6fc243eccffae2302860db47ed451b7a290cf921
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66 /*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80 };
81
82 /*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87 struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103 };
104
105 /*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 # error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168 {
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191 {
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366 {
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414 }
415
416 /*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452 {
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477 {
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538 {
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573 {
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641 err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650 out:
651 return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695 }
696
697 /*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706 {
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 }
773
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780 }
781
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788 {
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826 }
827
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845 }
846
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851 {
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857 }
858
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862 {
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873 {
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899 }
900
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905 {
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922
923
924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926 {
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964 }
965
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979 }
980
981 static int btree_set_page_dirty(struct page *page)
982 {
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992 }
993
994 static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001 #endif
1002 .set_page_dirty = btree_set_page_dirty,
1003 };
1004
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007 {
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019 }
1020
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023 {
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051 }
1052
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055 {
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061 }
1062
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065 {
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072 }
1073
1074
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079 }
1080
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085 }
1086
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089 {
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104 {
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128 }
1129
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134 {
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185 }
1186
1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191 {
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 else if (ret < 0)
1204 return ret;
1205
1206 generation = btrfs_root_generation(&root->root_item);
1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 root->commit_root = NULL;
1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 blocksize, generation);
1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 free_extent_buffer(root->node);
1213 root->node = NULL;
1214 return -EIO;
1215 }
1216 root->commit_root = btrfs_root_node(root);
1217 return 0;
1218 }
1219
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226 }
1227
1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info,
1230 u64 objectid)
1231 {
1232 struct extent_buffer *leaf;
1233 struct btrfs_root *tree_root = fs_info->tree_root;
1234 struct btrfs_root *root;
1235 struct btrfs_key key;
1236 int ret = 0;
1237 u64 bytenr;
1238
1239 root = btrfs_alloc_root(fs_info);
1240 if (!root)
1241 return ERR_PTR(-ENOMEM);
1242
1243 __setup_root(tree_root->nodesize, tree_root->leafsize,
1244 tree_root->sectorsize, tree_root->stripesize,
1245 root, fs_info, objectid);
1246 root->root_key.objectid = objectid;
1247 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248 root->root_key.offset = 0;
1249
1250 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251 0, objectid, NULL, 0, 0, 0);
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1254 goto fail;
1255 }
1256
1257 bytenr = leaf->start;
1258 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259 btrfs_set_header_bytenr(leaf, leaf->start);
1260 btrfs_set_header_generation(leaf, trans->transid);
1261 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262 btrfs_set_header_owner(leaf, objectid);
1263 root->node = leaf;
1264
1265 write_extent_buffer(leaf, fs_info->fsid,
1266 (unsigned long)btrfs_header_fsid(leaf),
1267 BTRFS_FSID_SIZE);
1268 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270 BTRFS_UUID_SIZE);
1271 btrfs_mark_buffer_dirty(leaf);
1272
1273 root->commit_root = btrfs_root_node(root);
1274 root->track_dirty = 1;
1275
1276
1277 root->root_item.flags = 0;
1278 root->root_item.byte_limit = 0;
1279 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280 btrfs_set_root_generation(&root->root_item, trans->transid);
1281 btrfs_set_root_level(&root->root_item, 0);
1282 btrfs_set_root_refs(&root->root_item, 1);
1283 btrfs_set_root_used(&root->root_item, leaf->len);
1284 btrfs_set_root_last_snapshot(&root->root_item, 0);
1285 btrfs_set_root_dirid(&root->root_item, 0);
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1297 fail:
1298 if (ret)
1299 return ERR_PTR(ret);
1300
1301 return root;
1302 }
1303
1304 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info)
1306 {
1307 struct btrfs_root *root;
1308 struct btrfs_root *tree_root = fs_info->tree_root;
1309 struct extent_buffer *leaf;
1310
1311 root = btrfs_alloc_root(fs_info);
1312 if (!root)
1313 return ERR_PTR(-ENOMEM);
1314
1315 __setup_root(tree_root->nodesize, tree_root->leafsize,
1316 tree_root->sectorsize, tree_root->stripesize,
1317 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1322 /*
1323 * log trees do not get reference counted because they go away
1324 * before a real commit is actually done. They do store pointers
1325 * to file data extents, and those reference counts still get
1326 * updated (along with back refs to the log tree).
1327 */
1328 root->ref_cows = 0;
1329
1330 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1331 BTRFS_TREE_LOG_OBJECTID, NULL,
1332 0, 0, 0);
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
1337
1338 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339 btrfs_set_header_bytenr(leaf, leaf->start);
1340 btrfs_set_header_generation(leaf, trans->transid);
1341 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1343 root->node = leaf;
1344
1345 write_extent_buffer(root->node, root->fs_info->fsid,
1346 (unsigned long)btrfs_header_fsid(root->node),
1347 BTRFS_FSID_SIZE);
1348 btrfs_mark_buffer_dirty(root->node);
1349 btrfs_tree_unlock(root->node);
1350 return root;
1351 }
1352
1353 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354 struct btrfs_fs_info *fs_info)
1355 {
1356 struct btrfs_root *log_root;
1357
1358 log_root = alloc_log_tree(trans, fs_info);
1359 if (IS_ERR(log_root))
1360 return PTR_ERR(log_root);
1361 WARN_ON(fs_info->log_root_tree);
1362 fs_info->log_root_tree = log_root;
1363 return 0;
1364 }
1365
1366 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root)
1368 {
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
1372 log_root = alloc_log_tree(trans, root->fs_info);
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
1380 inode_item->generation = cpu_to_le64(1);
1381 inode_item->size = cpu_to_le64(3);
1382 inode_item->nlink = cpu_to_le32(1);
1383 inode_item->nbytes = cpu_to_le64(root->leafsize);
1384 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
1386 btrfs_set_root_node(&log_root->root_item, log_root->node);
1387
1388 WARN_ON(root->log_root);
1389 root->log_root = log_root;
1390 root->log_transid = 0;
1391 root->last_log_commit = 0;
1392 return 0;
1393 }
1394
1395 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396 struct btrfs_key *location)
1397 {
1398 struct btrfs_root *root;
1399 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1400 struct btrfs_path *path;
1401 struct extent_buffer *l;
1402 u64 generation;
1403 u32 blocksize;
1404 int ret = 0;
1405
1406 root = btrfs_alloc_root(fs_info);
1407 if (!root)
1408 return ERR_PTR(-ENOMEM);
1409 if (location->offset == (u64)-1) {
1410 ret = find_and_setup_root(tree_root, fs_info,
1411 location->objectid, root);
1412 if (ret) {
1413 kfree(root);
1414 return ERR_PTR(ret);
1415 }
1416 goto out;
1417 }
1418
1419 __setup_root(tree_root->nodesize, tree_root->leafsize,
1420 tree_root->sectorsize, tree_root->stripesize,
1421 root, fs_info, location->objectid);
1422
1423 path = btrfs_alloc_path();
1424 if (!path) {
1425 kfree(root);
1426 return ERR_PTR(-ENOMEM);
1427 }
1428 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1429 if (ret == 0) {
1430 l = path->nodes[0];
1431 read_extent_buffer(l, &root->root_item,
1432 btrfs_item_ptr_offset(l, path->slots[0]),
1433 sizeof(root->root_item));
1434 memcpy(&root->root_key, location, sizeof(*location));
1435 }
1436 btrfs_free_path(path);
1437 if (ret) {
1438 kfree(root);
1439 if (ret > 0)
1440 ret = -ENOENT;
1441 return ERR_PTR(ret);
1442 }
1443
1444 generation = btrfs_root_generation(&root->root_item);
1445 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1447 blocksize, generation);
1448 root->commit_root = btrfs_root_node(root);
1449 BUG_ON(!root->node); /* -ENOMEM */
1450 out:
1451 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1452 root->ref_cows = 1;
1453 btrfs_check_and_init_root_item(&root->root_item);
1454 }
1455
1456 return root;
1457 }
1458
1459 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460 struct btrfs_key *location)
1461 {
1462 struct btrfs_root *root;
1463 int ret;
1464
1465 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466 return fs_info->tree_root;
1467 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468 return fs_info->extent_root;
1469 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470 return fs_info->chunk_root;
1471 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472 return fs_info->dev_root;
1473 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474 return fs_info->csum_root;
1475 again:
1476 spin_lock(&fs_info->fs_roots_radix_lock);
1477 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1478 (unsigned long)location->objectid);
1479 spin_unlock(&fs_info->fs_roots_radix_lock);
1480 if (root)
1481 return root;
1482
1483 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1484 if (IS_ERR(root))
1485 return root;
1486
1487 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1488 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1489 GFP_NOFS);
1490 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1491 ret = -ENOMEM;
1492 goto fail;
1493 }
1494
1495 btrfs_init_free_ino_ctl(root);
1496 mutex_init(&root->fs_commit_mutex);
1497 spin_lock_init(&root->cache_lock);
1498 init_waitqueue_head(&root->cache_wait);
1499
1500 ret = get_anon_bdev(&root->anon_dev);
1501 if (ret)
1502 goto fail;
1503
1504 if (btrfs_root_refs(&root->root_item) == 0) {
1505 ret = -ENOENT;
1506 goto fail;
1507 }
1508
1509 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1510 if (ret < 0)
1511 goto fail;
1512 if (ret == 0)
1513 root->orphan_item_inserted = 1;
1514
1515 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1516 if (ret)
1517 goto fail;
1518
1519 spin_lock(&fs_info->fs_roots_radix_lock);
1520 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1521 (unsigned long)root->root_key.objectid,
1522 root);
1523 if (ret == 0)
1524 root->in_radix = 1;
1525
1526 spin_unlock(&fs_info->fs_roots_radix_lock);
1527 radix_tree_preload_end();
1528 if (ret) {
1529 if (ret == -EEXIST) {
1530 free_fs_root(root);
1531 goto again;
1532 }
1533 goto fail;
1534 }
1535
1536 ret = btrfs_find_dead_roots(fs_info->tree_root,
1537 root->root_key.objectid);
1538 WARN_ON(ret);
1539 return root;
1540 fail:
1541 free_fs_root(root);
1542 return ERR_PTR(ret);
1543 }
1544
1545 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1546 {
1547 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1548 int ret = 0;
1549 struct btrfs_device *device;
1550 struct backing_dev_info *bdi;
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1554 if (!device->bdev)
1555 continue;
1556 bdi = blk_get_backing_dev_info(device->bdev);
1557 if (bdi && bdi_congested(bdi, bdi_bits)) {
1558 ret = 1;
1559 break;
1560 }
1561 }
1562 rcu_read_unlock();
1563 return ret;
1564 }
1565
1566 /*
1567 * If this fails, caller must call bdi_destroy() to get rid of the
1568 * bdi again.
