Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581 {
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722 }
723
724 /*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734 {
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888 {
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905 #ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908 #endif
909 return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915 {
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949 out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959 {
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980 {
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned int offset,
1017 unsigned int length)
1018 {
1019 struct extent_io_tree *tree;
1020 tree = &BTRFS_I(page->mapping->host)->io_tree;
1021 extent_invalidatepage(tree, page, offset);
1022 btree_releasepage(page, GFP_NOFS);
1023 if (PagePrivate(page)) {
1024 printk(KERN_WARNING "btrfs warning page private not zero "
1025 "on page %llu\n", (unsigned long long)page_offset(page));
1026 ClearPagePrivate(page);
1027 set_page_private(page, 0);
1028 page_cache_release(page);
1029 }
1030 }
1031
1032 static int btree_set_page_dirty(struct page *page)
1033 {
1034 #ifdef DEBUG
1035 struct extent_buffer *eb;
1036
1037 BUG_ON(!PagePrivate(page));
1038 eb = (struct extent_buffer *)page->private;
1039 BUG_ON(!eb);
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1041 BUG_ON(!atomic_read(&eb->refs));
1042 btrfs_assert_tree_locked(eb);
1043 #endif
1044 return __set_page_dirty_nobuffers(page);
1045 }
1046
1047 static const struct address_space_operations btree_aops = {
1048 .readpage = btree_readpage,
1049 .writepages = btree_writepages,
1050 .releasepage = btree_releasepage,
1051 .invalidatepage = btree_invalidatepage,
1052 #ifdef CONFIG_MIGRATION
1053 .migratepage = btree_migratepage,
1054 #endif
1055 .set_page_dirty = btree_set_page_dirty,
1056 };
1057
1058 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1059 u64 parent_transid)
1060 {
1061 struct extent_buffer *buf = NULL;
1062 struct inode *btree_inode = root->fs_info->btree_inode;
1063 int ret = 0;
1064
1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066 if (!buf)
1067 return 0;
1068 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1069 buf, 0, WAIT_NONE, btree_get_extent, 0);
1070 free_extent_buffer(buf);
1071 return ret;
1072 }
1073
1074 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1075 int mirror_num, struct extent_buffer **eb)
1076 {
1077 struct extent_buffer *buf = NULL;
1078 struct inode *btree_inode = root->fs_info->btree_inode;
1079 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1080 int ret;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083 if (!buf)
1084 return 0;
1085
1086 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087
1088 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1089 btree_get_extent, mirror_num);
1090 if (ret) {
1091 free_extent_buffer(buf);
1092 return ret;
1093 }
1094
1095 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1096 free_extent_buffer(buf);
1097 return -EIO;
1098 } else if (extent_buffer_uptodate(buf)) {
1099 *eb = buf;
1100 } else {
1101 free_extent_buffer(buf);
1102 }
1103 return 0;
1104 }
1105
1106 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1107 u64 bytenr, u32 blocksize)
1108 {
1109 struct inode *btree_inode = root->fs_info->btree_inode;
1110 struct extent_buffer *eb;
1111 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 bytenr, blocksize);
1113 return eb;
1114 }
1115
1116 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1117 u64 bytenr, u32 blocksize)
1118 {
1119 struct inode *btree_inode = root->fs_info->btree_inode;
1120 struct extent_buffer *eb;
1121
1122 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1123 bytenr, blocksize);
1124 return eb;
1125 }
1126
1127
1128 int btrfs_write_tree_block(struct extent_buffer *buf)
1129 {
1130 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1131 buf->start + buf->len - 1);
1132 }
1133
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1135 {
1136 return filemap_fdatawait_range(buf->pages[0]->mapping,
1137 buf->start, buf->start + buf->len - 1);
1138 }
1139
1140 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1141 u32 blocksize, u64 parent_transid)
1142 {
1143 struct extent_buffer *buf = NULL;
1144 int ret;
1145
1146 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1147 if (!buf)
1148 return NULL;
1149
1150 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1151 return buf;
1152
1153 }
1154
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156 struct extent_buffer *buf)
1157 {
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1159
1160 if (btrfs_header_generation(buf) ==
1161 fs_info->running_transaction->transid) {
1162 btrfs_assert_tree_locked(buf);
1163
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 -buf->len,
1167 fs_info->dirty_metadata_batch);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf);
1170 clear_extent_buffer_dirty(buf);
1171 }
1172 }
1173 }
1174
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176 u32 stripesize, struct btrfs_root *root,
1177 struct btrfs_fs_info *fs_info,
1178 u64 objectid)
1179 {
1180 root->node = NULL;
1181 root->commit_root = NULL;
1182 root->sectorsize = sectorsize;
1183 root->nodesize = nodesize;
1184 root->leafsize = leafsize;
1185 root->stripesize = stripesize;
1186 root->ref_cows = 0;
1187 root->track_dirty = 0;
1188 root->in_radix = 0;
1189 root->orphan_item_inserted = 0;
1190 root->orphan_cleanup_state = 0;
1191
1192 root->objectid = objectid;
1193 root->last_trans = 0;
1194 root->highest_objectid = 0;
1195 root->nr_delalloc_inodes = 0;
1196 root->nr_ordered_extents = 0;
1197 root->name = NULL;
1198 root->inode_tree = RB_ROOT;
1199 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1200 root->block_rsv = NULL;
1201 root->orphan_block_rsv = NULL;
1202
1203 INIT_LIST_HEAD(&root->dirty_list);
1204 INIT_LIST_HEAD(&root->root_list);
1205 INIT_LIST_HEAD(&root->delalloc_inodes);
1206 INIT_LIST_HEAD(&root->delalloc_root);
1207 INIT_LIST_HEAD(&root->ordered_extents);
1208 INIT_LIST_HEAD(&root->ordered_root);
1209 INIT_LIST_HEAD(&root->logged_list[0]);
1210 INIT_LIST_HEAD(&root->logged_list[1]);
1211 spin_lock_init(&root->orphan_lock);
1212 spin_lock_init(&root->inode_lock);
1213 spin_lock_init(&root->delalloc_lock);
1214 spin_lock_init(&root->ordered_extent_lock);
1215 spin_lock_init(&root->accounting_lock);
1216 spin_lock_init(&root->log_extents_lock[0]);
1217 spin_lock_init(&root->log_extents_lock[1]);
1218 mutex_init(&root->objectid_mutex);
1219 mutex_init(&root->log_mutex);
1220 init_waitqueue_head(&root->log_writer_wait);
1221 init_waitqueue_head(&root->log_commit_wait[0]);
1222 init_waitqueue_head(&root->log_commit_wait[1]);
1223 atomic_set(&root->log_commit[0], 0);
1224 atomic_set(&root->log_commit[1], 0);
1225 atomic_set(&root->log_writers, 0);
1226 atomic_set(&root->log_batch, 0);
1227 atomic_set(&root->orphan_inodes, 0);
1228 atomic_set(&root->refs, 1);
1229 root->log_transid = 0;
1230 root->last_log_commit = 0;
1231 extent_io_tree_init(&root->dirty_log_pages,
1232 fs_info->btree_inode->i_mapping);
1233
1234 memset(&root->root_key, 0, sizeof(root->root_key));
1235 memset(&root->root_item, 0, sizeof(root->root_item));
1236 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1238 root->defrag_trans_start = fs_info->generation;
1239 init_completion(&root->kobj_unregister);
1240 root->defrag_running = 0;
1241 root->root_key.objectid = objectid;
1242 root->anon_dev = 0;
1243
1244 spin_lock_init(&root->root_item_lock);
1245 }
1246
1247 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1248 {
1249 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1250 if (root)
1251 root->fs_info = fs_info;
1252 return root;
1253 }
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1258 {
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 int ret = 0;
1264 u64 bytenr;
1265 uuid_le uuid;
1266
1267 root = btrfs_alloc_root(fs_info);
1268 if (!root)
1269 return ERR_PTR(-ENOMEM);
1270
1271 __setup_root(tree_root->nodesize, tree_root->leafsize,
1272 tree_root->sectorsize, tree_root->stripesize,
1273 root, fs_info, objectid);
1274 root->root_key.objectid = objectid;
1275 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1276 root->root_key.offset = 0;
1277
1278 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1279 0, objectid, NULL, 0, 0, 0);
1280 if (IS_ERR(leaf)) {
1281 ret = PTR_ERR(leaf);
1282 leaf = NULL;
1283 goto fail;
1284 }
1285
1286 bytenr = leaf->start;
1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288 btrfs_set_header_bytenr(leaf, leaf->start);
1289 btrfs_set_header_generation(leaf, trans->transid);
1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291 btrfs_set_header_owner(leaf, objectid);
1292 root->node = leaf;
1293
1294 write_extent_buffer(leaf, fs_info->fsid,
1295 (unsigned long)btrfs_header_fsid(leaf),
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1301
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1304
1305
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
1315 uuid_le_gen(&uuid);
1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1317 root->root_item.drop_level = 0;
1318
1319 key.objectid = objectid;
1320 key.type = BTRFS_ROOT_ITEM_KEY;
1321 key.offset = 0;
1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323 if (ret)
1324 goto fail;
1325
1326 btrfs_tree_unlock(leaf);
1327
1328 return root;
1329
1330 fail:
1331 if (leaf) {
1332 btrfs_tree_unlock(leaf);
1333 free_extent_buffer(leaf);
1334 }
1335 kfree(root);
1336
1337 return ERR_PTR(ret);
1338 }
1339
1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
1342 {
1343 struct btrfs_root *root;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
1345 struct extent_buffer *leaf;
1346
1347 root = btrfs_alloc_root(fs_info);
1348 if (!root)
1349 return ERR_PTR(-ENOMEM);
1350
1351 __setup_root(tree_root->nodesize, tree_root->leafsize,
1352 tree_root->sectorsize, tree_root->stripesize,
1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354
1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1358 /*
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1363 */
1364 root->ref_cows = 0;
1365
1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1367 BTRFS_TREE_LOG_OBJECTID, NULL,
1368 0, 0, 0);
1369 if (IS_ERR(leaf)) {
1370 kfree(root);
1371 return ERR_CAST(leaf);
1372 }
1373
1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375 btrfs_set_header_bytenr(leaf, leaf->start);
1376 btrfs_set_header_generation(leaf, trans->transid);
1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1379 root->node = leaf;
1380
1381 write_extent_buffer(root->node, root->fs_info->fsid,
1382 (unsigned long)btrfs_header_fsid(root->node),
1383 BTRFS_FSID_SIZE);
1384 btrfs_mark_buffer_dirty(root->node);
1385 btrfs_tree_unlock(root->node);
1386 return root;
1387 }
1388
1389 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1390 struct btrfs_fs_info *fs_info)
1391 {
1392 struct btrfs_root *log_root;
1393
1394 log_root = alloc_log_tree(trans, fs_info);
1395 if (IS_ERR(log_root))
1396 return PTR_ERR(log_root);
1397 WARN_ON(fs_info->log_root_tree);
1398 fs_info->log_root_tree = log_root;
1399 return 0;
1400 }
1401
1402 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root)
1404 {
1405 struct btrfs_root *log_root;
1406 struct btrfs_inode_item *inode_item;
1407
1408 log_root = alloc_log_tree(trans, root->fs_info);
1409 if (IS_ERR(log_root))
1410 return PTR_ERR(log_root);
1411
1412 log_root->last_trans = trans->transid;
1413 log_root->root_key.offset = root->root_key.objectid;
1414
