ALSA: ice1712: add suspend support for ICE1712 chip
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
160 { .id = 0, .name_stem = "tree" },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179 {
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
201 int create)
202 {
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
213 goto out;
214 }
215 read_unlock(&em_tree->lock);
216
217 em = alloc_extent_map();
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
223 em->len = (u64)-1;
224 em->block_len = (u64)-1;
225 em->block_start = 0;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
231 free_extent_map(em);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (!em)
234 em = ERR_PTR(-EIO);
235 } else if (ret) {
236 free_extent_map(em);
237 em = ERR_PTR(ret);
238 }
239 write_unlock(&em_tree->lock);
240
241 out:
242 return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247 return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252 put_unaligned_le32(~crc, result);
253 }
254
255 /*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261 {
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 char *result = NULL;
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
272 unsigned long inline_result;
273
274 len = buf->len - offset;
275 while (len > 0) {
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
278 if (err)
279 return 1;
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
285 }
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
301
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 eb->start, parent_transid, btrfs_header_generation(eb));
349 ret = 1;
350 clear_extent_buffer_uptodate(eb);
351 out:
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
354 return ret;
355 }
356
357 /*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING
387 "BTRFS: super block crcs don't match, older mkfs detected\n");
388 ret = 0;
389 }
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399 }
400
401 /*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
407 u64 start, u64 parent_transid)
408 {
409 struct extent_io_tree *io_tree;
410 int failed = 0;
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
414 int failed_mirror = 0;
415
416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
421 btree_get_extent, mirror_num);
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
424 parent_transid, 0))
425 break;
426 else
427 ret = -EIO;
428 }
429
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436 break;
437
438 num_copies = btrfs_num_copies(root->fs_info,
439 eb->start, eb->len);
440 if (num_copies == 1)
441 break;
442
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
448 mirror_num++;
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
452 if (mirror_num > num_copies)
453 break;
454 }
455
456 if (failed && !ret && failed_mirror)
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
460 }
461
462 /*
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
465 */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469 u64 start = page_offset(page);
470 u64 found_start;
471 struct extent_buffer *eb;
472
473 eb = (struct extent_buffer *)page->private;
474 if (page != eb->pages[0])
475 return 0;
476 found_start = btrfs_header_bytenr(eb);
477 if (WARN_ON(found_start != start || !PageUptodate(page)))
478 return 0;
479 csum_tree_block(root, eb, 0);
480 return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484 struct extent_buffer *eb)
485 {
486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487 u8 fsid[BTRFS_UUID_SIZE];
488 int ret = 1;
489
490 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491 while (fs_devices) {
492 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493 ret = 0;
494 break;
495 }
496 fs_devices = fs_devices->seed;
497 }
498 return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot) \
502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
503 "root=%llu, slot=%d", reason, \
504 btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507 struct extent_buffer *leaf)
508 {
509 struct btrfs_key key;
510 struct btrfs_key leaf_key;
511 u32 nritems = btrfs_header_nritems(leaf);
512 int slot;
513
514 if (nritems == 0)
515 return 0;
516
517 /* Check the 0 item */
518 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("invalid item offset size pair", leaf, root, 0);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure each items keys are in the correct order and their
526 * offsets make sense. We only have to loop through nritems-1 because
527 * we check the current slot against the next slot, which verifies the
528 * next slot's offset+size makes sense and that the current's slot
529 * offset is correct.
530 */
531 for (slot = 0; slot < nritems - 1; slot++) {
532 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535 /* Make sure the keys are in the right order */
536 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537 CORRUPT("bad key order", leaf, root, slot);
538 return -EIO;
539 }
540
541 /*
542 * Make sure the offset and ends are right, remember that the
543 * item data starts at the end of the leaf and grows towards the
544 * front.
545 */
546 if (btrfs_item_offset_nr(leaf, slot) !=
547 btrfs_item_end_nr(leaf, slot + 1)) {
548 CORRUPT("slot offset bad", leaf, root, slot);
549 return -EIO;
550 }
551
552 /*
553 * Check to make sure that we don't point outside of the leaf,
554 * just incase all the items are consistent to eachother, but
555 * all point outside of the leaf.
556 */
557 if (btrfs_item_end_nr(leaf, slot) >
558 BTRFS_LEAF_DATA_SIZE(root)) {
559 CORRUPT("slot end outside of leaf", leaf, root, slot);
560 return -EIO;
561 }
562 }
563
564 return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568 u64 phy_offset, struct page *page,
569 u64 start, u64 end, int mirror)
570 {
571 u64 found_start;
572 int found_level;
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575 int ret = 0;
576 int reads_done;
577
578 if (!page->private)
579 goto out;
580
581 eb = (struct extent_buffer *)page->private;
582
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
589 if (!reads_done)
590 goto err;
591
592 eb->read_mirror = mirror;
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
598 found_start = btrfs_header_bytenr(eb);
599 if (found_start != eb->start) {
600 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601 "%llu %llu\n",
602 found_start, eb->start);
603 ret = -EIO;
604 goto err;
605 }
606 if (check_tree_block_fsid(root, eb)) {
607 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608 eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 found_level = btrfs_header_level(eb);
613 if (found_level >= BTRFS_MAX_LEVEL) {
614 btrfs_info(root->fs_info, "bad tree block level %d",
615 (int)btrfs_header_level(eb));
616 ret = -EIO;
617 goto err;
618 }
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641 err:
642 if (reads_done &&
643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644 btree_readahead_hook(root, eb, eb->start, ret);
645
646 if (ret) {
647 /*
648 * our io error hook is going to dec the io pages
649 * again, we have to make sure it has something
650 * to decrement
651 */
652 atomic_inc(&eb->io_pages);
653 clear_extent_buffer_uptodate(eb);
654 }
655 free_extent_buffer(eb);
656 out:
657 return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662 struct extent_buffer *eb;
663 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665 eb = (struct extent_buffer *)page->private;
666 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667 eb->read_mirror = failed_mirror;
668 atomic_dec(&eb->io_pages);
669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670 btree_readahead_hook(root, eb, eb->start, -EIO);
671 return -EIO; /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676 struct end_io_wq *end_io_wq = bio->bi_private;
677 struct btrfs_fs_info *fs_info;
678
679 fs_info = end_io_wq->info;
680 end_io_wq->error = err;
681 end_io_wq->work.func = end_workqueue_fn;
682 end_io_wq->work.flags = 0;
683
684 if (bio->bi_rw & REQ_WRITE) {
685 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687 &end_io_wq->work);
688 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689 btrfs_queue_worker(&fs_info->endio_freespace_worker,
690 &end_io_wq->work);
691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692 btrfs_queue_worker(&fs_info->endio_raid56_workers,
693 &end_io_wq->work);
694 else
695 btrfs_queue_worker(&fs_info->endio_write_workers,
696 &end_io_wq->work);
697 } else {
698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699 btrfs_queue_worker(&fs_info->endio_raid56_workers,
700 &end_io_wq->work);
701 else if (end_io_wq->metadata)
702 btrfs_queue_worker(&fs_info->endio_meta_workers,
703 &end_io_wq->work);
704 else
705 btrfs_queue_worker(&fs_info->endio_workers,
706 &end_io_wq->work);
707 }
708 }
709
710 /*
711 * For the metadata arg you want
712 *
713 * 0 - if data
714 * 1 - if normal metadta
715 * 2 - if writing to the free space cache area
716 * 3 - raid parity work
717 */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719 int metadata)
720 {
721 struct end_io_wq *end_io_wq;
722 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723 if (!end_io_wq)
724 return -ENOMEM;
725
726 end_io_wq->private = bio->bi_private;
727 end_io_wq->end_io = bio->bi_end_io;
728 end_io_wq->info = info;
729 end_io_wq->error = 0;
730 end_io_wq->bio = bio;
731 end_io_wq->metadata = metadata;
732
733 bio->bi_private = end_io_wq;
734 bio->bi_end_io = end_workqueue_bio;
735 return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740 unsigned long limit = min_t(unsigned long,
741 info->workers.max_workers,
742 info->fs_devices->open_devices);
743 return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748 struct async_submit_bio *async;
749 int ret;
750
751 async = container_of(work, struct async_submit_bio, work);
752 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753 async->mirror_num, async->bio_flags,
754 async->bio_offset);
755 if (ret)
756 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761 struct btrfs_fs_info *fs_info;
762 struct async_submit_bio *async;
763 int limit;
764
765 async = container_of(work, struct async_submit_bio, work);
766 fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768 limit = btrfs_async_submit_limit(fs_info);
769 limit = limit * 2 / 3;
770
771 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772 waitqueue_active(&fs_info->async_submit_wait))
773 wake_up(&fs_info->async_submit_wait);
774
775 /* If an error occured we just want to clean up the bio and move on */
776 if (async->error) {
777 bio_endio(async->bio, async->error);
778 return;
779 }
780
781 async->submit_bio_done(async->inode, async->rw, async->bio,
782 async->mirror_num, async->bio_flags,
783 async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788 struct async_submit_bio *async;
789
790 async = container_of(work, struct async_submit_bio, work);
791 kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795 int rw, struct bio *bio, int mirror_num,
796 unsigned long bio_flags,
797 u64 bio_offset,
798 extent_submit_bio_hook_t *submit_bio_start,
799 extent_submit_bio_hook_t *submit_bio_done)
800 {
801 struct async_submit_bio *async;
802
803 async = kmalloc(sizeof(*async), GFP_NOFS);
804 if (!async)
805 return -ENOMEM;
806
807 async->inode = inode;
808 async->rw = rw;
809 async->bio = bio;
810 async->mirror_num = mirror_num;
811 async->submit_bio_start = submit_bio_start;
812 async->submit_bio_done = submit_bio_done;
813
814 async->work.func = run_one_async_start;
815 async->work.ordered_func = run_one_async_done;
816 async->work.ordered_free = run_one_async_free;
817
818 async->work.flags = 0;
819 async->bio_flags = bio_flags;
820 async->bio_offset = bio_offset;
821
822 async->error = 0;
823
824 atomic_inc(&fs_info->nr_async_submits);
825
826 if (rw & REQ_SYNC)
827 btrfs_set_work_high_prio(&async->work);
828
829 btrfs_queue_worker(&fs_info->workers, &async->work);
830
831 while (atomic_read(&fs_info->async_submit_draining) &&
832 atomic_read(&fs_info->nr_async_submits)) {
833 wait_event(fs_info->async_submit_wait,
834 (atomic_read(&fs_info->nr_async_submits) == 0));
835 }
836
837 return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842 struct bio_vec *bvec;
843 struct btrfs_root *root;
844 int i, ret = 0;
845
846 bio_for_each_segment_all(bvec, bio, i) {
847 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 ret = csum_dirty_buffer(root, bvec->bv_page);
849 if (ret)
850 break;
851 }
852
853 return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857 struct bio *bio, int mirror_num,
858 unsigned long bio_flags,
859 u64 bio_offset)
860 {
861 /*
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
864 */
865 return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
871 {
872 int ret;
873
874 /*
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
877 */
878 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879 if (ret)
880 bio_endio(bio, ret);
881 return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886 if (bio_flags & EXTENT_BIO_TREE_LOG)
887 return 0;
888 #ifdef CONFIG_X86
889 if (cpu_has_xmm4_2)
890 return 0;
891 #endif
892 return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896 int mirror_num, unsigned long bio_flags,
897 u64 bio_offset)
898 {
899 int async = check_async_write(inode, bio_flags);
900 int ret;
901
902 if (!(rw & REQ_WRITE)) {
903 /*
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
906 */
907 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908 bio, 1);
909 if (ret)
910 goto out_w_error;
911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912 mirror_num, 0);
913 } else if (!async) {
914 ret = btree_csum_one_bio(bio);
915 if (ret)
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else {
920 /*
921 * kthread helpers are used to submit writes so that
922 * checksumming can happen in parallel across all CPUs
923 */
924 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925 inode, rw, bio, mirror_num, 0,
926 bio_offset,
927 __btree_submit_bio_start,
928 __btree_submit_bio_done);
929 }
930
931 if (ret) {
932 out_w_error:
933 bio_endio(bio, ret);
934 }
935 return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940 struct page *newpage, struct page *page,
941 enum migrate_mode mode)
942 {
943 /*
944 * we can't safely write a btree page from here,
945 * we haven't done the locking hook
946 */
947 if (PageDirty(page))
948 return -EAGAIN;
949 /*
950 * Buffers may be managed in a filesystem specific way.
951 * We must have no buffers or drop them.
