
1511 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1512 ret = -EIO;
1513 goto read_fail;
1514 }
1515 root->commit_root = btrfs_root_node(root);
1516 out:
1517 btrfs_free_path(path);
1518 return root;
1519
1520 read_fail:
1521 free_extent_buffer(root->node);
1522 find_fail:
1523 kfree(root);
1524 alloc_fail:
1525 root = ERR_PTR(ret);
1526 goto out;
1527 }
1528
1529 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530 struct btrfs_key *location)
1531 {
1532 struct btrfs_root *root;
1533
1534 root = btrfs_read_tree_root(tree_root, location);
1535 if (IS_ERR(root))
1536 return root;
1537
1538 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1539 root->ref_cows = 1;
1540 btrfs_check_and_init_root_item(&root->root_item);
1541 }
1542
1543 return root;
1544 }
1545
1546 int btrfs_init_fs_root(struct btrfs_root *root)
1547 {
1548 int ret;
1549 struct btrfs_subvolume_writers *writers;
1550
1551 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553 GFP_NOFS);
1554 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555 ret = -ENOMEM;
1556 goto fail;
1557 }
1558
1559 writers = btrfs_alloc_subvolume_writers();
1560 if (IS_ERR(writers)) {
1561 ret = PTR_ERR(writers);
1562 goto fail;
1563 }
1564 root->subv_writers = writers;
1565
1566 btrfs_init_free_ino_ctl(root);
1567 spin_lock_init(&root->cache_lock);
1568 init_waitqueue_head(&root->cache_wait);
1569
1570 ret = get_anon_bdev(&root->anon_dev);
1571 if (ret)
1572 goto free_writers;
1573 return 0;
1574
1575 free_writers:
1576 btrfs_free_subvolume_writers(root->subv_writers);
1577 fail:
1578 kfree(root->free_ino_ctl);
1579 kfree(root->free_ino_pinned);
1580 return ret;
1581 }
1582
1583 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584 u64 root_id)
1585 {
1586 struct btrfs_root *root;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590 (unsigned long)root_id);
1591 spin_unlock(&fs_info->fs_roots_radix_lock);
1592 return root;
1593 }
1594
1595 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596 struct btrfs_root *root)
1597 {
1598 int ret;
1599
1600 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601 if (ret)
1602 return ret;
1603
1604 spin_lock(&fs_info->fs_roots_radix_lock);
1605 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606 (unsigned long)root->root_key.objectid,
1607 root);
1608 if (ret == 0)
1609 root->in_radix = 1;
1610 spin_unlock(&fs_info->fs_roots_radix_lock);
1611 radix_tree_preload_end();
1612
1613 return ret;
1614 }
1615
1616 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617 struct btrfs_key *location,
1618 bool check_ref)
1619 {
1620 struct btrfs_root *root;
1621 int ret;
1622
1623 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624 return fs_info->tree_root;
1625 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626 return fs_info->extent_root;
1627 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628 return fs_info->chunk_root;
1629 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630 return fs_info->dev_root;
1631 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632 return fs_info->csum_root;
1633 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634 return fs_info->quota_root ? fs_info->quota_root :
1635 ERR_PTR(-ENOENT);
1636 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637 return fs_info->uuid_root ? fs_info->uuid_root :
1638 ERR_PTR(-ENOENT);
1639 again:
1640 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1641 if (root) {
1642 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1643 return ERR_PTR(-ENOENT);
1644 return root;
1645 }
1646
1647 root = btrfs_read_fs_root(fs_info->tree_root, location);
1648 if (IS_ERR(root))
1649 return root;
1650
1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1652 ret = -ENOENT;
1653 goto fail;
1654 }
1655
1656 ret = btrfs_init_fs_root(root);
1657 if (ret)
1658 goto fail;
1659
1660 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1662 if (ret < 0)
1663 goto fail;
1664 if (ret == 0)
1665 root->orphan_item_inserted = 1;
1666
1667 ret = btrfs_insert_fs_root(fs_info, root);
1668 if (ret) {
1669 if (ret == -EEXIST) {
1670 free_fs_root(root);
1671 goto again;
1672 }
1673 goto fail;
1674 }
1675 return root;
1676 fail:
1677 free_fs_root(root);
1678 return ERR_PTR(ret);
1679 }
1680
1681 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1682 {
1683 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684 int ret = 0;
1685 struct btrfs_device *device;
1686 struct backing_dev_info *bdi;
1687
1688 rcu_read_lock();
1689 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1690 if (!device->bdev)
1691 continue;
1692 bdi = blk_get_backing_dev_info(device->bdev);
1693 if (bdi && bdi_congested(bdi, bdi_bits)) {
1694 ret = 1;
1695 break;
1696 }
1697 }
1698 rcu_read_unlock();
1699 return ret;
1700 }
1701
1702 /*
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1704 * bdi again.
1705 */
1706 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1707 {
1708 int err;
1709
1710 bdi->capabilities = BDI_CAP_MAP_COPY;
1711 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1712 if (err)
1713 return err;
1714
1715 bdi->ra_pages = default_backing_dev_info.ra_pages;
1716 bdi->congested_fn = btrfs_congested_fn;
1717 bdi->congested_data = info;
1718 return 0;
1719 }
1720
1721 /*
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions. This is where read checksum verification actually happens
1724 */
1725 static void end_workqueue_fn(struct btrfs_work *work)
1726 {
1727 struct bio *bio;
1728 struct end_io_wq *end_io_wq;
1729 int error;
1730
1731 end_io_wq = container_of(work, struct end_io_wq, work);
1732 bio = end_io_wq->bio;
1733
1734 error = end_io_wq->error;
1735 bio->bi_private = end_io_wq->private;
1736 bio->bi_end_io = end_io_wq->end_io;
1737 kfree(end_io_wq);
1738 bio_endio_nodec(bio, error);
1739 }
1740
1741 static int cleaner_kthread(void *arg)
1742 {
1743 struct btrfs_root *root = arg;
1744 int again;
1745
1746 do {
1747 again = 0;
1748
1749 /* Make the cleaner go to sleep early. */
1750 if (btrfs_need_cleaner_sleep(root))
1751 goto sleep;
1752
1753 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1754 goto sleep;
1755
1756 /*
1757 * Avoid the problem that we change the status of the fs
1758 * during the above check and trylock.
1759 */
1760 if (btrfs_need_cleaner_sleep(root)) {
1761 mutex_unlock(&root->fs_info->cleaner_mutex);
1762 goto sleep;
1763 }
1764
1765 btrfs_run_delayed_iputs(root);
1766 again = btrfs_clean_one_deleted_snapshot(root);
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1768
1769 /*
1770 * The defragger has dealt with the R/O remount and umount,
1771 * needn't do anything special here.
1772 */
1773 btrfs_run_defrag_inodes(root->fs_info);
1774 sleep:
1775 if (!try_to_freeze() && !again) {
1776 set_current_state(TASK_INTERRUPTIBLE);
1777 if (!kthread_should_stop())
1778 schedule();
1779 __set_current_state(TASK_RUNNING);
1780 }
1781 } while (!kthread_should_stop());
1782 return 0;
1783 }
1784
1785 static int transaction_kthread(void *arg)
1786 {
1787 struct btrfs_root *root = arg;
1788 struct btrfs_trans_handle *trans;
1789 struct btrfs_transaction *cur;
1790 u64 transid;
1791 unsigned long now;
1792 unsigned long delay;
1793 bool cannot_commit;
1794
1795 do {
1796 cannot_commit = false;
1797 delay = HZ * root->fs_info->commit_interval;
1798 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799
1800 spin_lock(&root->fs_info->trans_lock);
1801 cur = root->fs_info->running_transaction;
1802 if (!cur) {
1803 spin_unlock(&root->fs_info->trans_lock);
1804 goto sleep;
1805 }
1806
1807 now = get_seconds();
1808 if (cur->state < TRANS_STATE_BLOCKED &&
1809 (now < cur->start_time ||
1810 now - cur->start_time < root->fs_info->commit_interval)) {
1811 spin_unlock(&root->fs_info->trans_lock);
1812 delay = HZ * 5;
1813 goto sleep;
1814 }
1815 transid = cur->transid;
1816 spin_unlock(&root->fs_info->trans_lock);
1817
1818 /* If the file system is aborted, this will always fail. */
1819 trans = btrfs_attach_transaction(root);
1820 if (IS_ERR(trans)) {
1821 if (PTR_ERR(trans) != -ENOENT)
1822 cannot_commit = true;
1823 goto sleep;
1824 }
1825 if (transid == trans->transid) {
1826 btrfs_commit_transaction(trans, root);
1827 } else {
1828 btrfs_end_transaction(trans, root);
1829 }
1830 sleep:
1831 wake_up_process(root->fs_info->cleaner_kthread);
1832 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833
1834 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835 &root->fs_info->fs_state)))
1836 btrfs_cleanup_transaction(root);
1837 if (!try_to_freeze()) {
1838 set_current_state(TASK_INTERRUPTIBLE);
1839 if (!kthread_should_stop() &&
1840 (!btrfs_transaction_blocked(root->fs_info) ||
1841 cannot_commit))
1842 schedule_timeout(delay);
1843 __set_current_state(TASK_RUNNING);
1844 }
1845 } while (!kthread_should_stop());
1846 return 0;
1847 }
1848
1849 /*
1850 * this will find the highest generation in the array of
1851 * root backups. The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1857 */
1858 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859 {
1860 u64 cur;
1861 int newest_index = -1;
1862 struct btrfs_root_backup *root_backup;
1863 int i;
1864
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
1869 newest_index = i;
1870 }
1871
1872 /* check to see if we actually wrapped around */
1873 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874 root_backup = info->super_copy->super_roots;
1875 cur = btrfs_backup_tree_root_gen(root_backup);
1876 if (cur == newest_gen)
1877 newest_index = 0;
1878 }
1879 return newest_index;
1880 }
1881
1882
1883 /*
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array. This will set the backup_root_index
1886 * field in the fs_info struct
1887 */
1888 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889 u64 newest_gen)
1890 {
1891 int newest_index = -1;
1892
1893 newest_index = find_newest_super_backup(info, newest_gen);
1894 /* if there was garbage in there, just move along */
1895 if (newest_index == -1) {
1896 info->backup_root_index = 0;
1897 } else {
1898 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899 }
1900 }
1901
1902 /*
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1905 * done
1906 */
1907 static void backup_super_roots(struct btrfs_fs_info *info)
1908 {
1909 int next_backup;
1910 struct btrfs_root_backup *root_backup;
1911 int last_backup;
1912
1913 next_backup = info->backup_root_index;
1914 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915 BTRFS_NUM_BACKUP_ROOTS;
1916
1917 /*
1918 * just overwrite the last backup if we're at the same generation
1919 * this happens only at umount
1920 */
1921 root_backup = info->super_for_commit->super_roots + last_backup;
1922 if (btrfs_backup_tree_root_gen(root_backup) ==
1923 btrfs_header_generation(info->tree_root->node))
1924 next_backup = last_backup;
1925
1926 root_backup = info->super_for_commit->super_roots + next_backup;
1927
1928 /*
1929 * make sure all of our padding and empty slots get zero filled
1930 * regardless of which ones we use today
1931 */
1932 memset(root_backup, 0, sizeof(*root_backup));
1933
1934 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935
1936 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937 btrfs_set_backup_tree_root_gen(root_backup,
1938 btrfs_header_generation(info->tree_root->node));
1939
1940 btrfs_set_backup_tree_root_level(root_backup,
1941 btrfs_header_level(info->tree_root->node));
1942
1943 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944 btrfs_set_backup_chunk_root_gen(root_backup,
1945 btrfs_header_generation(info->chunk_root->node));
1946 btrfs_set_backup_chunk_root_level(root_backup,
1947 btrfs_header_level(info->chunk_root->node));
1948
1949 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950 btrfs_set_backup_extent_root_gen(root_backup,
1951 btrfs_header_generation(info->extent_root->node));
1952 btrfs_set_backup_extent_root_level(root_backup,
1953 btrfs_header_level(info->extent_root->node));
1954
1955 /*
1956 * we might commit during log recovery, which happens before we set
1957 * the fs_root. Make sure it is valid before we fill it in.
