Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X "
330 "level %d",
331 fs_info->sb->s_id, buf->start,
332 val, found, btrfs_header_level(buf));
333 if (result != (char *)&inline_result)
334 kfree(result);
335 return -EUCLEAN;
336 }
337 } else {
338 write_extent_buffer(buf, result, 0, csum_size);
339 }
340 if (result != (char *)&inline_result)
341 kfree(result);
342 return 0;
343 }
344
345 /*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
354 {
355 struct extent_state *cached_state = NULL;
356 int ret;
357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
362 if (atomic)
363 return -EAGAIN;
364
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 &cached_state);
372 if (extent_buffer_uptodate(eb) &&
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
380 parent_transid, btrfs_header_generation(eb));
381 ret = 1;
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
386 * block that has been freed and re-allocated. So don't clear uptodate
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
393 out:
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
398 return ret;
399 }
400
401 /*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 start, u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, start,
458 WAIT_COMPLETE,
459 btree_get_extent, mirror_num);
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
462 parent_transid, 0))
463 break;
464 else
465 ret = -EIO;
466 }
467
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 break;
475
476 num_copies = btrfs_num_copies(root->fs_info,
477 eb->start, eb->len);
478 if (num_copies == 1)
479 break;
480
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
486 mirror_num++;
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
490 if (mirror_num > num_copies)
491 break;
492 }
493
494 if (failed && !ret && failed_mirror)
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
498 }
499
500 /*
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
503 */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 u64 start = page_offset(page);
508 u64 found_start;
509 struct extent_buffer *eb;
510
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
514
515 found_start = btrfs_header_bytenr(eb);
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528 return csum_tree_block(fs_info, eb, 0);
529 }
530
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 struct extent_buffer *eb)
533 {
534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 u8 fsid[BTRFS_UUID_SIZE];
536 int ret = 1;
537
538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 while (fs_devices) {
540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 ret = 0;
542 break;
543 }
544 fs_devices = fs_devices->seed;
545 }
546 return ret;
547 }
548
549 #define CORRUPT(reason, eb, root, slot) \
550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
551 "root=%llu, slot=%d", reason, \
552 btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556 {
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0)
563 return 0;
564
565 /* Check the 0 item */
566 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("invalid item offset size pair", leaf, root, 0);
569 return -EIO;
570 }
571
572 /*
573 * Check to make sure each items keys are in the correct order and their
574 * offsets make sense. We only have to loop through nritems-1 because
575 * we check the current slot against the next slot, which verifies the
576 * next slot's offset+size makes sense and that the current's slot
577 * offset is correct.
578 */
579 for (slot = 0; slot < nritems - 1; slot++) {
580 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582
583 /* Make sure the keys are in the right order */
584 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585 CORRUPT("bad key order", leaf, root, slot);
586 return -EIO;
587 }
588
589 /*
590 * Make sure the offset and ends are right, remember that the
591 * item data starts at the end of the leaf and grows towards the
592 * front.
593 */
594 if (btrfs_item_offset_nr(leaf, slot) !=
595 btrfs_item_end_nr(leaf, slot + 1)) {
596 CORRUPT("slot offset bad", leaf, root, slot);
597 return -EIO;
598 }
599
600 /*
601 * Check to make sure that we don't point outside of the leaf,
602 * just in case all the items are consistent to each other, but
603 * all point outside of the leaf.
604 */
605 if (btrfs_item_end_nr(leaf, slot) >
606 BTRFS_LEAF_DATA_SIZE(root)) {
607 CORRUPT("slot end outside of leaf", leaf, root, slot);
608 return -EIO;
609 }
610 }
611
612 return 0;
613 }
614
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616 u64 phy_offset, struct page *page,
617 u64 start, u64 end, int mirror)
618 {
619 u64 found_start;
620 int found_level;
621 struct extent_buffer *eb;
622 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 int ret = 0;
625 int reads_done;
626
627 if (!page->private)
628 goto out;
629
630 eb = (struct extent_buffer *)page->private;
631
632 /* the pending IO might have been the only thing that kept this buffer
633 * in memory. Make sure we have a ref for all this other checks
634 */
635 extent_buffer_get(eb);
636
637 reads_done = atomic_dec_and_test(&eb->io_pages);
638 if (!reads_done)
639 goto err;
640
641 eb->read_mirror = mirror;
642 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
643 ret = -EIO;
644 goto err;
645 }
646
647 found_start = btrfs_header_bytenr(eb);
648 if (found_start != eb->start) {
649 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650 found_start, eb->start);
651 ret = -EIO;
652 goto err;
653 }
654 if (check_tree_block_fsid(fs_info, eb)) {
655 btrfs_err_rl(fs_info, "bad fsid on block %llu",
656 eb->start);
657 ret = -EIO;
658 goto err;
659 }
660 found_level = btrfs_header_level(eb);
661 if (found_level >= BTRFS_MAX_LEVEL) {
662 btrfs_err(fs_info, "bad tree block level %d",
663 (int)btrfs_header_level(eb));
664 ret = -EIO;
665 goto err;
666 }
667
668 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669 eb, found_level);
670
671 ret = csum_tree_block(fs_info, eb, 1);
672 if (ret)
673 goto err;
674
675 /*
676 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 * that we don't try and read the other copies of this block, just
678 * return -EIO.