1569 */
1570 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1571 {
1572 int err;
1573
1574 bdi->capabilities = BDI_CAP_MAP_COPY;
1575 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1576 if (err)
1577 return err;
1578
1579 bdi->ra_pages = default_backing_dev_info.ra_pages;
1580 bdi->congested_fn = btrfs_congested_fn;
1581 bdi->congested_data = info;
1582 return 0;
1583 }
1584
1585 /*
1586 * called by the kthread helper functions to finally call the bio end_io
1587 * functions. This is where read checksum verification actually happens
1588 */
1589 static void end_workqueue_fn(struct btrfs_work *work)
1590 {
1591 struct bio *bio;
1592 struct end_io_wq *end_io_wq;
1593 struct btrfs_fs_info *fs_info;
1594 int error;
1595
1596 end_io_wq = container_of(work, struct end_io_wq, work);
1597 bio = end_io_wq->bio;
1598 fs_info = end_io_wq->info;
1599
1600 error = end_io_wq->error;
1601 bio->bi_private = end_io_wq->private;
1602 bio->bi_end_io = end_io_wq->end_io;
1603 kfree(end_io_wq);
1604 bio_endio(bio, error);
1605 }
1606
1607 static int cleaner_kthread(void *arg)
1608 {
1609 struct btrfs_root *root = arg;
1610
1611 do {
1612 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1613
1614 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1615 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1616 btrfs_run_delayed_iputs(root);
1617 btrfs_clean_old_snapshots(root);
1618 mutex_unlock(&root->fs_info->cleaner_mutex);
1619 btrfs_run_defrag_inodes(root->fs_info);
1620 }
1621
1622 if (!try_to_freeze()) {
1623 set_current_state(TASK_INTERRUPTIBLE);
1624 if (!kthread_should_stop())
1625 schedule();
1626 __set_current_state(TASK_RUNNING);
1627 }
1628 } while (!kthread_should_stop());
1629 return 0;
1630 }
1631
1632 static int transaction_kthread(void *arg)
1633 {
1634 struct btrfs_root *root = arg;
1635 struct btrfs_trans_handle *trans;
1636 struct btrfs_transaction *cur;
1637 u64 transid;
1638 unsigned long now;
1639 unsigned long delay;
1640 bool cannot_commit;
1641
1642 do {
1643 cannot_commit = false;
1644 delay = HZ * 30;
1645 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1646 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1647
1648 spin_lock(&root->fs_info->trans_lock);
1649 cur = root->fs_info->running_transaction;
1650 if (!cur) {
1651 spin_unlock(&root->fs_info->trans_lock);
1652 goto sleep;
1653 }
1654
1655 now = get_seconds();
1656 if (!cur->blocked &&
1657 (now < cur->start_time || now - cur->start_time < 30)) {
1658 spin_unlock(&root->fs_info->trans_lock);
1659 delay = HZ * 5;
1660 goto sleep;
1661 }
1662 transid = cur->transid;
1663 spin_unlock(&root->fs_info->trans_lock);
1664
1665 /* If the file system is aborted, this will always fail. */
1666 trans = btrfs_join_transaction(root);
1667 if (IS_ERR(trans)) {
1668 cannot_commit = true;
1669 goto sleep;
1670 }
1671 if (transid == trans->transid) {
1672 btrfs_commit_transaction(trans, root);
1673 } else {
1674 btrfs_end_transaction(trans, root);
1675 }
1676 sleep:
1677 wake_up_process(root->fs_info->cleaner_kthread);
1678 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1679
1680 if (!try_to_freeze()) {
1681 set_current_state(TASK_INTERRUPTIBLE);
1682 if (!kthread_should_stop() &&
1683 (!btrfs_transaction_blocked(root->fs_info) ||
1684 cannot_commit))
1685 schedule_timeout(delay);
1686 __set_current_state(TASK_RUNNING);
1687 }
1688 } while (!kthread_should_stop());
1689 return 0;
1690 }
1691
1692 /*
1693 * this will find the highest generation in the array of
1694 * root backups. The index of the highest array is returned,
1695 * or -1 if we can't find anything.
1696 *
1697 * We check to make sure the array is valid by comparing the
1698 * generation of the latest root in the array with the generation
1699 * in the super block. If they don't match we pitch it.
1700 */
1701 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1702 {
1703 u64 cur;
1704 int newest_index = -1;
1705 struct btrfs_root_backup *root_backup;
1706 int i;
1707
1708 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1709 root_backup = info->super_copy->super_roots + i;
1710 cur = btrfs_backup_tree_root_gen(root_backup);
1711 if (cur == newest_gen)
1712 newest_index = i;
1713 }
1714
1715 /* check to see if we actually wrapped around */
1716 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1717 root_backup = info->super_copy->super_roots;
1718 cur = btrfs_backup_tree_root_gen(root_backup);
1719 if (cur == newest_gen)
1720 newest_index = 0;
1721 }
1722 return newest_index;
1723 }
1724
1725
1726 /*
1727 * find the oldest backup so we know where to store new entries
1728 * in the backup array. This will set the backup_root_index
1729 * field in the fs_info struct
1730 */
1731 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1732 u64 newest_gen)
1733 {
1734 int newest_index = -1;
1735
1736 newest_index = find_newest_super_backup(info, newest_gen);
1737 /* if there was garbage in there, just move along */
1738 if (newest_index == -1) {
1739 info->backup_root_index = 0;
1740 } else {
1741 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1742 }
1743 }
1744
1745 /*
1746 * copy all the root pointers into the super backup array.
1747 * this will bump the backup pointer by one when it is
1748 * done
1749 */
1750 static void backup_super_roots(struct btrfs_fs_info *info)
1751 {
1752 int next_backup;
1753 struct btrfs_root_backup *root_backup;
1754 int last_backup;
1755
1756 next_backup = info->backup_root_index;
1757 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1758 BTRFS_NUM_BACKUP_ROOTS;
1759
1760 /*
1761 * just overwrite the last backup if we're at the same generation
1762 * this happens only at umount
1763 */
1764 root_backup = info->super_for_commit->super_roots + last_backup;
1765 if (btrfs_backup_tree_root_gen(root_backup) ==
1766 btrfs_header_generation(info->tree_root->node))
1767 next_backup = last_backup;
1768
1769 root_backup = info->super_for_commit->super_roots + next_backup;
1770
1771 /*
1772 * make sure all of our padding and empty slots get zero filled
1773 * regardless of which ones we use today
1774 */
1775 memset(root_backup, 0, sizeof(*root_backup));
1776
1777 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1778
1779 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1780 btrfs_set_backup_tree_root_gen(root_backup,
1781 btrfs_header_generation(info->tree_root->node));
1782
1783 btrfs_set_backup_tree_root_level(root_backup,
1784 btrfs_header_level(info->tree_root->node));
1785
1786 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1787 btrfs_set_backup_chunk_root_gen(root_backup,
1788 btrfs_header_generation(info->chunk_root->node));
1789 btrfs_set_backup_chunk_root_level(root_backup,
1790 btrfs_header_level(info->chunk_root->node));
1791
1792 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1793 btrfs_set_backup_extent_root_gen(root_backup,
1794 btrfs_header_generation(info->extent_root->node));
1795 btrfs_set_backup_extent_root_level(root_backup,
1796 btrfs_header_level(info->extent_root->node));
1797
1798 /*
1799 * we might commit during log recovery, which happens before we set
1800 * the fs_root. Make sure it is valid before we fill it in.
1801 */
1802 if (info->fs_root && info->fs_root->node) {
1803 btrfs_set_backup_fs_root(root_backup,
1804 info->fs_root->node->start);
1805 btrfs_set_backup_fs_root_gen(root_backup,
1806 btrfs_header_generation(info->fs_root->node));
1807 btrfs_set_backup_fs_root_level(root_backup,
1808 btrfs_header_level(info->fs_root->node));
1809 }
1810
1811 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1812 btrfs_set_backup_dev_root_gen(root_backup,
1813 btrfs_header_generation(info->dev_root->node));
1814 btrfs_set_backup_dev_root_level(root_backup,
1815 btrfs_header_level(info->dev_root->node));
1816
1817 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1818 btrfs_set_backup_csum_root_gen(root_backup,
1819 btrfs_header_generation(info->csum_root->node));
1820 btrfs_set_backup_csum_root_level(root_backup,
1821 btrfs_header_level(info->csum_root->node));
1822
1823 btrfs_set_backup_total_bytes(root_backup,
1824 btrfs_super_total_bytes(info->super_copy));
1825 btrfs_set_backup_bytes_used(root_backup,
1826 btrfs_super_bytes_used(info->super_copy));
1827 btrfs_set_backup_num_devices(root_backup,
1828 btrfs_super_num_devices(info->super_copy));
1829
1830 /*
1831 * if we don't copy this out to the super_copy, it won't get remembered
1832 * for the next commit
1833 */
1834 memcpy(&info->super_copy->super_roots,
1835 &info->super_for_commit->super_roots,
1836 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1837 }
1838
1839 /*
1840 * this copies info out of the root backup array and back into
1841 * the in-memory super block. It is meant to help iterate through
1842 * the array, so you send it the number of backups you've already
1843 * tried and the last backup index you used.