1958 */
1959 if (info->fs_root && info->fs_root->node) {
1960 btrfs_set_backup_fs_root(root_backup,
1961 info->fs_root->node->start);
1962 btrfs_set_backup_fs_root_gen(root_backup,
1963 btrfs_header_generation(info->fs_root->node));
1964 btrfs_set_backup_fs_root_level(root_backup,
1965 btrfs_header_level(info->fs_root->node));
1966 }
1967
1968 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969 btrfs_set_backup_dev_root_gen(root_backup,
1970 btrfs_header_generation(info->dev_root->node));
1971 btrfs_set_backup_dev_root_level(root_backup,
1972 btrfs_header_level(info->dev_root->node));
1973
1974 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975 btrfs_set_backup_csum_root_gen(root_backup,
1976 btrfs_header_generation(info->csum_root->node));
1977 btrfs_set_backup_csum_root_level(root_backup,
1978 btrfs_header_level(info->csum_root->node));
1979
1980 btrfs_set_backup_total_bytes(root_backup,
1981 btrfs_super_total_bytes(info->super_copy));
1982 btrfs_set_backup_bytes_used(root_backup,
1983 btrfs_super_bytes_used(info->super_copy));
1984 btrfs_set_backup_num_devices(root_backup,
1985 btrfs_super_num_devices(info->super_copy));
1986
1987 /*
1988 * if we don't copy this out to the super_copy, it won't get remembered
1989 * for the next commit
1990 */
1991 memcpy(&info->super_copy->super_roots,
1992 &info->super_for_commit->super_roots,
1993 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994 }
1995
1996 /*
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block. It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
2001 *
2002 * this returns -1 when it has tried all the backups
2003 */
2004 static noinline int next_root_backup(struct btrfs_fs_info *info,
2005 struct btrfs_super_block *super,
2006 int *num_backups_tried, int *backup_index)
2007 {
2008 struct btrfs_root_backup *root_backup;
2009 int newest = *backup_index;
2010
2011 if (*num_backups_tried == 0) {
2012 u64 gen = btrfs_super_generation(super);
2013
2014 newest = find_newest_super_backup(info, gen);
2015 if (newest == -1)
2016 return -1;
2017
2018 *backup_index = newest;
2019 *num_backups_tried = 1;
2020 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021 /* we've tried all the backups, all done */
2022 return -1;
2023 } else {
2024 /* jump to the next oldest backup */
2025 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026 BTRFS_NUM_BACKUP_ROOTS;
2027 *backup_index = newest;
2028 *num_backups_tried += 1;
2029 }
2030 root_backup = super->super_roots + newest;
2031
2032 btrfs_set_super_generation(super,
2033 btrfs_backup_tree_root_gen(root_backup));
2034 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035 btrfs_set_super_root_level(super,
2036 btrfs_backup_tree_root_level(root_backup));
2037 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038
2039 /*
2040 * fixme: the total bytes and num_devices need to match or we should
2041 * need a fsck
2042 */
2043 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045 return 0;
2046 }
2047
2048 /* helper to cleanup workers */
2049 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050 {
2051 btrfs_destroy_workqueue(fs_info->fixup_workers);
2052 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053 btrfs_destroy_workqueue(fs_info->workers);
2054 btrfs_destroy_workqueue(fs_info->endio_workers);
2055 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057 btrfs_destroy_workqueue(fs_info->rmw_workers);
2058 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061 btrfs_destroy_workqueue(fs_info->submit_workers);
2062 btrfs_destroy_workqueue(fs_info->delayed_workers);
2063 btrfs_destroy_workqueue(fs_info->caching_workers);
2064 btrfs_destroy_workqueue(fs_info->readahead_workers);
2065 btrfs_destroy_workqueue(fs_info->flush_workers);
2066 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2067 }
2068
2069 static void free_root_extent_buffers(struct btrfs_root *root)
2070 {
2071 if (root) {
2072 free_extent_buffer(root->node);
2073 free_extent_buffer(root->commit_root);
2074 root->node = NULL;
2075 root->commit_root = NULL;
2076 }
2077 }
2078
2079 /* helper to cleanup tree roots */
2080 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081 {
2082 free_root_extent_buffers(info->tree_root);
2083
2084 free_root_extent_buffers(info->dev_root);
2085 free_root_extent_buffers(info->extent_root);
2086 free_root_extent_buffers(info->csum_root);
2087 free_root_extent_buffers(info->quota_root);
2088 free_root_extent_buffers(info->uuid_root);
2089 if (chunk_root)
2090 free_root_extent_buffers(info->chunk_root);
2091 }
2092
2093 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2094 {
2095 int ret;
2096 struct btrfs_root *gang[8];
2097 int i;
2098
2099 while (!list_empty(&fs_info->dead_roots)) {
2100 gang[0] = list_entry(fs_info->dead_roots.next,
2101 struct btrfs_root, root_list);
2102 list_del(&gang[0]->root_list);
2103
2104 if (gang[0]->in_radix) {
2105 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2106 } else {
2107 free_extent_buffer(gang[0]->node);
2108 free_extent_buffer(gang[0]->commit_root);
2109 btrfs_put_fs_root(gang[0]);
2110 }
2111 }
2112
2113 while (1) {
2114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115 (void **)gang, 0,
2116 ARRAY_SIZE(gang));
2117 if (!ret)
2118 break;
2119 for (i = 0; i < ret; i++)
2120 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2121 }
2122
2123 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124 btrfs_free_log_root_tree(NULL, fs_info);
2125 btrfs_destroy_pinned_extent(fs_info->tree_root,
2126 fs_info->pinned_extents);
2127 }
2128 }
2129
2130 int open_ctree(struct super_block *sb,
2131 struct btrfs_fs_devices *fs_devices,
2132 char *options)
2133 {
2134 u32 sectorsize;
2135 u32 nodesize;
2136 u32 leafsize;
2137 u32 blocksize;
2138 u32 stripesize;
2139 u64 generation;
2140 u64 features;
2141 struct btrfs_key location;
2142 struct buffer_head *bh;
2143 struct btrfs_super_block *disk_super;
2144 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145 struct btrfs_root *tree_root;
2146 struct btrfs_root *extent_root;
2147 struct btrfs_root *csum_root;
2148 struct btrfs_root *chunk_root;
2149 struct btrfs_root *dev_root;
2150 struct btrfs_root *quota_root;
2151 struct btrfs_root *uuid_root;
2152 struct btrfs_root *log_tree_root;
2153 int ret;
2154 int err = -EINVAL;
2155 int num_backups_tried = 0;
2156 int backup_index = 0;
2157 int max_active;
2158 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159 bool create_uuid_tree;
2160 bool check_uuid_tree;
2161
2162 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164 if (!tree_root || !chunk_root) {
2165 err = -ENOMEM;
2166 goto fail;
2167 }
2168
2169 ret = init_srcu_struct(&fs_info->subvol_srcu);
2170 if (ret) {
2171 err = ret;
2172 goto fail;
2173 }
2174
2175 ret = setup_bdi(fs_info, &fs_info->bdi);
2176 if (ret) {
2177 err = ret;
2178 goto fail_srcu;
2179 }
2180
2181 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182 if (ret) {
2183 err = ret;
2184 goto fail_bdi;
2185 }
2186 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187 (1 + ilog2(nr_cpu_ids));
2188
2189 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190 if (ret) {
2191 err = ret;
2192 goto fail_dirty_metadata_bytes;
2193 }
2194
2195 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196 if (ret) {
2197 err = ret;
2198 goto fail_delalloc_bytes;
2199 }
2200
2201 fs_info->btree_inode = new_inode(sb);
2202 if (!fs_info->btree_inode) {
2203 err = -ENOMEM;
2204 goto fail_bio_counter;
2205 }
2206
2207 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2208
2209 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211 INIT_LIST_HEAD(&fs_info->trans_list);
2212 INIT_LIST_HEAD(&fs_info->dead_roots);
2213 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216 spin_lock_init(&fs_info->delalloc_root_lock);
2217 spin_lock_init(&fs_info->trans_lock);
2218 spin_lock_init(&fs_info->fs_roots_radix_lock);
2219 spin_lock_init(&fs_info->delayed_iput_lock);
2220 spin_lock_init(&fs_info->defrag_inodes_lock);
2221 spin_lock_init(&fs_info->free_chunk_lock);
2222 spin_lock_init(&fs_info->tree_mod_seq_lock);
2223 spin_lock_init(&fs_info->super_lock);
2224 spin_lock_init(&fs_info->buffer_lock);
2225 rwlock_init(&fs_info->tree_mod_log_lock);
2226 mutex_init(&fs_info->reloc_mutex);
2227 mutex_init(&fs_info->delalloc_root_mutex);
2228 seqlock_init(&fs_info->profiles_lock);
2229
2230 init_completion(&fs_info->kobj_unregister);
2231 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232 INIT_LIST_HEAD(&fs_info->space_info);
2233 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234 btrfs_mapping_init(&fs_info->mapping_tree);
2235 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236 BTRFS_BLOCK_RSV_GLOBAL);
2237 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238 BTRFS_BLOCK_RSV_DELALLOC);
2239 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243 BTRFS_BLOCK_RSV_DELOPS);
2244 atomic_set(&fs_info->nr_async_submits, 0);
2245 atomic_set(&fs_info->async_delalloc_pages, 0);
2246 atomic_set(&fs_info->async_submit_draining, 0);
2247 atomic_set(&fs_info->nr_async_bios, 0);
2248 atomic_set(&fs_info->defrag_running, 0);
2249 atomic64_set(&fs_info->tree_mod_seq, 0);
2250 fs_info->sb = sb;
2251 fs_info->max_inline = 8192 * 1024;
2252 fs_info->metadata_ratio = 0;
2253 fs_info->defrag_inodes = RB_ROOT;
2254 fs_info->free_chunk_space = 0;