952 */
953 if (page_has_private(page) &&
954 !try_to_release_page(page, GFP_KERNEL))
955 return -EAGAIN;
956 return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962 struct writeback_control *wbc)
963 {
964 struct btrfs_fs_info *fs_info;
965 int ret;
966
967 if (wbc->sync_mode == WB_SYNC_NONE) {
968
969 if (wbc->for_kupdate)
970 return 0;
971
972 fs_info = BTRFS_I(mapping->host)->root->fs_info;
973 /* this is a bit racy, but that's ok */
974 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975 BTRFS_DIRTY_METADATA_THRESH);
976 if (ret < 0)
977 return 0;
978 }
979 return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
986 return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991 if (PageWriteback(page) || PageDirty(page))
992 return 0;
993
994 return try_release_extent_buffer(page);
995 }
996
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998 unsigned int length)
999 {
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
1002 extent_invalidatepage(tree, page, offset);
1003 btree_releasepage(page, GFP_NOFS);
1004 if (PagePrivate(page)) {
1005 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006 "page private not zero on page %llu",
1007 (unsigned long long)page_offset(page));
1008 ClearPagePrivate(page);
1009 set_page_private(page, 0);
1010 page_cache_release(page);
1011 }
1012 }
1013
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017 struct extent_buffer *eb;
1018
1019 BUG_ON(!PagePrivate(page));
1020 eb = (struct extent_buffer *)page->private;
1021 BUG_ON(!eb);
1022 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023 BUG_ON(!atomic_read(&eb->refs));
1024 btrfs_assert_tree_locked(eb);
1025 #endif
1026 return __set_page_dirty_nobuffers(page);
1027 }
1028
1029 static const struct address_space_operations btree_aops = {
1030 .readpage = btree_readpage,
1031 .writepages = btree_writepages,
1032 .releasepage = btree_releasepage,
1033 .invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035 .migratepage = btree_migratepage,
1036 #endif
1037 .set_page_dirty = btree_set_page_dirty,
1038 };
1039
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 u64 parent_transid)
1042 {
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = root->fs_info->btree_inode;
1045 int ret = 0;
1046
1047 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048 if (!buf)
1049 return 0;
1050 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051 buf, 0, WAIT_NONE, btree_get_extent, 0);
1052 free_extent_buffer(buf);
1053 return ret;
1054 }
1055
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 int mirror_num, struct extent_buffer **eb)
1058 {
1059 struct extent_buffer *buf = NULL;
1060 struct inode *btree_inode = root->fs_info->btree_inode;
1061 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062 int ret;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067
1068 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071 btree_get_extent, mirror_num);
1072 if (ret) {
1073 free_extent_buffer(buf);
1074 return ret;
1075 }
1076
1077 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078 free_extent_buffer(buf);
1079 return -EIO;
1080 } else if (extent_buffer_uptodate(buf)) {
1081 *eb = buf;
1082 } else {
1083 free_extent_buffer(buf);
1084 }
1085 return 0;
1086 }
1087
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089 u64 bytenr, u32 blocksize)
1090 {
1091 return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095 u64 bytenr, u32 blocksize)
1096 {
1097 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099
1100
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104 buf->start + buf->len - 1);
1105 }
1106
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109 return filemap_fdatawait_range(buf->pages[0]->mapping,
1110 buf->start, buf->start + buf->len - 1);
1111 }
1112
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114 u32 blocksize, u64 parent_transid)
1115 {
1116 struct extent_buffer *buf = NULL;
1117 int ret;
1118
1119 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120 if (!buf)
1121 return NULL;
1122
1123 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return NULL;
1127 }
1128 return buf;
1129
1130 }
1131
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133 struct extent_buffer *buf)
1134 {
1135 struct btrfs_fs_info *fs_info = root->fs_info;
1136
1137 if (btrfs_header_generation(buf) ==
1138 fs_info->running_transaction->transid) {
1139 btrfs_assert_tree_locked(buf);
1140
1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143 -buf->len,
1144 fs_info->dirty_metadata_batch);
1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 btrfs_set_lock_blocking(buf);
1147 clear_extent_buffer_dirty(buf);
1148 }
1149 }
1150 }
1151
1152 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1153 u32 stripesize, struct btrfs_root *root,
1154 struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 root->node = NULL;
1158 root->commit_root = NULL;
1159 root->sectorsize = sectorsize;
1160 root->nodesize = nodesize;
1161 root->leafsize = leafsize;
1162 root->stripesize = stripesize;
1163 root->ref_cows = 0;
1164 root->track_dirty = 0;
1165 root->in_radix = 0;
1166 root->orphan_item_inserted = 0;
1167 root->orphan_cleanup_state = 0;
1168
1169 root->objectid = objectid;
1170 root->last_trans = 0;
1171 root->highest_objectid = 0;
1172 root->nr_delalloc_inodes = 0;
1173 root->nr_ordered_extents = 0;
1174 root->name = NULL;
1175 root->inode_tree = RB_ROOT;
1176 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1177 root->block_rsv = NULL;
1178 root->orphan_block_rsv = NULL;
1179
1180 INIT_LIST_HEAD(&root->dirty_list);
1181 INIT_LIST_HEAD(&root->root_list);
1182 INIT_LIST_HEAD(&root->delalloc_inodes);
1183 INIT_LIST_HEAD(&root->delalloc_root);
1184 INIT_LIST_HEAD(&root->ordered_extents);
1185 INIT_LIST_HEAD(&root->ordered_root);
1186 INIT_LIST_HEAD(&root->logged_list[0]);
1187 INIT_LIST_HEAD(&root->logged_list[1]);
1188 spin_lock_init(&root->orphan_lock);
1189 spin_lock_init(&root->inode_lock);
1190 spin_lock_init(&root->delalloc_lock);
1191 spin_lock_init(&root->ordered_extent_lock);
1192 spin_lock_init(&root->accounting_lock);
1193 spin_lock_init(&root->log_extents_lock[0]);
1194 spin_lock_init(&root->log_extents_lock[1]);
1195 mutex_init(&root->objectid_mutex);
1196 mutex_init(&root->log_mutex);
1197 init_waitqueue_head(&root->log_writer_wait);
1198 init_waitqueue_head(&root->log_commit_wait[0]);
1199 init_waitqueue_head(&root->log_commit_wait[1]);
1200 atomic_set(&root->log_commit[0], 0);
1201 atomic_set(&root->log_commit[1], 0);
1202 atomic_set(&root->log_writers, 0);
1203 atomic_set(&root->log_batch, 0);
1204 atomic_set(&root->orphan_inodes, 0);
1205 atomic_set(&root->refs, 1);
1206 root->log_transid = 0;
1207 root->last_log_commit = 0;
1208 if (fs_info)
1209 extent_io_tree_init(&root->dirty_log_pages,
1210 fs_info->btree_inode->i_mapping);
1211
1212 memset(&root->root_key, 0, sizeof(root->root_key));
1213 memset(&root->root_item, 0, sizeof(root->root_item));
1214 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1215 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1216 if (fs_info)
1217 root->defrag_trans_start = fs_info->generation;
1218 else
1219 root->defrag_trans_start = 0;
1220 init_completion(&root->kobj_unregister);
1221 root->defrag_running = 0;
1222 root->root_key.objectid = objectid;
1223 root->anon_dev = 0;
1224
1225 spin_lock_init(&root->root_item_lock);
1226 }
1227
1228 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1229 {
1230 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1231 if (root)
1232 root->fs_info = fs_info;
1233 return root;
1234 }
1235
1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1237 /* Should only be used by the testing infrastructure */
1238 struct btrfs_root *btrfs_alloc_dummy_root(void)
1239 {
1240 struct btrfs_root *root;
1241
1242 root = btrfs_alloc_root(NULL);
1243 if (!root)
1244 return ERR_PTR(-ENOMEM);
1245 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1246 root->dummy_root = 1;
1247
1248 return root;
1249 }
1250 #endif
1251
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_fs_info *fs_info,
1254 u64 objectid)
1255 {
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
1260 int ret = 0;
1261 uuid_le uuid;
1262
1263 root = btrfs_alloc_root(fs_info);
1264 if (!root)
1265 return ERR_PTR(-ENOMEM);
1266
1267 __setup_root(tree_root->nodesize, tree_root->leafsize,
1268 tree_root->sectorsize, tree_root->stripesize,
1269 root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1273
1274 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1275 0, objectid, NULL, 0, 0, 0);
1276 if (IS_ERR(leaf)) {
1277 ret = PTR_ERR(leaf);
1278 leaf = NULL;
1279 goto fail;
1280 }
1281
1282 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1283 btrfs_set_header_bytenr(leaf, leaf->start);
1284 btrfs_set_header_generation(leaf, trans->transid);
1285 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1286 btrfs_set_header_owner(leaf, objectid);
1287 root->node = leaf;
1288
1289 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1290 BTRFS_FSID_SIZE);
1291 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292 btrfs_header_chunk_tree_uuid(leaf),
1293 BTRFS_UUID_SIZE);
1294 btrfs_mark_buffer_dirty(leaf);
1295
1296 root->commit_root = btrfs_root_node(root);
1297 root->track_dirty = 1;
1298
1299
1300 root->root_item.flags = 0;
1301 root->root_item.byte_limit = 0;
1302 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 btrfs_set_root_generation(&root->root_item, trans->transid);
1304 btrfs_set_root_level(&root->root_item, 0);
1305 btrfs_set_root_refs(&root->root_item, 1);
1306 btrfs_set_root_used(&root->root_item, leaf->len);
1307 btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 btrfs_set_root_dirid(&root->root_item, 0);
1309 uuid_le_gen(&uuid);
1310 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1311 root->root_item.drop_level = 0;
1312
1313 key.objectid = objectid;
1314 key.type = BTRFS_ROOT_ITEM_KEY;
1315 key.offset = 0;
1316 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317 if (ret)
1318 goto fail;
1319
1320 btrfs_tree_unlock(leaf);
1321
1322 return root;
1323
1324 fail:
1325 if (leaf) {
1326 btrfs_tree_unlock(leaf);
1327 free_extent_buffer(leaf);
1328 }
1329 kfree(root);
1330
1331 return ERR_PTR(ret);
1332 }
1333
1334 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1335 struct btrfs_fs_info *fs_info)
1336 {
1337 struct btrfs_root *root;
1338 struct btrfs_root *tree_root = fs_info->tree_root;
1339 struct extent_buffer *leaf;
1340
1341 root = btrfs_alloc_root(fs_info);
1342 if (!root)
1343 return ERR_PTR(-ENOMEM);
1344
1345 __setup_root(tree_root->nodesize, tree_root->leafsize,
1346 tree_root->sectorsize, tree_root->stripesize,
1347 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1348
1349 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1352 /*
1353 * log trees do not get reference counted because they go away
1354 * before a real commit is actually done. They do store pointers
1355 * to file data extents, and those reference counts still get
1356 * updated (along with back refs to the log tree).