1844 *
1845 * this returns -1 when it has tried all the backups
1846 */
1847 static noinline int next_root_backup(struct btrfs_fs_info *info,
1848 struct btrfs_super_block *super,
1849 int *num_backups_tried, int *backup_index)
1850 {
1851 struct btrfs_root_backup *root_backup;
1852 int newest = *backup_index;
1853
1854 if (*num_backups_tried == 0) {
1855 u64 gen = btrfs_super_generation(super);
1856
1857 newest = find_newest_super_backup(info, gen);
1858 if (newest == -1)
1859 return -1;
1860
1861 *backup_index = newest;
1862 *num_backups_tried = 1;
1863 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1864 /* we've tried all the backups, all done */
1865 return -1;
1866 } else {
1867 /* jump to the next oldest backup */
1868 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1869 BTRFS_NUM_BACKUP_ROOTS;
1870 *backup_index = newest;
1871 *num_backups_tried += 1;
1872 }
1873 root_backup = super->super_roots + newest;
1874
1875 btrfs_set_super_generation(super,
1876 btrfs_backup_tree_root_gen(root_backup));
1877 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1878 btrfs_set_super_root_level(super,
1879 btrfs_backup_tree_root_level(root_backup));
1880 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1881
1882 /*
1883 * fixme: the total bytes and num_devices need to match or we should
1884 * need a fsck
1885 */
1886 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1887 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1888 return 0;
1889 }
1890
1891 /* helper to cleanup tree roots */
1892 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1893 {
1894 free_extent_buffer(info->tree_root->node);
1895 free_extent_buffer(info->tree_root->commit_root);
1896 free_extent_buffer(info->dev_root->node);
1897 free_extent_buffer(info->dev_root->commit_root);
1898 free_extent_buffer(info->extent_root->node);
1899 free_extent_buffer(info->extent_root->commit_root);
1900 free_extent_buffer(info->csum_root->node);
1901 free_extent_buffer(info->csum_root->commit_root);
1902
1903 info->tree_root->node = NULL;
1904 info->tree_root->commit_root = NULL;
1905 info->dev_root->node = NULL;
1906 info->dev_root->commit_root = NULL;
1907 info->extent_root->node = NULL;
1908 info->extent_root->commit_root = NULL;
1909 info->csum_root->node = NULL;
1910 info->csum_root->commit_root = NULL;
1911
1912 if (chunk_root) {
1913 free_extent_buffer(info->chunk_root->node);
1914 free_extent_buffer(info->chunk_root->commit_root);
1915 info->chunk_root->node = NULL;
1916 info->chunk_root->commit_root = NULL;
1917 }
1918 }
1919
1920
1921 int open_ctree(struct super_block *sb,
1922 struct btrfs_fs_devices *fs_devices,
1923 char *options)
1924 {
1925 u32 sectorsize;
1926 u32 nodesize;
1927 u32 leafsize;
1928 u32 blocksize;
1929 u32 stripesize;
1930 u64 generation;
1931 u64 features;
1932 struct btrfs_key location;
1933 struct buffer_head *bh;
1934 struct btrfs_super_block *disk_super;
1935 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1936 struct btrfs_root *tree_root;
1937 struct btrfs_root *extent_root;
1938 struct btrfs_root *csum_root;
1939 struct btrfs_root *chunk_root;
1940 struct btrfs_root *dev_root;
1941 struct btrfs_root *log_tree_root;
1942 int ret;
1943 int err = -EINVAL;
1944 int num_backups_tried = 0;
1945 int backup_index = 0;
1946
1947 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1948 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1949 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1950 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1951 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1952
1953 if (!tree_root || !extent_root || !csum_root ||
1954 !chunk_root || !dev_root) {
1955 err = -ENOMEM;
1956 goto fail;
1957 }
1958
1959 ret = init_srcu_struct(&fs_info->subvol_srcu);
1960 if (ret) {
1961 err = ret;
1962 goto fail;
1963 }
1964
1965 ret = setup_bdi(fs_info, &fs_info->bdi);
1966 if (ret) {
1967 err = ret;
1968 goto fail_srcu;
1969 }
1970
1971 fs_info->btree_inode = new_inode(sb);
1972 if (!fs_info->btree_inode) {
1973 err = -ENOMEM;
1974 goto fail_bdi;
1975 }
1976
1977 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1978
1979 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1980 INIT_LIST_HEAD(&fs_info->trans_list);
1981 INIT_LIST_HEAD(&fs_info->dead_roots);
1982 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1983 INIT_LIST_HEAD(&fs_info->hashers);
1984 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1985 INIT_LIST_HEAD(&fs_info->ordered_operations);
1986 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1987 spin_lock_init(&fs_info->delalloc_lock);
1988 spin_lock_init(&fs_info->trans_lock);
1989 spin_lock_init(&fs_info->ref_cache_lock);
1990 spin_lock_init(&fs_info->fs_roots_radix_lock);
1991 spin_lock_init(&fs_info->delayed_iput_lock);
1992 spin_lock_init(&fs_info->defrag_inodes_lock);
1993 spin_lock_init(&fs_info->free_chunk_lock);
1994 spin_lock_init(&fs_info->tree_mod_seq_lock);
1995 rwlock_init(&fs_info->tree_mod_log_lock);
1996 mutex_init(&fs_info->reloc_mutex);
1997
1998 init_completion(&fs_info->kobj_unregister);
1999 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2000 INIT_LIST_HEAD(&fs_info->space_info);
2001 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2002 btrfs_mapping_init(&fs_info->mapping_tree);
2003 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2004 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2005 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2006 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2007 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2008 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2009 atomic_set(&fs_info->nr_async_submits, 0);
2010 atomic_set(&fs_info->async_delalloc_pages, 0);
2011 atomic_set(&fs_info->async_submit_draining, 0);
2012 atomic_set(&fs_info->nr_async_bios, 0);
2013 atomic_set(&fs_info->defrag_running, 0);
2014 atomic_set(&fs_info->tree_mod_seq, 0);
2015 fs_info->sb = sb;
2016 fs_info->max_inline = 8192 * 1024;
2017 fs_info->metadata_ratio = 0;
2018 fs_info->defrag_inodes = RB_ROOT;
2019 fs_info->trans_no_join = 0;
2020 fs_info->free_chunk_space = 0;
2021 fs_info->tree_mod_log = RB_ROOT;
2022
2023 init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2024
2025 /* readahead state */
2026 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2027 spin_lock_init(&fs_info->reada_lock);
2028
2029 fs_info->thread_pool_size = min_t(unsigned long,
2030 num_online_cpus() + 2, 8);
2031
2032 INIT_LIST_HEAD(&fs_info->ordered_extents);
2033 spin_lock_init(&fs_info->ordered_extent_lock);
2034 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2035 GFP_NOFS);
2036 if (!fs_info->delayed_root) {
2037 err = -ENOMEM;
2038 goto fail_iput;
2039 }
2040 btrfs_init_delayed_root(fs_info->delayed_root);
2041
2042 mutex_init(&fs_info->scrub_lock);
2043 atomic_set(&fs_info->scrubs_running, 0);
2044 atomic_set(&fs_info->scrub_pause_req, 0);
2045 atomic_set(&fs_info->scrubs_paused, 0);
2046 atomic_set(&fs_info->scrub_cancel_req, 0);
2047 init_waitqueue_head(&fs_info->scrub_pause_wait);
2048 init_rwsem(&fs_info->scrub_super_lock);
2049 fs_info->scrub_workers_refcnt = 0;
2050 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2051 fs_info->check_integrity_print_mask = 0;
2052 #endif
2053
2054 spin_lock_init(&fs_info->balance_lock);
2055 mutex_init(&fs_info->balance_mutex);
2056 atomic_set(&fs_info->balance_running, 0);
2057 atomic_set(&fs_info->balance_pause_req, 0);
2058 atomic_set(&fs_info->balance_cancel_req, 0);
2059 fs_info->balance_ctl = NULL;
2060 init_waitqueue_head(&fs_info->balance_wait_q);
2061
2062 sb->s_blocksize = 4096;
2063 sb->s_blocksize_bits = blksize_bits(4096);
2064 sb->s_bdi = &fs_info->bdi;
2065
2066 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2067 set_nlink(fs_info->btree_inode, 1);
2068 /*
2069 * we set the i_size on the btree inode to the max possible int.
2070 * the real end of the address space is determined by all of
2071 * the devices in the system
2072 */
2073 fs_info->btree_inode->i_size = OFFSET_MAX;
2074 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2075 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2076
2077 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2078 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2079 fs_info->btree_inode->i_mapping);
2080 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2081 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2082
2083 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2084
2085 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2086 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2087 sizeof(struct btrfs_key));
2088 set_bit(BTRFS_INODE_DUMMY,
2089 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2090 insert_inode_hash(fs_info->btree_inode);
2091
2092 spin_lock_init(&fs_info->block_group_cache_lock);
2093 fs_info->block_group_cache_tree = RB_ROOT;
2094
2095 extent_io_tree_init(&fs_info->freed_extents[0],
2096 fs_info->btree_inode->i_mapping);
2097 extent_io_tree_init(&fs_info->freed_extents[1],
2098 fs_info->btree_inode->i_mapping);
2099 fs_info->pinned_extents = &fs_info->freed_extents[0];
2100 fs_info->do_barriers = 1;
2101
2102
2103 mutex_init(&fs_info->ordered_operations_mutex);
2104 mutex_init(&fs_info->tree_log_mutex);
2105 mutex_init(&fs_info->chunk_mutex);
2106 mutex_init(&fs_info->transaction_kthread_mutex);
2107 mutex_init(&fs_info->cleaner_mutex);
2108 mutex_init(&fs_info->volume_mutex);
2109 init_rwsem(&fs_info->extent_commit_sem);
2110 init_rwsem(&fs_info->cleanup_work_sem);
2111 init_rwsem(&fs_info->subvol_sem);
2112
2113 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2114 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2115
2116 init_waitqueue_head(&fs_info->transaction_throttle);
2117 init_waitqueue_head(&fs_info->transaction_wait);
2118 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2119 init_waitqueue_head(&fs_info->async_submit_wait);
2120
2121 __setup_root(4096, 4096, 4096, 4096, tree_root,
2122 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2123
2124 invalidate_bdev(fs_devices->latest_bdev);
2125 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2126 if (!bh) {
2127 err = -EINVAL;
2128 goto fail_alloc;
2129 }
2130
2131 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2132 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2133 sizeof(*fs_info->super_for_commit));
2134 brelse(bh);
2135
2136 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2137
2138 disk_super = fs_info->super_copy;
2139 if (!btrfs_super_root(disk_super))
2140 goto fail_alloc;
2141
2142 /* check FS state, whether FS is broken. */
2143 fs_info->fs_state |= btrfs_super_flags(disk_super);
2144
2145 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2146 if (ret) {
2147 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2148 err = ret;
2149 goto fail_alloc;
2150 }
2151
2152 /*
2153 * run through our array of backup supers and setup
2154 * our ring pointer to the oldest one
2155 */
2156 generation = btrfs_super_generation(disk_super);
2157 find_oldest_super_backup(fs_info, generation);
2158
2159 /*
2160 * In the long term, we'll store the compression type in the super
2161 * block, and it'll be used for per file compression control.