2255 fs_info->tree_mod_log = RB_ROOT;
2256 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258 /* readahead state */
2259 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260 spin_lock_init(&fs_info->reada_lock);
2261
2262 fs_info->thread_pool_size = min_t(unsigned long,
2263 num_online_cpus() + 2, 8);
2264
2265 INIT_LIST_HEAD(&fs_info->ordered_roots);
2266 spin_lock_init(&fs_info->ordered_root_lock);
2267 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268 GFP_NOFS);
2269 if (!fs_info->delayed_root) {
2270 err = -ENOMEM;
2271 goto fail_iput;
2272 }
2273 btrfs_init_delayed_root(fs_info->delayed_root);
2274
2275 mutex_init(&fs_info->scrub_lock);
2276 atomic_set(&fs_info->scrubs_running, 0);
2277 atomic_set(&fs_info->scrub_pause_req, 0);
2278 atomic_set(&fs_info->scrubs_paused, 0);
2279 atomic_set(&fs_info->scrub_cancel_req, 0);
2280 init_waitqueue_head(&fs_info->replace_wait);
2281 init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 fs_info->scrub_workers_refcnt = 0;
2283 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284 fs_info->check_integrity_print_mask = 0;
2285 #endif
2286
2287 spin_lock_init(&fs_info->balance_lock);
2288 mutex_init(&fs_info->balance_mutex);
2289 atomic_set(&fs_info->balance_running, 0);
2290 atomic_set(&fs_info->balance_pause_req, 0);
2291 atomic_set(&fs_info->balance_cancel_req, 0);
2292 fs_info->balance_ctl = NULL;
2293 init_waitqueue_head(&fs_info->balance_wait_q);
2294 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2295
2296 sb->s_blocksize = 4096;
2297 sb->s_blocksize_bits = blksize_bits(4096);
2298 sb->s_bdi = &fs_info->bdi;
2299
2300 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2301 set_nlink(fs_info->btree_inode, 1);
2302 /*
2303 * we set the i_size on the btree inode to the max possible int.
2304 * the real end of the address space is determined by all of
2305 * the devices in the system
2306 */
2307 fs_info->btree_inode->i_size = OFFSET_MAX;
2308 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2309 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2310
2311 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2312 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2313 fs_info->btree_inode->i_mapping);
2314 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2315 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2316
2317 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2318
2319 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2320 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2321 sizeof(struct btrfs_key));
2322 set_bit(BTRFS_INODE_DUMMY,
2323 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2324 btrfs_insert_inode_hash(fs_info->btree_inode);
2325
2326 spin_lock_init(&fs_info->block_group_cache_lock);
2327 fs_info->block_group_cache_tree = RB_ROOT;
2328 fs_info->first_logical_byte = (u64)-1;
2329
2330 extent_io_tree_init(&fs_info->freed_extents[0],
2331 fs_info->btree_inode->i_mapping);
2332 extent_io_tree_init(&fs_info->freed_extents[1],
2333 fs_info->btree_inode->i_mapping);
2334 fs_info->pinned_extents = &fs_info->freed_extents[0];
2335 fs_info->do_barriers = 1;
2336
2337
2338 mutex_init(&fs_info->ordered_operations_mutex);
2339 mutex_init(&fs_info->ordered_extent_flush_mutex);
2340 mutex_init(&fs_info->tree_log_mutex);
2341 mutex_init(&fs_info->chunk_mutex);
2342 mutex_init(&fs_info->transaction_kthread_mutex);
2343 mutex_init(&fs_info->cleaner_mutex);
2344 mutex_init(&fs_info->volume_mutex);
2345 init_rwsem(&fs_info->commit_root_sem);
2346 init_rwsem(&fs_info->cleanup_work_sem);
2347 init_rwsem(&fs_info->subvol_sem);
2348 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2349 fs_info->dev_replace.lock_owner = 0;
2350 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2351 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2352 mutex_init(&fs_info->dev_replace.lock_management_lock);
2353 mutex_init(&fs_info->dev_replace.lock);
2354
2355 spin_lock_init(&fs_info->qgroup_lock);
2356 mutex_init(&fs_info->qgroup_ioctl_lock);
2357 fs_info->qgroup_tree = RB_ROOT;
2358 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2359 fs_info->qgroup_seq = 1;
2360 fs_info->quota_enabled = 0;
2361 fs_info->pending_quota_state = 0;
2362 fs_info->qgroup_ulist = NULL;
2363 mutex_init(&fs_info->qgroup_rescan_lock);
2364
2365 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2366 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2367
2368 init_waitqueue_head(&fs_info->transaction_throttle);
2369 init_waitqueue_head(&fs_info->transaction_wait);
2370 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2371 init_waitqueue_head(&fs_info->async_submit_wait);
2372
2373 ret = btrfs_alloc_stripe_hash_table(fs_info);
2374 if (ret) {
2375 err = ret;
2376 goto fail_alloc;
2377 }
2378
2379 __setup_root(4096, 4096, 4096, 4096, tree_root,
2380 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2381
2382 invalidate_bdev(fs_devices->latest_bdev);
2383
2384 /*
2385 * Read super block and check the signature bytes only
2386 */
2387 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2388 if (!bh) {
2389 err = -EINVAL;
2390 goto fail_alloc;
2391 }
2392
2393 /*
2394 * We want to check superblock checksum, the type is stored inside.
2395 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2396 */
2397 if (btrfs_check_super_csum(bh->b_data)) {
2398 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2399 err = -EINVAL;
2400 goto fail_alloc;
2401 }
2402
2403 /*
2404 * super_copy is zeroed at allocation time and we never touch the
2405 * following bytes up to INFO_SIZE, the checksum is calculated from
2406 * the whole block of INFO_SIZE
2407 */
2408 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2409 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2410 sizeof(*fs_info->super_for_commit));
2411 brelse(bh);
2412
2413 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2414
2415 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2416 if (ret) {
2417 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2418 err = -EINVAL;
2419 goto fail_alloc;
2420 }
2421
2422 disk_super = fs_info->super_copy;
2423 if (!btrfs_super_root(disk_super))
2424 goto fail_alloc;
2425
2426 /* check FS state, whether FS is broken. */
2427 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2428 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2429
2430 /*
2431 * run through our array of backup supers and setup
2432 * our ring pointer to the oldest one
2433 */
2434 generation = btrfs_super_generation(disk_super);
2435 find_oldest_super_backup(fs_info, generation);
2436
2437 /*
2438 * In the long term, we'll store the compression type in the super
2439 * block, and it'll be used for per file compression control.
2440 */
2441 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2442
2443 ret = btrfs_parse_options(tree_root, options);
2444 if (ret) {
2445 err = ret;
2446 goto fail_alloc;
2447 }
2448
2449 features = btrfs_super_incompat_flags(disk_super) &
2450 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2451 if (features) {
2452 printk(KERN_ERR "BTRFS: couldn't mount because of "
2453 "unsupported optional features (%Lx).\n",
2454 features);
2455 err = -EINVAL;
2456 goto fail_alloc;
2457 }
2458
2459 if (btrfs_super_leafsize(disk_super) !=
2460 btrfs_super_nodesize(disk_super)) {
2461 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2462 "blocksizes don't match. node %d leaf %d\n",
2463 btrfs_super_nodesize(disk_super),
2464 btrfs_super_leafsize(disk_super));
2465 err = -EINVAL;
2466 goto fail_alloc;
2467 }
2468 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2469 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2470 "blocksize (%d) was too large\n",
2471 btrfs_super_leafsize(disk_super));
2472 err = -EINVAL;
2473 goto fail_alloc;
2474 }
2475
2476 features = btrfs_super_incompat_flags(disk_super);
2477 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2478 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2479 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2480
2481 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2482 printk(KERN_ERR "BTRFS: has skinny extents\n");
2483
2484 /*
2485 * flag our filesystem as having big metadata blocks if
2486 * they are bigger than the page size
2487 */
2488 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2489 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2490 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2491 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2492 }
2493
2494 nodesize = btrfs_super_nodesize(disk_super);
2495 leafsize = btrfs_super_leafsize(disk_super);
2496 sectorsize = btrfs_super_sectorsize(disk_super);
2497 stripesize = btrfs_super_stripesize(disk_super);
2498 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2499 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2500
2501 /*
2502 * mixed block groups end up with duplicate but slightly offset
2503 * extent buffers for the same range. It leads to corruptions
2504 */
2505 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2506 (sectorsize != leafsize)) {
2507 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2508 "are not allowed for mixed block groups on %s\n",
2509 sb->s_id);
2510 goto fail_alloc;
2511 }
2512
2513 /*
2514 * Needn't use the lock because there is no other task which will
2515 * update the flag.