1415 inode_item = &log_root->root_item.inode;
1416 inode_item->generation = cpu_to_le64(1);
1417 inode_item->size = cpu_to_le64(3);
1418 inode_item->nlink = cpu_to_le32(1);
1419 inode_item->nbytes = cpu_to_le64(root->leafsize);
1420 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1421
1422 btrfs_set_root_node(&log_root->root_item, log_root->node);
1423
1424 WARN_ON(root->log_root);
1425 root->log_root = log_root;
1426 root->log_transid = 0;
1427 root->last_log_commit = 0;
1428 return 0;
1429 }
1430
1431 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1432 struct btrfs_key *key)
1433 {
1434 struct btrfs_root *root;
1435 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1436 struct btrfs_path *path;
1437 u64 generation;
1438 u32 blocksize;
1439 int ret;
1440
1441 path = btrfs_alloc_path();
1442 if (!path)
1443 return ERR_PTR(-ENOMEM);
1444
1445 root = btrfs_alloc_root(fs_info);
1446 if (!root) {
1447 ret = -ENOMEM;
1448 goto alloc_fail;
1449 }
1450
1451 __setup_root(tree_root->nodesize, tree_root->leafsize,
1452 tree_root->sectorsize, tree_root->stripesize,
1453 root, fs_info, key->objectid);
1454
1455 ret = btrfs_find_root(tree_root, key, path,
1456 &root->root_item, &root->root_key);
1457 if (ret) {
1458 if (ret > 0)
1459 ret = -ENOENT;
1460 goto find_fail;
1461 }
1462
1463 generation = btrfs_root_generation(&root->root_item);
1464 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1465 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1466 blocksize, generation);
1467 if (!root->node) {
1468 ret = -ENOMEM;
1469 goto find_fail;
1470 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1471 ret = -EIO;
1472 goto read_fail;
1473 }
1474 root->commit_root = btrfs_root_node(root);
1475 out:
1476 btrfs_free_path(path);
1477 return root;
1478
1479 read_fail:
1480 free_extent_buffer(root->node);
1481 find_fail:
1482 kfree(root);
1483 alloc_fail:
1484 root = ERR_PTR(ret);
1485 goto out;
1486 }
1487
1488 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1489 struct btrfs_key *location)
1490 {
1491 struct btrfs_root *root;
1492
1493 root = btrfs_read_tree_root(tree_root, location);
1494 if (IS_ERR(root))
1495 return root;
1496
1497 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1498 root->ref_cows = 1;
1499 btrfs_check_and_init_root_item(&root->root_item);
1500 }
1501
1502 return root;
1503 }
1504
1505 int btrfs_init_fs_root(struct btrfs_root *root)
1506 {
1507 int ret;
1508
1509 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1510 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1511 GFP_NOFS);
1512 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1513 ret = -ENOMEM;
1514 goto fail;
1515 }
1516
1517 btrfs_init_free_ino_ctl(root);
1518 mutex_init(&root->fs_commit_mutex);
1519 spin_lock_init(&root->cache_lock);
1520 init_waitqueue_head(&root->cache_wait);
1521
1522 ret = get_anon_bdev(&root->anon_dev);
1523 if (ret)
1524 goto fail;
1525 return 0;
1526 fail:
1527 kfree(root->free_ino_ctl);
1528 kfree(root->free_ino_pinned);
1529 return ret;
1530 }
1531
1532 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1533 u64 root_id)
1534 {
1535 struct btrfs_root *root;
1536
1537 spin_lock(&fs_info->fs_roots_radix_lock);
1538 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1539 (unsigned long)root_id);
1540 spin_unlock(&fs_info->fs_roots_radix_lock);
1541 return root;
1542 }
1543
1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545 struct btrfs_root *root)
1546 {
1547 int ret;
1548
1549 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1550 if (ret)
1551 return ret;
1552
1553 spin_lock(&fs_info->fs_roots_radix_lock);
1554 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555 (unsigned long)root->root_key.objectid,
1556 root);
1557 if (ret == 0)
1558 root->in_radix = 1;
1559 spin_unlock(&fs_info->fs_roots_radix_lock);
1560 radix_tree_preload_end();
1561
1562 return ret;
1563 }
1564
1565 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1566 struct btrfs_key *location)
1567 {
1568 struct btrfs_root *root;
1569 int ret;
1570
1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1572 return fs_info->tree_root;
1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1574 return fs_info->extent_root;
1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1576 return fs_info->chunk_root;
1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1578 return fs_info->dev_root;
1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1580 return fs_info->csum_root;
1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1582 return fs_info->quota_root ? fs_info->quota_root :
1583 ERR_PTR(-ENOENT);
1584 again:
1585 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1586 if (root)
1587 return root;
1588
1589 root = btrfs_read_fs_root(fs_info->tree_root, location);
1590 if (IS_ERR(root))
1591 return root;
1592
1593 if (btrfs_root_refs(&root->root_item) == 0) {
1594 ret = -ENOENT;
1595 goto fail;
1596 }
1597
1598 ret = btrfs_init_fs_root(root);
1599 if (ret)
1600 goto fail;
1601
1602 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1603 if (ret < 0)
1604 goto fail;
1605 if (ret == 0)
1606 root->orphan_item_inserted = 1;
1607
1608 ret = btrfs_insert_fs_root(fs_info, root);
1609 if (ret) {
1610 if (ret == -EEXIST) {
1611 free_fs_root(root);
1612 goto again;
1613 }
1614 goto fail;
1615 }
1616 return root;
1617 fail:
1618 free_fs_root(root);
1619 return ERR_PTR(ret);
1620 }
1621
1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623 {
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 int ret = 0;
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
1628
1629 rcu_read_lock();
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1631 if (!device->bdev)
1632 continue;
1633 bdi = blk_get_backing_dev_info(device->bdev);
1634 if (bdi && bdi_congested(bdi, bdi_bits)) {
1635 ret = 1;
1636 break;
1637 }
1638 }
1639 rcu_read_unlock();
1640 return ret;
1641 }
1642
1643 /*
1644 * If this fails, caller must call bdi_destroy() to get rid of the
1645 * bdi again.
1646 */
1647 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1648 {
1649 int err;
1650
1651 bdi->capabilities = BDI_CAP_MAP_COPY;
1652 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1653 if (err)
1654 return err;
1655
1656 bdi->ra_pages = default_backing_dev_info.ra_pages;
1657 bdi->congested_fn = btrfs_congested_fn;
1658 bdi->congested_data = info;
1659 return 0;
1660 }
1661
1662 /*
1663 * called by the kthread helper functions to finally call the bio end_io
1664 * functions. This is where read checksum verification actually happens
1665 */
1666 static void end_workqueue_fn(struct btrfs_work *work)
1667 {
1668 struct bio *bio;
1669 struct end_io_wq *end_io_wq;
1670 struct btrfs_fs_info *fs_info;
1671 int error;
1672
1673 end_io_wq = container_of(work, struct end_io_wq, work);
1674 bio = end_io_wq->bio;
1675 fs_info = end_io_wq->info;
1676
1677 error = end_io_wq->error;
1678 bio->bi_private = end_io_wq->private;
1679 bio->bi_end_io = end_io_wq->end_io;
1680 kfree(end_io_wq);
1681 bio_endio(bio, error);
1682 }
1683
1684 static int cleaner_kthread(void *arg)
1685 {
1686 struct btrfs_root *root = arg;
1687 int again;
1688
1689 do {
1690 again = 0;
1691
1692 /* Make the cleaner go to sleep early. */
1693 if (btrfs_need_cleaner_sleep(root))
1694 goto sleep;
1695
1696 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1697 goto sleep;
1698
1699 /*
1700 * Avoid the problem that we change the status of the fs
1701 * during the above check and trylock.
1702 */
1703 if (btrfs_need_cleaner_sleep(root)) {
1704 mutex_unlock(&root->fs_info->cleaner_mutex);
1705 goto sleep;
1706 }
1707
1708 btrfs_run_delayed_iputs(root);
1709 again = btrfs_clean_one_deleted_snapshot(root);
1710 mutex_unlock(&root->fs_info->cleaner_mutex);
1711
1712 /*
1713 * The defragger has dealt with the R/O remount and umount,
1714 * needn't do anything special here.
1715 */
1716 btrfs_run_defrag_inodes(root->fs_info);
1717 sleep:
1718 if (!try_to_freeze() && !again) {
1719 set_current_state(TASK_INTERRUPTIBLE);
1720 if (!kthread_should_stop())
1721 schedule();
1722 __set_current_state(TASK_RUNNING);
1723 }
1724 } while (!kthread_should_stop());
1725 return 0;
1726 }
1727
1728 static int transaction_kthread(void *arg)
1729 {
1730 struct btrfs_root *root = arg;
1731 struct btrfs_trans_handle *trans;
1732 struct btrfs_transaction *cur;
1733 u64 transid;
1734 unsigned long now;
1735 unsigned long delay;
1736 bool cannot_commit;
1737
1738 do {
1739 cannot_commit = false;
1740 delay = HZ * 30;
1741 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1742
1743 spin_lock(&root->fs_info->trans_lock);
1744 cur = root->fs_info->running_transaction;
1745 if (!cur) {
1746 spin_unlock(&root->fs_info->trans_lock);
1747 goto sleep;
1748 }
1749
1750 now = get_seconds();
1751 if (cur->state < TRANS_STATE_BLOCKED &&
1752 (now < cur->start_time || now - cur->start_time < 30)) {
1753 spin_unlock(&root->fs_info->trans_lock);
1754 delay = HZ * 5;
1755 goto sleep;
1756 }
1757 transid = cur->transid;
1758 spin_unlock(&root->fs_info->trans_lock);
1759
1760 /* If the file system is aborted, this will always fail. */
1761 trans = btrfs_attach_transaction(root);
1762 if (IS_ERR(trans)) {
1763 if (PTR_ERR(trans) != -ENOENT)
1764 cannot_commit = true;
1765 goto sleep;
1766 }
1767 if (transid == trans->transid) {
1768 btrfs_commit_transaction(trans, root);
1769 } else {
1770 btrfs_end_transaction(trans, root);
1771 }
1772 sleep:
1773 wake_up_process(root->fs_info->cleaner_kthread);
1774 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1775
1776 if (!try_to_freeze()) {
1777 set_current_state(TASK_INTERRUPTIBLE);
1778 if (!kthread_should_stop() &&
1779 (!btrfs_transaction_blocked(root->fs_info) ||
1780 cannot_commit))
1781 schedule_timeout(delay);
1782 __set_current_state(TASK_RUNNING);
1783 }
1784 } while (!kthread_should_stop());
1785 return 0;
1786 }
1787
1788 /*
1789 * this will find the highest generation in the array of
1790 * root backups. The index of the highest array is returned,
1791 * or -1 if we can't find anything.
1792 *
1793 * We check to make sure the array is valid by comparing the
1794 * generation of the latest root in the array with the generation
1795 * in the super block. If they don't match we pitch it.
1796 */
1797 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1798 {
1799 u64 cur;
1800 int newest_index = -1;
1801 struct btrfs_root_backup *root_backup;
1802 int i;
1803
1804 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1805 root_backup = info->super_copy->super_roots + i;
1806 cur = btrfs_backup_tree_root_gen(root_backup);
1807 if (cur == newest_gen)
1808 newest_index = i;
1809 }
1810
1811 /* check to see if we actually wrapped around */
1812 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1813 root_backup = info->super_copy->super_roots;
1814 cur = btrfs_backup_tree_root_gen(root_backup);
1815 if (cur == newest_gen)
1816 newest_index = 0;
1817 }
1818 return newest_index;
1819 }
1820
1821
1822 /*
1823 * find the oldest backup so we know where to store new entries
1824 * in the backup array. This will set the backup_root_index
1825 * field in the fs_info struct
1826 */
1827 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1828 u64 newest_gen)
1829 {
1830 int newest_index = -1;
1831
1832 newest_index = find_newest_super_backup(info, newest_gen);
1833 /* if there was garbage in there, just move along */
1834 if (newest_index == -1) {
1835 info->backup_root_index = 0;
1836 } else {
1837 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1838 }
1839 }
1840
1841 /*
1842 * copy all the root pointers into the super backup array.