2162 */
2163 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2164
2165 ret = btrfs_parse_options(tree_root, options);
2166 if (ret) {
2167 err = ret;
2168 goto fail_alloc;
2169 }
2170
2171 features = btrfs_super_incompat_flags(disk_super) &
2172 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2173 if (features) {
2174 printk(KERN_ERR "BTRFS: couldn't mount because of "
2175 "unsupported optional features (%Lx).\n",
2176 (unsigned long long)features);
2177 err = -EINVAL;
2178 goto fail_alloc;
2179 }
2180
2181 if (btrfs_super_leafsize(disk_super) !=
2182 btrfs_super_nodesize(disk_super)) {
2183 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2184 "blocksizes don't match. node %d leaf %d\n",
2185 btrfs_super_nodesize(disk_super),
2186 btrfs_super_leafsize(disk_super));
2187 err = -EINVAL;
2188 goto fail_alloc;
2189 }
2190 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2191 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2192 "blocksize (%d) was too large\n",
2193 btrfs_super_leafsize(disk_super));
2194 err = -EINVAL;
2195 goto fail_alloc;
2196 }
2197
2198 features = btrfs_super_incompat_flags(disk_super);
2199 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2200 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2201 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2202
2203 /*
2204 * flag our filesystem as having big metadata blocks if
2205 * they are bigger than the page size
2206 */
2207 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2208 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2209 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2210 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2211 }
2212
2213 nodesize = btrfs_super_nodesize(disk_super);
2214 leafsize = btrfs_super_leafsize(disk_super);
2215 sectorsize = btrfs_super_sectorsize(disk_super);
2216 stripesize = btrfs_super_stripesize(disk_super);
2217
2218 /*
2219 * mixed block groups end up with duplicate but slightly offset
2220 * extent buffers for the same range. It leads to corruptions
2221 */
2222 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2223 (sectorsize != leafsize)) {
2224 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2225 "are not allowed for mixed block groups on %s\n",
2226 sb->s_id);
2227 goto fail_alloc;
2228 }
2229
2230 btrfs_set_super_incompat_flags(disk_super, features);
2231
2232 features = btrfs_super_compat_ro_flags(disk_super) &
2233 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2234 if (!(sb->s_flags & MS_RDONLY) && features) {
2235 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2236 "unsupported option features (%Lx).\n",
2237 (unsigned long long)features);
2238 err = -EINVAL;
2239 goto fail_alloc;
2240 }
2241
2242 btrfs_init_workers(&fs_info->generic_worker,
2243 "genwork", 1, NULL);
2244
2245 btrfs_init_workers(&fs_info->workers, "worker",
2246 fs_info->thread_pool_size,
2247 &fs_info->generic_worker);
2248
2249 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2250 fs_info->thread_pool_size,
2251 &fs_info->generic_worker);
2252
2253 btrfs_init_workers(&fs_info->submit_workers, "submit",
2254 min_t(u64, fs_devices->num_devices,
2255 fs_info->thread_pool_size),
2256 &fs_info->generic_worker);
2257
2258 btrfs_init_workers(&fs_info->caching_workers, "cache",
2259 2, &fs_info->generic_worker);
2260
2261 /* a higher idle thresh on the submit workers makes it much more
2262 * likely that bios will be send down in a sane order to the
2263 * devices
2264 */
2265 fs_info->submit_workers.idle_thresh = 64;
2266
2267 fs_info->workers.idle_thresh = 16;
2268 fs_info->workers.ordered = 1;
2269
2270 fs_info->delalloc_workers.idle_thresh = 2;
2271 fs_info->delalloc_workers.ordered = 1;
2272
2273 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2274 &fs_info->generic_worker);
2275 btrfs_init_workers(&fs_info->endio_workers, "endio",
2276 fs_info->thread_pool_size,
2277 &fs_info->generic_worker);
2278 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2279 fs_info->thread_pool_size,
2280 &fs_info->generic_worker);
2281 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2282 "endio-meta-write", fs_info->thread_pool_size,
2283 &fs_info->generic_worker);
2284 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2285 fs_info->thread_pool_size,
2286 &fs_info->generic_worker);
2287 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2288 1, &fs_info->generic_worker);
2289 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2290 fs_info->thread_pool_size,
2291 &fs_info->generic_worker);
2292 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2293 fs_info->thread_pool_size,
2294 &fs_info->generic_worker);
2295
2296 /*
2297 * endios are largely parallel and should have a very
2298 * low idle thresh
2299 */
2300 fs_info->endio_workers.idle_thresh = 4;
2301 fs_info->endio_meta_workers.idle_thresh = 4;
2302
2303 fs_info->endio_write_workers.idle_thresh = 2;
2304 fs_info->endio_meta_write_workers.idle_thresh = 2;
2305 fs_info->readahead_workers.idle_thresh = 2;
2306
2307 /*
2308 * btrfs_start_workers can really only fail because of ENOMEM so just
2309 * return -ENOMEM if any of these fail.
2310 */
2311 ret = btrfs_start_workers(&fs_info->workers);
2312 ret |= btrfs_start_workers(&fs_info->generic_worker);
2313 ret |= btrfs_start_workers(&fs_info->submit_workers);
2314 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2315 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2316 ret |= btrfs_start_workers(&fs_info->endio_workers);
2317 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2318 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2319 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2320 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2321 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2322 ret |= btrfs_start_workers(&fs_info->caching_workers);
2323 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2324 if (ret) {
2325 ret = -ENOMEM;
2326 goto fail_sb_buffer;
2327 }
2328
2329 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2330 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2331 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2332
2333 tree_root->nodesize = nodesize;
2334 tree_root->leafsize = leafsize;
2335 tree_root->sectorsize = sectorsize;
2336 tree_root->stripesize = stripesize;
2337
2338 sb->s_blocksize = sectorsize;
2339 sb->s_blocksize_bits = blksize_bits(sectorsize);
2340
2341 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2342 sizeof(disk_super->magic))) {
2343 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2344 goto fail_sb_buffer;
2345 }
2346
2347 if (sectorsize != PAGE_SIZE) {
2348 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2349 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2350 goto fail_sb_buffer;
2351 }
2352
2353 mutex_lock(&fs_info->chunk_mutex);
2354 ret = btrfs_read_sys_array(tree_root);
2355 mutex_unlock(&fs_info->chunk_mutex);
2356 if (ret) {
2357 printk(KERN_WARNING "btrfs: failed to read the system "
2358 "array on %s\n", sb->s_id);
2359 goto fail_sb_buffer;
2360 }
2361
2362 blocksize = btrfs_level_size(tree_root,
2363 btrfs_super_chunk_root_level(disk_super));
2364 generation = btrfs_super_chunk_root_generation(disk_super);
2365
2366 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2367 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2368
2369 chunk_root->node = read_tree_block(chunk_root,
2370 btrfs_super_chunk_root(disk_super),
2371 blocksize, generation);
2372 BUG_ON(!chunk_root->node); /* -ENOMEM */
2373 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2374 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2375 sb->s_id);
2376 goto fail_tree_roots;
2377 }
2378 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2379 chunk_root->commit_root = btrfs_root_node(chunk_root);
2380
2381 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2382 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2383 BTRFS_UUID_SIZE);
2384
2385 ret = btrfs_read_chunk_tree(chunk_root);
2386 if (ret) {
2387 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2388 sb->s_id);
2389 goto fail_tree_roots;
2390 }
2391
2392 btrfs_close_extra_devices(fs_devices);
2393
2394 if (!fs_devices->latest_bdev) {
2395 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2396 sb->s_id);
2397 goto fail_tree_roots;
2398 }
2399
2400 retry_root_backup:
2401 blocksize = btrfs_level_size(tree_root,
2402 btrfs_super_root_level(disk_super));
2403 generation = btrfs_super_generation(disk_super);
2404
2405 tree_root->node = read_tree_block(tree_root,
2406 btrfs_super_root(disk_super),
2407 blocksize, generation);
2408 if (!tree_root->node ||
2409 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2410 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2411 sb->s_id);
2412
2413 goto recovery_tree_root;
2414 }
2415
2416 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2417 tree_root->commit_root = btrfs_root_node(tree_root);
2418
2419 ret = find_and_setup_root(tree_root, fs_info,
2420 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2421 if (ret)
2422 goto recovery_tree_root;
2423 extent_root->track_dirty = 1;
2424
2425 ret = find_and_setup_root(tree_root, fs_info,
2426 BTRFS_DEV_TREE_OBJECTID, dev_root);
2427 if (ret)
2428 goto recovery_tree_root;
2429 dev_root->track_dirty = 1;
2430
2431 ret = find_and_setup_root(tree_root, fs_info,
2432 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2433 if (ret)
2434 goto recovery_tree_root;
2435 csum_root->track_dirty = 1;
2436
2437 fs_info->generation = generation;
2438 fs_info->last_trans_committed = generation;
2439
2440 ret = btrfs_recover_balance(fs_info);
2441 if (ret) {
2442 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2443 goto fail_block_groups;
2444 }
2445
2446 ret = btrfs_init_dev_stats(fs_info);
2447 if (ret) {
2448 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2449 ret);
2450 goto fail_block_groups;