2516 */
2517 btrfs_set_super_incompat_flags(disk_super, features);
2518
2519 features = btrfs_super_compat_ro_flags(disk_super) &
2520 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2521 if (!(sb->s_flags & MS_RDONLY) && features) {
2522 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2523 "unsupported option features (%Lx).\n",
2524 features);
2525 err = -EINVAL;
2526 goto fail_alloc;
2527 }
2528
2529 max_active = fs_info->thread_pool_size;
2530
2531 fs_info->workers =
2532 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2533 max_active, 16);
2534
2535 fs_info->delalloc_workers =
2536 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2537
2538 fs_info->flush_workers =
2539 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2540
2541 fs_info->caching_workers =
2542 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2543
2544 /*
2545 * a higher idle thresh on the submit workers makes it much more
2546 * likely that bios will be send down in a sane order to the
2547 * devices
2548 */
2549 fs_info->submit_workers =
2550 btrfs_alloc_workqueue("submit", flags,
2551 min_t(u64, fs_devices->num_devices,
2552 max_active), 64);
2553
2554 fs_info->fixup_workers =
2555 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2556
2557 /*
2558 * endios are largely parallel and should have a very
2559 * low idle thresh
2560 */
2561 fs_info->endio_workers =
2562 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2563 fs_info->endio_meta_workers =
2564 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2565 fs_info->endio_meta_write_workers =
2566 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2567 fs_info->endio_raid56_workers =
2568 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2569 fs_info->rmw_workers =
2570 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2571 fs_info->endio_write_workers =
2572 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2573 fs_info->endio_freespace_worker =
2574 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2575 fs_info->delayed_workers =
2576 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2577 fs_info->readahead_workers =
2578 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2579 fs_info->qgroup_rescan_workers =
2580 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2581
2582 if (!(fs_info->workers && fs_info->delalloc_workers &&
2583 fs_info->submit_workers && fs_info->flush_workers &&
2584 fs_info->endio_workers && fs_info->endio_meta_workers &&
2585 fs_info->endio_meta_write_workers &&
2586 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2587 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2588 fs_info->caching_workers && fs_info->readahead_workers &&
2589 fs_info->fixup_workers && fs_info->delayed_workers &&
2590 fs_info->qgroup_rescan_workers)) {
2591 err = -ENOMEM;
2592 goto fail_sb_buffer;
2593 }
2594
2595 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2596 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2597 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2598
2599 tree_root->nodesize = nodesize;
2600 tree_root->leafsize = leafsize;
2601 tree_root->sectorsize = sectorsize;
2602 tree_root->stripesize = stripesize;
2603
2604 sb->s_blocksize = sectorsize;
2605 sb->s_blocksize_bits = blksize_bits(sectorsize);
2606
2607 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2608 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2609 goto fail_sb_buffer;
2610 }
2611
2612 if (sectorsize != PAGE_SIZE) {
2613 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2614 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2615 goto fail_sb_buffer;
2616 }
2617
2618 mutex_lock(&fs_info->chunk_mutex);
2619 ret = btrfs_read_sys_array(tree_root);
2620 mutex_unlock(&fs_info->chunk_mutex);
2621 if (ret) {
2622 printk(KERN_WARNING "BTRFS: failed to read the system "
2623 "array on %s\n", sb->s_id);
2624 goto fail_sb_buffer;
2625 }
2626
2627 blocksize = btrfs_level_size(tree_root,
2628 btrfs_super_chunk_root_level(disk_super));
2629 generation = btrfs_super_chunk_root_generation(disk_super);
2630
2631 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2632 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2633
2634 chunk_root->node = read_tree_block(chunk_root,
2635 btrfs_super_chunk_root(disk_super),
2636 blocksize, generation);
2637 if (!chunk_root->node ||
2638 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2639 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2640 sb->s_id);
2641 goto fail_tree_roots;
2642 }
2643 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2644 chunk_root->commit_root = btrfs_root_node(chunk_root);
2645
2646 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2647 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2648
2649 ret = btrfs_read_chunk_tree(chunk_root);
2650 if (ret) {
2651 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2652 sb->s_id);
2653 goto fail_tree_roots;
2654 }
2655
2656 /*
2657 * keep the device that is marked to be the target device for the
2658 * dev_replace procedure
2659 */
2660 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2661
2662 if (!fs_devices->latest_bdev) {
2663 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2664 sb->s_id);
2665 goto fail_tree_roots;
2666 }
2667
2668 retry_root_backup:
2669 blocksize = btrfs_level_size(tree_root,
2670 btrfs_super_root_level(disk_super));
2671 generation = btrfs_super_generation(disk_super);
2672
2673 tree_root->node = read_tree_block(tree_root,
2674 btrfs_super_root(disk_super),
2675 blocksize, generation);
2676 if (!tree_root->node ||
2677 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2678 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2679 sb->s_id);
2680
2681 goto recovery_tree_root;
2682 }
2683
2684 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2685 tree_root->commit_root = btrfs_root_node(tree_root);
2686 btrfs_set_root_refs(&tree_root->root_item, 1);
2687
2688 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2689 location.type = BTRFS_ROOT_ITEM_KEY;
2690 location.offset = 0;
2691
2692 extent_root = btrfs_read_tree_root(tree_root, &location);
2693 if (IS_ERR(extent_root)) {
2694 ret = PTR_ERR(extent_root);
2695 goto recovery_tree_root;
2696 }
2697 extent_root->track_dirty = 1;
2698 fs_info->extent_root = extent_root;
2699
2700 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2701 dev_root = btrfs_read_tree_root(tree_root, &location);
2702 if (IS_ERR(dev_root)) {
2703 ret = PTR_ERR(dev_root);
2704 goto recovery_tree_root;
2705 }
2706 dev_root->track_dirty = 1;
2707 fs_info->dev_root = dev_root;
2708 btrfs_init_devices_late(fs_info);
2709
2710 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2711 csum_root = btrfs_read_tree_root(tree_root, &location);
2712 if (IS_ERR(csum_root)) {
2713 ret = PTR_ERR(csum_root);
2714 goto recovery_tree_root;
2715 }
2716 csum_root->track_dirty = 1;
2717 fs_info->csum_root = csum_root;
2718
2719 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2720 quota_root = btrfs_read_tree_root(tree_root, &location);
2721 if (!IS_ERR(quota_root)) {
2722 quota_root->track_dirty = 1;
2723 fs_info->quota_enabled = 1;
2724 fs_info->pending_quota_state = 1;
2725 fs_info->quota_root = quota_root;
2726 }
2727
2728 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2729 uuid_root = btrfs_read_tree_root(tree_root, &location);
2730 if (IS_ERR(uuid_root)) {
2731 ret = PTR_ERR(uuid_root);
2732 if (ret != -ENOENT)
2733 goto recovery_tree_root;
2734 create_uuid_tree = true;
2735 check_uuid_tree = false;
2736 } else {
2737 uuid_root->track_dirty = 1;
2738 fs_info->uuid_root = uuid_root;
2739 create_uuid_tree = false;
2740 check_uuid_tree =
2741 generation != btrfs_super_uuid_tree_generation(disk_super);
2742 }
2743
2744 fs_info->generation = generation;
2745 fs_info->last_trans_committed = generation;
2746
2747 ret = btrfs_recover_balance(fs_info);
2748 if (ret) {
2749 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2750 goto fail_block_groups;
2751 }
2752
2753 ret = btrfs_init_dev_stats(fs_info);
2754 if (ret) {
2755 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2756 ret);
2757 goto fail_block_groups;
2758 }
2759
2760 ret = btrfs_init_dev_replace(fs_info);
2761 if (ret) {
2762 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2763 goto fail_block_groups;
2764 }
2765
2766 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2767
2768 ret = btrfs_sysfs_add_one(fs_info);
2769 if (ret) {
2770 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2771 goto fail_block_groups;
2772 }
2773
2774 ret = btrfs_init_space_info(fs_info);
2775 if (ret) {
2776 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2777 goto fail_sysfs;
2778 }
2779
2780 ret = btrfs_read_block_groups(extent_root);
2781 if (ret) {
2782 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2783 goto fail_sysfs;
2784 }
2785 fs_info->num_tolerated_disk_barrier_failures =
2786 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2787 if (fs_info->fs_devices->missing_devices >
2788 fs_info->num_tolerated_disk_barrier_failures &&
2789 !(sb->s_flags & MS_RDONLY)) {
2790 printk(KERN_WARNING "BTRFS: "
2791 "too many missing devices, writeable mount is not allowed\n");
2792 goto fail_sysfs;
2793 }
2794
2795 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2796 "btrfs-cleaner");
2797 if (IS_ERR(fs_info->cleaner_kthread))
2798 goto fail_sysfs;
2799
2800 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2801 tree_root,
2802 "btrfs-transaction");
2803 if (IS_ERR(fs_info->transaction_kthread))
2804 goto fail_cleaner;
2805
2806 if (!btrfs_test_opt(tree_root, SSD) &&
2807 !btrfs_test_opt(tree_root, NOSSD) &&
2808 !fs_info->fs_devices->rotating) {
2809 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2810 "mode\n");
2811 btrfs_set_opt(fs_info->mount_opt, SSD);
2812 }
2813
2814 /* Set the real inode map cache flag */
2815 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2816 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2817