1357 */
1358 root->ref_cows = 0;
1359
1360 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1361 BTRFS_TREE_LOG_OBJECTID, NULL,
1362 0, 0, 0);
1363 if (IS_ERR(leaf)) {
1364 kfree(root);
1365 return ERR_CAST(leaf);
1366 }
1367
1368 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1369 btrfs_set_header_bytenr(leaf, leaf->start);
1370 btrfs_set_header_generation(leaf, trans->transid);
1371 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1372 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1373 root->node = leaf;
1374
1375 write_extent_buffer(root->node, root->fs_info->fsid,
1376 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1377 btrfs_mark_buffer_dirty(root->node);
1378 btrfs_tree_unlock(root->node);
1379 return root;
1380 }
1381
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_fs_info *fs_info)
1384 {
1385 struct btrfs_root *log_root;
1386
1387 log_root = alloc_log_tree(trans, fs_info);
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390 WARN_ON(fs_info->log_root_tree);
1391 fs_info->log_root_tree = log_root;
1392 return 0;
1393 }
1394
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root)
1397 {
1398 struct btrfs_root *log_root;
1399 struct btrfs_inode_item *inode_item;
1400
1401 log_root = alloc_log_tree(trans, root->fs_info);
1402 if (IS_ERR(log_root))
1403 return PTR_ERR(log_root);
1404
1405 log_root->last_trans = trans->transid;
1406 log_root->root_key.offset = root->root_key.objectid;
1407
1408 inode_item = &log_root->root_item.inode;
1409 btrfs_set_stack_inode_generation(inode_item, 1);
1410 btrfs_set_stack_inode_size(inode_item, 3);
1411 btrfs_set_stack_inode_nlink(inode_item, 1);
1412 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1413 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414
1415 btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417 WARN_ON(root->log_root);
1418 root->log_root = log_root;
1419 root->log_transid = 0;
1420 root->last_log_commit = 0;
1421 return 0;
1422 }
1423
1424 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425 struct btrfs_key *key)
1426 {
1427 struct btrfs_root *root;
1428 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1429 struct btrfs_path *path;
1430 u64 generation;
1431 u32 blocksize;
1432 int ret;
1433
1434 path = btrfs_alloc_path();
1435 if (!path)
1436 return ERR_PTR(-ENOMEM);
1437
1438 root = btrfs_alloc_root(fs_info);
1439 if (!root) {
1440 ret = -ENOMEM;
1441 goto alloc_fail;
1442 }
1443
1444 __setup_root(tree_root->nodesize, tree_root->leafsize,
1445 tree_root->sectorsize, tree_root->stripesize,
1446 root, fs_info, key->objectid);
1447
1448 ret = btrfs_find_root(tree_root, key, path,
1449 &root->root_item, &root->root_key);
1450 if (ret) {
1451 if (ret > 0)
1452 ret = -ENOENT;
1453 goto find_fail;
1454 }
1455
1456 generation = btrfs_root_generation(&root->root_item);
1457 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459 blocksize, generation);
1460 if (!root->node) {
1461 ret = -ENOMEM;
1462 goto find_fail;
1463 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1464 ret = -EIO;
1465 goto read_fail;
1466 }
1467 root->commit_root = btrfs_root_node(root);
1468 out:
1469 btrfs_free_path(path);
1470 return root;
1471
1472 read_fail:
1473 free_extent_buffer(root->node);
1474 find_fail:
1475 kfree(root);
1476 alloc_fail:
1477 root = ERR_PTR(ret);
1478 goto out;
1479 }
1480
1481 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1482 struct btrfs_key *location)
1483 {
1484 struct btrfs_root *root;
1485
1486 root = btrfs_read_tree_root(tree_root, location);
1487 if (IS_ERR(root))
1488 return root;
1489
1490 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1491 root->ref_cows = 1;
1492 btrfs_check_and_init_root_item(&root->root_item);
1493 }
1494
1495 return root;
1496 }
1497
1498 int btrfs_init_fs_root(struct btrfs_root *root)
1499 {
1500 int ret;
1501
1502 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504 GFP_NOFS);
1505 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506 ret = -ENOMEM;
1507 goto fail;
1508 }
1509
1510 btrfs_init_free_ino_ctl(root);
1511 mutex_init(&root->fs_commit_mutex);
1512 spin_lock_init(&root->cache_lock);
1513 init_waitqueue_head(&root->cache_wait);
1514
1515 ret = get_anon_bdev(&root->anon_dev);
1516 if (ret)
1517 goto fail;
1518 return 0;
1519 fail:
1520 kfree(root->free_ino_ctl);
1521 kfree(root->free_ino_pinned);
1522 return ret;
1523 }
1524
1525 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526 u64 root_id)
1527 {
1528 struct btrfs_root *root;
1529
1530 spin_lock(&fs_info->fs_roots_radix_lock);
1531 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532 (unsigned long)root_id);
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 return root;
1535 }
1536
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_root *root)
1539 {
1540 int ret;
1541
1542 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1543 if (ret)
1544 return ret;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
1550 if (ret == 0)
1551 root->in_radix = 1;
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
1554
1555 return ret;
1556 }
1557
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559 struct btrfs_key *location,
1560 bool check_ref)
1561 {
1562 struct btrfs_root *root;
1563 int ret;
1564
1565 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1566 return fs_info->tree_root;
1567 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1568 return fs_info->extent_root;
1569 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1570 return fs_info->chunk_root;
1571 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1572 return fs_info->dev_root;
1573 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1574 return fs_info->csum_root;
1575 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1576 return fs_info->quota_root ? fs_info->quota_root :
1577 ERR_PTR(-ENOENT);
1578 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1579 return fs_info->uuid_root ? fs_info->uuid_root :
1580 ERR_PTR(-ENOENT);
1581 again:
1582 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1583 if (root) {
1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585 return ERR_PTR(-ENOENT);
1586 return root;
1587 }
1588
1589 root = btrfs_read_fs_root(fs_info->tree_root, location);
1590 if (IS_ERR(root))
1591 return root;
1592
1593 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1594 ret = -ENOENT;
1595 goto fail;
1596 }
1597
1598 ret = btrfs_init_fs_root(root);
1599 if (ret)
1600 goto fail;
1601
1602 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1603 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1604 if (ret < 0)
1605 goto fail;
1606 if (ret == 0)
1607 root->orphan_item_inserted = 1;
1608
1609 ret = btrfs_insert_fs_root(fs_info, root);
1610 if (ret) {
1611 if (ret == -EEXIST) {
1612 free_fs_root(root);
1613 goto again;
1614 }
1615 goto fail;
1616 }
1617 return root;
1618 fail:
1619 free_fs_root(root);
1620 return ERR_PTR(ret);
1621 }
1622
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626 int ret = 0;
1627 struct btrfs_device *device;
1628 struct backing_dev_info *bdi;
1629
1630 rcu_read_lock();
1631 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632 if (!device->bdev)
1633 continue;
1634 bdi = blk_get_backing_dev_info(device->bdev);
1635 if (bdi && bdi_congested(bdi, bdi_bits)) {
1636 ret = 1;
1637 break;
1638 }
1639 }
1640 rcu_read_unlock();
1641 return ret;
1642 }
1643
1644 /*
1645 * If this fails, caller must call bdi_destroy() to get rid of the
1646 * bdi again.
1647 */
1648 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1649 {
1650 int err;
1651
1652 bdi->capabilities = BDI_CAP_MAP_COPY;
1653 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1654 if (err)
1655 return err;
1656
1657 bdi->ra_pages = default_backing_dev_info.ra_pages;
1658 bdi->congested_fn = btrfs_congested_fn;
1659 bdi->congested_data = info;
1660 return 0;
1661 }
1662
1663 /*
1664 * called by the kthread helper functions to finally call the bio end_io
1665 * functions. This is where read checksum verification actually happens
1666 */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669 struct bio *bio;
1670 struct end_io_wq *end_io_wq;
1671 int error;
1672
1673 end_io_wq = container_of(work, struct end_io_wq, work);
1674 bio = end_io_wq->bio;
1675
1676 error = end_io_wq->error;
1677 bio->bi_private = end_io_wq->private;
1678 bio->bi_end_io = end_io_wq->end_io;
1679 kfree(end_io_wq);
1680 bio_endio_nodec(bio, error);
1681 }
1682
1683 static int cleaner_kthread(void *arg)
1684 {
1685 struct btrfs_root *root = arg;
1686 int again;
1687
1688 do {
1689 again = 0;
1690
1691 /* Make the cleaner go to sleep early. */
1692 if (btrfs_need_cleaner_sleep(root))
1693 goto sleep;
1694
1695 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1696 goto sleep;
1697
1698 /*
1699 * Avoid the problem that we change the status of the fs
1700 * during the above check and trylock.
1701 */
1702 if (btrfs_need_cleaner_sleep(root)) {
1703 mutex_unlock(&root->fs_info->cleaner_mutex);
1704 goto sleep;
1705 }
1706
1707 btrfs_run_delayed_iputs(root);
1708 again = btrfs_clean_one_deleted_snapshot(root);
1709 mutex_unlock(&root->fs_info->cleaner_mutex);
1710
1711 /*
1712 * The defragger has dealt with the R/O remount and umount,
1713 * needn't do anything special here.
1714 */
1715 btrfs_run_defrag_inodes(root->fs_info);
1716 sleep:
1717 if (!try_to_freeze() && !again) {
1718 set_current_state(TASK_INTERRUPTIBLE);
1719 if (!kthread_should_stop())
1720 schedule();
1721 __set_current_state(TASK_RUNNING);
1722 }
1723 } while (!kthread_should_stop());
1724 return 0;
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729 struct btrfs_root *root = arg;
1730 struct btrfs_trans_handle *trans;
1731 struct btrfs_transaction *cur;
1732 u64 transid;
1733 unsigned long now;
1734 unsigned long delay;
1735 bool cannot_commit;
1736
1737 do {
1738 cannot_commit = false;
1739 delay = HZ * root->fs_info->commit_interval;
1740 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1741
1742 spin_lock(&root->fs_info->trans_lock);
1743 cur = root->fs_info->running_transaction;
1744 if (!cur) {
1745 spin_unlock(&root->fs_info->trans_lock);
1746 goto sleep;
1747 }
1748
1749 now = get_seconds();
1750 if (cur->state < TRANS_STATE_BLOCKED &&
1751 (now < cur->start_time ||
1752 now - cur->start_time < root->fs_info->commit_interval)) {
1753 spin_unlock(&root->fs_info->trans_lock);
1754 delay = HZ * 5;
1755 goto sleep;
1756 }
1757 transid = cur->transid;
1758 spin_unlock(&root->fs_info->trans_lock);
1759
1760 /* If the file system is aborted, this will always fail. */
1761 trans = btrfs_attach_transaction(root);
1762 if (IS_ERR(trans)) {
1763 if (PTR_ERR(trans) != -ENOENT)
1764 cannot_commit = true;
1765 goto sleep;
1766 }
1767 if (transid == trans->transid) {
1768 btrfs_commit_transaction(trans, root);
1769 } else {
1770 btrfs_end_transaction(trans, root);
1771 }
1772 sleep:
1773 wake_up_process(root->fs_info->cleaner_kthread);
1774 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1775
1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777 &root->fs_info->fs_state)))
1778 btrfs_cleanup_transaction(root);
1779 if (!try_to_freeze()) {
1780 set_current_state(TASK_INTERRUPTIBLE);
1781 if (!kthread_should_stop() &&
1782 (!btrfs_transaction_blocked(root->fs_info) ||
1783 cannot_commit))
1784 schedule_timeout(delay);
1785 __set_current_state(TASK_RUNNING);
1786 }
1787 } while (!kthread_should_stop());
1788 return 0;
1789 }
1790
1791 /*
1792 * this will find the highest generation in the array of
1793 * root backups. The index of the highest array is returned,
1794 * or -1 if we can't find anything.
1795 *
1796 * We check to make sure the array is valid by comparing the
1797 * generation of the latest root in the array with the generation
1798 * in the super block. If they don't match we pitch it.
1799 */
1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801 {
1802 u64 cur;
1803 int newest_index = -1;
1804 struct btrfs_root_backup *root_backup;
1805 int i;
1806
1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808 root_backup = info->super_copy->super_roots + i;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = i;
1812 }
1813
1814 /* check to see if we actually wrapped around */
1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816 root_backup = info->super_copy->super_roots;
1817 cur = btrfs_backup_tree_root_gen(root_backup);
1818 if (cur == newest_gen)
1819 newest_index = 0;
1820 }
1821 return newest_index;
1822 }
1823
1824
1825 /*
1826 * find the oldest backup so we know where to store new entries
1827 * in the backup array. This will set the backup_root_index
1828 * field in the fs_info struct
1829 */
1830 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831 u64 newest_gen)
1832 {
1833 int newest_index = -1;
1834
1835 newest_index = find_newest_super_backup(info, newest_gen);
1836 /* if there was garbage in there, just move along */
1837 if (newest_index == -1) {
1838 info->backup_root_index = 0;
1839 } else {
1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841 }
1842 }
1843
1844 /*
1845 * copy all the root pointers into the super backup array.
1846 * this will bump the backup pointer by one when it is
1847 * done
1848 */
1849 static void backup_super_roots(struct btrfs_fs_info *info)
1850 {
1851 int next_backup;
1852 struct btrfs_root_backup *root_backup;
1853 int last_backup;
1854
1855 next_backup = info->backup_root_index;
1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857 BTRFS_NUM_BACKUP_ROOTS;
1858
1859 /*
1860 * just overwrite the last backup if we're at the same generation
1861 * this happens only at umount
1862 */
1863 root_backup = info->super_for_commit->super_roots + last_backup;
1864 if (btrfs_backup_tree_root_gen(root_backup) ==
1865 btrfs_header_generation(info->tree_root->node))
1866 next_backup = last_backup;
1867
1868 root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870 /*
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1873 */
1874 memset(root_backup, 0, sizeof(*root_backup));
1875
1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 btrfs_set_backup_tree_root_gen(root_backup,
1880 btrfs_header_generation(info->tree_root->node));
1881
1882 btrfs_set_backup_tree_root_level(root_backup,
1883 btrfs_header_level(info->tree_root->node));
1884
1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 btrfs_set_backup_chunk_root_gen(root_backup,
1887 btrfs_header_generation(info->chunk_root->node));
1888 btrfs_set_backup_chunk_root_level(root_backup,
1889 btrfs_header_level(info->chunk_root->node));
1890
1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(info->extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(info->extent_root->node));
1896
1897 /*
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1900 */
1901 if (info->fs_root && info->fs_root->node) {
1902 btrfs_set_backup_fs_root(root_backup,
1903 info->fs_root->node->start);
1904 btrfs_set_backup_fs_root_gen(root_backup,
1905 btrfs_header_generation(info->fs_root->node));
1906 btrfs_set_backup_fs_root_level(root_backup,
1907 btrfs_header_level(info->fs_root->node));
1908 }
1909
1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 btrfs_set_backup_dev_root_gen(root_backup,
1912 btrfs_header_generation(info->dev_root->node));
1913 btrfs_set_backup_dev_root_level(root_backup,
1914 btrfs_header_level(info->dev_root->node));
1915
1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 btrfs_set_backup_csum_root_gen(root_backup,
1918 btrfs_header_generation(info->csum_root->node));
1919 btrfs_set_backup_csum_root_level(root_backup,
1920 btrfs_header_level(info->csum_root->node));
1921
1922 btrfs_set_backup_total_bytes(root_backup,
1923 btrfs_super_total_bytes(info->super_copy));
1924 btrfs_set_backup_bytes_used(root_backup,
1925 btrfs_super_bytes_used(info->super_copy));
1926 btrfs_set_backup_num_devices(root_backup,
1927 btrfs_super_num_devices(info->super_copy));
1928
1929 /*
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1932 */
1933 memcpy(&info->super_copy->super_roots,
1934 &info->super_for_commit->super_roots,
1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936 }
1937
1938 /*
1939 * this copies info out of the root backup array and back into
1940 * the in-memory super block. It is meant to help iterate through
1941 * the array, so you send it the number of backups you've already
1942 * tried and the last backup index you used.