2451 }
2452
2453 ret = btrfs_init_space_info(fs_info);
2454 if (ret) {
2455 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2456 goto fail_block_groups;
2457 }
2458
2459 ret = btrfs_read_block_groups(extent_root);
2460 if (ret) {
2461 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2462 goto fail_block_groups;
2463 }
2464
2465 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2466 "btrfs-cleaner");
2467 if (IS_ERR(fs_info->cleaner_kthread))
2468 goto fail_block_groups;
2469
2470 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2471 tree_root,
2472 "btrfs-transaction");
2473 if (IS_ERR(fs_info->transaction_kthread))
2474 goto fail_cleaner;
2475
2476 if (!btrfs_test_opt(tree_root, SSD) &&
2477 !btrfs_test_opt(tree_root, NOSSD) &&
2478 !fs_info->fs_devices->rotating) {
2479 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2480 "mode\n");
2481 btrfs_set_opt(fs_info->mount_opt, SSD);
2482 }
2483
2484 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2485 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2486 ret = btrfsic_mount(tree_root, fs_devices,
2487 btrfs_test_opt(tree_root,
2488 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2489 1 : 0,
2490 fs_info->check_integrity_print_mask);
2491 if (ret)
2492 printk(KERN_WARNING "btrfs: failed to initialize"
2493 " integrity check module %s\n", sb->s_id);
2494 }
2495 #endif
2496
2497 /* do not make disk changes in broken FS */
2498 if (btrfs_super_log_root(disk_super) != 0 &&
2499 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2500 u64 bytenr = btrfs_super_log_root(disk_super);
2501
2502 if (fs_devices->rw_devices == 0) {
2503 printk(KERN_WARNING "Btrfs log replay required "
2504 "on RO media\n");
2505 err = -EIO;
2506 goto fail_trans_kthread;
2507 }
2508 blocksize =
2509 btrfs_level_size(tree_root,
2510 btrfs_super_log_root_level(disk_super));
2511
2512 log_tree_root = btrfs_alloc_root(fs_info);
2513 if (!log_tree_root) {
2514 err = -ENOMEM;
2515 goto fail_trans_kthread;
2516 }
2517
2518 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2519 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2520
2521 log_tree_root->node = read_tree_block(tree_root, bytenr,
2522 blocksize,
2523 generation + 1);
2524 /* returns with log_tree_root freed on success */
2525 ret = btrfs_recover_log_trees(log_tree_root);
2526 if (ret) {
2527 btrfs_error(tree_root->fs_info, ret,
2528 "Failed to recover log tree");
2529 free_extent_buffer(log_tree_root->node);
2530 kfree(log_tree_root);
2531 goto fail_trans_kthread;
2532 }
2533
2534 if (sb->s_flags & MS_RDONLY) {
2535 ret = btrfs_commit_super(tree_root);
2536 if (ret)
2537 goto fail_trans_kthread;
2538 }
2539 }
2540
2541 ret = btrfs_find_orphan_roots(tree_root);
2542 if (ret)
2543 goto fail_trans_kthread;
2544
2545 if (!(sb->s_flags & MS_RDONLY)) {
2546 ret = btrfs_cleanup_fs_roots(fs_info);
2547 if (ret) {
2548 }
2549
2550 ret = btrfs_recover_relocation(tree_root);
2551 if (ret < 0) {
2552 printk(KERN_WARNING
2553 "btrfs: failed to recover relocation\n");
2554 err = -EINVAL;
2555 goto fail_trans_kthread;
2556 }
2557 }
2558
2559 location.objectid = BTRFS_FS_TREE_OBJECTID;
2560 location.type = BTRFS_ROOT_ITEM_KEY;
2561 location.offset = (u64)-1;
2562
2563 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2564 if (!fs_info->fs_root)
2565 goto fail_trans_kthread;
2566 if (IS_ERR(fs_info->fs_root)) {
2567 err = PTR_ERR(fs_info->fs_root);
2568 goto fail_trans_kthread;
2569 }
2570
2571 if (sb->s_flags & MS_RDONLY)
2572 return 0;
2573
2574 down_read(&fs_info->cleanup_work_sem);
2575 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2576 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2577 up_read(&fs_info->cleanup_work_sem);
2578 close_ctree(tree_root);
2579 return ret;
2580 }
2581 up_read(&fs_info->cleanup_work_sem);
2582
2583 ret = btrfs_resume_balance_async(fs_info);
2584 if (ret) {
2585 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2586 close_ctree(tree_root);
2587 return ret;
2588 }
2589
2590 return 0;
2591
2592 fail_trans_kthread:
2593 kthread_stop(fs_info->transaction_kthread);
2594 fail_cleaner:
2595 kthread_stop(fs_info->cleaner_kthread);
2596
2597 /*
2598 * make sure we're done with the btree inode before we stop our
2599 * kthreads
2600 */
2601 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2603
2604 fail_block_groups:
2605 btrfs_free_block_groups(fs_info);
2606
2607 fail_tree_roots:
2608 free_root_pointers(fs_info, 1);
2609
2610 fail_sb_buffer:
2611 btrfs_stop_workers(&fs_info->generic_worker);
2612 btrfs_stop_workers(&fs_info->readahead_workers);
2613 btrfs_stop_workers(&fs_info->fixup_workers);
2614 btrfs_stop_workers(&fs_info->delalloc_workers);
2615 btrfs_stop_workers(&fs_info->workers);
2616 btrfs_stop_workers(&fs_info->endio_workers);
2617 btrfs_stop_workers(&fs_info->endio_meta_workers);
2618 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2619 btrfs_stop_workers(&fs_info->endio_write_workers);
2620 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2621 btrfs_stop_workers(&fs_info->submit_workers);
2622 btrfs_stop_workers(&fs_info->delayed_workers);
2623 btrfs_stop_workers(&fs_info->caching_workers);
2624 fail_alloc:
2625 fail_iput:
2626 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2627
2628 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2629 iput(fs_info->btree_inode);
2630 fail_bdi:
2631 bdi_destroy(&fs_info->bdi);
2632 fail_srcu:
2633 cleanup_srcu_struct(&fs_info->subvol_srcu);
2634 fail:
2635 btrfs_close_devices(fs_info->fs_devices);
2636 return err;
2637
2638 recovery_tree_root:
2639 if (!btrfs_test_opt(tree_root, RECOVERY))
2640 goto fail_tree_roots;
2641
2642 free_root_pointers(fs_info, 0);
2643
2644 /* don't use the log in recovery mode, it won't be valid */
2645 btrfs_set_super_log_root(disk_super, 0);
2646
2647 /* we can't trust the free space cache either */
2648 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2649
2650 ret = next_root_backup(fs_info, fs_info->super_copy,
2651 &num_backups_tried, &backup_index);
2652 if (ret == -1)
2653 goto fail_block_groups;
2654 goto retry_root_backup;
2655 }
2656
2657 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2658 {
2659 if (uptodate) {
2660 set_buffer_uptodate(bh);
2661 } else {
2662 struct btrfs_device *device = (struct btrfs_device *)
2663 bh->b_private;
2664
2665 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2666 "I/O error on %s\n",
2667 rcu_str_deref(device->name));
2668 /* note, we dont' set_buffer_write_io_error because we have
2669 * our own ways of dealing with the IO errors
2670 */
2671 clear_buffer_uptodate(bh);
2672 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2673 }
2674 unlock_buffer(bh);
2675 put_bh(bh);
2676 }
2677
2678 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2679 {
2680 struct buffer_head *bh;
2681 struct buffer_head *latest = NULL;
2682 struct btrfs_super_block *super;
2683 int i;
2684 u64 transid = 0;
2685 u64 bytenr;
2686
2687 /* we would like to check all the supers, but that would make
2688 * a btrfs mount succeed after a mkfs from a different FS.
2689 * So, we need to add a special mount option to scan for
2690 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2691 */
2692 for (i = 0; i < 1; i++) {
2693 bytenr = btrfs_sb_offset(i);
2694 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2695 break;
2696 bh = __bread(bdev, bytenr / 4096, 4096);
2697 if (!bh)
2698 continue;
2699
2700 super = (struct btrfs_super_block *)bh->b_data;
2701 if (btrfs_super_bytenr(super) != bytenr ||
2702 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2703 sizeof(super->magic))) {
2704 brelse(bh);
2705 continue;
2706 }
2707
2708 if (!latest || btrfs_super_generation(super) > transid) {
2709 brelse(latest);
2710 latest = bh;
2711 transid = btrfs_super_generation(super);
2712 } else {
2713 brelse(bh);
2714 }
2715 }
2716 return latest;
2717 }
2718
2719 /*
2720 * this should be called twice, once with wait == 0 and
2721 * once with wait == 1. When wait == 0 is done, all the buffer heads
2722 * we write are pinned.
2723 *
2724 * They are released when wait == 1 is done.
2725 * max_mirrors must be the same for both runs, and it indicates how
2726 * many supers on this one device should be written.
2727 *
2728 * max_mirrors == 0 means to write them all.
2729 */
2730 static int write_dev_supers(struct btrfs_device *device,
2731 struct btrfs_super_block *sb,
2732 int do_barriers, int wait, int max_mirrors)
2733 {
2734 struct buffer_head *bh;
2735 int i;
2736 int ret;
2737 int errors = 0;
2738 u32 crc;
2739 u64 bytenr;
2740
2741 if (max_mirrors == 0)
2742 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2743
2744 for (i = 0; i < max_mirrors; i++) {
2745 bytenr = btrfs_sb_offset(i);
2746 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2747 break;
2748
2749 if (wait) {
2750 bh = __find_get_block(device->bdev, bytenr / 4096,
2751 BTRFS_SUPER_INFO_SIZE);
2752 BUG_ON(!bh);
2753 wait_on_buffer(bh);
2754 if (!buffer_uptodate(bh))
2755 errors++;
2756
2757 /* drop our reference */
2758 brelse(bh);
2759
2760 /* drop the reference from the wait == 0 run */
2761 brelse(bh);
2762 continue;
2763 } else {
2764 btrfs_set_super_bytenr(sb, bytenr);
2765
2766 crc = ~(u32)0;
2767 crc = btrfs_csum_data(NULL, (char *)sb +
2768 BTRFS_CSUM_SIZE, crc,
2769 BTRFS_SUPER_INFO_SIZE -
2770 BTRFS_CSUM_SIZE);
2771 btrfs_csum_final(crc, sb->csum);
2772
2773 /*
2774 * one reference for us, and we leave it for the
2775 * caller
2776 */
2777 bh = __getblk(device->bdev, bytenr / 4096,
2778 BTRFS_SUPER_INFO_SIZE);
2779 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2780
2781 /* one reference for submit_bh */
2782 get_bh(bh);
2783
2784 set_buffer_uptodate(bh);
2785 lock_buffer(bh);
2786 bh->b_end_io = btrfs_end_buffer_write_sync;
2787 bh->b_private = device;
2788 }
2789
2790 /*
2791 * we fua the first super. The others we allow
2792 * to go down lazy.