2818 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2819 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2820 ret = btrfsic_mount(tree_root, fs_devices,
2821 btrfs_test_opt(tree_root,
2822 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2823 1 : 0,
2824 fs_info->check_integrity_print_mask);
2825 if (ret)
2826 printk(KERN_WARNING "BTRFS: failed to initialize"
2827 " integrity check module %s\n", sb->s_id);
2828 }
2829 #endif
2830 ret = btrfs_read_qgroup_config(fs_info);
2831 if (ret)
2832 goto fail_trans_kthread;
2833
2834 /* do not make disk changes in broken FS */
2835 if (btrfs_super_log_root(disk_super) != 0) {
2836 u64 bytenr = btrfs_super_log_root(disk_super);
2837
2838 if (fs_devices->rw_devices == 0) {
2839 printk(KERN_WARNING "BTRFS: log replay required "
2840 "on RO media\n");
2841 err = -EIO;
2842 goto fail_qgroup;
2843 }
2844 blocksize =
2845 btrfs_level_size(tree_root,
2846 btrfs_super_log_root_level(disk_super));
2847
2848 log_tree_root = btrfs_alloc_root(fs_info);
2849 if (!log_tree_root) {
2850 err = -ENOMEM;
2851 goto fail_qgroup;
2852 }
2853
2854 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2855 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2856
2857 log_tree_root->node = read_tree_block(tree_root, bytenr,
2858 blocksize,
2859 generation + 1);
2860 if (!log_tree_root->node ||
2861 !extent_buffer_uptodate(log_tree_root->node)) {
2862 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2863 free_extent_buffer(log_tree_root->node);
2864 kfree(log_tree_root);
2865 goto fail_qgroup;
2866 }
2867 /* returns with log_tree_root freed on success */
2868 ret = btrfs_recover_log_trees(log_tree_root);
2869 if (ret) {
2870 btrfs_error(tree_root->fs_info, ret,
2871 "Failed to recover log tree");
2872 free_extent_buffer(log_tree_root->node);
2873 kfree(log_tree_root);
2874 goto fail_qgroup;
2875 }
2876
2877 if (sb->s_flags & MS_RDONLY) {
2878 ret = btrfs_commit_super(tree_root);
2879 if (ret)
2880 goto fail_qgroup;
2881 }
2882 }
2883
2884 ret = btrfs_find_orphan_roots(tree_root);
2885 if (ret)
2886 goto fail_qgroup;
2887
2888 if (!(sb->s_flags & MS_RDONLY)) {
2889 ret = btrfs_cleanup_fs_roots(fs_info);
2890 if (ret)
2891 goto fail_qgroup;
2892
2893 ret = btrfs_recover_relocation(tree_root);
2894 if (ret < 0) {
2895 printk(KERN_WARNING
2896 "BTRFS: failed to recover relocation\n");
2897 err = -EINVAL;
2898 goto fail_qgroup;
2899 }
2900 }
2901
2902 location.objectid = BTRFS_FS_TREE_OBJECTID;
2903 location.type = BTRFS_ROOT_ITEM_KEY;
2904 location.offset = 0;
2905
2906 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2907 if (IS_ERR(fs_info->fs_root)) {
2908 err = PTR_ERR(fs_info->fs_root);
2909 goto fail_qgroup;
2910 }
2911
2912 if (sb->s_flags & MS_RDONLY)
2913 return 0;
2914
2915 down_read(&fs_info->cleanup_work_sem);
2916 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2917 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2918 up_read(&fs_info->cleanup_work_sem);
2919 close_ctree(tree_root);
2920 return ret;
2921 }
2922 up_read(&fs_info->cleanup_work_sem);
2923
2924 ret = btrfs_resume_balance_async(fs_info);
2925 if (ret) {
2926 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2927 close_ctree(tree_root);
2928 return ret;
2929 }
2930
2931 ret = btrfs_resume_dev_replace_async(fs_info);
2932 if (ret) {
2933 pr_warn("BTRFS: failed to resume dev_replace\n");
2934 close_ctree(tree_root);
2935 return ret;
2936 }
2937
2938 btrfs_qgroup_rescan_resume(fs_info);
2939
2940 if (create_uuid_tree) {
2941 pr_info("BTRFS: creating UUID tree\n");
2942 ret = btrfs_create_uuid_tree(fs_info);
2943 if (ret) {
2944 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2945 ret);
2946 close_ctree(tree_root);
2947 return ret;
2948 }
2949 } else if (check_uuid_tree ||
2950 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2951 pr_info("BTRFS: checking UUID tree\n");
2952 ret = btrfs_check_uuid_tree(fs_info);
2953 if (ret) {
2954 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2955 ret);
2956 close_ctree(tree_root);
2957 return ret;
2958 }
2959 } else {
2960 fs_info->update_uuid_tree_gen = 1;
2961 }
2962
2963 return 0;
2964
2965 fail_qgroup:
2966 btrfs_free_qgroup_config(fs_info);
2967 fail_trans_kthread:
2968 kthread_stop(fs_info->transaction_kthread);
2969 btrfs_cleanup_transaction(fs_info->tree_root);
2970 del_fs_roots(fs_info);
2971 fail_cleaner:
2972 kthread_stop(fs_info->cleaner_kthread);
2973
2974 /*
2975 * make sure we're done with the btree inode before we stop our
2976 * kthreads
2977 */
2978 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2979
2980 fail_sysfs:
2981 btrfs_sysfs_remove_one(fs_info);
2982
2983 fail_block_groups:
2984 btrfs_put_block_group_cache(fs_info);
2985 btrfs_free_block_groups(fs_info);
2986
2987 fail_tree_roots:
2988 free_root_pointers(fs_info, 1);
2989 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2990
2991 fail_sb_buffer:
2992 btrfs_stop_all_workers(fs_info);
2993 fail_alloc:
2994 fail_iput:
2995 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2996
2997 iput(fs_info->btree_inode);
2998 fail_bio_counter:
2999 percpu_counter_destroy(&fs_info->bio_counter);
3000 fail_delalloc_bytes:
3001 percpu_counter_destroy(&fs_info->delalloc_bytes);
3002 fail_dirty_metadata_bytes:
3003 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3004 fail_bdi:
3005 bdi_destroy(&fs_info->bdi);
3006 fail_srcu:
3007 cleanup_srcu_struct(&fs_info->subvol_srcu);
3008 fail:
3009 btrfs_free_stripe_hash_table(fs_info);
3010 btrfs_close_devices(fs_info->fs_devices);
3011 return err;
3012
3013 recovery_tree_root:
3014 if (!btrfs_test_opt(tree_root, RECOVERY))
3015 goto fail_tree_roots;
3016
3017 free_root_pointers(fs_info, 0);
3018
3019 /* don't use the log in recovery mode, it won't be valid */
3020 btrfs_set_super_log_root(disk_super, 0);
3021
3022 /* we can't trust the free space cache either */
3023 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3024
3025 ret = next_root_backup(fs_info, fs_info->super_copy,
3026 &num_backups_tried, &backup_index);
3027 if (ret == -1)
3028 goto fail_block_groups;
3029 goto retry_root_backup;
3030 }
3031
3032 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3033 {
3034 if (uptodate) {
3035 set_buffer_uptodate(bh);
3036 } else {
3037 struct btrfs_device *device = (struct btrfs_device *)
3038 bh->b_private;
3039
3040 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3041 "I/O error on %s\n",
3042 rcu_str_deref(device->name));
3043 /* note, we dont' set_buffer_write_io_error because we have
3044 * our own ways of dealing with the IO errors
3045 */
3046 clear_buffer_uptodate(bh);
3047 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3048 }
3049 unlock_buffer(bh);
3050 put_bh(bh);
3051 }
3052
3053 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3054 {
3055 struct buffer_head *bh;
3056 struct buffer_head *latest = NULL;
3057 struct btrfs_super_block *super;
3058 int i;
3059 u64 transid = 0;
3060 u64 bytenr;
3061
3062 /* we would like to check all the supers, but that would make
3063 * a btrfs mount succeed after a mkfs from a different FS.
3064 * So, we need to add a special mount option to scan for
3065 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3066 */
3067 for (i = 0; i < 1; i++) {
3068 bytenr = btrfs_sb_offset(i);
3069 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3070 i_size_read(bdev->bd_inode))
3071 break;
3072 bh = __bread(bdev, bytenr / 4096,
3073 BTRFS_SUPER_INFO_SIZE);
3074 if (!bh)
3075 continue;
3076
3077 super = (struct btrfs_super_block *)bh->b_data;
3078 if (btrfs_super_bytenr(super) != bytenr ||
3079 btrfs_super_magic(super) != BTRFS_MAGIC) {
3080 brelse(bh);
3081 continue;
3082 }
3083
3084 if (!latest || btrfs_super_generation(super) > transid) {
3085 brelse(latest);
3086 latest = bh;
3087 transid = btrfs_super_generation(super);
3088 } else {
3089 brelse(bh);
3090 }
3091 }
3092 return latest;
3093 }
3094
3095 /*
3096 * this should be called twice, once with wait == 0 and
3097 * once with wait == 1. When wait == 0 is done, all the buffer heads
3098 * we write are pinned.
3099 *
3100 * They are released when wait == 1 is done.
3101 * max_mirrors must be the same for both runs, and it indicates how
3102 * many supers on this one device should be written.
3103 *
3104 * max_mirrors == 0 means to write them all.
3105 */
3106 static int write_dev_supers(struct btrfs_device *device,
3107 struct btrfs_super_block *sb,
3108 int do_barriers, int wait, int max_mirrors)
3109 {
3110 struct buffer_head *bh;
3111 int i;
3112 int ret;
3113 int errors = 0;
3114 u32 crc;
3115 u64 bytenr;
3116
3117 if (max_mirrors == 0)
3118 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3119
3120 for (i = 0; i < max_mirrors; i++) {
3121 bytenr = btrfs_sb_offset(i);
3122 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3123 break;
3124
3125 if (wait) {
3126 bh = __find_get_block(device->bdev, bytenr / 4096,
3127 BTRFS_SUPER_INFO_SIZE);
3128 if (!bh) {
3129 errors++;
3130 continue;
3131 }
3132 wait_on_buffer(bh);
3133 if (!buffer_uptodate(bh))
3134 errors++;
3135
3136 /* drop our reference */
3137 brelse(bh);
3138
3139 /* drop the reference from the wait == 0 run */
3140 brelse(bh);
3141 continue;
3142 } else {
3143 btrfs_set_super_bytenr(sb, bytenr);
3144
3145 crc = ~(u32)0;
3146 crc = btrfs_csum_data((char *)sb +
3147 BTRFS_CSUM_SIZE, crc,
3148 BTRFS_SUPER_INFO_SIZE -
3149 BTRFS_CSUM_SIZE);
3150 btrfs_csum_final(crc, sb->csum);
3151
3152 /*
3153 * one reference for us, and we leave it for the
3154 * caller
3155 */
3156 bh = __getblk(device->bdev, bytenr / 4096,
3157 BTRFS_SUPER_INFO_SIZE);
3158 if (!bh) {
3159 printk(KERN_ERR "BTRFS: couldn't get super "
3160 "buffer head for bytenr %Lu\n", bytenr);
3161 errors++;
3162 continue;
3163 }
3164
3165 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3166
3167 /* one reference for submit_bh */
3168 get_bh(bh);
3169
3170 set_buffer_uptodate(bh);
3171 lock_buffer(bh);
3172 bh->b_end_io = btrfs_end_buffer_write_sync;
3173 bh->b_private = device;
3174 }
3175
3176 /*
3177 * we fua the first super. The others we allow
3178 * to go down lazy.