1943 *
1944 * this returns -1 when it has tried all the backups
1945 */
1946 static noinline int next_root_backup(struct btrfs_fs_info *info,
1947 struct btrfs_super_block *super,
1948 int *num_backups_tried, int *backup_index)
1949 {
1950 struct btrfs_root_backup *root_backup;
1951 int newest = *backup_index;
1952
1953 if (*num_backups_tried == 0) {
1954 u64 gen = btrfs_super_generation(super);
1955
1956 newest = find_newest_super_backup(info, gen);
1957 if (newest == -1)
1958 return -1;
1959
1960 *backup_index = newest;
1961 *num_backups_tried = 1;
1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963 /* we've tried all the backups, all done */
1964 return -1;
1965 } else {
1966 /* jump to the next oldest backup */
1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969 *backup_index = newest;
1970 *num_backups_tried += 1;
1971 }
1972 root_backup = super->super_roots + newest;
1973
1974 btrfs_set_super_generation(super,
1975 btrfs_backup_tree_root_gen(root_backup));
1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977 btrfs_set_super_root_level(super,
1978 btrfs_backup_tree_root_level(root_backup));
1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981 /*
1982 * fixme: the total bytes and num_devices need to match or we should
1983 * need a fsck
1984 */
1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987 return 0;
1988 }
1989
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992 {
1993 btrfs_stop_workers(&fs_info->generic_worker);
1994 btrfs_stop_workers(&fs_info->fixup_workers);
1995 btrfs_stop_workers(&fs_info->delalloc_workers);
1996 btrfs_stop_workers(&fs_info->workers);
1997 btrfs_stop_workers(&fs_info->endio_workers);
1998 btrfs_stop_workers(&fs_info->endio_meta_workers);
1999 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2000 btrfs_stop_workers(&fs_info->rmw_workers);
2001 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2002 btrfs_stop_workers(&fs_info->endio_write_workers);
2003 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2004 btrfs_stop_workers(&fs_info->submit_workers);
2005 btrfs_stop_workers(&fs_info->delayed_workers);
2006 btrfs_stop_workers(&fs_info->caching_workers);
2007 btrfs_stop_workers(&fs_info->readahead_workers);
2008 btrfs_stop_workers(&fs_info->flush_workers);
2009 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2010 }
2011
2012 static void free_root_extent_buffers(struct btrfs_root *root)
2013 {
2014 if (root) {
2015 free_extent_buffer(root->node);
2016 free_extent_buffer(root->commit_root);
2017 root->node = NULL;
2018 root->commit_root = NULL;
2019 }
2020 }
2021
2022 /* helper to cleanup tree roots */
2023 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2024 {
2025 free_root_extent_buffers(info->tree_root);
2026
2027 free_root_extent_buffers(info->dev_root);
2028 free_root_extent_buffers(info->extent_root);
2029 free_root_extent_buffers(info->csum_root);
2030 free_root_extent_buffers(info->quota_root);
2031 free_root_extent_buffers(info->uuid_root);
2032 if (chunk_root)
2033 free_root_extent_buffers(info->chunk_root);
2034 }
2035
2036 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2037 {
2038 int ret;
2039 struct btrfs_root *gang[8];
2040 int i;
2041
2042 while (!list_empty(&fs_info->dead_roots)) {
2043 gang[0] = list_entry(fs_info->dead_roots.next,
2044 struct btrfs_root, root_list);
2045 list_del(&gang[0]->root_list);
2046
2047 if (gang[0]->in_radix) {
2048 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2049 } else {
2050 free_extent_buffer(gang[0]->node);
2051 free_extent_buffer(gang[0]->commit_root);
2052 btrfs_put_fs_root(gang[0]);
2053 }
2054 }
2055
2056 while (1) {
2057 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2058 (void **)gang, 0,
2059 ARRAY_SIZE(gang));
2060 if (!ret)
2061 break;
2062 for (i = 0; i < ret; i++)
2063 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2064 }
2065
2066 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2067 btrfs_free_log_root_tree(NULL, fs_info);
2068 btrfs_destroy_pinned_extent(fs_info->tree_root,
2069 fs_info->pinned_extents);
2070 }
2071 }
2072
2073 int open_ctree(struct super_block *sb,
2074 struct btrfs_fs_devices *fs_devices,
2075 char *options)
2076 {
2077 u32 sectorsize;
2078 u32 nodesize;
2079 u32 leafsize;
2080 u32 blocksize;
2081 u32 stripesize;
2082 u64 generation;
2083 u64 features;
2084 struct btrfs_key location;
2085 struct buffer_head *bh;
2086 struct btrfs_super_block *disk_super;
2087 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2088 struct btrfs_root *tree_root;
2089 struct btrfs_root *extent_root;
2090 struct btrfs_root *csum_root;
2091 struct btrfs_root *chunk_root;
2092 struct btrfs_root *dev_root;
2093 struct btrfs_root *quota_root;
2094 struct btrfs_root *uuid_root;
2095 struct btrfs_root *log_tree_root;
2096 int ret;
2097 int err = -EINVAL;
2098 int num_backups_tried = 0;
2099 int backup_index = 0;
2100 bool create_uuid_tree;
2101 bool check_uuid_tree;
2102
2103 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2104 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2105 if (!tree_root || !chunk_root) {
2106 err = -ENOMEM;
2107 goto fail;
2108 }
2109
2110 ret = init_srcu_struct(&fs_info->subvol_srcu);
2111 if (ret) {
2112 err = ret;
2113 goto fail;
2114 }
2115
2116 ret = setup_bdi(fs_info, &fs_info->bdi);
2117 if (ret) {
2118 err = ret;
2119 goto fail_srcu;
2120 }
2121
2122 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2123 if (ret) {
2124 err = ret;
2125 goto fail_bdi;
2126 }
2127 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2128 (1 + ilog2(nr_cpu_ids));
2129
2130 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2131 if (ret) {
2132 err = ret;
2133 goto fail_dirty_metadata_bytes;
2134 }
2135
2136 fs_info->btree_inode = new_inode(sb);
2137 if (!fs_info->btree_inode) {
2138 err = -ENOMEM;
2139 goto fail_delalloc_bytes;
2140 }
2141
2142 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2143
2144 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2145 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2146 INIT_LIST_HEAD(&fs_info->trans_list);
2147 INIT_LIST_HEAD(&fs_info->dead_roots);
2148 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2149 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2150 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2151 spin_lock_init(&fs_info->delalloc_root_lock);
2152 spin_lock_init(&fs_info->trans_lock);
2153 spin_lock_init(&fs_info->fs_roots_radix_lock);
2154 spin_lock_init(&fs_info->delayed_iput_lock);
2155 spin_lock_init(&fs_info->defrag_inodes_lock);
2156 spin_lock_init(&fs_info->free_chunk_lock);
2157 spin_lock_init(&fs_info->tree_mod_seq_lock);
2158 spin_lock_init(&fs_info->super_lock);
2159 spin_lock_init(&fs_info->buffer_lock);
2160 rwlock_init(&fs_info->tree_mod_log_lock);
2161 mutex_init(&fs_info->reloc_mutex);
2162 seqlock_init(&fs_info->profiles_lock);
2163
2164 init_completion(&fs_info->kobj_unregister);
2165 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2166 INIT_LIST_HEAD(&fs_info->space_info);
2167 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2168 btrfs_mapping_init(&fs_info->mapping_tree);
2169 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2170 BTRFS_BLOCK_RSV_GLOBAL);
2171 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2172 BTRFS_BLOCK_RSV_DELALLOC);
2173 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2174 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2175 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2176 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2177 BTRFS_BLOCK_RSV_DELOPS);
2178 atomic_set(&fs_info->nr_async_submits, 0);
2179 atomic_set(&fs_info->async_delalloc_pages, 0);
2180 atomic_set(&fs_info->async_submit_draining, 0);
2181 atomic_set(&fs_info->nr_async_bios, 0);
2182 atomic_set(&fs_info->defrag_running, 0);
2183 atomic64_set(&fs_info->tree_mod_seq, 0);
2184 fs_info->sb = sb;
2185 fs_info->max_inline = 8192 * 1024;
2186 fs_info->metadata_ratio = 0;
2187 fs_info->defrag_inodes = RB_ROOT;
2188 fs_info->free_chunk_space = 0;
2189 fs_info->tree_mod_log = RB_ROOT;
2190 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2191 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2192 /* readahead state */
2193 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2194 spin_lock_init(&fs_info->reada_lock);
2195
2196 fs_info->thread_pool_size = min_t(unsigned long,
2197 num_online_cpus() + 2, 8);
2198
2199 INIT_LIST_HEAD(&fs_info->ordered_roots);
2200 spin_lock_init(&fs_info->ordered_root_lock);
2201 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2202 GFP_NOFS);
2203 if (!fs_info->delayed_root) {
2204 err = -ENOMEM;
2205 goto fail_iput;
2206 }
2207 btrfs_init_delayed_root(fs_info->delayed_root);
2208
2209 mutex_init(&fs_info->scrub_lock);
2210 atomic_set(&fs_info->scrubs_running, 0);
2211 atomic_set(&fs_info->scrub_pause_req, 0);
2212 atomic_set(&fs_info->scrubs_paused, 0);
2213 atomic_set(&fs_info->scrub_cancel_req, 0);
2214 init_waitqueue_head(&fs_info->scrub_pause_wait);
2215 fs_info->scrub_workers_refcnt = 0;
2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2217 fs_info->check_integrity_print_mask = 0;
2218 #endif
2219
2220 spin_lock_init(&fs_info->balance_lock);
2221 mutex_init(&fs_info->balance_mutex);
2222 atomic_set(&fs_info->balance_running, 0);
2223 atomic_set(&fs_info->balance_pause_req, 0);
2224 atomic_set(&fs_info->balance_cancel_req, 0);
2225 fs_info->balance_ctl = NULL;
2226 init_waitqueue_head(&fs_info->balance_wait_q);
2227
2228 sb->s_blocksize = 4096;
2229 sb->s_blocksize_bits = blksize_bits(4096);
2230 sb->s_bdi = &fs_info->bdi;
2231
2232 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233 set_nlink(fs_info->btree_inode, 1);
2234 /*
2235 * we set the i_size on the btree inode to the max possible int.
2236 * the real end of the address space is determined by all of
2237 * the devices in the system
2238 */
2239 fs_info->btree_inode->i_size = OFFSET_MAX;
2240 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2242
2243 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2244 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2245 fs_info->btree_inode->i_mapping);
2246 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2247 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2248
2249 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2250
2251 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2252 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2253 sizeof(struct btrfs_key));
2254 set_bit(BTRFS_INODE_DUMMY,
2255 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2256 btrfs_insert_inode_hash(fs_info->btree_inode);
2257
2258 spin_lock_init(&fs_info->block_group_cache_lock);
2259 fs_info->block_group_cache_tree = RB_ROOT;
2260 fs_info->first_logical_byte = (u64)-1;
2261
2262 extent_io_tree_init(&fs_info->freed_extents[0],
2263 fs_info->btree_inode->i_mapping);
2264 extent_io_tree_init(&fs_info->freed_extents[1],
2265 fs_info->btree_inode->i_mapping);
2266 fs_info->pinned_extents = &fs_info->freed_extents[0];
2267 fs_info->do_barriers = 1;
2268
2269
2270 mutex_init(&fs_info->ordered_operations_mutex);
2271 mutex_init(&fs_info->ordered_extent_flush_mutex);
2272 mutex_init(&fs_info->tree_log_mutex);
2273 mutex_init(&fs_info->chunk_mutex);
2274 mutex_init(&fs_info->transaction_kthread_mutex);
2275 mutex_init(&fs_info->cleaner_mutex);
2276 mutex_init(&fs_info->volume_mutex);
2277 init_rwsem(&fs_info->extent_commit_sem);
2278 init_rwsem(&fs_info->cleanup_work_sem);
2279 init_rwsem(&fs_info->subvol_sem);
2280 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2281 fs_info->dev_replace.lock_owner = 0;
2282 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284 mutex_init(&fs_info->dev_replace.lock_management_lock);
2285 mutex_init(&fs_info->dev_replace.lock);
2286
2287 spin_lock_init(&fs_info->qgroup_lock);
2288 mutex_init(&fs_info->qgroup_ioctl_lock);
2289 fs_info->qgroup_tree = RB_ROOT;
2290 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291 fs_info->qgroup_seq = 1;
2292 fs_info->quota_enabled = 0;
2293 fs_info->pending_quota_state = 0;
2294 fs_info->qgroup_ulist = NULL;
2295 mutex_init(&fs_info->qgroup_rescan_lock);
2296
2297 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299
2300 init_waitqueue_head(&fs_info->transaction_throttle);
2301 init_waitqueue_head(&fs_info->transaction_wait);
2302 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303 init_waitqueue_head(&fs_info->async_submit_wait);
2304
2305 ret = btrfs_alloc_stripe_hash_table(fs_info);
2306 if (ret) {
2307 err = ret;
2308 goto fail_alloc;
2309 }
2310
2311 __setup_root(4096, 4096, 4096, 4096, tree_root,
2312 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313
2314 invalidate_bdev(fs_devices->latest_bdev);
2315
2316 /*
2317 * Read super block and check the signature bytes only
2318 */
2319 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320 if (!bh) {
2321 err = -EINVAL;
2322 goto fail_alloc;
2323 }
2324
2325 /*
2326 * We want to check superblock checksum, the type is stored inside.
2327 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328 */
2329 if (btrfs_check_super_csum(bh->b_data)) {
2330 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2331 err = -EINVAL;
2332 goto fail_alloc;
2333 }
2334
2335 /*
2336 * super_copy is zeroed at allocation time and we never touch the
2337 * following bytes up to INFO_SIZE, the checksum is calculated from
2338 * the whole block of INFO_SIZE
2339 */
2340 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342 sizeof(*fs_info->super_for_commit));
2343 brelse(bh);
2344
2345 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346
2347 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348 if (ret) {
2349 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2350 err = -EINVAL;
2351 goto fail_alloc;
2352 }
2353
2354 disk_super = fs_info->super_copy;
2355 if (!btrfs_super_root(disk_super))
2356 goto fail_alloc;
2357
2358 /* check FS state, whether FS is broken. */
2359 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361
2362 /*
2363 * run through our array of backup supers and setup
2364 * our ring pointer to the oldest one
2365 */
2366 generation = btrfs_super_generation(disk_super);
2367 find_oldest_super_backup(fs_info, generation);
2368
2369 /*
2370 * In the long term, we'll store the compression type in the super
2371 * block, and it'll be used for per file compression control.