2793 */
2794 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2795 if (ret)
2796 errors++;
2797 }
2798 return errors < i ? 0 : -1;
2799 }
2800
2801 /*
2802 * endio for the write_dev_flush, this will wake anyone waiting
2803 * for the barrier when it is done
2804 */
2805 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2806 {
2807 if (err) {
2808 if (err == -EOPNOTSUPP)
2809 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2810 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2811 }
2812 if (bio->bi_private)
2813 complete(bio->bi_private);
2814 bio_put(bio);
2815 }
2816
2817 /*
2818 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2819 * sent down. With wait == 1, it waits for the previous flush.
2820 *
2821 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2822 * capable
2823 */
2824 static int write_dev_flush(struct btrfs_device *device, int wait)
2825 {
2826 struct bio *bio;
2827 int ret = 0;
2828
2829 if (device->nobarriers)
2830 return 0;
2831
2832 if (wait) {
2833 bio = device->flush_bio;
2834 if (!bio)
2835 return 0;
2836
2837 wait_for_completion(&device->flush_wait);
2838
2839 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2840 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2841 rcu_str_deref(device->name));
2842 device->nobarriers = 1;
2843 }
2844 if (!bio_flagged(bio, BIO_UPTODATE)) {
2845 ret = -EIO;
2846 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2847 btrfs_dev_stat_inc_and_print(device,
2848 BTRFS_DEV_STAT_FLUSH_ERRS);
2849 }
2850
2851 /* drop the reference from the wait == 0 run */
2852 bio_put(bio);
2853 device->flush_bio = NULL;
2854
2855 return ret;
2856 }
2857
2858 /*
2859 * one reference for us, and we leave it for the
2860 * caller
2861 */
2862 device->flush_bio = NULL;;
2863 bio = bio_alloc(GFP_NOFS, 0);
2864 if (!bio)
2865 return -ENOMEM;
2866
2867 bio->bi_end_io = btrfs_end_empty_barrier;
2868 bio->bi_bdev = device->bdev;
2869 init_completion(&device->flush_wait);
2870 bio->bi_private = &device->flush_wait;
2871 device->flush_bio = bio;
2872
2873 bio_get(bio);
2874 btrfsic_submit_bio(WRITE_FLUSH, bio);
2875
2876 return 0;
2877 }
2878
2879 /*
2880 * send an empty flush down to each device in parallel,
2881 * then wait for them
2882 */
2883 static int barrier_all_devices(struct btrfs_fs_info *info)
2884 {
2885 struct list_head *head;
2886 struct btrfs_device *dev;
2887 int errors = 0;
2888 int ret;
2889
2890 /* send down all the barriers */
2891 head = &info->fs_devices->devices;
2892 list_for_each_entry_rcu(dev, head, dev_list) {
2893 if (!dev->bdev) {
2894 errors++;
2895 continue;
2896 }
2897 if (!dev->in_fs_metadata || !dev->writeable)
2898 continue;
2899
2900 ret = write_dev_flush(dev, 0);
2901 if (ret)
2902 errors++;
2903 }
2904
2905 /* wait for all the barriers */
2906 list_for_each_entry_rcu(dev, head, dev_list) {
2907 if (!dev->bdev) {
2908 errors++;
2909 continue;
2910 }
2911 if (!dev->in_fs_metadata || !dev->writeable)
2912 continue;
2913
2914 ret = write_dev_flush(dev, 1);
2915 if (ret)
2916 errors++;
2917 }
2918 if (errors)
2919 return -EIO;
2920 return 0;
2921 }
2922
2923 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2924 {
2925 struct list_head *head;
2926 struct btrfs_device *dev;
2927 struct btrfs_super_block *sb;
2928 struct btrfs_dev_item *dev_item;
2929 int ret;
2930 int do_barriers;
2931 int max_errors;
2932 int total_errors = 0;
2933 u64 flags;
2934
2935 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2936 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2937 backup_super_roots(root->fs_info);
2938
2939 sb = root->fs_info->super_for_commit;
2940 dev_item = &sb->dev_item;
2941
2942 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2943 head = &root->fs_info->fs_devices->devices;
2944
2945 if (do_barriers)
2946 barrier_all_devices(root->fs_info);
2947
2948 list_for_each_entry_rcu(dev, head, dev_list) {
2949 if (!dev->bdev) {
2950 total_errors++;
2951 continue;
2952 }
2953 if (!dev->in_fs_metadata || !dev->writeable)
2954 continue;
2955
2956 btrfs_set_stack_device_generation(dev_item, 0);
2957 btrfs_set_stack_device_type(dev_item, dev->type);
2958 btrfs_set_stack_device_id(dev_item, dev->devid);
2959 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2960 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2961 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2962 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2963 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2964 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2965 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2966
2967 flags = btrfs_super_flags(sb);
2968 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2969
2970 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2971 if (ret)
2972 total_errors++;
2973 }
2974 if (total_errors > max_errors) {
2975 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2976 total_errors);
2977
2978 /* This shouldn't happen. FUA is masked off if unsupported */
2979 BUG();
2980 }
2981
2982 total_errors = 0;
2983 list_for_each_entry_rcu(dev, head, dev_list) {
2984 if (!dev->bdev)
2985 continue;
2986 if (!dev->in_fs_metadata || !dev->writeable)
2987 continue;
2988
2989 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2990 if (ret)
2991 total_errors++;
2992 }
2993 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2994 if (total_errors > max_errors) {
2995 btrfs_error(root->fs_info, -EIO,
2996 "%d errors while writing supers", total_errors);
2997 return -EIO;
2998 }
2999 return 0;
3000 }
3001
3002 int write_ctree_super(struct btrfs_trans_handle *trans,
3003 struct btrfs_root *root, int max_mirrors)
3004 {
3005 int ret;
3006
3007 ret = write_all_supers(root, max_mirrors);
3008 return ret;
3009 }
3010
3011 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3012 {
3013 spin_lock(&fs_info->fs_roots_radix_lock);
3014 radix_tree_delete(&fs_info->fs_roots_radix,
3015 (unsigned long)root->root_key.objectid);
3016 spin_unlock(&fs_info->fs_roots_radix_lock);
3017
3018 if (btrfs_root_refs(&root->root_item) == 0)
3019 synchronize_srcu(&fs_info->subvol_srcu);
3020
3021 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3022 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3023 free_fs_root(root);
3024 }
3025
3026 static void free_fs_root(struct btrfs_root *root)
3027 {
3028 iput(root->cache_inode);
3029 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3030 if (root->anon_dev)
3031 free_anon_bdev(root->anon_dev);
3032 free_extent_buffer(root->node);
3033 free_extent_buffer(root->commit_root);
3034 kfree(root->free_ino_ctl);
3035 kfree(root->free_ino_pinned);
3036 kfree(root->name);
3037 kfree(root);
3038 }
3039
3040 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3041 {
3042 int ret;
3043 struct btrfs_root *gang[8];
3044 int i;
3045
3046 while (!list_empty(&fs_info->dead_roots)) {
3047 gang[0] = list_entry(fs_info->dead_roots.next,
3048 struct btrfs_root, root_list);
3049 list_del(&gang[0]->root_list);
3050
3051 if (gang[0]->in_radix) {
3052 btrfs_free_fs_root(fs_info, gang[0]);
3053 } else {
3054 free_extent_buffer(gang[0]->node);
3055 free_extent_buffer(gang[0]->commit_root);
3056 kfree(gang[0]);
3057 }
3058 }
3059
3060 while (1) {
3061 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3062 (void **)gang, 0,
3063 ARRAY_SIZE(gang));
3064 if (!ret)
3065 break;
3066 for (i = 0; i < ret; i++)
3067 btrfs_free_fs_root(fs_info, gang[i]);
3068 }
3069 }
3070
3071 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3072 {
3073 u64 root_objectid = 0;
3074 struct btrfs_root *gang[8];
3075 int i;
3076 int ret;
3077
3078 while (1) {
3079 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3080 (void **)gang, root_objectid,
3081 ARRAY_SIZE(gang));
3082 if (!ret)
3083 break;
3084
3085 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3086 for (i = 0; i < ret; i++) {
3087 int err;
3088
3089 root_objectid = gang[i]->root_key.objectid;
3090 err = btrfs_orphan_cleanup(gang[i]);
3091 if (err)
3092 return err;
3093 }
3094 root_objectid++;
3095 }
3096 return 0;
3097 }
3098
3099 int btrfs_commit_super(struct btrfs_root *root)
3100 {
3101 struct btrfs_trans_handle *trans;
3102 int ret;
3103
3104 mutex_lock(&root->fs_info->cleaner_mutex);
3105 btrfs_run_delayed_iputs(root);
3106 btrfs_clean_old_snapshots(root);
3107 mutex_unlock(&root->fs_info->cleaner_mutex);
3108
3109 /* wait until ongoing cleanup work done */
3110 down_write(&root->fs_info->cleanup_work_sem);
3111 up_write(&root->fs_info->cleanup_work_sem);
3112
3113 trans = btrfs_join_transaction(root);
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
3116 ret = btrfs_commit_transaction(trans, root);
3117 if (ret)
3118 return ret;
3119 /* run commit again to drop the original snapshot */
3120 trans = btrfs_join_transaction(root);
3121 if (IS_ERR(trans))
3122 return PTR_ERR(trans);
3123 ret = btrfs_commit_transaction(trans, root);
3124 if (ret)
3125 return ret;
3126 ret = btrfs_write_and_wait_transaction(NULL, root);
3127 if (ret) {
3128 btrfs_error(root->fs_info, ret,
3129 "Failed to sync btree inode to disk.");
3130 return ret;
3131 }
3132
3133 ret = write_ctree_super(NULL, root, 0);
3134 return ret;
3135 }
3136
3137 int close_ctree(struct btrfs_root *root)
3138 {
3139 struct btrfs_fs_info *fs_info = root->fs_info;
3140 int ret;
3141
3142 fs_info->closing = 1;
3143 smp_mb();
3144
3145 /* pause restriper - we want to resume on mount */
3146 btrfs_pause_balance(root->fs_info);
3147
3148 btrfs_scrub_cancel(root);
3149
3150 /* wait for any defraggers to finish */
3151 wait_event(fs_info->transaction_wait,
3152 (atomic_read(&fs_info->defrag_running) == 0));
3153
3154 /* clear out the rbtree of defraggable inodes */
3155 btrfs_run_defrag_inodes(fs_info);
3156
3157 /*
3158 * Here come 2 situations when btrfs is broken to flip readonly:
3159 *
3160 * 1. when btrfs flips readonly somewhere else before
3161 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3162 * and btrfs will skip to write sb directly to keep
3163 * ERROR state on disk.