3179 */
3180 if (i == 0)
3181 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3182 else
3183 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3184 if (ret)
3185 errors++;
3186 }
3187 return errors < i ? 0 : -1;
3188 }
3189
3190 /*
3191 * endio for the write_dev_flush, this will wake anyone waiting
3192 * for the barrier when it is done
3193 */
3194 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3195 {
3196 if (err) {
3197 if (err == -EOPNOTSUPP)
3198 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3199 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3200 }
3201 if (bio->bi_private)
3202 complete(bio->bi_private);
3203 bio_put(bio);
3204 }
3205
3206 /*
3207 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3208 * sent down. With wait == 1, it waits for the previous flush.
3209 *
3210 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3211 * capable
3212 */
3213 static int write_dev_flush(struct btrfs_device *device, int wait)
3214 {
3215 struct bio *bio;
3216 int ret = 0;
3217
3218 if (device->nobarriers)
3219 return 0;
3220
3221 if (wait) {
3222 bio = device->flush_bio;
3223 if (!bio)
3224 return 0;
3225
3226 wait_for_completion(&device->flush_wait);
3227
3228 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3229 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3230 rcu_str_deref(device->name));
3231 device->nobarriers = 1;
3232 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3233 ret = -EIO;
3234 btrfs_dev_stat_inc_and_print(device,
3235 BTRFS_DEV_STAT_FLUSH_ERRS);
3236 }
3237
3238 /* drop the reference from the wait == 0 run */
3239 bio_put(bio);
3240 device->flush_bio = NULL;
3241
3242 return ret;
3243 }
3244
3245 /*
3246 * one reference for us, and we leave it for the
3247 * caller
3248 */
3249 device->flush_bio = NULL;
3250 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3251 if (!bio)
3252 return -ENOMEM;
3253
3254 bio->bi_end_io = btrfs_end_empty_barrier;
3255 bio->bi_bdev = device->bdev;
3256 init_completion(&device->flush_wait);
3257 bio->bi_private = &device->flush_wait;
3258 device->flush_bio = bio;
3259
3260 bio_get(bio);
3261 btrfsic_submit_bio(WRITE_FLUSH, bio);
3262
3263 return 0;
3264 }
3265
3266 /*
3267 * send an empty flush down to each device in parallel,
3268 * then wait for them
3269 */
3270 static int barrier_all_devices(struct btrfs_fs_info *info)
3271 {
3272 struct list_head *head;
3273 struct btrfs_device *dev;
3274 int errors_send = 0;
3275 int errors_wait = 0;
3276 int ret;
3277
3278 /* send down all the barriers */
3279 head = &info->fs_devices->devices;
3280 list_for_each_entry_rcu(dev, head, dev_list) {
3281 if (dev->missing)
3282 continue;
3283 if (!dev->bdev) {
3284 errors_send++;
3285 continue;
3286 }
3287 if (!dev->in_fs_metadata || !dev->writeable)
3288 continue;
3289
3290 ret = write_dev_flush(dev, 0);
3291 if (ret)
3292 errors_send++;
3293 }
3294
3295 /* wait for all the barriers */
3296 list_for_each_entry_rcu(dev, head, dev_list) {
3297 if (dev->missing)
3298 continue;
3299 if (!dev->bdev) {
3300 errors_wait++;
3301 continue;
3302 }
3303 if (!dev->in_fs_metadata || !dev->writeable)
3304 continue;
3305
3306 ret = write_dev_flush(dev, 1);
3307 if (ret)
3308 errors_wait++;
3309 }
3310 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3311 errors_wait > info->num_tolerated_disk_barrier_failures)
3312 return -EIO;
3313 return 0;
3314 }
3315
3316 int btrfs_calc_num_tolerated_disk_barrier_failures(
3317 struct btrfs_fs_info *fs_info)
3318 {
3319 struct btrfs_ioctl_space_info space;
3320 struct btrfs_space_info *sinfo;
3321 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3322 BTRFS_BLOCK_GROUP_SYSTEM,
3323 BTRFS_BLOCK_GROUP_METADATA,
3324 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3325 int num_types = 4;
3326 int i;
3327 int c;
3328 int num_tolerated_disk_barrier_failures =
3329 (int)fs_info->fs_devices->num_devices;
3330
3331 for (i = 0; i < num_types; i++) {
3332 struct btrfs_space_info *tmp;
3333
3334 sinfo = NULL;
3335 rcu_read_lock();
3336 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3337 if (tmp->flags == types[i]) {
3338 sinfo = tmp;
3339 break;
3340 }
3341 }
3342 rcu_read_unlock();
3343
3344 if (!sinfo)
3345 continue;
3346
3347 down_read(&sinfo->groups_sem);
3348 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3349 if (!list_empty(&sinfo->block_groups[c])) {
3350 u64 flags;
3351
3352 btrfs_get_block_group_info(
3353 &sinfo->block_groups[c], &space);
3354 if (space.total_bytes == 0 ||
3355 space.used_bytes == 0)
3356 continue;
3357 flags = space.flags;
3358 /*
3359 * return
3360 * 0: if dup, single or RAID0 is configured for
3361 * any of metadata, system or data, else
3362 * 1: if RAID5 is configured, or if RAID1 or
3363 * RAID10 is configured and only two mirrors
3364 * are used, else
3365 * 2: if RAID6 is configured, else
3366 * num_mirrors - 1: if RAID1 or RAID10 is
3367 * configured and more than
3368 * 2 mirrors are used.
3369 */
3370 if (num_tolerated_disk_barrier_failures > 0 &&
3371 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3372 BTRFS_BLOCK_GROUP_RAID0)) ||
3373 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3374 == 0)))
3375 num_tolerated_disk_barrier_failures = 0;
3376 else if (num_tolerated_disk_barrier_failures > 1) {
3377 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3378 BTRFS_BLOCK_GROUP_RAID5 |
3379 BTRFS_BLOCK_GROUP_RAID10)) {
3380 num_tolerated_disk_barrier_failures = 1;
3381 } else if (flags &
3382 BTRFS_BLOCK_GROUP_RAID6) {
3383 num_tolerated_disk_barrier_failures = 2;
3384 }
3385 }
3386 }
3387 }
3388 up_read(&sinfo->groups_sem);
3389 }
3390
3391 return num_tolerated_disk_barrier_failures;
3392 }
3393
3394 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3395 {
3396 struct list_head *head;
3397 struct btrfs_device *dev;
3398 struct btrfs_super_block *sb;
3399 struct btrfs_dev_item *dev_item;
3400 int ret;
3401 int do_barriers;
3402 int max_errors;
3403 int total_errors = 0;
3404 u64 flags;
3405
3406 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3407 backup_super_roots(root->fs_info);
3408
3409 sb = root->fs_info->super_for_commit;
3410 dev_item = &sb->dev_item;
3411
3412 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3413 head = &root->fs_info->fs_devices->devices;
3414 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3415
3416 if (do_barriers) {
3417 ret = barrier_all_devices(root->fs_info);
3418 if (ret) {
3419 mutex_unlock(
3420 &root->fs_info->fs_devices->device_list_mutex);
3421 btrfs_error(root->fs_info, ret,
3422 "errors while submitting device barriers.");
3423 return ret;
3424 }
3425 }
3426
3427 list_for_each_entry_rcu(dev, head, dev_list) {
3428 if (!dev->bdev) {
3429 total_errors++;
3430 continue;
3431 }
3432 if (!dev->in_fs_metadata || !dev->writeable)
3433 continue;
3434
3435 btrfs_set_stack_device_generation(dev_item, 0);
3436 btrfs_set_stack_device_type(dev_item, dev->type);
3437 btrfs_set_stack_device_id(dev_item, dev->devid);
3438 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3439 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3440 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3441 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3442 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3443 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3444 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3445
3446 flags = btrfs_super_flags(sb);
3447 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3448
3449 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3450 if (ret)
3451 total_errors++;
3452 }
3453 if (total_errors > max_errors) {
3454 btrfs_err(root->fs_info, "%d errors while writing supers",
3455 total_errors);
3456 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3457
3458 /* FUA is masked off if unsupported and can't be the reason */
3459 btrfs_error(root->fs_info, -EIO,
3460 "%d errors while writing supers", total_errors);
3461 return -EIO;
3462 }
3463
3464 total_errors = 0;
3465 list_for_each_entry_rcu(dev, head, dev_list) {
3466 if (!dev->bdev)
3467 continue;
3468 if (!dev->in_fs_metadata || !dev->writeable)
3469 continue;
3470
3471 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3472 if (ret)
3473 total_errors++;
3474 }
3475 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3476 if (total_errors > max_errors) {
3477 btrfs_error(root->fs_info, -EIO,
3478 "%d errors while writing supers", total_errors);
3479 return -EIO;
3480 }
3481 return 0;
3482 }
3483
3484 int write_ctree_super(struct btrfs_trans_handle *trans,
3485 struct btrfs_root *root, int max_mirrors)
3486 {
3487 return write_all_supers(root, max_mirrors);
3488 }
3489
3490 /* Drop a fs root from the radix tree and free it. */
3491 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3492 struct btrfs_root *root)
3493 {
3494 spin_lock(&fs_info->fs_roots_radix_lock);
3495 radix_tree_delete(&fs_info->fs_roots_radix,
3496 (unsigned long)root->root_key.objectid);
3497 spin_unlock(&fs_info->fs_roots_radix_lock);
3498
3499 if (btrfs_root_refs(&root->root_item) == 0)