1843 * this will bump the backup pointer by one when it is
1844 * done
1845 */
1846 static void backup_super_roots(struct btrfs_fs_info *info)
1847 {
1848 int next_backup;
1849 struct btrfs_root_backup *root_backup;
1850 int last_backup;
1851
1852 next_backup = info->backup_root_index;
1853 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1854 BTRFS_NUM_BACKUP_ROOTS;
1855
1856 /*
1857 * just overwrite the last backup if we're at the same generation
1858 * this happens only at umount
1859 */
1860 root_backup = info->super_for_commit->super_roots + last_backup;
1861 if (btrfs_backup_tree_root_gen(root_backup) ==
1862 btrfs_header_generation(info->tree_root->node))
1863 next_backup = last_backup;
1864
1865 root_backup = info->super_for_commit->super_roots + next_backup;
1866
1867 /*
1868 * make sure all of our padding and empty slots get zero filled
1869 * regardless of which ones we use today
1870 */
1871 memset(root_backup, 0, sizeof(*root_backup));
1872
1873 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874
1875 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1876 btrfs_set_backup_tree_root_gen(root_backup,
1877 btrfs_header_generation(info->tree_root->node));
1878
1879 btrfs_set_backup_tree_root_level(root_backup,
1880 btrfs_header_level(info->tree_root->node));
1881
1882 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1883 btrfs_set_backup_chunk_root_gen(root_backup,
1884 btrfs_header_generation(info->chunk_root->node));
1885 btrfs_set_backup_chunk_root_level(root_backup,
1886 btrfs_header_level(info->chunk_root->node));
1887
1888 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1889 btrfs_set_backup_extent_root_gen(root_backup,
1890 btrfs_header_generation(info->extent_root->node));
1891 btrfs_set_backup_extent_root_level(root_backup,
1892 btrfs_header_level(info->extent_root->node));
1893
1894 /*
1895 * we might commit during log recovery, which happens before we set
1896 * the fs_root. Make sure it is valid before we fill it in.
1897 */
1898 if (info->fs_root && info->fs_root->node) {
1899 btrfs_set_backup_fs_root(root_backup,
1900 info->fs_root->node->start);
1901 btrfs_set_backup_fs_root_gen(root_backup,
1902 btrfs_header_generation(info->fs_root->node));
1903 btrfs_set_backup_fs_root_level(root_backup,
1904 btrfs_header_level(info->fs_root->node));
1905 }
1906
1907 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1908 btrfs_set_backup_dev_root_gen(root_backup,
1909 btrfs_header_generation(info->dev_root->node));
1910 btrfs_set_backup_dev_root_level(root_backup,
1911 btrfs_header_level(info->dev_root->node));
1912
1913 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1914 btrfs_set_backup_csum_root_gen(root_backup,
1915 btrfs_header_generation(info->csum_root->node));
1916 btrfs_set_backup_csum_root_level(root_backup,
1917 btrfs_header_level(info->csum_root->node));
1918
1919 btrfs_set_backup_total_bytes(root_backup,
1920 btrfs_super_total_bytes(info->super_copy));
1921 btrfs_set_backup_bytes_used(root_backup,
1922 btrfs_super_bytes_used(info->super_copy));
1923 btrfs_set_backup_num_devices(root_backup,
1924 btrfs_super_num_devices(info->super_copy));
1925
1926 /*
1927 * if we don't copy this out to the super_copy, it won't get remembered
1928 * for the next commit
1929 */
1930 memcpy(&info->super_copy->super_roots,
1931 &info->super_for_commit->super_roots,
1932 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1933 }
1934
1935 /*
1936 * this copies info out of the root backup array and back into
1937 * the in-memory super block. It is meant to help iterate through
1938 * the array, so you send it the number of backups you've already
1939 * tried and the last backup index you used.
1940 *
1941 * this returns -1 when it has tried all the backups
1942 */
1943 static noinline int next_root_backup(struct btrfs_fs_info *info,
1944 struct btrfs_super_block *super,
1945 int *num_backups_tried, int *backup_index)
1946 {
1947 struct btrfs_root_backup *root_backup;
1948 int newest = *backup_index;
1949
1950 if (*num_backups_tried == 0) {
1951 u64 gen = btrfs_super_generation(super);
1952
1953 newest = find_newest_super_backup(info, gen);
1954 if (newest == -1)
1955 return -1;
1956
1957 *backup_index = newest;
1958 *num_backups_tried = 1;
1959 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1960 /* we've tried all the backups, all done */
1961 return -1;
1962 } else {
1963 /* jump to the next oldest backup */
1964 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1965 BTRFS_NUM_BACKUP_ROOTS;
1966 *backup_index = newest;
1967 *num_backups_tried += 1;
1968 }
1969 root_backup = super->super_roots + newest;
1970
1971 btrfs_set_super_generation(super,
1972 btrfs_backup_tree_root_gen(root_backup));
1973 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1974 btrfs_set_super_root_level(super,
1975 btrfs_backup_tree_root_level(root_backup));
1976 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1977
1978 /*
1979 * fixme: the total bytes and num_devices need to match or we should
1980 * need a fsck
1981 */
1982 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1983 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1984 return 0;
1985 }
1986
1987 /* helper to cleanup workers */
1988 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1989 {
1990 btrfs_stop_workers(&fs_info->generic_worker);
1991 btrfs_stop_workers(&fs_info->fixup_workers);
1992 btrfs_stop_workers(&fs_info->delalloc_workers);
1993 btrfs_stop_workers(&fs_info->workers);
1994 btrfs_stop_workers(&fs_info->endio_workers);
1995 btrfs_stop_workers(&fs_info->endio_meta_workers);
1996 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1997 btrfs_stop_workers(&fs_info->rmw_workers);
1998 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1999 btrfs_stop_workers(&fs_info->endio_write_workers);
2000 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2001 btrfs_stop_workers(&fs_info->submit_workers);
2002 btrfs_stop_workers(&fs_info->delayed_workers);
2003 btrfs_stop_workers(&fs_info->caching_workers);
2004 btrfs_stop_workers(&fs_info->readahead_workers);
2005 btrfs_stop_workers(&fs_info->flush_workers);
2006 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2007 }
2008
2009 /* helper to cleanup tree roots */
2010 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2011 {
2012 free_extent_buffer(info->tree_root->node);
2013 free_extent_buffer(info->tree_root->commit_root);
2014 info->tree_root->node = NULL;
2015 info->tree_root->commit_root = NULL;
2016
2017 if (info->dev_root) {
2018 free_extent_buffer(info->dev_root->node);
2019 free_extent_buffer(info->dev_root->commit_root);
2020 info->dev_root->node = NULL;
2021 info->dev_root->commit_root = NULL;
2022 }
2023 if (info->extent_root) {
2024 free_extent_buffer(info->extent_root->node);
2025 free_extent_buffer(info->extent_root->commit_root);
2026 info->extent_root->node = NULL;
2027 info->extent_root->commit_root = NULL;
2028 }
2029 if (info->csum_root) {
2030 free_extent_buffer(info->csum_root->node);
2031 free_extent_buffer(info->csum_root->commit_root);
2032 info->csum_root->node = NULL;
2033 info->csum_root->commit_root = NULL;
2034 }
2035 if (info->quota_root) {
2036 free_extent_buffer(info->quota_root->node);
2037 free_extent_buffer(info->quota_root->commit_root);
2038 info->quota_root->node = NULL;
2039 info->quota_root->commit_root = NULL;
2040 }
2041 if (chunk_root) {
2042 free_extent_buffer(info->chunk_root->node);
2043 free_extent_buffer(info->chunk_root->commit_root);
2044 info->chunk_root->node = NULL;
2045 info->chunk_root->commit_root = NULL;
2046 }
2047 }
2048
2049 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2050 {
2051 int ret;
2052 struct btrfs_root *gang[8];
2053 int i;
2054
2055 while (!list_empty(&fs_info->dead_roots)) {
2056 gang[0] = list_entry(fs_info->dead_roots.next,
2057 struct btrfs_root, root_list);
2058 list_del(&gang[0]->root_list);
2059
2060 if (gang[0]->in_radix) {
2061 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2062 } else {
2063 free_extent_buffer(gang[0]->node);
2064 free_extent_buffer(gang[0]->commit_root);
2065 btrfs_put_fs_root(gang[0]);
2066 }
2067 }
2068
2069 while (1) {
2070 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2071 (void **)gang, 0,
2072 ARRAY_SIZE(gang));
2073 if (!ret)
2074 break;
2075 for (i = 0; i < ret; i++)
2076 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2077 }
2078 }
2079
2080 int open_ctree(struct super_block *sb,
2081 struct btrfs_fs_devices *fs_devices,
2082 char *options)
2083 {
2084 u32 sectorsize;
2085 u32 nodesize;
2086 u32 leafsize;
2087 u32 blocksize;
2088 u32 stripesize;
2089 u64 generation;
2090 u64 features;
2091 struct btrfs_key location;
2092 struct buffer_head *bh;
2093 struct btrfs_super_block *disk_super;
2094 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2095 struct btrfs_root *tree_root;
2096 struct btrfs_root *extent_root;
2097 struct btrfs_root *csum_root;
2098 struct btrfs_root *chunk_root;
2099 struct btrfs_root *dev_root;
2100 struct btrfs_root *quota_root;
2101 struct btrfs_root *log_tree_root;
2102 int ret;
2103 int err = -EINVAL;
2104 int num_backups_tried = 0;
2105 int backup_index = 0;
2106
2107 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2108 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2109 if (!tree_root || !chunk_root) {
2110 err = -ENOMEM;
2111 goto fail;
2112 }
2113
2114 ret = init_srcu_struct(&fs_info->subvol_srcu);
2115 if (ret) {
2116 err = ret;
2117 goto fail;
2118 }
2119
2120 ret = setup_bdi(fs_info, &fs_info->bdi);
2121 if (ret) {
2122 err = ret;
2123 goto fail_srcu;
2124 }
2125
2126 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2127 if (ret) {
2128 err = ret;
2129 goto fail_bdi;
2130 }
2131 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2132 (1 + ilog2(nr_cpu_ids));
2133
2134 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2135 if (ret) {
2136 err = ret;
2137 goto fail_dirty_metadata_bytes;
2138 }
2139
2140 fs_info->btree_inode = new_inode(sb);
2141 if (!fs_info->btree_inode) {
2142 err = -ENOMEM;
2143 goto fail_delalloc_bytes;
2144 }
2145
2146 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2147
2148 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2149 INIT_LIST_HEAD(&fs_info->trans_list);
2150 INIT_LIST_HEAD(&fs_info->dead_roots);
2151 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2152 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2153 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2154 spin_lock_init(&fs_info->delalloc_root_lock);
2155 spin_lock_init(&fs_info->trans_lock);
2156 spin_lock_init(&fs_info->fs_roots_radix_lock);
2157 spin_lock_init(&fs_info->delayed_iput_lock);
2158 spin_lock_init(&fs_info->defrag_inodes_lock);
2159 spin_lock_init(&fs_info->free_chunk_lock);
2160 spin_lock_init(&fs_info->tree_mod_seq_lock);
2161 spin_lock_init(&fs_info->super_lock);
2162 rwlock_init(&fs_info->tree_mod_log_lock);
2163 mutex_init(&fs_info->reloc_mutex);
2164 seqlock_init(&fs_info->profiles_lock);
2165
2166 init_completion(&fs_info->kobj_unregister);
2167 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2168 INIT_LIST_HEAD(&fs_info->space_info);
2169 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2170 btrfs_mapping_init(&fs_info->mapping_tree);
2171 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2172 BTRFS_BLOCK_RSV_GLOBAL);
2173 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2174 BTRFS_BLOCK_RSV_DELALLOC);
2175 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2176 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2177 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2178 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2179 BTRFS_BLOCK_RSV_DELOPS);
2180 atomic_set(&fs_info->nr_async_submits, 0);
2181 atomic_set(&fs_info->async_delalloc_pages, 0);
2182 atomic_set(&fs_info->async_submit_draining, 0);
2183 atomic_set(&fs_info->nr_async_bios, 0);
2184 atomic_set(&fs_info->defrag_running, 0);
2185 atomic64_set(&fs_info->tree_mod_seq, 0);
2186 fs_info->sb = sb;
2187 fs_info->max_inline = 8192 * 1024;
2188 fs_info->metadata_ratio = 0;
2189 fs_info->defrag_inodes = RB_ROOT;
2190 fs_info->free_chunk_space = 0;
2191 fs_info->tree_mod_log = RB_ROOT;
2192
2193 /* readahead state */
2194 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2195 spin_lock_init(&fs_info->reada_lock);
2196
2197 fs_info->thread_pool_size = min_t(unsigned long,
2198 num_online_cpus() + 2, 8);
2199
2200 INIT_LIST_HEAD(&fs_info->ordered_roots);
2201 spin_lock_init(&fs_info->ordered_root_lock);
2202 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2203 GFP_NOFS);
2204 if (!fs_info->delayed_root) {
2205 err = -ENOMEM;
2206 goto fail_iput;
2207 }
2208 btrfs_init_delayed_root(fs_info->delayed_root);
2209
2210 mutex_init(&fs_info->scrub_lock);
2211 atomic_set(&fs_info->scrubs_running, 0);
2212 atomic_set(&fs_info->scrub_pause_req, 0);
2213 atomic_set(&fs_info->scrubs_paused, 0);
2214 atomic_set(&fs_info->scrub_cancel_req, 0);
2215 init_waitqueue_head(&fs_info->scrub_pause_wait);
2216 init_rwsem(&fs_info->scrub_super_lock);
2217 fs_info->scrub_workers_refcnt = 0;
2218 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2219 fs_info->check_integrity_print_mask = 0;
2220 #endif
2221
2222 spin_lock_init(&fs_info->balance_lock);
2223 mutex_init(&fs_info->balance_mutex);
2224 atomic_set(&fs_info->balance_running, 0);
2225 atomic_set(&fs_info->balance_pause_req, 0);
2226 atomic_set(&fs_info->balance_cancel_req, 0);
2227 fs_info->balance_ctl = NULL;
2228 init_waitqueue_head(&fs_info->balance_wait_q);
2229
2230 sb->s_blocksize = 4096;
2231 sb->s_blocksize_bits = blksize_bits(4096);
2232 sb->s_bdi = &fs_info->bdi;
2233
2234 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2235 set_nlink(fs_info->btree_inode, 1);
2236 /*
2237 * we set the i_size on the btree inode to the max possible int.