2372 */
2373 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374
2375 ret = btrfs_parse_options(tree_root, options);
2376 if (ret) {
2377 err = ret;
2378 goto fail_alloc;
2379 }
2380
2381 features = btrfs_super_incompat_flags(disk_super) &
2382 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2383 if (features) {
2384 printk(KERN_ERR "BTRFS: couldn't mount because of "
2385 "unsupported optional features (%Lx).\n",
2386 features);
2387 err = -EINVAL;
2388 goto fail_alloc;
2389 }
2390
2391 if (btrfs_super_leafsize(disk_super) !=
2392 btrfs_super_nodesize(disk_super)) {
2393 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394 "blocksizes don't match. node %d leaf %d\n",
2395 btrfs_super_nodesize(disk_super),
2396 btrfs_super_leafsize(disk_super));
2397 err = -EINVAL;
2398 goto fail_alloc;
2399 }
2400 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402 "blocksize (%d) was too large\n",
2403 btrfs_super_leafsize(disk_super));
2404 err = -EINVAL;
2405 goto fail_alloc;
2406 }
2407
2408 features = btrfs_super_incompat_flags(disk_super);
2409 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412
2413 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414 printk(KERN_ERR "BTRFS: has skinny extents\n");
2415
2416 /*
2417 * flag our filesystem as having big metadata blocks if
2418 * they are bigger than the page size
2419 */
2420 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2423 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424 }
2425
2426 nodesize = btrfs_super_nodesize(disk_super);
2427 leafsize = btrfs_super_leafsize(disk_super);
2428 sectorsize = btrfs_super_sectorsize(disk_super);
2429 stripesize = btrfs_super_stripesize(disk_super);
2430 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432
2433 /*
2434 * mixed block groups end up with duplicate but slightly offset
2435 * extent buffers for the same range. It leads to corruptions
2436 */
2437 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438 (sectorsize != leafsize)) {
2439 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2440 "are not allowed for mixed block groups on %s\n",
2441 sb->s_id);
2442 goto fail_alloc;
2443 }
2444
2445 /*
2446 * Needn't use the lock because there is no other task which will
2447 * update the flag.
2448 */
2449 btrfs_set_super_incompat_flags(disk_super, features);
2450
2451 features = btrfs_super_compat_ro_flags(disk_super) &
2452 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453 if (!(sb->s_flags & MS_RDONLY) && features) {
2454 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455 "unsupported option features (%Lx).\n",
2456 features);
2457 err = -EINVAL;
2458 goto fail_alloc;
2459 }
2460
2461 btrfs_init_workers(&fs_info->generic_worker,
2462 "genwork", 1, NULL);
2463
2464 btrfs_init_workers(&fs_info->workers, "worker",
2465 fs_info->thread_pool_size,
2466 &fs_info->generic_worker);
2467
2468 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469 fs_info->thread_pool_size, NULL);
2470
2471 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2472 fs_info->thread_pool_size, NULL);
2473
2474 btrfs_init_workers(&fs_info->submit_workers, "submit",
2475 min_t(u64, fs_devices->num_devices,
2476 fs_info->thread_pool_size), NULL);
2477
2478 btrfs_init_workers(&fs_info->caching_workers, "cache",
2479 fs_info->thread_pool_size, NULL);
2480
2481 /* a higher idle thresh on the submit workers makes it much more
2482 * likely that bios will be send down in a sane order to the
2483 * devices
2484 */
2485 fs_info->submit_workers.idle_thresh = 64;
2486
2487 fs_info->workers.idle_thresh = 16;
2488 fs_info->workers.ordered = 1;
2489
2490 fs_info->delalloc_workers.idle_thresh = 2;
2491 fs_info->delalloc_workers.ordered = 1;
2492
2493 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2494 &fs_info->generic_worker);
2495 btrfs_init_workers(&fs_info->endio_workers, "endio",
2496 fs_info->thread_pool_size,
2497 &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2499 fs_info->thread_pool_size,
2500 &fs_info->generic_worker);
2501 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2502 "endio-meta-write", fs_info->thread_pool_size,
2503 &fs_info->generic_worker);
2504 btrfs_init_workers(&fs_info->endio_raid56_workers,
2505 "endio-raid56", fs_info->thread_pool_size,
2506 &fs_info->generic_worker);
2507 btrfs_init_workers(&fs_info->rmw_workers,
2508 "rmw", fs_info->thread_pool_size,
2509 &fs_info->generic_worker);
2510 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2511 fs_info->thread_pool_size,
2512 &fs_info->generic_worker);
2513 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2514 1, &fs_info->generic_worker);
2515 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2516 fs_info->thread_pool_size,
2517 &fs_info->generic_worker);
2518 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2519 fs_info->thread_pool_size,
2520 &fs_info->generic_worker);
2521 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2522 &fs_info->generic_worker);
2523
2524 /*
2525 * endios are largely parallel and should have a very
2526 * low idle thresh
2527 */
2528 fs_info->endio_workers.idle_thresh = 4;
2529 fs_info->endio_meta_workers.idle_thresh = 4;
2530 fs_info->endio_raid56_workers.idle_thresh = 4;
2531 fs_info->rmw_workers.idle_thresh = 2;
2532
2533 fs_info->endio_write_workers.idle_thresh = 2;
2534 fs_info->endio_meta_write_workers.idle_thresh = 2;
2535 fs_info->readahead_workers.idle_thresh = 2;
2536
2537 /*
2538 * btrfs_start_workers can really only fail because of ENOMEM so just
2539 * return -ENOMEM if any of these fail.
2540 */
2541 ret = btrfs_start_workers(&fs_info->workers);
2542 ret |= btrfs_start_workers(&fs_info->generic_worker);
2543 ret |= btrfs_start_workers(&fs_info->submit_workers);
2544 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2545 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2546 ret |= btrfs_start_workers(&fs_info->endio_workers);
2547 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2548 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2549 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2550 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2551 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2552 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2553 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2554 ret |= btrfs_start_workers(&fs_info->caching_workers);
2555 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2556 ret |= btrfs_start_workers(&fs_info->flush_workers);
2557 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2558 if (ret) {
2559 err = -ENOMEM;
2560 goto fail_sb_buffer;
2561 }
2562
2563 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2564 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2565 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2566
2567 tree_root->nodesize = nodesize;
2568 tree_root->leafsize = leafsize;
2569 tree_root->sectorsize = sectorsize;
2570 tree_root->stripesize = stripesize;
2571
2572 sb->s_blocksize = sectorsize;
2573 sb->s_blocksize_bits = blksize_bits(sectorsize);
2574
2575 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2576 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2577 goto fail_sb_buffer;
2578 }
2579
2580 if (sectorsize != PAGE_SIZE) {
2581 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2582 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2583 goto fail_sb_buffer;
2584 }
2585
2586 mutex_lock(&fs_info->chunk_mutex);
2587 ret = btrfs_read_sys_array(tree_root);
2588 mutex_unlock(&fs_info->chunk_mutex);
2589 if (ret) {
2590 printk(KERN_WARNING "BTRFS: failed to read the system "
2591 "array on %s\n", sb->s_id);
2592 goto fail_sb_buffer;
2593 }
2594
2595 blocksize = btrfs_level_size(tree_root,
2596 btrfs_super_chunk_root_level(disk_super));
2597 generation = btrfs_super_chunk_root_generation(disk_super);
2598
2599 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2600 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2601
2602 chunk_root->node = read_tree_block(chunk_root,
2603 btrfs_super_chunk_root(disk_super),
2604 blocksize, generation);
2605 if (!chunk_root->node ||
2606 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2607 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2608 sb->s_id);
2609 goto fail_tree_roots;
2610 }
2611 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2612 chunk_root->commit_root = btrfs_root_node(chunk_root);
2613
2614 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2615 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2616
2617 ret = btrfs_read_chunk_tree(chunk_root);
2618 if (ret) {
2619 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2620 sb->s_id);
2621 goto fail_tree_roots;
2622 }
2623
2624 /*
2625 * keep the device that is marked to be the target device for the
2626 * dev_replace procedure
2627 */
2628 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2629
2630 if (!fs_devices->latest_bdev) {
2631 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2632 sb->s_id);
2633 goto fail_tree_roots;
2634 }
2635
2636 retry_root_backup:
2637 blocksize = btrfs_level_size(tree_root,
2638 btrfs_super_root_level(disk_super));
2639 generation = btrfs_super_generation(disk_super);
2640
2641 tree_root->node = read_tree_block(tree_root,
2642 btrfs_super_root(disk_super),
2643 blocksize, generation);
2644 if (!tree_root->node ||
2645 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2646 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2647 sb->s_id);
2648
2649 goto recovery_tree_root;
2650 }
2651
2652 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2653 tree_root->commit_root = btrfs_root_node(tree_root);
2654 btrfs_set_root_refs(&tree_root->root_item, 1);
2655
2656 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2657 location.type = BTRFS_ROOT_ITEM_KEY;
2658 location.offset = 0;
2659
2660 extent_root = btrfs_read_tree_root(tree_root, &location);
2661 if (IS_ERR(extent_root)) {
2662 ret = PTR_ERR(extent_root);
2663 goto recovery_tree_root;
2664 }
2665 extent_root->track_dirty = 1;
2666 fs_info->extent_root = extent_root;
2667
2668 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2669 dev_root = btrfs_read_tree_root(tree_root, &location);
2670 if (IS_ERR(dev_root)) {
2671 ret = PTR_ERR(dev_root);
2672 goto recovery_tree_root;
2673 }
2674 dev_root->track_dirty = 1;
2675 fs_info->dev_root = dev_root;
2676 btrfs_init_devices_late(fs_info);
2677
2678 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2679 csum_root = btrfs_read_tree_root(tree_root, &location);
2680 if (IS_ERR(csum_root)) {
2681 ret = PTR_ERR(csum_root);
2682 goto recovery_tree_root;
2683 }
2684 csum_root->track_dirty = 1;
2685 fs_info->csum_root = csum_root;
2686
2687 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2688 quota_root = btrfs_read_tree_root(tree_root, &location);
2689 if (!IS_ERR(quota_root)) {
2690 quota_root->track_dirty = 1;
2691 fs_info->quota_enabled = 1;
2692 fs_info->pending_quota_state = 1;
2693 fs_info->quota_root = quota_root;
2694 }
2695
2696 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2697 uuid_root = btrfs_read_tree_root(tree_root, &location);
2698 if (IS_ERR(uuid_root)) {
2699 ret = PTR_ERR(uuid_root);
2700 if (ret != -ENOENT)
2701 goto recovery_tree_root;
2702 create_uuid_tree = true;
2703 check_uuid_tree = false;
2704 } else {
2705 uuid_root->track_dirty = 1;
2706 fs_info->uuid_root = uuid_root;
2707 create_uuid_tree = false;
2708 check_uuid_tree =
2709 generation != btrfs_super_uuid_tree_generation(disk_super);
2710 }
2711
2712 fs_info->generation = generation;
2713 fs_info->last_trans_committed = generation;
2714
2715 ret = btrfs_recover_balance(fs_info);
2716 if (ret) {
2717 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2718 goto fail_block_groups;
2719 }
2720
2721 ret = btrfs_init_dev_stats(fs_info);
2722 if (ret) {
2723 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2724 ret);
2725 goto fail_block_groups;
2726 }
2727
2728 ret = btrfs_init_dev_replace(fs_info);
2729 if (ret) {
2730 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2731 goto fail_block_groups;
2732 }
2733
2734 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2735
2736 ret = btrfs_sysfs_add_one(fs_info);
2737 if (ret) {
2738 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2739 goto fail_block_groups;