3164 *
3165 * 2. when btrfs flips readonly just in btrfs_commit_super,
3166 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3167 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3168 * btrfs will cleanup all FS resources first and write sb then.
3169 */
3170 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3171 ret = btrfs_commit_super(root);
3172 if (ret)
3173 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3174 }
3175
3176 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3177 ret = btrfs_error_commit_super(root);
3178 if (ret)
3179 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3180 }
3181
3182 btrfs_put_block_group_cache(fs_info);
3183
3184 kthread_stop(fs_info->transaction_kthread);
3185 kthread_stop(fs_info->cleaner_kthread);
3186
3187 fs_info->closing = 2;
3188 smp_mb();
3189
3190 if (fs_info->delalloc_bytes) {
3191 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3192 (unsigned long long)fs_info->delalloc_bytes);
3193 }
3194 if (fs_info->total_ref_cache_size) {
3195 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3196 (unsigned long long)fs_info->total_ref_cache_size);
3197 }
3198
3199 free_extent_buffer(fs_info->extent_root->node);
3200 free_extent_buffer(fs_info->extent_root->commit_root);
3201 free_extent_buffer(fs_info->tree_root->node);
3202 free_extent_buffer(fs_info->tree_root->commit_root);
3203 free_extent_buffer(fs_info->chunk_root->node);
3204 free_extent_buffer(fs_info->chunk_root->commit_root);
3205 free_extent_buffer(fs_info->dev_root->node);
3206 free_extent_buffer(fs_info->dev_root->commit_root);
3207 free_extent_buffer(fs_info->csum_root->node);
3208 free_extent_buffer(fs_info->csum_root->commit_root);
3209
3210 btrfs_free_block_groups(fs_info);
3211
3212 del_fs_roots(fs_info);
3213
3214 iput(fs_info->btree_inode);
3215
3216 btrfs_stop_workers(&fs_info->generic_worker);
3217 btrfs_stop_workers(&fs_info->fixup_workers);
3218 btrfs_stop_workers(&fs_info->delalloc_workers);
3219 btrfs_stop_workers(&fs_info->workers);
3220 btrfs_stop_workers(&fs_info->endio_workers);
3221 btrfs_stop_workers(&fs_info->endio_meta_workers);
3222 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3223 btrfs_stop_workers(&fs_info->endio_write_workers);
3224 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3225 btrfs_stop_workers(&fs_info->submit_workers);
3226 btrfs_stop_workers(&fs_info->delayed_workers);
3227 btrfs_stop_workers(&fs_info->caching_workers);
3228 btrfs_stop_workers(&fs_info->readahead_workers);
3229
3230 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3231 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3232 btrfsic_unmount(root, fs_info->fs_devices);
3233 #endif
3234
3235 btrfs_close_devices(fs_info->fs_devices);
3236 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3237
3238 bdi_destroy(&fs_info->bdi);
3239 cleanup_srcu_struct(&fs_info->subvol_srcu);
3240
3241 return 0;
3242 }
3243
3244 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3245 int atomic)
3246 {
3247 int ret;
3248 struct inode *btree_inode = buf->pages[0]->mapping->host;
3249
3250 ret = extent_buffer_uptodate(buf);
3251 if (!ret)
3252 return ret;
3253
3254 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3255 parent_transid, atomic);
3256 if (ret == -EAGAIN)
3257 return ret;
3258 return !ret;
3259 }
3260
3261 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3262 {
3263 return set_extent_buffer_uptodate(buf);
3264 }
3265
3266 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3267 {
3268 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3269 u64 transid = btrfs_header_generation(buf);
3270 int was_dirty;
3271
3272 btrfs_assert_tree_locked(buf);
3273 if (transid != root->fs_info->generation) {
3274 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3275 "found %llu running %llu\n",
3276 (unsigned long long)buf->start,
3277 (unsigned long long)transid,
3278 (unsigned long long)root->fs_info->generation);
3279 WARN_ON(1);
3280 }
3281 was_dirty = set_extent_buffer_dirty(buf);
3282 if (!was_dirty) {
3283 spin_lock(&root->fs_info->delalloc_lock);
3284 root->fs_info->dirty_metadata_bytes += buf->len;
3285 spin_unlock(&root->fs_info->delalloc_lock);
3286 }
3287 }
3288
3289 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3290 {
3291 /*
3292 * looks as though older kernels can get into trouble with
3293 * this code, they end up stuck in balance_dirty_pages forever
3294 */
3295 u64 num_dirty;
3296 unsigned long thresh = 32 * 1024 * 1024;
3297
3298 if (current->flags & PF_MEMALLOC)
3299 return;
3300
3301 btrfs_balance_delayed_items(root);
3302
3303 num_dirty = root->fs_info->dirty_metadata_bytes;
3304
3305 if (num_dirty > thresh) {
3306 balance_dirty_pages_ratelimited_nr(
3307 root->fs_info->btree_inode->i_mapping, 1);
3308 }
3309 return;
3310 }
3311
3312 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3313 {
3314 /*
3315 * looks as though older kernels can get into trouble with
3316 * this code, they end up stuck in balance_dirty_pages forever
3317 */
3318 u64 num_dirty;
3319 unsigned long thresh = 32 * 1024 * 1024;
3320
3321 if (current->flags & PF_MEMALLOC)
3322 return;
3323
3324 num_dirty = root->fs_info->dirty_metadata_bytes;
3325
3326 if (num_dirty > thresh) {
3327 balance_dirty_pages_ratelimited_nr(
3328 root->fs_info->btree_inode->i_mapping, 1);
3329 }
3330 return;
3331 }
3332
3333 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3334 {
3335 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3336 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3337 }
3338
3339 int btree_lock_page_hook(struct page *page, void *data,
3340 void (*flush_fn)(void *))
3341 {
3342 struct inode *inode = page->mapping->host;
3343 struct btrfs_root *root = BTRFS_I(inode)->root;
3344 struct extent_buffer *eb;
3345
3346 /*
3347 * We culled this eb but the page is still hanging out on the mapping,
3348 * carry on.
3349 */
3350 if (!PagePrivate(page))
3351 goto out;
3352
3353 eb = (struct extent_buffer *)page->private;
3354 if (!eb) {
3355 WARN_ON(1);
3356 goto out;
3357 }
3358 if (page != eb->pages[0])
3359 goto out;
3360
3361 if (!btrfs_try_tree_write_lock(eb)) {
3362 flush_fn(data);
3363 btrfs_tree_lock(eb);
3364 }
3365 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3366
3367 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3368 spin_lock(&root->fs_info->delalloc_lock);
3369 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3370 root->fs_info->dirty_metadata_bytes -= eb->len;
3371 else
3372 WARN_ON(1);
3373 spin_unlock(&root->fs_info->delalloc_lock);
3374 }
3375
3376 btrfs_tree_unlock(eb);
3377 out:
3378 if (!trylock_page(page)) {
3379 flush_fn(data);
3380 lock_page(page);
3381 }
3382 return 0;
3383 }
3384
3385 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3386 int read_only)
3387 {
3388 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3389 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3390 return -EINVAL;
3391 }
3392
3393 if (read_only)
3394 return 0;
3395
3396 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3397 printk(KERN_WARNING "warning: mount fs with errors, "
3398 "running btrfsck is recommended\n");
3399 }
3400
3401 return 0;
3402 }
3403
3404 int btrfs_error_commit_super(struct btrfs_root *root)
3405 {
3406 int ret;
3407
3408 mutex_lock(&root->fs_info->cleaner_mutex);
3409 btrfs_run_delayed_iputs(root);
3410 mutex_unlock(&root->fs_info->cleaner_mutex);
3411
3412 down_write(&root->fs_info->cleanup_work_sem);
3413 up_write(&root->fs_info->cleanup_work_sem);
3414
3415 /* cleanup FS via transaction */
3416 btrfs_cleanup_transaction(root);
3417
3418 ret = write_ctree_super(NULL, root, 0);
3419
3420 return ret;
3421 }
3422
3423 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3424 {
3425 struct btrfs_inode *btrfs_inode;
3426 struct list_head splice;
3427
3428 INIT_LIST_HEAD(&splice);
3429
3430 mutex_lock(&root->fs_info->ordered_operations_mutex);
3431 spin_lock(&root->fs_info->ordered_extent_lock);
3432
3433 list_splice_init(&root->fs_info->ordered_operations, &splice);
3434 while (!list_empty(&splice)) {
3435 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3436 ordered_operations);
3437
3438 list_del_init(&btrfs_inode->ordered_operations);
3439
3440 btrfs_invalidate_inodes(btrfs_inode->root);
3441 }
3442
3443 spin_unlock(&root->fs_info->ordered_extent_lock);
3444 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3445 }
3446
3447 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3448 {
3449 struct list_head splice;
3450 struct btrfs_ordered_extent *ordered;
3451 struct inode *inode;
3452
3453 INIT_LIST_HEAD(&splice);
3454
3455 spin_lock(&root->fs_info->ordered_extent_lock);
3456
3457 list_splice_init(&root->fs_info->ordered_extents, &splice);
3458 while (!list_empty(&splice)) {
3459 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3460 root_extent_list);
3461
3462 list_del_init(&ordered->root_extent_list);
3463 atomic_inc(&ordered->refs);
3464
3465 /* the inode may be getting freed (in sys_unlink path). */