2238 * the real end of the address space is determined by all of
2239 * the devices in the system
2240 */
2241 fs_info->btree_inode->i_size = OFFSET_MAX;
2242 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2243 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2244
2245 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2246 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2247 fs_info->btree_inode->i_mapping);
2248 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2249 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2250
2251 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2252
2253 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2254 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2255 sizeof(struct btrfs_key));
2256 set_bit(BTRFS_INODE_DUMMY,
2257 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2258 insert_inode_hash(fs_info->btree_inode);
2259
2260 spin_lock_init(&fs_info->block_group_cache_lock);
2261 fs_info->block_group_cache_tree = RB_ROOT;
2262 fs_info->first_logical_byte = (u64)-1;
2263
2264 extent_io_tree_init(&fs_info->freed_extents[0],
2265 fs_info->btree_inode->i_mapping);
2266 extent_io_tree_init(&fs_info->freed_extents[1],
2267 fs_info->btree_inode->i_mapping);
2268 fs_info->pinned_extents = &fs_info->freed_extents[0];
2269 fs_info->do_barriers = 1;
2270
2271
2272 mutex_init(&fs_info->ordered_operations_mutex);
2273 mutex_init(&fs_info->tree_log_mutex);
2274 mutex_init(&fs_info->chunk_mutex);
2275 mutex_init(&fs_info->transaction_kthread_mutex);
2276 mutex_init(&fs_info->cleaner_mutex);
2277 mutex_init(&fs_info->volume_mutex);
2278 init_rwsem(&fs_info->extent_commit_sem);
2279 init_rwsem(&fs_info->cleanup_work_sem);
2280 init_rwsem(&fs_info->subvol_sem);
2281 fs_info->dev_replace.lock_owner = 0;
2282 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284 mutex_init(&fs_info->dev_replace.lock_management_lock);
2285 mutex_init(&fs_info->dev_replace.lock);
2286
2287 spin_lock_init(&fs_info->qgroup_lock);
2288 mutex_init(&fs_info->qgroup_ioctl_lock);
2289 fs_info->qgroup_tree = RB_ROOT;
2290 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291 fs_info->qgroup_seq = 1;
2292 fs_info->quota_enabled = 0;
2293 fs_info->pending_quota_state = 0;
2294 fs_info->qgroup_ulist = NULL;
2295 mutex_init(&fs_info->qgroup_rescan_lock);
2296
2297 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299
2300 init_waitqueue_head(&fs_info->transaction_throttle);
2301 init_waitqueue_head(&fs_info->transaction_wait);
2302 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303 init_waitqueue_head(&fs_info->async_submit_wait);
2304
2305 ret = btrfs_alloc_stripe_hash_table(fs_info);
2306 if (ret) {
2307 err = ret;
2308 goto fail_alloc;
2309 }
2310
2311 __setup_root(4096, 4096, 4096, 4096, tree_root,
2312 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313
2314 invalidate_bdev(fs_devices->latest_bdev);
2315
2316 /*
2317 * Read super block and check the signature bytes only
2318 */
2319 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320 if (!bh) {
2321 err = -EINVAL;
2322 goto fail_alloc;
2323 }
2324
2325 /*
2326 * We want to check superblock checksum, the type is stored inside.
2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328 */
2329 if (btrfs_check_super_csum(bh->b_data)) {
2330 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2331 err = -EINVAL;
2332 goto fail_alloc;
2333 }
2334
2335 /*
2336 * super_copy is zeroed at allocation time and we never touch the
2337 * following bytes up to INFO_SIZE, the checksum is calculated from
2338 * the whole block of INFO_SIZE
2339 */
2340 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342 sizeof(*fs_info->super_for_commit));
2343 brelse(bh);
2344
2345 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346
2347 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348 if (ret) {
2349 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2350 err = -EINVAL;
2351 goto fail_alloc;
2352 }
2353
2354 disk_super = fs_info->super_copy;
2355 if (!btrfs_super_root(disk_super))
2356 goto fail_alloc;
2357
2358 /* check FS state, whether FS is broken. */
2359 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361
2362 /*
2363 * run through our array of backup supers and setup
2364 * our ring pointer to the oldest one
2365 */
2366 generation = btrfs_super_generation(disk_super);
2367 find_oldest_super_backup(fs_info, generation);
2368
2369 /*
2370 * In the long term, we'll store the compression type in the super
2371 * block, and it'll be used for per file compression control.
2372 */
2373 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374
2375 ret = btrfs_parse_options(tree_root, options);
2376 if (ret) {
2377 err = ret;
2378 goto fail_alloc;
2379 }
2380
2381 features = btrfs_super_incompat_flags(disk_super) &
2382 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2383 if (features) {
2384 printk(KERN_ERR "BTRFS: couldn't mount because of "
2385 "unsupported optional features (%Lx).\n",
2386 (unsigned long long)features);
2387 err = -EINVAL;
2388 goto fail_alloc;
2389 }
2390
2391 if (btrfs_super_leafsize(disk_super) !=
2392 btrfs_super_nodesize(disk_super)) {
2393 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394 "blocksizes don't match. node %d leaf %d\n",
2395 btrfs_super_nodesize(disk_super),
2396 btrfs_super_leafsize(disk_super));
2397 err = -EINVAL;
2398 goto fail_alloc;
2399 }
2400 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402 "blocksize (%d) was too large\n",
2403 btrfs_super_leafsize(disk_super));
2404 err = -EINVAL;
2405 goto fail_alloc;
2406 }
2407
2408 features = btrfs_super_incompat_flags(disk_super);
2409 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412
2413 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414 printk(KERN_ERR "btrfs: has skinny extents\n");
2415
2416 /*
2417 * flag our filesystem as having big metadata blocks if
2418 * they are bigger than the page size
2419 */
2420 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2423 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424 }
2425
2426 nodesize = btrfs_super_nodesize(disk_super);
2427 leafsize = btrfs_super_leafsize(disk_super);
2428 sectorsize = btrfs_super_sectorsize(disk_super);
2429 stripesize = btrfs_super_stripesize(disk_super);
2430 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432
2433 /*
2434 * mixed block groups end up with duplicate but slightly offset
2435 * extent buffers for the same range. It leads to corruptions
2436 */
2437 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438 (sectorsize != leafsize)) {
2439 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2440 "are not allowed for mixed block groups on %s\n",
2441 sb->s_id);
2442 goto fail_alloc;
2443 }
2444
2445 /*
2446 * Needn't use the lock because there is no other task which will
2447 * update the flag.
2448 */
2449 btrfs_set_super_incompat_flags(disk_super, features);
2450
2451 features = btrfs_super_compat_ro_flags(disk_super) &
2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453 if (!(sb->s_flags & MS_RDONLY) && features) {
2454 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455 "unsupported option features (%Lx).\n",
2456 (unsigned long long)features);
2457 err = -EINVAL;
2458 goto fail_alloc;
2459 }
2460
2461 btrfs_init_workers(&fs_info->generic_worker,
2462 "genwork", 1, NULL);
2463
2464 btrfs_init_workers(&fs_info->workers, "worker",
2465 fs_info->thread_pool_size,
2466 &fs_info->generic_worker);
2467
2468 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469 fs_info->thread_pool_size,
2470 &fs_info->generic_worker);
2471
2472 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2473 fs_info->thread_pool_size,
2474 &fs_info->generic_worker);
2475
2476 btrfs_init_workers(&fs_info->submit_workers, "submit",
2477 min_t(u64, fs_devices->num_devices,
2478 fs_info->thread_pool_size),
2479 &fs_info->generic_worker);
2480
2481 btrfs_init_workers(&fs_info->caching_workers, "cache",
2482 2, &fs_info->generic_worker);
2483
2484 /* a higher idle thresh on the submit workers makes it much more
2485 * likely that bios will be send down in a sane order to the
2486 * devices
2487 */
2488 fs_info->submit_workers.idle_thresh = 64;
2489
2490 fs_info->workers.idle_thresh = 16;
2491 fs_info->workers.ordered = 1;
2492
2493 fs_info->delalloc_workers.idle_thresh = 2;
2494 fs_info->delalloc_workers.ordered = 1;
2495
2496 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2497 &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->endio_workers, "endio",
2499 fs_info->thread_pool_size,
2500 &fs_info->generic_worker);
2501 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2502 fs_info->thread_pool_size,
2503 &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2505 "endio-meta-write", fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2507 btrfs_init_workers(&fs_info->endio_raid56_workers,
2508 "endio-raid56", fs_info->thread_pool_size,
2509 &fs_info->generic_worker);
2510 btrfs_init_workers(&fs_info->rmw_workers,
2511 "rmw", fs_info->thread_pool_size,
2512 &fs_info->generic_worker);
2513 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2514 fs_info->thread_pool_size,
2515 &fs_info->generic_worker);
2516 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2517 1, &fs_info->generic_worker);
2518 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2519 fs_info->thread_pool_size,
2520 &fs_info->generic_worker);
2521 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2522 fs_info->thread_pool_size,
2523 &fs_info->generic_worker);
2524 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2525 &fs_info->generic_worker);
2526
2527 /*
2528 * endios are largely parallel and should have a very
2529 * low idle thresh
2530 */
2531 fs_info->endio_workers.idle_thresh = 4;
2532 fs_info->endio_meta_workers.idle_thresh = 4;
2533 fs_info->endio_raid56_workers.idle_thresh = 4;
2534 fs_info->rmw_workers.idle_thresh = 2;
2535
2536 fs_info->endio_write_workers.idle_thresh = 2;
2537 fs_info->endio_meta_write_workers.idle_thresh = 2;
2538 fs_info->readahead_workers.idle_thresh = 2;
2539
2540 /*
2541 * btrfs_start_workers can really only fail because of ENOMEM so just
2542 * return -ENOMEM if any of these fail.