3500 synchronize_srcu(&fs_info->subvol_srcu);
3501
3502 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3503 btrfs_free_log(NULL, root);
3504
3505 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3506 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3507 free_fs_root(root);
3508 }
3509
3510 static void free_fs_root(struct btrfs_root *root)
3511 {
3512 iput(root->cache_inode);
3513 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3514 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3515 root->orphan_block_rsv = NULL;
3516 if (root->anon_dev)
3517 free_anon_bdev(root->anon_dev);
3518 if (root->subv_writers)
3519 btrfs_free_subvolume_writers(root->subv_writers);
3520 free_extent_buffer(root->node);
3521 free_extent_buffer(root->commit_root);
3522 kfree(root->free_ino_ctl);
3523 kfree(root->free_ino_pinned);
3524 kfree(root->name);
3525 btrfs_put_fs_root(root);
3526 }
3527
3528 void btrfs_free_fs_root(struct btrfs_root *root)
3529 {
3530 free_fs_root(root);
3531 }
3532
3533 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3534 {
3535 u64 root_objectid = 0;
3536 struct btrfs_root *gang[8];
3537 int i;
3538 int ret;
3539
3540 while (1) {
3541 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3542 (void **)gang, root_objectid,
3543 ARRAY_SIZE(gang));
3544 if (!ret)
3545 break;
3546
3547 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3548 for (i = 0; i < ret; i++) {
3549 int err;
3550
3551 root_objectid = gang[i]->root_key.objectid;
3552 err = btrfs_orphan_cleanup(gang[i]);
3553 if (err)
3554 return err;
3555 }
3556 root_objectid++;
3557 }
3558 return 0;
3559 }
3560
3561 int btrfs_commit_super(struct btrfs_root *root)
3562 {
3563 struct btrfs_trans_handle *trans;
3564
3565 mutex_lock(&root->fs_info->cleaner_mutex);
3566 btrfs_run_delayed_iputs(root);
3567 mutex_unlock(&root->fs_info->cleaner_mutex);
3568 wake_up_process(root->fs_info->cleaner_kthread);
3569
3570 /* wait until ongoing cleanup work done */
3571 down_write(&root->fs_info->cleanup_work_sem);
3572 up_write(&root->fs_info->cleanup_work_sem);
3573
3574 trans = btrfs_join_transaction(root);
3575 if (IS_ERR(trans))
3576 return PTR_ERR(trans);
3577 return btrfs_commit_transaction(trans, root);
3578 }
3579
3580 int close_ctree(struct btrfs_root *root)
3581 {
3582 struct btrfs_fs_info *fs_info = root->fs_info;
3583 int ret;
3584
3585 fs_info->closing = 1;
3586 smp_mb();
3587
3588 /* wait for the uuid_scan task to finish */
3589 down(&fs_info->uuid_tree_rescan_sem);
3590 /* avoid complains from lockdep et al., set sem back to initial state */
3591 up(&fs_info->uuid_tree_rescan_sem);
3592
3593 /* pause restriper - we want to resume on mount */
3594 btrfs_pause_balance(fs_info);
3595
3596 btrfs_dev_replace_suspend_for_unmount(fs_info);
3597
3598 btrfs_scrub_cancel(fs_info);
3599
3600 /* wait for any defraggers to finish */
3601 wait_event(fs_info->transaction_wait,
3602 (atomic_read(&fs_info->defrag_running) == 0));
3603
3604 /* clear out the rbtree of defraggable inodes */
3605 btrfs_cleanup_defrag_inodes(fs_info);
3606
3607 cancel_work_sync(&fs_info->async_reclaim_work);
3608
3609 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3610 ret = btrfs_commit_super(root);
3611 if (ret)
3612 btrfs_err(root->fs_info, "commit super ret %d", ret);
3613 }
3614
3615 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3616 btrfs_error_commit_super(root);
3617
3618 kthread_stop(fs_info->transaction_kthread);
3619 kthread_stop(fs_info->cleaner_kthread);
3620
3621 fs_info->closing = 2;
3622 smp_mb();
3623
3624 btrfs_free_qgroup_config(root->fs_info);
3625
3626 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3627 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3628 percpu_counter_sum(&fs_info->delalloc_bytes));
3629 }
3630
3631 btrfs_sysfs_remove_one(fs_info);
3632
3633 del_fs_roots(fs_info);
3634
3635 btrfs_put_block_group_cache(fs_info);
3636
3637 btrfs_free_block_groups(fs_info);
3638
3639 btrfs_stop_all_workers(fs_info);
3640
3641 free_root_pointers(fs_info, 1);
3642
3643 iput(fs_info->btree_inode);
3644
3645 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3646 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3647 btrfsic_unmount(root, fs_info->fs_devices);
3648 #endif
3649
3650 btrfs_close_devices(fs_info->fs_devices);
3651 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3652
3653 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3654 percpu_counter_destroy(&fs_info->delalloc_bytes);
3655 percpu_counter_destroy(&fs_info->bio_counter);
3656 bdi_destroy(&fs_info->bdi);
3657 cleanup_srcu_struct(&fs_info->subvol_srcu);
3658
3659 btrfs_free_stripe_hash_table(fs_info);
3660
3661 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3662 root->orphan_block_rsv = NULL;
3663
3664 return 0;
3665 }
3666
3667 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3668 int atomic)
3669 {
3670 int ret;
3671 struct inode *btree_inode = buf->pages[0]->mapping->host;
3672
3673 ret = extent_buffer_uptodate(buf);
3674 if (!ret)
3675 return ret;
3676
3677 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3678 parent_transid, atomic);
3679 if (ret == -EAGAIN)
3680 return ret;
3681 return !ret;
3682 }
3683
3684 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3685 {
3686 return set_extent_buffer_uptodate(buf);
3687 }
3688
3689 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3690 {
3691 struct btrfs_root *root;
3692 u64 transid = btrfs_header_generation(buf);
3693 int was_dirty;
3694
3695 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3696 /*
3697 * This is a fast path so only do this check if we have sanity tests
3698 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3699 * outside of the sanity tests.
3700 */
3701 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3702 return;
3703 #endif
3704 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3705 btrfs_assert_tree_locked(buf);
3706 if (transid != root->fs_info->generation)
3707 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3708 "found %llu running %llu\n",
3709 buf->start, transid, root->fs_info->generation);
3710 was_dirty = set_extent_buffer_dirty(buf);
3711 if (!was_dirty)
3712 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3713 buf->len,
3714 root->fs_info->dirty_metadata_batch);
3715 }
3716
3717 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3718 int flush_delayed)
3719 {
3720 /*
3721 * looks as though older kernels can get into trouble with
3722 * this code, they end up stuck in balance_dirty_pages forever
3723 */
3724 int ret;
3725
3726 if (current->flags & PF_MEMALLOC)
3727 return;
3728
3729 if (flush_delayed)
3730 btrfs_balance_delayed_items(root);
3731
3732 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3733 BTRFS_DIRTY_METADATA_THRESH);
3734 if (ret > 0) {
3735 balance_dirty_pages_ratelimited(
3736 root->fs_info->btree_inode->i_mapping);
3737 }
3738 return;
3739 }
3740
3741 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3742 {
3743 __btrfs_btree_balance_dirty(root, 1);
3744 }
3745
3746 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3747 {
3748 __btrfs_btree_balance_dirty(root, 0);
3749 }
3750
3751 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3752 {
3753 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3754 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3755 }
3756
3757 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3758 int read_only)
3759 {
3760 /*
3761 * Placeholder for checks
3762 */
3763 return 0;
3764 }
3765
3766 static void btrfs_error_commit_super(struct btrfs_root *root)
3767 {
3768 mutex_lock(&root->fs_info->cleaner_mutex);
3769 btrfs_run_delayed_iputs(root);
3770 mutex_unlock(&root->fs_info->cleaner_mutex);
3771
3772 down_write(&root->fs_info->cleanup_work_sem);
3773 up_write(&root->fs_info->cleanup_work_sem);
3774
3775 /* cleanup FS via transaction */
3776 btrfs_cleanup_transaction(root);
3777 }
3778
3779 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3780 struct btrfs_root *root)
3781 {
3782 struct btrfs_inode *btrfs_inode;
3783 struct list_head splice;
3784
3785 INIT_LIST_HEAD(&splice);
3786
3787 mutex_lock(&root->fs_info->ordered_operations_mutex);
3788 spin_lock(&root->fs_info->ordered_root_lock);
3789
3790 list_splice_init(&t->ordered_operations, &splice);
3791 while (!list_empty(&splice)) {
3792 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3793 ordered_operations);
3794
3795 list_del_init(&btrfs_inode->ordered_operations);
3796 spin_unlock(&root->fs_info->ordered_root_lock);
3797
3798 btrfs_invalidate_inodes(btrfs_inode->root);
3799
3800 spin_lock(&root->fs_info->ordered_root_lock);
3801 }
3802
3803 spin_unlock(&root->fs_info->ordered_root_lock);
3804 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3805 }
3806
3807 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3808 {
3809 struct btrfs_ordered_extent *ordered;
3810
3811 spin_lock(&root->ordered_extent_lock);
3812 /*
3813 * This will just short circuit the ordered completion stuff which will
3814 * make sure the ordered extent gets properly cleaned up.