3466 inode = igrab(ordered->inode);
3467
3468 spin_unlock(&root->fs_info->ordered_extent_lock);
3469 if (inode)
3470 iput(inode);
3471
3472 atomic_set(&ordered->refs, 1);
3473 btrfs_put_ordered_extent(ordered);
3474
3475 spin_lock(&root->fs_info->ordered_extent_lock);
3476 }
3477
3478 spin_unlock(&root->fs_info->ordered_extent_lock);
3479 }
3480
3481 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3482 struct btrfs_root *root)
3483 {
3484 struct rb_node *node;
3485 struct btrfs_delayed_ref_root *delayed_refs;
3486 struct btrfs_delayed_ref_node *ref;
3487 int ret = 0;
3488
3489 delayed_refs = &trans->delayed_refs;
3490
3491 spin_lock(&delayed_refs->lock);
3492 if (delayed_refs->num_entries == 0) {
3493 spin_unlock(&delayed_refs->lock);
3494 printk(KERN_INFO "delayed_refs has NO entry\n");
3495 return ret;
3496 }
3497
3498 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3499 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3500
3501 atomic_set(&ref->refs, 1);
3502 if (btrfs_delayed_ref_is_head(ref)) {
3503 struct btrfs_delayed_ref_head *head;
3504
3505 head = btrfs_delayed_node_to_head(ref);
3506 if (!mutex_trylock(&head->mutex)) {
3507 atomic_inc(&ref->refs);
3508 spin_unlock(&delayed_refs->lock);
3509
3510 /* Need to wait for the delayed ref to run */
3511 mutex_lock(&head->mutex);
3512 mutex_unlock(&head->mutex);
3513 btrfs_put_delayed_ref(ref);
3514
3515 spin_lock(&delayed_refs->lock);
3516 continue;
3517 }
3518
3519 kfree(head->extent_op);
3520 delayed_refs->num_heads--;
3521 if (list_empty(&head->cluster))
3522 delayed_refs->num_heads_ready--;
3523 list_del_init(&head->cluster);
3524 }
3525 ref->in_tree = 0;
3526 rb_erase(&ref->rb_node, &delayed_refs->root);
3527 delayed_refs->num_entries--;
3528
3529 spin_unlock(&delayed_refs->lock);
3530 btrfs_put_delayed_ref(ref);
3531
3532 cond_resched();
3533 spin_lock(&delayed_refs->lock);
3534 }
3535
3536 spin_unlock(&delayed_refs->lock);
3537
3538 return ret;
3539 }
3540
3541 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3542 {
3543 struct btrfs_pending_snapshot *snapshot;
3544 struct list_head splice;
3545
3546 INIT_LIST_HEAD(&splice);
3547
3548 list_splice_init(&t->pending_snapshots, &splice);
3549
3550 while (!list_empty(&splice)) {
3551 snapshot = list_entry(splice.next,
3552 struct btrfs_pending_snapshot,
3553 list);
3554
3555 list_del_init(&snapshot->list);
3556
3557 kfree(snapshot);
3558 }
3559 }
3560
3561 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3562 {
3563 struct btrfs_inode *btrfs_inode;
3564 struct list_head splice;
3565
3566 INIT_LIST_HEAD(&splice);
3567
3568 spin_lock(&root->fs_info->delalloc_lock);
3569 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3570
3571 while (!list_empty(&splice)) {
3572 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3573 delalloc_inodes);
3574
3575 list_del_init(&btrfs_inode->delalloc_inodes);
3576
3577 btrfs_invalidate_inodes(btrfs_inode->root);
3578 }
3579
3580 spin_unlock(&root->fs_info->delalloc_lock);
3581 }
3582
3583 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3584 struct extent_io_tree *dirty_pages,
3585 int mark)
3586 {
3587 int ret;
3588 struct page *page;
3589 struct inode *btree_inode = root->fs_info->btree_inode;
3590 struct extent_buffer *eb;
3591 u64 start = 0;
3592 u64 end;
3593 u64 offset;
3594 unsigned long index;
3595
3596 while (1) {
3597 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3598 mark);
3599 if (ret)
3600 break;
3601
3602 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3603 while (start <= end) {
3604 index = start >> PAGE_CACHE_SHIFT;
3605 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3606 page = find_get_page(btree_inode->i_mapping, index);
3607 if (!page)
3608 continue;
3609 offset = page_offset(page);
3610
3611 spin_lock(&dirty_pages->buffer_lock);
3612 eb = radix_tree_lookup(
3613 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3614 offset >> PAGE_CACHE_SHIFT);
3615 spin_unlock(&dirty_pages->buffer_lock);
3616 if (eb)
3617 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3618 &eb->bflags);
3619 if (PageWriteback(page))
3620 end_page_writeback(page);
3621
3622 lock_page(page);
3623 if (PageDirty(page)) {
3624 clear_page_dirty_for_io(page);
3625 spin_lock_irq(&page->mapping->tree_lock);
3626 radix_tree_tag_clear(&page->mapping->page_tree,
3627 page_index(page),
3628 PAGECACHE_TAG_DIRTY);
3629 spin_unlock_irq(&page->mapping->tree_lock);
3630 }
3631
3632 unlock_page(page);
3633 page_cache_release(page);
3634 }
3635 }
3636
3637 return ret;
3638 }
3639
3640 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3641 struct extent_io_tree *pinned_extents)
3642 {
3643 struct extent_io_tree *unpin;
3644 u64 start;
3645 u64 end;
3646 int ret;
3647 bool loop = true;
3648
3649 unpin = pinned_extents;
3650 again:
3651 while (1) {
3652 ret = find_first_extent_bit(unpin, 0, &start, &end,
3653 EXTENT_DIRTY);
3654 if (ret)
3655 break;
3656
3657 /* opt_discard */
3658 if (btrfs_test_opt(root, DISCARD))
3659 ret = btrfs_error_discard_extent(root, start,
3660 end + 1 - start,
3661 NULL);
3662
3663 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3664 btrfs_error_unpin_extent_range(root, start, end);
3665 cond_resched();
3666 }
3667
3668 if (loop) {
3669 if (unpin == &root->fs_info->freed_extents[0])
3670 unpin = &root->fs_info->freed_extents[1];
3671 else
3672 unpin = &root->fs_info->freed_extents[0];
3673 loop = false;
3674 goto again;
3675 }
3676
3677 return 0;
3678 }
3679
3680 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3681 struct btrfs_root *root)
3682 {
3683 btrfs_destroy_delayed_refs(cur_trans, root);
3684 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3685 cur_trans->dirty_pages.dirty_bytes);
3686
3687 /* FIXME: cleanup wait for commit */
3688 cur_trans->in_commit = 1;
3689 cur_trans->blocked = 1;
3690 wake_up(&root->fs_info->transaction_blocked_wait);
3691
3692 cur_trans->blocked = 0;
3693 wake_up(&root->fs_info->transaction_wait);
3694
3695 cur_trans->commit_done = 1;
3696 wake_up(&cur_trans->commit_wait);
3697
3698 btrfs_destroy_delayed_inodes(root);
3699 btrfs_assert_delayed_root_empty(root);
3700
3701 btrfs_destroy_pending_snapshots(cur_trans);
3702
3703 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3704 EXTENT_DIRTY);
3705 btrfs_destroy_pinned_extent(root,
3706 root->fs_info->pinned_extents);
3707
3708 /*
3709 memset(cur_trans, 0, sizeof(*cur_trans));
3710 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3711 */
3712 }
3713
3714 int btrfs_cleanup_transaction(struct btrfs_root *root)
3715 {
3716 struct btrfs_transaction *t;
3717 LIST_HEAD(list);
3718
3719 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3720
3721 spin_lock(&root->fs_info->trans_lock);
3722 list_splice_init(&root->fs_info->trans_list, &list);
3723 root->fs_info->trans_no_join = 1;
3724 spin_unlock(&root->fs_info->trans_lock);
3725
3726 while (!list_empty(&list)) {
3727 t = list_entry(list.next, struct btrfs_transaction, list);
3728 if (!t)
3729 break;
3730
3731 btrfs_destroy_ordered_operations(root);
3732
3733 btrfs_destroy_ordered_extents(root);
3734
3735 btrfs_destroy_delayed_refs(t, root);
3736
3737 btrfs_block_rsv_release(root,
3738 &root->fs_info->trans_block_rsv,
3739 t->dirty_pages.dirty_bytes);
3740
3741 /* FIXME: cleanup wait for commit */
3742 t->in_commit = 1;
3743 t->blocked = 1;
3744 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3745 wake_up(&root->fs_info->transaction_blocked_wait);
3746
3747 t->blocked = 0;
3748 if (waitqueue_active(&root->fs_info->transaction_wait))
3749 wake_up(&root->fs_info->transaction_wait);
3750
3751 t->commit_done = 1;
3752 if (waitqueue_active(&t->commit_wait))
3753 wake_up(&t->commit_wait);
3754
3755 btrfs_destroy_delayed_inodes(root);
3756 btrfs_assert_delayed_root_empty(root);
3757
3758 btrfs_destroy_pending_snapshots(t);
3759
3760 btrfs_destroy_delalloc_inodes(root);
3761
3762 spin_lock(&root->fs_info->trans_lock);
3763 root->fs_info->running_transaction = NULL;
3764 spin_unlock(&root->fs_info->trans_lock);
3765
3766 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3767 EXTENT_DIRTY);
3768
3769 btrfs_destroy_pinned_extent(root,
3770 root->fs_info->pinned_extents);
3771
3772 atomic_set(&t->use_count, 0);
3773 list_del_init(&t->list);
3774 memset(t, 0, sizeof(*t));
3775 kmem_cache_free(btrfs_transaction_cachep, t);
3776 }
3777
3778 spin_lock(&root->fs_info->trans_lock);
3779 root->fs_info->trans_no_join = 0;
3780 spin_unlock(&root->fs_info->trans_lock);
3781 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3782
3783 return 0;
3784 }
3785
3786 static struct extent_io_ops btree_extent_io_ops = {
3787 .write_cache_pages_lock_hook = btree_lock_page_hook,
3788 .readpage_end_io_hook = btree_readpage_end_io_hook,
3789 .readpage_io_failed_hook = btree_io_failed_hook,
3790 .submit_bio_hook = btree_submit_bio_hook,
3791 /* note we're sharing with inode.c for the merge bio hook */
3792 .merge_bio_hook = btrfs_merge_bio_hook,
3793 };
This page took 0.121539 seconds and 4 git commands to generate.