2740 }
2741
2742 ret = btrfs_init_space_info(fs_info);
2743 if (ret) {
2744 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2745 goto fail_sysfs;
2746 }
2747
2748 ret = btrfs_read_block_groups(extent_root);
2749 if (ret) {
2750 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2751 goto fail_sysfs;
2752 }
2753 fs_info->num_tolerated_disk_barrier_failures =
2754 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2755 if (fs_info->fs_devices->missing_devices >
2756 fs_info->num_tolerated_disk_barrier_failures &&
2757 !(sb->s_flags & MS_RDONLY)) {
2758 printk(KERN_WARNING "BTRFS: "
2759 "too many missing devices, writeable mount is not allowed\n");
2760 goto fail_sysfs;
2761 }
2762
2763 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2764 "btrfs-cleaner");
2765 if (IS_ERR(fs_info->cleaner_kthread))
2766 goto fail_sysfs;
2767
2768 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2769 tree_root,
2770 "btrfs-transaction");
2771 if (IS_ERR(fs_info->transaction_kthread))
2772 goto fail_cleaner;
2773
2774 if (!btrfs_test_opt(tree_root, SSD) &&
2775 !btrfs_test_opt(tree_root, NOSSD) &&
2776 !fs_info->fs_devices->rotating) {
2777 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2778 "mode\n");
2779 btrfs_set_opt(fs_info->mount_opt, SSD);
2780 }
2781
2782 /* Set the real inode map cache flag */
2783 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2784 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2785
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2788 ret = btrfsic_mount(tree_root, fs_devices,
2789 btrfs_test_opt(tree_root,
2790 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2791 1 : 0,
2792 fs_info->check_integrity_print_mask);
2793 if (ret)
2794 printk(KERN_WARNING "BTRFS: failed to initialize"
2795 " integrity check module %s\n", sb->s_id);
2796 }
2797 #endif
2798 ret = btrfs_read_qgroup_config(fs_info);
2799 if (ret)
2800 goto fail_trans_kthread;
2801
2802 /* do not make disk changes in broken FS */
2803 if (btrfs_super_log_root(disk_super) != 0) {
2804 u64 bytenr = btrfs_super_log_root(disk_super);
2805
2806 if (fs_devices->rw_devices == 0) {
2807 printk(KERN_WARNING "BTRFS: log replay required "
2808 "on RO media\n");
2809 err = -EIO;
2810 goto fail_qgroup;
2811 }
2812 blocksize =
2813 btrfs_level_size(tree_root,
2814 btrfs_super_log_root_level(disk_super));
2815
2816 log_tree_root = btrfs_alloc_root(fs_info);
2817 if (!log_tree_root) {
2818 err = -ENOMEM;
2819 goto fail_qgroup;
2820 }
2821
2822 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2823 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2824
2825 log_tree_root->node = read_tree_block(tree_root, bytenr,
2826 blocksize,
2827 generation + 1);
2828 if (!log_tree_root->node ||
2829 !extent_buffer_uptodate(log_tree_root->node)) {
2830 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2831 free_extent_buffer(log_tree_root->node);
2832 kfree(log_tree_root);
2833 goto fail_trans_kthread;
2834 }
2835 /* returns with log_tree_root freed on success */
2836 ret = btrfs_recover_log_trees(log_tree_root);
2837 if (ret) {
2838 btrfs_error(tree_root->fs_info, ret,
2839 "Failed to recover log tree");
2840 free_extent_buffer(log_tree_root->node);
2841 kfree(log_tree_root);
2842 goto fail_trans_kthread;
2843 }
2844
2845 if (sb->s_flags & MS_RDONLY) {
2846 ret = btrfs_commit_super(tree_root);
2847 if (ret)
2848 goto fail_trans_kthread;
2849 }
2850 }
2851
2852 ret = btrfs_find_orphan_roots(tree_root);
2853 if (ret)
2854 goto fail_trans_kthread;
2855
2856 if (!(sb->s_flags & MS_RDONLY)) {
2857 ret = btrfs_cleanup_fs_roots(fs_info);
2858 if (ret)
2859 goto fail_trans_kthread;
2860
2861 ret = btrfs_recover_relocation(tree_root);
2862 if (ret < 0) {
2863 printk(KERN_WARNING
2864 "BTRFS: failed to recover relocation\n");
2865 err = -EINVAL;
2866 goto fail_qgroup;
2867 }
2868 }
2869
2870 location.objectid = BTRFS_FS_TREE_OBJECTID;
2871 location.type = BTRFS_ROOT_ITEM_KEY;
2872 location.offset = 0;
2873
2874 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2875 if (IS_ERR(fs_info->fs_root)) {
2876 err = PTR_ERR(fs_info->fs_root);
2877 goto fail_qgroup;
2878 }
2879
2880 if (sb->s_flags & MS_RDONLY)
2881 return 0;
2882
2883 down_read(&fs_info->cleanup_work_sem);
2884 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2885 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2886 up_read(&fs_info->cleanup_work_sem);
2887 close_ctree(tree_root);
2888 return ret;
2889 }
2890 up_read(&fs_info->cleanup_work_sem);
2891
2892 ret = btrfs_resume_balance_async(fs_info);
2893 if (ret) {
2894 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2895 close_ctree(tree_root);
2896 return ret;
2897 }
2898
2899 ret = btrfs_resume_dev_replace_async(fs_info);
2900 if (ret) {
2901 pr_warn("BTRFS: failed to resume dev_replace\n");
2902 close_ctree(tree_root);
2903 return ret;
2904 }
2905
2906 btrfs_qgroup_rescan_resume(fs_info);
2907
2908 if (create_uuid_tree) {
2909 pr_info("BTRFS: creating UUID tree\n");
2910 ret = btrfs_create_uuid_tree(fs_info);
2911 if (ret) {
2912 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2913 ret);
2914 close_ctree(tree_root);
2915 return ret;
2916 }
2917 } else if (check_uuid_tree ||
2918 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2919 pr_info("BTRFS: checking UUID tree\n");
2920 ret = btrfs_check_uuid_tree(fs_info);
2921 if (ret) {
2922 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2923 ret);
2924 close_ctree(tree_root);
2925 return ret;
2926 }
2927 } else {
2928 fs_info->update_uuid_tree_gen = 1;
2929 }
2930
2931 return 0;
2932
2933 fail_qgroup:
2934 btrfs_free_qgroup_config(fs_info);
2935 fail_trans_kthread:
2936 kthread_stop(fs_info->transaction_kthread);
2937 btrfs_cleanup_transaction(fs_info->tree_root);
2938 del_fs_roots(fs_info);
2939 fail_cleaner:
2940 kthread_stop(fs_info->cleaner_kthread);
2941
2942 /*
2943 * make sure we're done with the btree inode before we stop our
2944 * kthreads
2945 */
2946 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2947
2948 fail_sysfs:
2949 btrfs_sysfs_remove_one(fs_info);
2950
2951 fail_block_groups:
2952 btrfs_put_block_group_cache(fs_info);
2953 btrfs_free_block_groups(fs_info);
2954
2955 fail_tree_roots:
2956 free_root_pointers(fs_info, 1);
2957 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2958
2959 fail_sb_buffer:
2960 btrfs_stop_all_workers(fs_info);
2961 fail_alloc:
2962 fail_iput:
2963 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2964
2965 iput(fs_info->btree_inode);
2966 fail_delalloc_bytes:
2967 percpu_counter_destroy(&fs_info->delalloc_bytes);
2968 fail_dirty_metadata_bytes:
2969 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2970 fail_bdi:
2971 bdi_destroy(&fs_info->bdi);
2972 fail_srcu:
2973 cleanup_srcu_struct(&fs_info->subvol_srcu);
2974 fail:
2975 btrfs_free_stripe_hash_table(fs_info);
2976 btrfs_close_devices(fs_info->fs_devices);
2977 return err;
2978
2979 recovery_tree_root:
2980 if (!btrfs_test_opt(tree_root, RECOVERY))
2981 goto fail_tree_roots;
2982
2983 free_root_pointers(fs_info, 0);
2984
2985 /* don't use the log in recovery mode, it won't be valid */
2986 btrfs_set_super_log_root(disk_super, 0);
2987
2988 /* we can't trust the free space cache either */
2989 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2990
2991 ret = next_root_backup(fs_info, fs_info->super_copy,
2992 &num_backups_tried, &backup_index);
2993 if (ret == -1)
2994 goto fail_block_groups;
2995 goto retry_root_backup;
2996 }
2997
2998 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2999 {
3000 if (uptodate) {
3001 set_buffer_uptodate(bh);
3002 } else {
3003 struct btrfs_device *device = (struct btrfs_device *)
3004 bh->b_private;
3005
3006 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3007 "I/O error on %s\n",
3008 rcu_str_deref(device->name));
3009 /* note, we dont' set_buffer_write_io_error because we have
3010 * our own ways of dealing with the IO errors
3011 */
3012 clear_buffer_uptodate(bh);
3013 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3014 }
3015 unlock_buffer(bh);
3016 put_bh(bh);
3017 }
3018
3019 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3020 {
3021 struct buffer_head *bh;
3022 struct buffer_head *latest = NULL;
3023 struct btrfs_super_block *super;
3024 int i;
3025 u64 transid = 0;
3026 u64 bytenr;
3027
3028 /* we would like to check all the supers, but that would make
3029 * a btrfs mount succeed after a mkfs from a different FS.
3030 * So, we need to add a special mount option to scan for
3031 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3032 */
3033 for (i = 0; i < 1; i++) {
3034 bytenr = btrfs_sb_offset(i);
3035 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3036 i_size_read(bdev->bd_inode))
3037 break;
3038 bh = __bread(bdev, bytenr / 4096,
3039 BTRFS_SUPER_INFO_SIZE);
3040 if (!bh)
3041 continue;
3042
3043 super = (struct btrfs_super_block *)bh->b_data;
3044 if (btrfs_super_bytenr(super) != bytenr ||
3045 btrfs_super_magic(super) != BTRFS_MAGIC) {
3046 brelse(bh);
3047 continue;
3048 }
3049
3050 if (!latest || btrfs_super_generation(super) > transid) {
3051 brelse(latest);
3052 latest = bh;
3053 transid = btrfs_super_generation(super);
3054 } else {
3055 brelse(bh);
3056 }
3057 }
3058 return latest;
3059 }
3060
3061 /*
3062 * this should be called twice, once with wait == 0 and
3063 * once with wait == 1. When wait == 0 is done, all the buffer heads
3064 * we write are pinned.
3065 *
3066 * They are released when wait == 1 is done.
3067 * max_mirrors must be the same for both runs, and it indicates how
3068 * many supers on this one device should be written.
3069 *
3070 * max_mirrors == 0 means to write them all.
3071 */
3072 static int write_dev_supers(struct btrfs_device *device,
3073 struct btrfs_super_block *sb,
3074 int do_barriers, int wait, int max_mirrors)
3075 {
3076 struct buffer_head *bh;
3077 int i;
3078 int ret;
3079 int errors = 0;
3080 u32 crc;
3081 u64 bytenr;
3082
3083 if (max_mirrors == 0)
3084 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3085
3086 for (i = 0; i < max_mirrors; i++) {
3087 bytenr = btrfs_sb_offset(i);
3088 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3089 break;
3090
3091 if (wait) {
3092 bh = __find_get_block(device->bdev, bytenr / 4096,
3093 BTRFS_SUPER_INFO_SIZE);
3094 if (!bh) {
3095 errors++;
3096 continue;
3097 }
3098 wait_on_buffer(bh);
3099 if (!buffer_uptodate(bh))
3100 errors++;
3101
3102 /* drop our reference */
3103 brelse(bh);
3104
3105 /* drop the reference from the wait == 0 run */
3106 brelse(bh);
3107 continue;
3108 } else {
3109 btrfs_set_super_bytenr(sb, bytenr);
3110
3111 crc = ~(u32)0;
3112 crc = btrfs_csum_data((char *)sb +
3113 BTRFS_CSUM_SIZE, crc,
3114 BTRFS_SUPER_INFO_SIZE -
3115 BTRFS_CSUM_SIZE);
3116 btrfs_csum_final(crc, sb->csum);
3117
3118 /*
3119 * one reference for us, and we leave it for the
3120 * caller
3121 */
3122 bh = __getblk(device->bdev, bytenr / 4096,
3123 BTRFS_SUPER_INFO_SIZE);
3124 if (!bh) {
3125 printk(KERN_ERR "BTRFS: couldn't get super "
3126 "buffer head for bytenr %Lu\n", bytenr);
3127 errors++;
3128 continue;
3129 }
3130
3131 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3132
3133 /* one reference for submit_bh */
3134 get_bh(bh);
3135
3136 set_buffer_uptodate(bh);
3137 lock_buffer(bh);
3138 bh->b_end_io = btrfs_end_buffer_write_sync;
3139 bh->b_private = device;
3140 }
3141
3142 /*
3143 * we fua the first super. The others we allow
3144 * to go down lazy.
3145 */
3146 if (i == 0)
3147 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3148 else
3149 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3150 if (ret)
3151 errors++;
3152 }
3153 return errors < i ? 0 : -1;
3154 }
3155
3156 /*
3157 * endio for the write_dev_flush, this will wake anyone waiting
3158 * for the barrier when it is done
3159 */
3160 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3161 {
3162 if (err) {
3163 if (err == -EOPNOTSUPP)
3164 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3165 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3166 }
3167 if (bio->bi_private)
3168 complete(bio->bi_private);
3169 bio_put(bio);
3170 }
3171
3172 /*
3173 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3174 * sent down. With wait == 1, it waits for the previous flush.