2543 */
2544 ret = btrfs_start_workers(&fs_info->workers);
2545 ret |= btrfs_start_workers(&fs_info->generic_worker);
2546 ret |= btrfs_start_workers(&fs_info->submit_workers);
2547 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2548 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2549 ret |= btrfs_start_workers(&fs_info->endio_workers);
2550 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2551 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2552 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2553 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2554 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2555 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2556 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2557 ret |= btrfs_start_workers(&fs_info->caching_workers);
2558 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2559 ret |= btrfs_start_workers(&fs_info->flush_workers);
2560 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2561 if (ret) {
2562 err = -ENOMEM;
2563 goto fail_sb_buffer;
2564 }
2565
2566 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2567 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2568 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2569
2570 tree_root->nodesize = nodesize;
2571 tree_root->leafsize = leafsize;
2572 tree_root->sectorsize = sectorsize;
2573 tree_root->stripesize = stripesize;
2574
2575 sb->s_blocksize = sectorsize;
2576 sb->s_blocksize_bits = blksize_bits(sectorsize);
2577
2578 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2579 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2580 goto fail_sb_buffer;
2581 }
2582
2583 if (sectorsize != PAGE_SIZE) {
2584 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2585 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2586 goto fail_sb_buffer;
2587 }
2588
2589 mutex_lock(&fs_info->chunk_mutex);
2590 ret = btrfs_read_sys_array(tree_root);
2591 mutex_unlock(&fs_info->chunk_mutex);
2592 if (ret) {
2593 printk(KERN_WARNING "btrfs: failed to read the system "
2594 "array on %s\n", sb->s_id);
2595 goto fail_sb_buffer;
2596 }
2597
2598 blocksize = btrfs_level_size(tree_root,
2599 btrfs_super_chunk_root_level(disk_super));
2600 generation = btrfs_super_chunk_root_generation(disk_super);
2601
2602 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2604
2605 chunk_root->node = read_tree_block(chunk_root,
2606 btrfs_super_chunk_root(disk_super),
2607 blocksize, generation);
2608 if (!chunk_root->node ||
2609 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2610 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2611 sb->s_id);
2612 goto fail_tree_roots;
2613 }
2614 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2615 chunk_root->commit_root = btrfs_root_node(chunk_root);
2616
2617 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2618 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2619 BTRFS_UUID_SIZE);
2620
2621 ret = btrfs_read_chunk_tree(chunk_root);
2622 if (ret) {
2623 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2624 sb->s_id);
2625 goto fail_tree_roots;
2626 }
2627
2628 /*
2629 * keep the device that is marked to be the target device for the
2630 * dev_replace procedure
2631 */
2632 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2633
2634 if (!fs_devices->latest_bdev) {
2635 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2636 sb->s_id);
2637 goto fail_tree_roots;
2638 }
2639
2640 retry_root_backup:
2641 blocksize = btrfs_level_size(tree_root,
2642 btrfs_super_root_level(disk_super));
2643 generation = btrfs_super_generation(disk_super);
2644
2645 tree_root->node = read_tree_block(tree_root,
2646 btrfs_super_root(disk_super),
2647 blocksize, generation);
2648 if (!tree_root->node ||
2649 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2650 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2651 sb->s_id);
2652
2653 goto recovery_tree_root;
2654 }
2655
2656 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2657 tree_root->commit_root = btrfs_root_node(tree_root);
2658
2659 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2660 location.type = BTRFS_ROOT_ITEM_KEY;
2661 location.offset = 0;
2662
2663 extent_root = btrfs_read_tree_root(tree_root, &location);
2664 if (IS_ERR(extent_root)) {
2665 ret = PTR_ERR(extent_root);
2666 goto recovery_tree_root;
2667 }
2668 extent_root->track_dirty = 1;
2669 fs_info->extent_root = extent_root;
2670
2671 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2672 dev_root = btrfs_read_tree_root(tree_root, &location);
2673 if (IS_ERR(dev_root)) {
2674 ret = PTR_ERR(dev_root);
2675 goto recovery_tree_root;
2676 }
2677 dev_root->track_dirty = 1;
2678 fs_info->dev_root = dev_root;
2679 btrfs_init_devices_late(fs_info);
2680
2681 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2682 csum_root = btrfs_read_tree_root(tree_root, &location);
2683 if (IS_ERR(csum_root)) {
2684 ret = PTR_ERR(csum_root);
2685 goto recovery_tree_root;
2686 }
2687 csum_root->track_dirty = 1;
2688 fs_info->csum_root = csum_root;
2689
2690 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2691 quota_root = btrfs_read_tree_root(tree_root, &location);
2692 if (!IS_ERR(quota_root)) {
2693 quota_root->track_dirty = 1;
2694 fs_info->quota_enabled = 1;
2695 fs_info->pending_quota_state = 1;
2696 fs_info->quota_root = quota_root;
2697 }
2698
2699 fs_info->generation = generation;
2700 fs_info->last_trans_committed = generation;
2701
2702 ret = btrfs_recover_balance(fs_info);
2703 if (ret) {
2704 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2705 goto fail_block_groups;
2706 }
2707
2708 ret = btrfs_init_dev_stats(fs_info);
2709 if (ret) {
2710 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2711 ret);
2712 goto fail_block_groups;
2713 }
2714
2715 ret = btrfs_init_dev_replace(fs_info);
2716 if (ret) {
2717 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2718 goto fail_block_groups;
2719 }
2720
2721 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2722
2723 ret = btrfs_init_space_info(fs_info);
2724 if (ret) {
2725 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2726 goto fail_block_groups;
2727 }
2728
2729 ret = btrfs_read_block_groups(extent_root);
2730 if (ret) {
2731 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2732 goto fail_block_groups;
2733 }
2734 fs_info->num_tolerated_disk_barrier_failures =
2735 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2736 if (fs_info->fs_devices->missing_devices >
2737 fs_info->num_tolerated_disk_barrier_failures &&
2738 !(sb->s_flags & MS_RDONLY)) {
2739 printk(KERN_WARNING
2740 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2741 goto fail_block_groups;
2742 }
2743
2744 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2745 "btrfs-cleaner");
2746 if (IS_ERR(fs_info->cleaner_kthread))
2747 goto fail_block_groups;
2748
2749 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2750 tree_root,
2751 "btrfs-transaction");
2752 if (IS_ERR(fs_info->transaction_kthread))
2753 goto fail_cleaner;
2754
2755 if (!btrfs_test_opt(tree_root, SSD) &&
2756 !btrfs_test_opt(tree_root, NOSSD) &&
2757 !fs_info->fs_devices->rotating) {
2758 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2759 "mode\n");
2760 btrfs_set_opt(fs_info->mount_opt, SSD);
2761 }
2762
2763 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2764 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2765 ret = btrfsic_mount(tree_root, fs_devices,
2766 btrfs_test_opt(tree_root,
2767 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2768 1 : 0,
2769 fs_info->check_integrity_print_mask);
2770 if (ret)
2771 printk(KERN_WARNING "btrfs: failed to initialize"
2772 " integrity check module %s\n", sb->s_id);
2773 }
2774 #endif
2775 ret = btrfs_read_qgroup_config(fs_info);
2776 if (ret)
2777 goto fail_trans_kthread;
2778
2779 /* do not make disk changes in broken FS */
2780 if (btrfs_super_log_root(disk_super) != 0) {
2781 u64 bytenr = btrfs_super_log_root(disk_super);
2782
2783 if (fs_devices->rw_devices == 0) {
2784 printk(KERN_WARNING "Btrfs log replay required "
2785 "on RO media\n");
2786 err = -EIO;
2787 goto fail_qgroup;
2788 }
2789 blocksize =
2790 btrfs_level_size(tree_root,
2791 btrfs_super_log_root_level(disk_super));
2792
2793 log_tree_root = btrfs_alloc_root(fs_info);
2794 if (!log_tree_root) {
2795 err = -ENOMEM;
2796 goto fail_qgroup;
2797 }
2798
2799 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2800 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2801
2802 log_tree_root->node = read_tree_block(tree_root, bytenr,
2803 blocksize,
2804 generation + 1);
2805 if (!log_tree_root->node ||
2806 !extent_buffer_uptodate(log_tree_root->node)) {
2807 printk(KERN_ERR "btrfs: failed to read log tree\n");
2808 free_extent_buffer(log_tree_root->node);
2809 kfree(log_tree_root);
2810 goto fail_trans_kthread;
2811 }
2812 /* returns with log_tree_root freed on success */
2813 ret = btrfs_recover_log_trees(log_tree_root);
2814 if (ret) {
2815 btrfs_error(tree_root->fs_info, ret,
2816 "Failed to recover log tree");
2817 free_extent_buffer(log_tree_root->node);
2818 kfree(log_tree_root);
2819 goto fail_trans_kthread;
2820 }
2821
2822 if (sb->s_flags & MS_RDONLY) {
2823 ret = btrfs_commit_super(tree_root);
2824 if (ret)
2825 goto fail_trans_kthread;
2826 }
2827 }
2828
2829 ret = btrfs_find_orphan_roots(tree_root);
2830 if (ret)
2831 goto fail_trans_kthread;
2832
2833 if (!(sb->s_flags & MS_RDONLY)) {
2834 ret = btrfs_cleanup_fs_roots(fs_info);
2835 if (ret)
2836 goto fail_trans_kthread;
2837
2838 ret = btrfs_recover_relocation(tree_root);
2839 if (ret < 0) {
2840 printk(KERN_WARNING
2841 "btrfs: failed to recover relocation\n");
2842 err = -EINVAL;
2843 goto fail_qgroup;
2844 }
2845 }
2846
2847 location.objectid = BTRFS_FS_TREE_OBJECTID;
2848 location.type = BTRFS_ROOT_ITEM_KEY;
2849 location.offset = 0;
2850
2851 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2852 if (IS_ERR(fs_info->fs_root)) {
2853 err = PTR_ERR(fs_info->fs_root);
2854 goto fail_qgroup;
2855 }
2856
2857 if (sb->s_flags & MS_RDONLY)
2858 return 0;
2859
2860 down_read(&fs_info->cleanup_work_sem);
2861 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2862 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2863 up_read(&fs_info->cleanup_work_sem);
2864 close_ctree(tree_root);
2865 return ret;
2866 }
2867 up_read(&fs_info->cleanup_work_sem);
2868
2869 ret = btrfs_resume_balance_async(fs_info);
2870 if (ret) {
2871 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2872 close_ctree(tree_root);
2873 return ret;
2874 }
2875
2876 ret = btrfs_resume_dev_replace_async(fs_info);
2877 if (ret) {
2878 pr_warn("btrfs: failed to resume dev_replace\n");
2879 close_ctree(tree_root);
2880 return ret;
2881 }
2882
2883 btrfs_qgroup_rescan_resume(fs_info);
2884
2885 return 0;
2886
2887 fail_qgroup:
2888 btrfs_free_qgroup_config(fs_info);
2889 fail_trans_kthread:
2890 kthread_stop(fs_info->transaction_kthread);
2891 btrfs_cleanup_transaction(fs_info->tree_root);
2892 del_fs_roots(fs_info);
2893 fail_cleaner:
2894 kthread_stop(fs_info->cleaner_kthread);
2895
2896 /*
2897 * make sure we're done with the btree inode before we stop our
2898 * kthreads
2899 */
2900 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2901
2902 fail_block_groups:
2903 btrfs_put_block_group_cache(fs_info);
2904 btrfs_free_block_groups(fs_info);
2905
2906 fail_tree_roots:
2907 free_root_pointers(fs_info, 1);
2908 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2909
2910 fail_sb_buffer:
2911 btrfs_stop_all_workers(fs_info);
2912 fail_alloc:
2913 fail_iput:
2914 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2915
2916 iput(fs_info->btree_inode);
2917 fail_delalloc_bytes:
2918 percpu_counter_destroy(&fs_info->delalloc_bytes);
2919 fail_dirty_metadata_bytes:
2920 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2921 fail_bdi:
2922 bdi_destroy(&fs_info->bdi);
2923 fail_srcu:
2924 cleanup_srcu_struct(&fs_info->subvol_srcu);
2925 fail:
2926 btrfs_free_stripe_hash_table(fs_info);
2927 btrfs_close_devices(fs_info->fs_devices);
2928 return err;
2929
2930 recovery_tree_root:
2931 if (!btrfs_test_opt(tree_root, RECOVERY))
2932 goto fail_tree_roots;
2933
2934 free_root_pointers(fs_info, 0);
2935
2936 /* don't use the log in recovery mode, it won't be valid */
2937 btrfs_set_super_log_root(disk_super, 0);
2938
2939 /* we can't trust the free space cache either */
2940 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2941
2942 ret = next_root_backup(fs_info, fs_info->super_copy,
2943 &num_backups_tried, &backup_index);
2944 if (ret == -1)
2945 goto fail_block_groups;
2946 goto retry_root_backup;
2947 }
2948
2949 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2950 {
2951 if (uptodate) {
2952 set_buffer_uptodate(bh);
2953 } else {
2954 struct btrfs_device *device = (struct btrfs_device *)
2955 bh->b_private;
2956
2957 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2958 "I/O error on %s\n",
2959 rcu_str_deref(device->name));
2960 /* note, we dont' set_buffer_write_io_error because we have
2961 * our own ways of dealing with the IO errors
2962 */
2963 clear_buffer_uptodate(bh);
2964 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2965 }
2966 unlock_buffer(bh);
2967 put_bh(bh);
2968 }
2969
2970 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2971 {
2972 struct buffer_head *bh;
2973 struct buffer_head *latest = NULL;
2974 struct btrfs_super_block *super;
2975 int i;
2976 u64 transid = 0;
2977 u64 bytenr;
2978
2979 /* we would like to check all the supers, but that would make
2980 * a btrfs mount succeed after a mkfs from a different FS.