3815 */
3816 list_for_each_entry(ordered, &root->ordered_extents,
3817 root_extent_list)
3818 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3819 spin_unlock(&root->ordered_extent_lock);
3820 }
3821
3822 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3823 {
3824 struct btrfs_root *root;
3825 struct list_head splice;
3826
3827 INIT_LIST_HEAD(&splice);
3828
3829 spin_lock(&fs_info->ordered_root_lock);
3830 list_splice_init(&fs_info->ordered_roots, &splice);
3831 while (!list_empty(&splice)) {
3832 root = list_first_entry(&splice, struct btrfs_root,
3833 ordered_root);
3834 list_move_tail(&root->ordered_root,
3835 &fs_info->ordered_roots);
3836
3837 spin_unlock(&fs_info->ordered_root_lock);
3838 btrfs_destroy_ordered_extents(root);
3839
3840 cond_resched();
3841 spin_lock(&fs_info->ordered_root_lock);
3842 }
3843 spin_unlock(&fs_info->ordered_root_lock);
3844 }
3845
3846 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3847 struct btrfs_root *root)
3848 {
3849 struct rb_node *node;
3850 struct btrfs_delayed_ref_root *delayed_refs;
3851 struct btrfs_delayed_ref_node *ref;
3852 int ret = 0;
3853
3854 delayed_refs = &trans->delayed_refs;
3855
3856 spin_lock(&delayed_refs->lock);
3857 if (atomic_read(&delayed_refs->num_entries) == 0) {
3858 spin_unlock(&delayed_refs->lock);
3859 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3860 return ret;
3861 }
3862
3863 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3864 struct btrfs_delayed_ref_head *head;
3865 bool pin_bytes = false;
3866
3867 head = rb_entry(node, struct btrfs_delayed_ref_head,
3868 href_node);
3869 if (!mutex_trylock(&head->mutex)) {
3870 atomic_inc(&head->node.refs);
3871 spin_unlock(&delayed_refs->lock);
3872
3873 mutex_lock(&head->mutex);
3874 mutex_unlock(&head->mutex);
3875 btrfs_put_delayed_ref(&head->node);
3876 spin_lock(&delayed_refs->lock);
3877 continue;
3878 }
3879 spin_lock(&head->lock);
3880 while ((node = rb_first(&head->ref_root)) != NULL) {
3881 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3882 rb_node);
3883 ref->in_tree = 0;
3884 rb_erase(&ref->rb_node, &head->ref_root);
3885 atomic_dec(&delayed_refs->num_entries);
3886 btrfs_put_delayed_ref(ref);
3887 }
3888 if (head->must_insert_reserved)
3889 pin_bytes = true;
3890 btrfs_free_delayed_extent_op(head->extent_op);
3891 delayed_refs->num_heads--;
3892 if (head->processing == 0)
3893 delayed_refs->num_heads_ready--;
3894 atomic_dec(&delayed_refs->num_entries);
3895 head->node.in_tree = 0;
3896 rb_erase(&head->href_node, &delayed_refs->href_root);
3897 spin_unlock(&head->lock);
3898 spin_unlock(&delayed_refs->lock);
3899 mutex_unlock(&head->mutex);
3900
3901 if (pin_bytes)
3902 btrfs_pin_extent(root, head->node.bytenr,
3903 head->node.num_bytes, 1);
3904 btrfs_put_delayed_ref(&head->node);
3905 cond_resched();
3906 spin_lock(&delayed_refs->lock);
3907 }
3908
3909 spin_unlock(&delayed_refs->lock);
3910
3911 return ret;
3912 }
3913
3914 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3915 {
3916 struct btrfs_inode *btrfs_inode;
3917 struct list_head splice;
3918
3919 INIT_LIST_HEAD(&splice);
3920
3921 spin_lock(&root->delalloc_lock);
3922 list_splice_init(&root->delalloc_inodes, &splice);
3923
3924 while (!list_empty(&splice)) {
3925 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3926 delalloc_inodes);
3927
3928 list_del_init(&btrfs_inode->delalloc_inodes);
3929 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3930 &btrfs_inode->runtime_flags);
3931 spin_unlock(&root->delalloc_lock);
3932
3933 btrfs_invalidate_inodes(btrfs_inode->root);
3934
3935 spin_lock(&root->delalloc_lock);
3936 }
3937
3938 spin_unlock(&root->delalloc_lock);
3939 }
3940
3941 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3942 {
3943 struct btrfs_root *root;
3944 struct list_head splice;
3945
3946 INIT_LIST_HEAD(&splice);
3947
3948 spin_lock(&fs_info->delalloc_root_lock);
3949 list_splice_init(&fs_info->delalloc_roots, &splice);
3950 while (!list_empty(&splice)) {
3951 root = list_first_entry(&splice, struct btrfs_root,
3952 delalloc_root);
3953 list_del_init(&root->delalloc_root);
3954 root = btrfs_grab_fs_root(root);
3955 BUG_ON(!root);
3956 spin_unlock(&fs_info->delalloc_root_lock);
3957
3958 btrfs_destroy_delalloc_inodes(root);
3959 btrfs_put_fs_root(root);
3960
3961 spin_lock(&fs_info->delalloc_root_lock);
3962 }
3963 spin_unlock(&fs_info->delalloc_root_lock);
3964 }
3965
3966 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3967 struct extent_io_tree *dirty_pages,
3968 int mark)
3969 {
3970 int ret;
3971 struct extent_buffer *eb;
3972 u64 start = 0;
3973 u64 end;
3974
3975 while (1) {
3976 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3977 mark, NULL);
3978 if (ret)
3979 break;
3980
3981 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3982 while (start <= end) {
3983 eb = btrfs_find_tree_block(root, start,
3984 root->leafsize);
3985 start += root->leafsize;
3986 if (!eb)
3987 continue;
3988 wait_on_extent_buffer_writeback(eb);
3989
3990 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3991 &eb->bflags))
3992 clear_extent_buffer_dirty(eb);
3993 free_extent_buffer_stale(eb);
3994 }
3995 }
3996
3997 return ret;
3998 }
3999
4000 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4001 struct extent_io_tree *pinned_extents)
4002 {
4003 struct extent_io_tree *unpin;
4004 u64 start;
4005 u64 end;
4006 int ret;
4007 bool loop = true;
4008
4009 unpin = pinned_extents;
4010 again:
4011 while (1) {
4012 ret = find_first_extent_bit(unpin, 0, &start, &end,
4013 EXTENT_DIRTY, NULL);
4014 if (ret)
4015 break;
4016
4017 /* opt_discard */
4018 if (btrfs_test_opt(root, DISCARD))
4019 ret = btrfs_error_discard_extent(root, start,
4020 end + 1 - start,
4021 NULL);
4022
4023 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4024 btrfs_error_unpin_extent_range(root, start, end);
4025 cond_resched();
4026 }
4027
4028 if (loop) {
4029 if (unpin == &root->fs_info->freed_extents[0])
4030 unpin = &root->fs_info->freed_extents[1];
4031 else
4032 unpin = &root->fs_info->freed_extents[0];
4033 loop = false;
4034 goto again;
4035 }
4036
4037 return 0;
4038 }
4039
4040 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4041 struct btrfs_root *root)
4042 {
4043 btrfs_destroy_ordered_operations(cur_trans, root);
4044
4045 btrfs_destroy_delayed_refs(cur_trans, root);
4046
4047 cur_trans->state = TRANS_STATE_COMMIT_START;
4048 wake_up(&root->fs_info->transaction_blocked_wait);
4049
4050 cur_trans->state = TRANS_STATE_UNBLOCKED;
4051 wake_up(&root->fs_info->transaction_wait);
4052
4053 btrfs_destroy_delayed_inodes(root);
4054 btrfs_assert_delayed_root_empty(root);
4055
4056 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4057 EXTENT_DIRTY);
4058 btrfs_destroy_pinned_extent(root,
4059 root->fs_info->pinned_extents);
4060
4061 cur_trans->state =TRANS_STATE_COMPLETED;
4062 wake_up(&cur_trans->commit_wait);
4063
4064 /*
4065 memset(cur_trans, 0, sizeof(*cur_trans));
4066 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4067 */
4068 }
4069
4070 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4071 {
4072 struct btrfs_transaction *t;
4073
4074 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4075
4076 spin_lock(&root->fs_info->trans_lock);
4077 while (!list_empty(&root->fs_info->trans_list)) {
4078 t = list_first_entry(&root->fs_info->trans_list,
4079 struct btrfs_transaction, list);
4080 if (t->state >= TRANS_STATE_COMMIT_START) {
4081 atomic_inc(&t->use_count);
4082 spin_unlock(&root->fs_info->trans_lock);
4083 btrfs_wait_for_commit(root, t->transid);
4084 btrfs_put_transaction(t);
4085 spin_lock(&root->fs_info->trans_lock);
4086 continue;
4087 }
4088 if (t == root->fs_info->running_transaction) {
4089 t->state = TRANS_STATE_COMMIT_DOING;
4090 spin_unlock(&root->fs_info->trans_lock);
4091 /*
4092 * We wait for 0 num_writers since we don't hold a trans
4093 * handle open currently for this transaction.
4094 */
4095 wait_event(t->writer_wait,
4096 atomic_read(&t->num_writers) == 0);
4097 } else {
4098 spin_unlock(&root->fs_info->trans_lock);
4099 }
4100 btrfs_cleanup_one_transaction(t, root);
4101
4102 spin_lock(&root->fs_info->trans_lock);
4103 if (t == root->fs_info->running_transaction)
4104 root->fs_info->running_transaction = NULL;
4105 list_del_init(&t->list);
4106 spin_unlock(&root->fs_info->trans_lock);
4107
4108 btrfs_put_transaction(t);
4109 trace_btrfs_transaction_commit(root);
4110 spin_lock(&root->fs_info->trans_lock);
4111 }
4112 spin_unlock(&root->fs_info->trans_lock);
4113 btrfs_destroy_all_ordered_extents(root->fs_info);
4114 btrfs_destroy_delayed_inodes(root);
4115 btrfs_assert_delayed_root_empty(root);
4116 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4117 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4118 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4119
4120 return 0;
4121 }
4122
4123 static struct extent_io_ops btree_extent_io_ops = {
4124 .readpage_end_io_hook = btree_readpage_end_io_hook,
4125 .readpage_io_failed_hook = btree_io_failed_hook,
4126 .submit_bio_hook = btree_submit_bio_hook,
4127 /* note we're sharing with inode.c for the merge bio hook */
4128 .merge_bio_hook = btrfs_merge_bio_hook,
4129 };
This page took 0.112321 seconds and 4 git commands to generate.