3175 *
3176 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3177 * capable
3178 */
3179 static int write_dev_flush(struct btrfs_device *device, int wait)
3180 {
3181 struct bio *bio;
3182 int ret = 0;
3183
3184 if (device->nobarriers)
3185 return 0;
3186
3187 if (wait) {
3188 bio = device->flush_bio;
3189 if (!bio)
3190 return 0;
3191
3192 wait_for_completion(&device->flush_wait);
3193
3194 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3195 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3196 rcu_str_deref(device->name));
3197 device->nobarriers = 1;
3198 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3199 ret = -EIO;
3200 btrfs_dev_stat_inc_and_print(device,
3201 BTRFS_DEV_STAT_FLUSH_ERRS);
3202 }
3203
3204 /* drop the reference from the wait == 0 run */
3205 bio_put(bio);
3206 device->flush_bio = NULL;
3207
3208 return ret;
3209 }
3210
3211 /*
3212 * one reference for us, and we leave it for the
3213 * caller
3214 */
3215 device->flush_bio = NULL;
3216 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3217 if (!bio)
3218 return -ENOMEM;
3219
3220 bio->bi_end_io = btrfs_end_empty_barrier;
3221 bio->bi_bdev = device->bdev;
3222 init_completion(&device->flush_wait);
3223 bio->bi_private = &device->flush_wait;
3224 device->flush_bio = bio;
3225
3226 bio_get(bio);
3227 btrfsic_submit_bio(WRITE_FLUSH, bio);
3228
3229 return 0;
3230 }
3231
3232 /*
3233 * send an empty flush down to each device in parallel,
3234 * then wait for them
3235 */
3236 static int barrier_all_devices(struct btrfs_fs_info *info)
3237 {
3238 struct list_head *head;
3239 struct btrfs_device *dev;
3240 int errors_send = 0;
3241 int errors_wait = 0;
3242 int ret;
3243
3244 /* send down all the barriers */
3245 head = &info->fs_devices->devices;
3246 list_for_each_entry_rcu(dev, head, dev_list) {
3247 if (!dev->bdev) {
3248 errors_send++;
3249 continue;
3250 }
3251 if (!dev->in_fs_metadata || !dev->writeable)
3252 continue;
3253
3254 ret = write_dev_flush(dev, 0);
3255 if (ret)
3256 errors_send++;
3257 }
3258
3259 /* wait for all the barriers */
3260 list_for_each_entry_rcu(dev, head, dev_list) {
3261 if (!dev->bdev) {
3262 errors_wait++;
3263 continue;
3264 }
3265 if (!dev->in_fs_metadata || !dev->writeable)
3266 continue;
3267
3268 ret = write_dev_flush(dev, 1);
3269 if (ret)
3270 errors_wait++;
3271 }
3272 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3273 errors_wait > info->num_tolerated_disk_barrier_failures)
3274 return -EIO;
3275 return 0;
3276 }
3277
3278 int btrfs_calc_num_tolerated_disk_barrier_failures(
3279 struct btrfs_fs_info *fs_info)
3280 {
3281 struct btrfs_ioctl_space_info space;
3282 struct btrfs_space_info *sinfo;
3283 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3284 BTRFS_BLOCK_GROUP_SYSTEM,
3285 BTRFS_BLOCK_GROUP_METADATA,
3286 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3287 int num_types = 4;
3288 int i;
3289 int c;
3290 int num_tolerated_disk_barrier_failures =
3291 (int)fs_info->fs_devices->num_devices;
3292
3293 for (i = 0; i < num_types; i++) {
3294 struct btrfs_space_info *tmp;
3295
3296 sinfo = NULL;
3297 rcu_read_lock();
3298 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3299 if (tmp->flags == types[i]) {
3300 sinfo = tmp;
3301 break;
3302 }
3303 }
3304 rcu_read_unlock();
3305
3306 if (!sinfo)
3307 continue;
3308
3309 down_read(&sinfo->groups_sem);
3310 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3311 if (!list_empty(&sinfo->block_groups[c])) {
3312 u64 flags;
3313
3314 btrfs_get_block_group_info(
3315 &sinfo->block_groups[c], &space);
3316 if (space.total_bytes == 0 ||
3317 space.used_bytes == 0)
3318 continue;
3319 flags = space.flags;
3320 /*
3321 * return
3322 * 0: if dup, single or RAID0 is configured for
3323 * any of metadata, system or data, else
3324 * 1: if RAID5 is configured, or if RAID1 or
3325 * RAID10 is configured and only two mirrors
3326 * are used, else
3327 * 2: if RAID6 is configured, else
3328 * num_mirrors - 1: if RAID1 or RAID10 is
3329 * configured and more than
3330 * 2 mirrors are used.
3331 */
3332 if (num_tolerated_disk_barrier_failures > 0 &&
3333 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3334 BTRFS_BLOCK_GROUP_RAID0)) ||
3335 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3336 == 0)))
3337 num_tolerated_disk_barrier_failures = 0;
3338 else if (num_tolerated_disk_barrier_failures > 1) {
3339 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3340 BTRFS_BLOCK_GROUP_RAID5 |
3341 BTRFS_BLOCK_GROUP_RAID10)) {
3342 num_tolerated_disk_barrier_failures = 1;
3343 } else if (flags &
3344 BTRFS_BLOCK_GROUP_RAID6) {
3345 num_tolerated_disk_barrier_failures = 2;
3346 }
3347 }
3348 }
3349 }
3350 up_read(&sinfo->groups_sem);
3351 }
3352
3353 return num_tolerated_disk_barrier_failures;
3354 }
3355
3356 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3357 {
3358 struct list_head *head;
3359 struct btrfs_device *dev;
3360 struct btrfs_super_block *sb;
3361 struct btrfs_dev_item *dev_item;
3362 int ret;
3363 int do_barriers;
3364 int max_errors;
3365 int total_errors = 0;
3366 u64 flags;
3367
3368 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3369 backup_super_roots(root->fs_info);
3370
3371 sb = root->fs_info->super_for_commit;
3372 dev_item = &sb->dev_item;
3373
3374 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3375 head = &root->fs_info->fs_devices->devices;
3376 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3377
3378 if (do_barriers) {
3379 ret = barrier_all_devices(root->fs_info);
3380 if (ret) {
3381 mutex_unlock(
3382 &root->fs_info->fs_devices->device_list_mutex);
3383 btrfs_error(root->fs_info, ret,
3384 "errors while submitting device barriers.");
3385 return ret;
3386 }
3387 }
3388
3389 list_for_each_entry_rcu(dev, head, dev_list) {
3390 if (!dev->bdev) {
3391 total_errors++;
3392 continue;
3393 }
3394 if (!dev->in_fs_metadata || !dev->writeable)
3395 continue;
3396
3397 btrfs_set_stack_device_generation(dev_item, 0);
3398 btrfs_set_stack_device_type(dev_item, dev->type);
3399 btrfs_set_stack_device_id(dev_item, dev->devid);
3400 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3401 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3402 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3403 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3404 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3405 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3406 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3407
3408 flags = btrfs_super_flags(sb);
3409 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3410
3411 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3412 if (ret)
3413 total_errors++;
3414 }
3415 if (total_errors > max_errors) {
3416 btrfs_err(root->fs_info, "%d errors while writing supers",
3417 total_errors);
3418 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3419
3420 /* FUA is masked off if unsupported and can't be the reason */
3421 btrfs_error(root->fs_info, -EIO,
3422 "%d errors while writing supers", total_errors);
3423 return -EIO;
3424 }
3425
3426 total_errors = 0;
3427 list_for_each_entry_rcu(dev, head, dev_list) {
3428 if (!dev->bdev)
3429 continue;
3430 if (!dev->in_fs_metadata || !dev->writeable)
3431 continue;
3432
3433 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3434 if (ret)
3435 total_errors++;
3436 }
3437 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3438 if (total_errors > max_errors) {
3439 btrfs_error(root->fs_info, -EIO,
3440 "%d errors while writing supers", total_errors);
3441 return -EIO;
3442 }
3443 return 0;
3444 }
3445
3446 int write_ctree_super(struct btrfs_trans_handle *trans,
3447 struct btrfs_root *root, int max_mirrors)
3448 {
3449 return write_all_supers(root, max_mirrors);
3450 }
3451
3452 /* Drop a fs root from the radix tree and free it. */
3453 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3454 struct btrfs_root *root)
3455 {
3456 spin_lock(&fs_info->fs_roots_radix_lock);
3457 radix_tree_delete(&fs_info->fs_roots_radix,
3458 (unsigned long)root->root_key.objectid);
3459 spin_unlock(&fs_info->fs_roots_radix_lock);
3460
3461 if (btrfs_root_refs(&root->root_item) == 0)
3462 synchronize_srcu(&fs_info->subvol_srcu);
3463
3464 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3465 btrfs_free_log(NULL, root);
3466
3467 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3468 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3469 free_fs_root(root);
3470 }
3471
3472 static void free_fs_root(struct btrfs_root *root)
3473 {
3474 iput(root->cache_inode);
3475 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3476 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3477 root->orphan_block_rsv = NULL;
3478 if (root->anon_dev)
3479 free_anon_bdev(root->anon_dev);
3480 free_extent_buffer(root->node);
3481 free_extent_buffer(root->commit_root);
3482 kfree(root->free_ino_ctl);
3483 kfree(root->free_ino_pinned);
3484 kfree(root->name);
3485 btrfs_put_fs_root(root);
3486 }
3487
3488 void btrfs_free_fs_root(struct btrfs_root *root)
3489 {
3490 free_fs_root(root);
3491 }
3492
3493 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3494 {
3495 u64 root_objectid = 0;
3496 struct btrfs_root *gang[8];
3497 int i;
3498 int ret;
3499
3500 while (1) {
3501 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3502 (void **)gang, root_objectid,
3503 ARRAY_SIZE(gang));
3504 if (!ret)
3505 break;
3506
3507 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3508 for (i = 0; i < ret; i++) {
3509 int err;
3510
3511 root_objectid = gang[i]->root_key.objectid;
3512 err = btrfs_orphan_cleanup(gang[i]);
3513 if (err)
3514 return err;
3515 }
3516 root_objectid++;
3517 }
3518 return 0;
3519 }
3520
3521 int btrfs_commit_super(struct btrfs_root *root)
3522 {
3523 struct btrfs_trans_handle *trans;
3524
3525 mutex_lock(&root->fs_info->cleaner_mutex);
3526 btrfs_run_delayed_iputs(root);
3527 mutex_unlock(&root->fs_info->cleaner_mutex);
3528 wake_up_process(root->fs_info->cleaner_kthread);
3529
3530 /* wait until ongoing cleanup work done */
3531 down_write(&root->fs_info->cleanup_work_sem);
3532 up_write(&root->fs_info->cleanup_work_sem);
3533
3534 trans = btrfs_join_transaction(root);
3535 if (IS_ERR(trans))
3536 return PTR_ERR(trans);
3537 return btrfs_commit_transaction(trans, root);
3538 }
3539
3540 int close_ctree(struct btrfs_root *root)
3541 {
3542 struct btrfs_fs_info *fs_info = root->fs_info;
3543 int ret;
3544
3545 fs_info->closing = 1;
3546 smp_mb();
3547
3548 /* wait for the uuid_scan task to finish */
3549 down(&fs_info->uuid_tree_rescan_sem);
3550 /* avoid complains from lockdep et al., set sem back to initial state */
3551 up(&fs_info->uuid_tree_rescan_sem);
3552
3553 /* pause restriper - we want to resume on mount */
3554 btrfs_pause_balance(fs_info);
3555
3556 btrfs_dev_replace_suspend_for_unmount(fs_info);
3557
3558 btrfs_scrub_cancel(fs_info);
3559
3560 /* wait for any defraggers to finish */
3561 wait_event(fs_info->transaction_wait,
3562 (atomic_read(&fs_info->defrag_running) == 0));
3563
3564 /* clear out the rbtree of defraggable inodes */
3565 btrfs_cleanup_defrag_inodes(fs_info);
3566
3567 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3568 ret = btrfs_commit_super(root);
3569 if (ret)
3570 btrfs_err(root->fs_info, "commit super ret %d", ret);
3571 }
3572
3573 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3574 btrfs_error_commit_super(root);
3575
3576 kthread_stop(fs_info->transaction_kthread);
3577 kthread_stop(fs_info->cleaner_kthread);
3578
3579 fs_info->closing = 2;
3580 smp_mb();
3581
3582 btrfs_free_qgroup_config(root->fs_info);
3583
3584 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3585 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3586 percpu_counter_sum(&fs_info->delalloc_bytes));
3587 }
3588
3589 btrfs_sysfs_remove_one(fs_info);
3590
3591 del_fs_roots(fs_info);
3592
3593 btrfs_put_block_group_cache(fs_info);
3594
3595 btrfs_free_block_groups(fs_info);
3596
3597 btrfs_stop_all_workers(fs_info);
3598
3599 free_root_pointers(fs_info, 1);
3600
3601 iput(fs_info->btree_inode);
3602
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3605 btrfsic_unmount(root, fs_info->fs_devices);
3606 #endif
3607
3608 btrfs_close_devices(fs_info->fs_devices);
3609 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3610
3611 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3612 percpu_counter_destroy(&fs_info->delalloc_bytes);
3613 bdi_destroy(&fs_info->bdi);
3614 cleanup_srcu_struct(&fs_info->subvol_srcu);
3615
3616 btrfs_free_stripe_hash_table(fs_info);
3617
3618 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3619 root->orphan_block_rsv = NULL;
3620
3621 return 0;
3622 }
3623
3624 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3625 int atomic)
3626 {
3627 int ret;
3628 struct inode *btree_inode = buf->pages[0]->mapping->host;
3629
3630 ret = extent_buffer_uptodate(buf);
3631 if (!ret)
3632 return ret;
3633
3634 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3635 parent_transid, atomic);
3636 if (ret == -EAGAIN)
3637 return ret;
3638 return !ret;
3639 }
3640
3641 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3642 {
3643 return set_extent_buffer_uptodate(buf);
3644 }
3645
3646 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3647 {
3648 struct btrfs_root *root;
3649 u64 transid = btrfs_header_generation(buf);
3650 int was_dirty;
3651
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3653 /*
3654 * This is a fast path so only do this check if we have sanity tests
3655 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3656 * outside of the sanity tests.