2981 * So, we need to add a special mount option to scan for
2982 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2983 */
2984 for (i = 0; i < 1; i++) {
2985 bytenr = btrfs_sb_offset(i);
2986 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2987 break;
2988 bh = __bread(bdev, bytenr / 4096, 4096);
2989 if (!bh)
2990 continue;
2991
2992 super = (struct btrfs_super_block *)bh->b_data;
2993 if (btrfs_super_bytenr(super) != bytenr ||
2994 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2995 brelse(bh);
2996 continue;
2997 }
2998
2999 if (!latest || btrfs_super_generation(super) > transid) {
3000 brelse(latest);
3001 latest = bh;
3002 transid = btrfs_super_generation(super);
3003 } else {
3004 brelse(bh);
3005 }
3006 }
3007 return latest;
3008 }
3009
3010 /*
3011 * this should be called twice, once with wait == 0 and
3012 * once with wait == 1. When wait == 0 is done, all the buffer heads
3013 * we write are pinned.
3014 *
3015 * They are released when wait == 1 is done.
3016 * max_mirrors must be the same for both runs, and it indicates how
3017 * many supers on this one device should be written.
3018 *
3019 * max_mirrors == 0 means to write them all.
3020 */
3021 static int write_dev_supers(struct btrfs_device *device,
3022 struct btrfs_super_block *sb,
3023 int do_barriers, int wait, int max_mirrors)
3024 {
3025 struct buffer_head *bh;
3026 int i;
3027 int ret;
3028 int errors = 0;
3029 u32 crc;
3030 u64 bytenr;
3031
3032 if (max_mirrors == 0)
3033 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3034
3035 for (i = 0; i < max_mirrors; i++) {
3036 bytenr = btrfs_sb_offset(i);
3037 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3038 break;
3039
3040 if (wait) {
3041 bh = __find_get_block(device->bdev, bytenr / 4096,
3042 BTRFS_SUPER_INFO_SIZE);
3043 if (!bh) {
3044 errors++;
3045 continue;
3046 }
3047 wait_on_buffer(bh);
3048 if (!buffer_uptodate(bh))
3049 errors++;
3050
3051 /* drop our reference */
3052 brelse(bh);
3053
3054 /* drop the reference from the wait == 0 run */
3055 brelse(bh);
3056 continue;
3057 } else {
3058 btrfs_set_super_bytenr(sb, bytenr);
3059
3060 crc = ~(u32)0;
3061 crc = btrfs_csum_data((char *)sb +
3062 BTRFS_CSUM_SIZE, crc,
3063 BTRFS_SUPER_INFO_SIZE -
3064 BTRFS_CSUM_SIZE);
3065 btrfs_csum_final(crc, sb->csum);
3066
3067 /*
3068 * one reference for us, and we leave it for the
3069 * caller
3070 */
3071 bh = __getblk(device->bdev, bytenr / 4096,
3072 BTRFS_SUPER_INFO_SIZE);
3073 if (!bh) {
3074 printk(KERN_ERR "btrfs: couldn't get super "
3075 "buffer head for bytenr %Lu\n", bytenr);
3076 errors++;
3077 continue;
3078 }
3079
3080 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3081
3082 /* one reference for submit_bh */
3083 get_bh(bh);
3084
3085 set_buffer_uptodate(bh);
3086 lock_buffer(bh);
3087 bh->b_end_io = btrfs_end_buffer_write_sync;
3088 bh->b_private = device;
3089 }
3090
3091 /*
3092 * we fua the first super. The others we allow
3093 * to go down lazy.
3094 */
3095 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3096 if (ret)
3097 errors++;
3098 }
3099 return errors < i ? 0 : -1;
3100 }
3101
3102 /*
3103 * endio for the write_dev_flush, this will wake anyone waiting
3104 * for the barrier when it is done
3105 */
3106 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3107 {
3108 if (err) {
3109 if (err == -EOPNOTSUPP)
3110 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3111 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3112 }
3113 if (bio->bi_private)
3114 complete(bio->bi_private);
3115 bio_put(bio);
3116 }
3117
3118 /*
3119 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3120 * sent down. With wait == 1, it waits for the previous flush.
3121 *
3122 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3123 * capable
3124 */
3125 static int write_dev_flush(struct btrfs_device *device, int wait)
3126 {
3127 struct bio *bio;
3128 int ret = 0;
3129
3130 if (device->nobarriers)
3131 return 0;
3132
3133 if (wait) {
3134 bio = device->flush_bio;
3135 if (!bio)
3136 return 0;
3137
3138 wait_for_completion(&device->flush_wait);
3139
3140 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3141 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3142 rcu_str_deref(device->name));
3143 device->nobarriers = 1;
3144 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3145 ret = -EIO;
3146 btrfs_dev_stat_inc_and_print(device,
3147 BTRFS_DEV_STAT_FLUSH_ERRS);
3148 }
3149
3150 /* drop the reference from the wait == 0 run */
3151 bio_put(bio);
3152 device->flush_bio = NULL;
3153
3154 return ret;
3155 }
3156
3157 /*
3158 * one reference for us, and we leave it for the
3159 * caller
3160 */
3161 device->flush_bio = NULL;
3162 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3163 if (!bio)
3164 return -ENOMEM;
3165
3166 bio->bi_end_io = btrfs_end_empty_barrier;
3167 bio->bi_bdev = device->bdev;
3168 init_completion(&device->flush_wait);
3169 bio->bi_private = &device->flush_wait;
3170 device->flush_bio = bio;
3171
3172 bio_get(bio);
3173 btrfsic_submit_bio(WRITE_FLUSH, bio);
3174
3175 return 0;
3176 }
3177
3178 /*
3179 * send an empty flush down to each device in parallel,
3180 * then wait for them
3181 */
3182 static int barrier_all_devices(struct btrfs_fs_info *info)
3183 {
3184 struct list_head *head;
3185 struct btrfs_device *dev;
3186 int errors_send = 0;
3187 int errors_wait = 0;
3188 int ret;
3189
3190 /* send down all the barriers */
3191 head = &info->fs_devices->devices;
3192 list_for_each_entry_rcu(dev, head, dev_list) {
3193 if (!dev->bdev) {
3194 errors_send++;
3195 continue;
3196 }
3197 if (!dev->in_fs_metadata || !dev->writeable)
3198 continue;
3199
3200 ret = write_dev_flush(dev, 0);
3201 if (ret)
3202 errors_send++;
3203 }
3204
3205 /* wait for all the barriers */
3206 list_for_each_entry_rcu(dev, head, dev_list) {
3207 if (!dev->bdev) {
3208 errors_wait++;
3209 continue;
3210 }
3211 if (!dev->in_fs_metadata || !dev->writeable)
3212 continue;
3213
3214 ret = write_dev_flush(dev, 1);
3215 if (ret)
3216 errors_wait++;
3217 }
3218 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3219 errors_wait > info->num_tolerated_disk_barrier_failures)
3220 return -EIO;
3221 return 0;
3222 }
3223
3224 int btrfs_calc_num_tolerated_disk_barrier_failures(
3225 struct btrfs_fs_info *fs_info)
3226 {
3227 struct btrfs_ioctl_space_info space;
3228 struct btrfs_space_info *sinfo;
3229 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3230 BTRFS_BLOCK_GROUP_SYSTEM,
3231 BTRFS_BLOCK_GROUP_METADATA,
3232 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3233 int num_types = 4;
3234 int i;
3235 int c;
3236 int num_tolerated_disk_barrier_failures =
3237 (int)fs_info->fs_devices->num_devices;
3238
3239 for (i = 0; i < num_types; i++) {
3240 struct btrfs_space_info *tmp;
3241
3242 sinfo = NULL;
3243 rcu_read_lock();
3244 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3245 if (tmp->flags == types[i]) {
3246 sinfo = tmp;
3247 break;
3248 }
3249 }
3250 rcu_read_unlock();
3251
3252 if (!sinfo)
3253 continue;
3254
3255 down_read(&sinfo->groups_sem);
3256 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3257 if (!list_empty(&sinfo->block_groups[c])) {
3258 u64 flags;
3259
3260 btrfs_get_block_group_info(
3261 &sinfo->block_groups[c], &space);
3262 if (space.total_bytes == 0 ||
3263 space.used_bytes == 0)
3264 continue;
3265 flags = space.flags;
3266 /*
3267 * return
3268 * 0: if dup, single or RAID0 is configured for
3269 * any of metadata, system or data, else
3270 * 1: if RAID5 is configured, or if RAID1 or
3271 * RAID10 is configured and only two mirrors
3272 * are used, else
3273 * 2: if RAID6 is configured, else
3274 * num_mirrors - 1: if RAID1 or RAID10 is
3275 * configured and more than
3276 * 2 mirrors are used.
3277 */
3278 if (num_tolerated_disk_barrier_failures > 0 &&
3279 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3280 BTRFS_BLOCK_GROUP_RAID0)) ||
3281 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3282 == 0)))
3283 num_tolerated_disk_barrier_failures = 0;
3284 else if (num_tolerated_disk_barrier_failures > 1) {
3285 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3286 BTRFS_BLOCK_GROUP_RAID5 |
3287 BTRFS_BLOCK_GROUP_RAID10)) {
3288 num_tolerated_disk_barrier_failures = 1;
3289 } else if (flags &
3290 BTRFS_BLOCK_GROUP_RAID6) {
3291 num_tolerated_disk_barrier_failures = 2;
3292 }
3293 }
3294 }
3295 }
3296 up_read(&sinfo->groups_sem);
3297 }
3298
3299 return num_tolerated_disk_barrier_failures;
3300 }
3301
3302 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3303 {
3304 struct list_head *head;
3305 struct btrfs_device *dev;
3306 struct btrfs_super_block *sb;
3307 struct btrfs_dev_item *dev_item;
3308 int ret;
3309 int do_barriers;
3310 int max_errors;
3311 int total_errors = 0;
3312 u64 flags;
3313
3314 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3315 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3316 backup_super_roots(root->fs_info);
3317
3318 sb = root->fs_info->super_for_commit;
3319 dev_item = &sb->dev_item;
3320
3321 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3322 head = &root->fs_info->fs_devices->devices;
3323
3324 if (do_barriers) {
3325 ret = barrier_all_devices(root->fs_info);
3326 if (ret) {
3327 mutex_unlock(
3328 &root->fs_info->fs_devices->device_list_mutex);
3329 btrfs_error(root->fs_info, ret,
3330 "errors while submitting device barriers.");
3331 return ret;
3332 }
3333 }
3334
3335 list_for_each_entry_rcu(dev, head, dev_list) {
3336 if (!dev->bdev) {
3337 total_errors++;
3338 continue;
3339 }
3340 if (!dev->in_fs_metadata || !dev->writeable)
3341 continue;
3342
3343 btrfs_set_stack_device_generation(dev_item, 0);
3344 btrfs_set_stack_device_type(dev_item, dev->type);
3345 btrfs_set_stack_device_id(dev_item, dev->devid);
3346 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3347 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3348 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3349 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3350 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3351 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3352 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3353
3354 flags = btrfs_super_flags(sb);
3355 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3356
3357 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3358 if (ret)
3359 total_errors++;
3360 }
3361 if (total_errors > max_errors) {
3362 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3363 total_errors);
3364
3365 /* This shouldn't happen. FUA is masked off if unsupported */
3366 BUG();
3367 }
3368
3369 total_errors = 0;
3370 list_for_each_entry_rcu(dev, head, dev_list) {
3371 if (!dev->bdev)
3372 continue;
3373 if (!dev->in_fs_metadata || !dev->writeable)
3374 continue;
3375
3376 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3377 if (ret)
3378 total_errors++;
3379 }
3380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3381 if (total_errors > max_errors) {
3382 btrfs_error(root->fs_info, -EIO,
3383 "%d errors while writing supers", total_errors);
3384 return -EIO;
3385 }
3386 return 0;
3387 }
3388
3389 int write_ctree_super(struct btrfs_trans_handle *trans,
3390 struct btrfs_root *root, int max_mirrors)
3391 {
3392 int ret;
3393
3394 ret = write_all_supers(root, max_mirrors);
3395 return ret;
3396 }
3397
3398 /* Drop a fs root from the radix tree and free it. */
3399 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3400 struct btrfs_root *root)
3401 {
3402 spin_lock(&fs_info->fs_roots_radix_lock);
3403 radix_tree_delete(&fs_info->fs_roots_radix,
3404 (unsigned long)root->root_key.objectid);
3405 spin_unlock(&fs_info->fs_roots_radix_lock);
3406
3407 if (btrfs_root_refs(&root->root_item) == 0)
3408 synchronize_srcu(&fs_info->subvol_srcu);
3409
3410 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3411 btrfs_free_log(NULL, root);
3412 btrfs_free_log_root_tree(NULL, fs_info);
3413 }
3414
3415 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3416 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3417 free_fs_root(root);
3418 }
3419
3420 static void free_fs_root(struct btrfs_root *root)
3421 {
3422 iput(root->cache_inode);
3423 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3424 if (root->anon_dev)
3425 free_anon_bdev(root->anon_dev);
3426 free_extent_buffer(root->node);
3427 free_extent_buffer(root->commit_root);
3428 kfree(root->free_ino_ctl);
3429 kfree(root->free_ino_pinned);
3430 kfree(root->name);
3431 btrfs_put_fs_root(root);
3432 }
3433
3434 void btrfs_free_fs_root(struct btrfs_root *root)
3435 {
3436 free_fs_root(root);
3437 }
3438
3439 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3440 {
3441 u64 root_objectid = 0;
3442 struct btrfs_root *gang[8];
3443 int i;
3444 int ret;
3445
3446 while (1) {
3447 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3448 (void **)gang, root_objectid,
3449 ARRAY_SIZE(gang));
3450 if (!ret)
3451 break;
3452
3453 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3454 for (i = 0; i < ret; i++) {
3455 int err;
3456
3457 root_objectid = gang[i]->root_key.objectid;
3458 err = btrfs_orphan_cleanup(gang[i]);
3459 if (err)
3460 return err;
3461 }
3462 root_objectid++;
3463 }
3464 return 0;
3465 }
3466
3467 int btrfs_commit_super(struct btrfs_root *root)
3468 {
3469 struct btrfs_trans_handle *trans;
3470 int ret;
3471
3472 mutex_lock(&root->fs_info->cleaner_mutex);
3473 btrfs_run_delayed_iputs(root);
3474 mutex_unlock(&root->fs_info->cleaner_mutex);
3475 wake_up_process(root->fs_info->cleaner_kthread);
3476
3477 /* wait until ongoing cleanup work done */
3478 down_write(&root->fs_info->cleanup_work_sem);
3479 up_write(&root->fs_info->cleanup_work_sem);
3480
3481 trans = btrfs_join_transaction(root);
3482 if (IS_ERR(trans))
3483 return PTR_ERR(trans);
3484 ret = btrfs_commit_transaction(trans, root);
3485 if (ret)
3486 return ret;
3487 /* run commit again to drop the original snapshot */
3488 trans = btrfs_join_transaction(root);
3489 if (IS_ERR(trans))
3490 return PTR_ERR(trans);
3491 ret = btrfs_commit_transaction(trans, root);
3492 if (ret)
3493 return ret;
3494 ret = btrfs_write_and_wait_transaction(NULL, root);
3495 if (ret) {
3496 btrfs_error(root->fs_info, ret,
3497 "Failed to sync btree inode to disk.");
3498 return ret;
3499 }
3500
3501 ret = write_ctree_super(NULL, root, 0);
3502 return ret;
3503 }
3504
3505 int close_ctree(struct btrfs_root *root)
3506 {
3507 struct btrfs_fs_info *fs_info = root->fs_info;
3508 int ret;
3509
3510 fs_info->closing = 1;
3511 smp_mb();
3512
3513 /* pause restriper - we want to resume on mount */
3514 btrfs_pause_balance(fs_info);
3515
3516 btrfs_dev_replace_suspend_for_unmount(fs_info);
3517
3518 btrfs_scrub_cancel(fs_info);
3519
3520 /* wait for any defraggers to finish */
3521 wait_event(fs_info->transaction_wait,
3522 (atomic_read(&fs_info->defrag_running) == 0));
3523
3524 /* clear out the rbtree of defraggable inodes */
3525 btrfs_cleanup_defrag_inodes(fs_info);
3526
3527 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3528 ret = btrfs_commit_super(root);
3529 if (ret)
3530 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3531 }
3532
3533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3534 btrfs_error_commit_super(root);
3535
3536 btrfs_put_block_group_cache(fs_info);
3537
3538 kthread_stop(fs_info->transaction_kthread);
3539 kthread_stop(fs_info->cleaner_kthread);
3540
3541 fs_info->closing = 2;
3542 smp_mb();
3543
3544 btrfs_free_qgroup_config(root->fs_info);
3545
3546 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3547 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3548 percpu_counter_sum(&fs_info->delalloc_bytes));
3549 }
3550
3551 btrfs_free_block_groups(fs_info);
3552
3553 btrfs_stop_all_workers(fs_info);
3554
3555 del_fs_roots(fs_info);
3556
3557 free_root_pointers(fs_info, 1);
3558
3559 iput(fs_info->btree_inode);
3560
3561 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3562 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3563 btrfsic_unmount(root, fs_info->fs_devices);
3564 #endif
3565
3566 btrfs_close_devices(fs_info->fs_devices);
3567 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3568
3569 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3570 percpu_counter_destroy(&fs_info->delalloc_bytes);
3571 bdi_destroy(&fs_info->bdi);
3572 cleanup_srcu_struct(&fs_info->subvol_srcu);
3573
3574 btrfs_free_stripe_hash_table(fs_info);
3575
3576 return 0;
3577 }
3578
3579 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3580 int atomic)
3581 {
3582 int ret;
3583 struct inode *btree_inode = buf->pages[0]->mapping->host;
3584
3585 ret = extent_buffer_uptodate(buf);
3586 if (!ret)
3587 return ret;
3588
3589 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3590 parent_transid, atomic);
3591 if (ret == -EAGAIN)
3592 return ret;
3593 return !ret;
3594 }
3595
3596 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3597 {
3598 return set_extent_buffer_uptodate(buf);
3599 }
3600
3601 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3602 {
3603 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3604 u64 transid = btrfs_header_generation(buf);
3605 int was_dirty;
3606
3607 btrfs_assert_tree_locked(buf);
3608 if (transid != root->fs_info->generation)
3609 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3610 "found %llu running %llu\n",
3611 (unsigned long long)buf->start,
3612 (unsigned long long)transid,
3613 (unsigned long long)root->fs_info->generation);
3614 was_dirty = set_extent_buffer_dirty(buf);
3615 if (!was_dirty)
3616 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3617 buf->len,
3618 root->fs_info->dirty_metadata_batch);
3619 }
3620
3621 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3622 int flush_delayed)
3623 {
3624 /*
3625 * looks as though older kernels can get into trouble with
3626 * this code, they end up stuck in balance_dirty_pages forever
3627 */
3628 int ret;
3629
3630 if (current->flags & PF_MEMALLOC)
3631 return;
3632
3633 if (flush_delayed)
3634 btrfs_balance_delayed_items(root);
3635
3636 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3637 BTRFS_DIRTY_METADATA_THRESH);
3638 if (ret > 0) {
3639 balance_dirty_pages_ratelimited(
3640 root->fs_info->btree_inode->i_mapping);
3641 }
3642 return;
3643 }
3644
3645 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3646 {
3647 __btrfs_btree_balance_dirty(root, 1);
3648 }
3649
3650 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3651 {
3652 __btrfs_btree_balance_dirty(root, 0);
3653 }
3654
3655 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3656 {
3657 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3658 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3659 }
3660
3661 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3662 int read_only)
3663 {
3664 /*
3665 * Placeholder for checks
3666 */
3667 return 0;
3668 }
3669
3670 static void btrfs_error_commit_super(struct btrfs_root *root)
3671 {
3672 mutex_lock(&root->fs_info->cleaner_mutex);
3673 btrfs_run_delayed_iputs(root);
3674 mutex_unlock(&root->fs_info->cleaner_mutex);
3675
3676 down_write(&root->fs_info->cleanup_work_sem);
3677 up_write(&root->fs_info->cleanup_work_sem);
3678
3679 /* cleanup FS via transaction */
3680 btrfs_cleanup_transaction(root);
3681 }
3682
3683 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3684 struct btrfs_root *root)
3685 {
3686 struct btrfs_inode *btrfs_inode;
3687 struct list_head splice;
3688
3689 INIT_LIST_HEAD(&splice);
3690
3691 mutex_lock(&root->fs_info->ordered_operations_mutex);
3692 spin_lock(&root->fs_info->ordered_root_lock);
3693
3694 list_splice_init(&t->ordered_operations, &splice);
3695 while (!list_empty(&splice)) {
3696 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3697 ordered_operations);
3698
3699 list_del_init(&btrfs_inode->ordered_operations);
3700 spin_unlock(&root->fs_info->ordered_root_lock);
3701
3702 btrfs_invalidate_inodes(btrfs_inode->root);
3703
3704 spin_lock(&root->fs_info->ordered_root_lock);
3705 }
3706
3707 spin_unlock(&root->fs_info->ordered_root_lock);
3708 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3709 }
3710
3711 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3712 {
3713 struct btrfs_ordered_extent *ordered;
3714
3715 spin_lock(&root->ordered_extent_lock);
3716 /*
3717 * This will just short circuit the ordered completion stuff which will
3718 * make sure the ordered extent gets properly cleaned up.