3657 */
3658 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3659 return;
3660 #endif
3661 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3662 btrfs_assert_tree_locked(buf);
3663 if (transid != root->fs_info->generation)
3664 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3665 "found %llu running %llu\n",
3666 buf->start, transid, root->fs_info->generation);
3667 was_dirty = set_extent_buffer_dirty(buf);
3668 if (!was_dirty)
3669 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3670 buf->len,
3671 root->fs_info->dirty_metadata_batch);
3672 }
3673
3674 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3675 int flush_delayed)
3676 {
3677 /*
3678 * looks as though older kernels can get into trouble with
3679 * this code, they end up stuck in balance_dirty_pages forever
3680 */
3681 int ret;
3682
3683 if (current->flags & PF_MEMALLOC)
3684 return;
3685
3686 if (flush_delayed)
3687 btrfs_balance_delayed_items(root);
3688
3689 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3690 BTRFS_DIRTY_METADATA_THRESH);
3691 if (ret > 0) {
3692 balance_dirty_pages_ratelimited(
3693 root->fs_info->btree_inode->i_mapping);
3694 }
3695 return;
3696 }
3697
3698 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3699 {
3700 __btrfs_btree_balance_dirty(root, 1);
3701 }
3702
3703 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3704 {
3705 __btrfs_btree_balance_dirty(root, 0);
3706 }
3707
3708 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3709 {
3710 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3711 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3712 }
3713
3714 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3715 int read_only)
3716 {
3717 /*
3718 * Placeholder for checks
3719 */
3720 return 0;
3721 }
3722
3723 static void btrfs_error_commit_super(struct btrfs_root *root)
3724 {
3725 mutex_lock(&root->fs_info->cleaner_mutex);
3726 btrfs_run_delayed_iputs(root);
3727 mutex_unlock(&root->fs_info->cleaner_mutex);
3728
3729 down_write(&root->fs_info->cleanup_work_sem);
3730 up_write(&root->fs_info->cleanup_work_sem);
3731
3732 /* cleanup FS via transaction */
3733 btrfs_cleanup_transaction(root);
3734 }
3735
3736 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3737 struct btrfs_root *root)
3738 {
3739 struct btrfs_inode *btrfs_inode;
3740 struct list_head splice;
3741
3742 INIT_LIST_HEAD(&splice);
3743
3744 mutex_lock(&root->fs_info->ordered_operations_mutex);
3745 spin_lock(&root->fs_info->ordered_root_lock);
3746
3747 list_splice_init(&t->ordered_operations, &splice);
3748 while (!list_empty(&splice)) {
3749 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3750 ordered_operations);
3751
3752 list_del_init(&btrfs_inode->ordered_operations);
3753 spin_unlock(&root->fs_info->ordered_root_lock);
3754
3755 btrfs_invalidate_inodes(btrfs_inode->root);
3756
3757 spin_lock(&root->fs_info->ordered_root_lock);
3758 }
3759
3760 spin_unlock(&root->fs_info->ordered_root_lock);
3761 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3762 }
3763
3764 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3765 {
3766 struct btrfs_ordered_extent *ordered;
3767
3768 spin_lock(&root->ordered_extent_lock);
3769 /*
3770 * This will just short circuit the ordered completion stuff which will
3771 * make sure the ordered extent gets properly cleaned up.
3772 */
3773 list_for_each_entry(ordered, &root->ordered_extents,
3774 root_extent_list)
3775 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3776 spin_unlock(&root->ordered_extent_lock);
3777 }
3778
3779 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3780 {
3781 struct btrfs_root *root;
3782 struct list_head splice;
3783
3784 INIT_LIST_HEAD(&splice);
3785
3786 spin_lock(&fs_info->ordered_root_lock);
3787 list_splice_init(&fs_info->ordered_roots, &splice);
3788 while (!list_empty(&splice)) {
3789 root = list_first_entry(&splice, struct btrfs_root,
3790 ordered_root);
3791 list_move_tail(&root->ordered_root,
3792 &fs_info->ordered_roots);
3793
3794 btrfs_destroy_ordered_extents(root);
3795
3796 cond_resched_lock(&fs_info->ordered_root_lock);
3797 }
3798 spin_unlock(&fs_info->ordered_root_lock);
3799 }
3800
3801 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3802 struct btrfs_root *root)
3803 {
3804 struct rb_node *node;
3805 struct btrfs_delayed_ref_root *delayed_refs;
3806 struct btrfs_delayed_ref_node *ref;
3807 int ret = 0;
3808
3809 delayed_refs = &trans->delayed_refs;
3810
3811 spin_lock(&delayed_refs->lock);
3812 if (atomic_read(&delayed_refs->num_entries) == 0) {
3813 spin_unlock(&delayed_refs->lock);
3814 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3815 return ret;
3816 }
3817
3818 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3819 struct btrfs_delayed_ref_head *head;
3820 bool pin_bytes = false;
3821
3822 head = rb_entry(node, struct btrfs_delayed_ref_head,
3823 href_node);
3824 if (!mutex_trylock(&head->mutex)) {
3825 atomic_inc(&head->node.refs);
3826 spin_unlock(&delayed_refs->lock);
3827
3828 mutex_lock(&head->mutex);
3829 mutex_unlock(&head->mutex);
3830 btrfs_put_delayed_ref(&head->node);
3831 spin_lock(&delayed_refs->lock);
3832 continue;
3833 }
3834 spin_lock(&head->lock);
3835 while ((node = rb_first(&head->ref_root)) != NULL) {
3836 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3837 rb_node);
3838 ref->in_tree = 0;
3839 rb_erase(&ref->rb_node, &head->ref_root);
3840 atomic_dec(&delayed_refs->num_entries);
3841 btrfs_put_delayed_ref(ref);
3842 }
3843 if (head->must_insert_reserved)
3844 pin_bytes = true;
3845 btrfs_free_delayed_extent_op(head->extent_op);
3846 delayed_refs->num_heads--;
3847 if (head->processing == 0)
3848 delayed_refs->num_heads_ready--;
3849 atomic_dec(&delayed_refs->num_entries);
3850 head->node.in_tree = 0;
3851 rb_erase(&head->href_node, &delayed_refs->href_root);
3852 spin_unlock(&head->lock);
3853 spin_unlock(&delayed_refs->lock);
3854 mutex_unlock(&head->mutex);
3855
3856 if (pin_bytes)
3857 btrfs_pin_extent(root, head->node.bytenr,
3858 head->node.num_bytes, 1);
3859 btrfs_put_delayed_ref(&head->node);
3860 cond_resched();
3861 spin_lock(&delayed_refs->lock);
3862 }
3863
3864 spin_unlock(&delayed_refs->lock);
3865
3866 return ret;
3867 }
3868
3869 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3870 {
3871 struct btrfs_inode *btrfs_inode;
3872 struct list_head splice;
3873
3874 INIT_LIST_HEAD(&splice);
3875
3876 spin_lock(&root->delalloc_lock);
3877 list_splice_init(&root->delalloc_inodes, &splice);
3878
3879 while (!list_empty(&splice)) {
3880 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3881 delalloc_inodes);
3882
3883 list_del_init(&btrfs_inode->delalloc_inodes);
3884 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3885 &btrfs_inode->runtime_flags);
3886 spin_unlock(&root->delalloc_lock);
3887
3888 btrfs_invalidate_inodes(btrfs_inode->root);
3889
3890 spin_lock(&root->delalloc_lock);
3891 }
3892
3893 spin_unlock(&root->delalloc_lock);
3894 }
3895
3896 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3897 {
3898 struct btrfs_root *root;
3899 struct list_head splice;
3900
3901 INIT_LIST_HEAD(&splice);
3902
3903 spin_lock(&fs_info->delalloc_root_lock);
3904 list_splice_init(&fs_info->delalloc_roots, &splice);
3905 while (!list_empty(&splice)) {
3906 root = list_first_entry(&splice, struct btrfs_root,
3907 delalloc_root);
3908 list_del_init(&root->delalloc_root);
3909 root = btrfs_grab_fs_root(root);
3910 BUG_ON(!root);
3911 spin_unlock(&fs_info->delalloc_root_lock);
3912
3913 btrfs_destroy_delalloc_inodes(root);
3914 btrfs_put_fs_root(root);
3915
3916 spin_lock(&fs_info->delalloc_root_lock);
3917 }
3918 spin_unlock(&fs_info->delalloc_root_lock);
3919 }
3920
3921 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3922 struct extent_io_tree *dirty_pages,
3923 int mark)
3924 {
3925 int ret;
3926 struct extent_buffer *eb;
3927 u64 start = 0;
3928 u64 end;
3929
3930 while (1) {
3931 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3932 mark, NULL);
3933 if (ret)
3934 break;
3935
3936 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3937 while (start <= end) {
3938 eb = btrfs_find_tree_block(root, start,
3939 root->leafsize);
3940 start += root->leafsize;
3941 if (!eb)
3942 continue;
3943 wait_on_extent_buffer_writeback(eb);
3944
3945 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3946 &eb->bflags))
3947 clear_extent_buffer_dirty(eb);
3948 free_extent_buffer_stale(eb);
3949 }
3950 }
3951
3952 return ret;
3953 }
3954
3955 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3956 struct extent_io_tree *pinned_extents)
3957 {
3958 struct extent_io_tree *unpin;
3959 u64 start;
3960 u64 end;
3961 int ret;
3962 bool loop = true;
3963
3964 unpin = pinned_extents;
3965 again:
3966 while (1) {
3967 ret = find_first_extent_bit(unpin, 0, &start, &end,
3968 EXTENT_DIRTY, NULL);
3969 if (ret)
3970 break;
3971
3972 /* opt_discard */
3973 if (btrfs_test_opt(root, DISCARD))
3974 ret = btrfs_error_discard_extent(root, start,
3975 end + 1 - start,
3976 NULL);
3977
3978 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3979 btrfs_error_unpin_extent_range(root, start, end);
3980 cond_resched();
3981 }
3982
3983 if (loop) {
3984 if (unpin == &root->fs_info->freed_extents[0])
3985 unpin = &root->fs_info->freed_extents[1];
3986 else
3987 unpin = &root->fs_info->freed_extents[0];
3988 loop = false;
3989 goto again;
3990 }
3991
3992 return 0;
3993 }
3994
3995 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3996 struct btrfs_root *root)
3997 {
3998 btrfs_destroy_ordered_operations(cur_trans, root);
3999
4000 btrfs_destroy_delayed_refs(cur_trans, root);
4001
4002 cur_trans->state = TRANS_STATE_COMMIT_START;
4003 wake_up(&root->fs_info->transaction_blocked_wait);
4004
4005 cur_trans->state = TRANS_STATE_UNBLOCKED;
4006 wake_up(&root->fs_info->transaction_wait);
4007
4008 btrfs_destroy_delayed_inodes(root);
4009 btrfs_assert_delayed_root_empty(root);
4010
4011 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4012 EXTENT_DIRTY);
4013 btrfs_destroy_pinned_extent(root,
4014 root->fs_info->pinned_extents);
4015
4016 cur_trans->state =TRANS_STATE_COMPLETED;
4017 wake_up(&cur_trans->commit_wait);
4018
4019 /*
4020 memset(cur_trans, 0, sizeof(*cur_trans));
4021 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4022 */
4023 }
4024
4025 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4026 {
4027 struct btrfs_transaction *t;
4028
4029 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4030
4031 spin_lock(&root->fs_info->trans_lock);
4032 while (!list_empty(&root->fs_info->trans_list)) {
4033 t = list_first_entry(&root->fs_info->trans_list,
4034 struct btrfs_transaction, list);
4035 if (t->state >= TRANS_STATE_COMMIT_START) {
4036 atomic_inc(&t->use_count);
4037 spin_unlock(&root->fs_info->trans_lock);
4038 btrfs_wait_for_commit(root, t->transid);
4039 btrfs_put_transaction(t);
4040 spin_lock(&root->fs_info->trans_lock);
4041 continue;
4042 }
4043 if (t == root->fs_info->running_transaction) {
4044 t->state = TRANS_STATE_COMMIT_DOING;
4045 spin_unlock(&root->fs_info->trans_lock);
4046 /*
4047 * We wait for 0 num_writers since we don't hold a trans
4048 * handle open currently for this transaction.
4049 */
4050 wait_event(t->writer_wait,
4051 atomic_read(&t->num_writers) == 0);
4052 } else {
4053 spin_unlock(&root->fs_info->trans_lock);
4054 }
4055 btrfs_cleanup_one_transaction(t, root);
4056
4057 spin_lock(&root->fs_info->trans_lock);
4058 if (t == root->fs_info->running_transaction)
4059 root->fs_info->running_transaction = NULL;
4060 list_del_init(&t->list);
4061 spin_unlock(&root->fs_info->trans_lock);
4062
4063 btrfs_put_transaction(t);
4064 trace_btrfs_transaction_commit(root);
4065 spin_lock(&root->fs_info->trans_lock);
4066 }
4067 spin_unlock(&root->fs_info->trans_lock);
4068 btrfs_destroy_all_ordered_extents(root->fs_info);
4069 btrfs_destroy_delayed_inodes(root);
4070 btrfs_assert_delayed_root_empty(root);
4071 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4072 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4073 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4074
4075 return 0;
4076 }
4077
4078 static struct extent_io_ops btree_extent_io_ops = {
4079 .readpage_end_io_hook = btree_readpage_end_io_hook,
4080 .readpage_io_failed_hook = btree_io_failed_hook,
4081 .submit_bio_hook = btree_submit_bio_hook,
4082 /* note we're sharing with inode.c for the merge bio hook */
4083 .merge_bio_hook = btrfs_merge_bio_hook,
4084 };
This page took 0.115739 seconds and 5 git commands to generate.