3719 */
3720 list_for_each_entry(ordered, &root->ordered_extents,
3721 root_extent_list)
3722 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3723 spin_unlock(&root->ordered_extent_lock);
3724 }
3725
3726 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3727 {
3728 struct btrfs_root *root;
3729 struct list_head splice;
3730
3731 INIT_LIST_HEAD(&splice);
3732
3733 spin_lock(&fs_info->ordered_root_lock);
3734 list_splice_init(&fs_info->ordered_roots, &splice);
3735 while (!list_empty(&splice)) {
3736 root = list_first_entry(&splice, struct btrfs_root,
3737 ordered_root);
3738 list_del_init(&root->ordered_root);
3739
3740 btrfs_destroy_ordered_extents(root);
3741
3742 cond_resched_lock(&fs_info->ordered_root_lock);
3743 }
3744 spin_unlock(&fs_info->ordered_root_lock);
3745 }
3746
3747 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3748 struct btrfs_root *root)
3749 {
3750 struct rb_node *node;
3751 struct btrfs_delayed_ref_root *delayed_refs;
3752 struct btrfs_delayed_ref_node *ref;
3753 int ret = 0;
3754
3755 delayed_refs = &trans->delayed_refs;
3756
3757 spin_lock(&delayed_refs->lock);
3758 if (delayed_refs->num_entries == 0) {
3759 spin_unlock(&delayed_refs->lock);
3760 printk(KERN_INFO "delayed_refs has NO entry\n");
3761 return ret;
3762 }
3763
3764 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3765 struct btrfs_delayed_ref_head *head = NULL;
3766 bool pin_bytes = false;
3767
3768 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3769 atomic_set(&ref->refs, 1);
3770 if (btrfs_delayed_ref_is_head(ref)) {
3771
3772 head = btrfs_delayed_node_to_head(ref);
3773 if (!mutex_trylock(&head->mutex)) {
3774 atomic_inc(&ref->refs);
3775 spin_unlock(&delayed_refs->lock);
3776
3777 /* Need to wait for the delayed ref to run */
3778 mutex_lock(&head->mutex);
3779 mutex_unlock(&head->mutex);
3780 btrfs_put_delayed_ref(ref);
3781
3782 spin_lock(&delayed_refs->lock);
3783 continue;
3784 }
3785
3786 if (head->must_insert_reserved)
3787 pin_bytes = true;
3788 btrfs_free_delayed_extent_op(head->extent_op);
3789 delayed_refs->num_heads--;
3790 if (list_empty(&head->cluster))
3791 delayed_refs->num_heads_ready--;
3792 list_del_init(&head->cluster);
3793 }
3794
3795 ref->in_tree = 0;
3796 rb_erase(&ref->rb_node, &delayed_refs->root);
3797 delayed_refs->num_entries--;
3798 spin_unlock(&delayed_refs->lock);
3799 if (head) {
3800 if (pin_bytes)
3801 btrfs_pin_extent(root, ref->bytenr,
3802 ref->num_bytes, 1);
3803 mutex_unlock(&head->mutex);
3804 }
3805 btrfs_put_delayed_ref(ref);
3806
3807 cond_resched();
3808 spin_lock(&delayed_refs->lock);
3809 }
3810
3811 spin_unlock(&delayed_refs->lock);
3812
3813 return ret;
3814 }
3815
3816 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3817 {
3818 struct btrfs_pending_snapshot *snapshot;
3819 struct list_head splice;
3820
3821 INIT_LIST_HEAD(&splice);
3822
3823 list_splice_init(&t->pending_snapshots, &splice);
3824
3825 while (!list_empty(&splice)) {
3826 snapshot = list_entry(splice.next,
3827 struct btrfs_pending_snapshot,
3828 list);
3829 snapshot->error = -ECANCELED;
3830 list_del_init(&snapshot->list);
3831 }
3832 }
3833
3834 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3835 {
3836 struct btrfs_inode *btrfs_inode;
3837 struct list_head splice;
3838
3839 INIT_LIST_HEAD(&splice);
3840
3841 spin_lock(&root->delalloc_lock);
3842 list_splice_init(&root->delalloc_inodes, &splice);
3843
3844 while (!list_empty(&splice)) {
3845 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3846 delalloc_inodes);
3847
3848 list_del_init(&btrfs_inode->delalloc_inodes);
3849 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3850 &btrfs_inode->runtime_flags);
3851 spin_unlock(&root->delalloc_lock);
3852
3853 btrfs_invalidate_inodes(btrfs_inode->root);
3854
3855 spin_lock(&root->delalloc_lock);
3856 }
3857
3858 spin_unlock(&root->delalloc_lock);
3859 }
3860
3861 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3862 {
3863 struct btrfs_root *root;
3864 struct list_head splice;
3865
3866 INIT_LIST_HEAD(&splice);
3867
3868 spin_lock(&fs_info->delalloc_root_lock);
3869 list_splice_init(&fs_info->delalloc_roots, &splice);
3870 while (!list_empty(&splice)) {
3871 root = list_first_entry(&splice, struct btrfs_root,
3872 delalloc_root);
3873 list_del_init(&root->delalloc_root);
3874 root = btrfs_grab_fs_root(root);
3875 BUG_ON(!root);
3876 spin_unlock(&fs_info->delalloc_root_lock);
3877
3878 btrfs_destroy_delalloc_inodes(root);
3879 btrfs_put_fs_root(root);
3880
3881 spin_lock(&fs_info->delalloc_root_lock);
3882 }
3883 spin_unlock(&fs_info->delalloc_root_lock);
3884 }
3885
3886 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3887 struct extent_io_tree *dirty_pages,
3888 int mark)
3889 {
3890 int ret;
3891 struct extent_buffer *eb;
3892 u64 start = 0;
3893 u64 end;
3894
3895 while (1) {
3896 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3897 mark, NULL);
3898 if (ret)
3899 break;
3900
3901 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3902 while (start <= end) {
3903 eb = btrfs_find_tree_block(root, start,
3904 root->leafsize);
3905 start += root->leafsize;
3906 if (!eb)
3907 continue;
3908 wait_on_extent_buffer_writeback(eb);
3909
3910 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3911 &eb->bflags))
3912 clear_extent_buffer_dirty(eb);
3913 free_extent_buffer_stale(eb);
3914 }
3915 }
3916
3917 return ret;
3918 }
3919
3920 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3921 struct extent_io_tree *pinned_extents)
3922 {
3923 struct extent_io_tree *unpin;
3924 u64 start;
3925 u64 end;
3926 int ret;
3927 bool loop = true;
3928
3929 unpin = pinned_extents;
3930 again:
3931 while (1) {
3932 ret = find_first_extent_bit(unpin, 0, &start, &end,
3933 EXTENT_DIRTY, NULL);
3934 if (ret)
3935 break;
3936
3937 /* opt_discard */
3938 if (btrfs_test_opt(root, DISCARD))
3939 ret = btrfs_error_discard_extent(root, start,
3940 end + 1 - start,
3941 NULL);
3942
3943 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3944 btrfs_error_unpin_extent_range(root, start, end);
3945 cond_resched();
3946 }
3947
3948 if (loop) {
3949 if (unpin == &root->fs_info->freed_extents[0])
3950 unpin = &root->fs_info->freed_extents[1];
3951 else
3952 unpin = &root->fs_info->freed_extents[0];
3953 loop = false;
3954 goto again;
3955 }
3956
3957 return 0;
3958 }
3959
3960 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3961 struct btrfs_root *root)
3962 {
3963 btrfs_destroy_delayed_refs(cur_trans, root);
3964 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3965 cur_trans->dirty_pages.dirty_bytes);
3966
3967 cur_trans->state = TRANS_STATE_COMMIT_START;
3968 wake_up(&root->fs_info->transaction_blocked_wait);
3969
3970 btrfs_evict_pending_snapshots(cur_trans);
3971
3972 cur_trans->state = TRANS_STATE_UNBLOCKED;
3973 wake_up(&root->fs_info->transaction_wait);
3974
3975 btrfs_destroy_delayed_inodes(root);
3976 btrfs_assert_delayed_root_empty(root);
3977
3978 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3979 EXTENT_DIRTY);
3980 btrfs_destroy_pinned_extent(root,
3981 root->fs_info->pinned_extents);
3982
3983 cur_trans->state =TRANS_STATE_COMPLETED;
3984 wake_up(&cur_trans->commit_wait);
3985
3986 /*
3987 memset(cur_trans, 0, sizeof(*cur_trans));
3988 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3989 */
3990 }
3991
3992 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3993 {
3994 struct btrfs_transaction *t;
3995 LIST_HEAD(list);
3996
3997 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3998
3999 spin_lock(&root->fs_info->trans_lock);
4000 list_splice_init(&root->fs_info->trans_list, &list);
4001 root->fs_info->running_transaction = NULL;
4002 spin_unlock(&root->fs_info->trans_lock);
4003
4004 while (!list_empty(&list)) {
4005 t = list_entry(list.next, struct btrfs_transaction, list);
4006
4007 btrfs_destroy_ordered_operations(t, root);
4008
4009 btrfs_destroy_all_ordered_extents(root->fs_info);
4010
4011 btrfs_destroy_delayed_refs(t, root);
4012
4013 /*
4014 * FIXME: cleanup wait for commit
4015 * We needn't acquire the lock here, because we are during
4016 * the umount, there is no other task which will change it.
4017 */
4018 t->state = TRANS_STATE_COMMIT_START;
4019 smp_mb();
4020 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4021 wake_up(&root->fs_info->transaction_blocked_wait);
4022
4023 btrfs_evict_pending_snapshots(t);
4024
4025 t->state = TRANS_STATE_UNBLOCKED;
4026 smp_mb();
4027 if (waitqueue_active(&root->fs_info->transaction_wait))
4028 wake_up(&root->fs_info->transaction_wait);
4029
4030 btrfs_destroy_delayed_inodes(root);
4031 btrfs_assert_delayed_root_empty(root);
4032
4033 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4034
4035 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4036 EXTENT_DIRTY);
4037
4038 btrfs_destroy_pinned_extent(root,
4039 root->fs_info->pinned_extents);
4040
4041 t->state = TRANS_STATE_COMPLETED;
4042 smp_mb();
4043 if (waitqueue_active(&t->commit_wait))
4044 wake_up(&t->commit_wait);
4045
4046 atomic_set(&t->use_count, 0);
4047 list_del_init(&t->list);
4048 memset(t, 0, sizeof(*t));
4049 kmem_cache_free(btrfs_transaction_cachep, t);
4050 }
4051
4052 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4053
4054 return 0;
4055 }
4056
4057 static struct extent_io_ops btree_extent_io_ops = {
4058 .readpage_end_io_hook = btree_readpage_end_io_hook,
4059 .readpage_io_failed_hook = btree_io_failed_hook,
4060 .submit_bio_hook = btree_submit_bio_hook,
4061 /* note we're sharing with inode.c for the merge bio hook */
4062 .merge_bio_hook = btrfs_merge_bio_hook,
4063 };
This page took 0.119373 seconds and 5 git commands to generate.