679 */
680 if (found_level == 0 && check_leaf(root, eb)) {
681 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 ret = -EIO;
683 }
684
685 if (!ret)
686 set_extent_buffer_uptodate(eb);
687 err:
688 if (reads_done &&
689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690 btree_readahead_hook(fs_info, eb, eb->start, ret);
691
692 if (ret) {
693 /*
694 * our io error hook is going to dec the io pages
695 * again, we have to make sure it has something
696 * to decrement
697 */
698 atomic_inc(&eb->io_pages);
699 clear_extent_buffer_uptodate(eb);
700 }
701 free_extent_buffer(eb);
702 out:
703 return ret;
704 }
705
706 static int btree_io_failed_hook(struct page *page, int failed_mirror)
707 {
708 struct extent_buffer *eb;
709
710 eb = (struct extent_buffer *)page->private;
711 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
712 eb->read_mirror = failed_mirror;
713 atomic_dec(&eb->io_pages);
714 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
715 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
716 return -EIO; /* we fixed nothing */
717 }
718
719 static void end_workqueue_bio(struct bio *bio)
720 {
721 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
722 struct btrfs_fs_info *fs_info;
723 struct btrfs_workqueue *wq;
724 btrfs_work_func_t func;
725
726 fs_info = end_io_wq->info;
727 end_io_wq->error = bio->bi_error;
728
729 if (bio_op(bio) == REQ_OP_WRITE) {
730 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731 wq = fs_info->endio_meta_write_workers;
732 func = btrfs_endio_meta_write_helper;
733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734 wq = fs_info->endio_freespace_worker;
735 func = btrfs_freespace_write_helper;
736 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 wq = fs_info->endio_raid56_workers;
738 func = btrfs_endio_raid56_helper;
739 } else {
740 wq = fs_info->endio_write_workers;
741 func = btrfs_endio_write_helper;
742 }
743 } else {
744 if (unlikely(end_io_wq->metadata ==
745 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746 wq = fs_info->endio_repair_workers;
747 func = btrfs_endio_repair_helper;
748 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
749 wq = fs_info->endio_raid56_workers;
750 func = btrfs_endio_raid56_helper;
751 } else if (end_io_wq->metadata) {
752 wq = fs_info->endio_meta_workers;
753 func = btrfs_endio_meta_helper;
754 } else {
755 wq = fs_info->endio_workers;
756 func = btrfs_endio_helper;
757 }
758 }
759
760 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761 btrfs_queue_work(wq, &end_io_wq->work);
762 }
763
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
765 enum btrfs_wq_endio_type metadata)
766 {
767 struct btrfs_end_io_wq *end_io_wq;
768
769 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
770 if (!end_io_wq)
771 return -ENOMEM;
772
773 end_io_wq->private = bio->bi_private;
774 end_io_wq->end_io = bio->bi_end_io;
775 end_io_wq->info = info;
776 end_io_wq->error = 0;
777 end_io_wq->bio = bio;
778 end_io_wq->metadata = metadata;
779
780 bio->bi_private = end_io_wq;
781 bio->bi_end_io = end_workqueue_bio;
782 return 0;
783 }
784
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
786 {
787 unsigned long limit = min_t(unsigned long,
788 info->thread_pool_size,
789 info->fs_devices->open_devices);
790 return 256 * limit;
791 }
792
793 static void run_one_async_start(struct btrfs_work *work)
794 {
795 struct async_submit_bio *async;
796 int ret;
797
798 async = container_of(work, struct async_submit_bio, work);
799 ret = async->submit_bio_start(async->inode, async->bio,
800 async->mirror_num, async->bio_flags,
801 async->bio_offset);
802 if (ret)
803 async->error = ret;
804 }
805
806 static void run_one_async_done(struct btrfs_work *work)
807 {
808 struct btrfs_fs_info *fs_info;
809 struct async_submit_bio *async;
810 int limit;
811
812 async = container_of(work, struct async_submit_bio, work);
813 fs_info = BTRFS_I(async->inode)->root->fs_info;
814
815 limit = btrfs_async_submit_limit(fs_info);
816 limit = limit * 2 / 3;
817
818 /*
819 * atomic_dec_return implies a barrier for waitqueue_active
820 */
821 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
822 waitqueue_active(&fs_info->async_submit_wait))
823 wake_up(&fs_info->async_submit_wait);
824
825 /* If an error occurred we just want to clean up the bio and move on */
826 if (async->error) {
827 async->bio->bi_error = async->error;
828 bio_endio(async->bio);
829 return;
830 }
831
832 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833 async->bio_flags, async->bio_offset);
834 }
835
836 static void run_one_async_free(struct btrfs_work *work)
837 {
838 struct async_submit_bio *async;
839
840 async = container_of(work, struct async_submit_bio, work);
841 kfree(async);
842 }
843
844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
845 struct bio *bio, int mirror_num,
846 unsigned long bio_flags,
847 u64 bio_offset,
848 extent_submit_bio_hook_t *submit_bio_start,
849 extent_submit_bio_hook_t *submit_bio_done)
850 {
851 struct async_submit_bio *async;
852
853 async = kmalloc(sizeof(*async), GFP_NOFS);
854 if (!async)
855 return -ENOMEM;
856
857 async->inode = inode;
858 async->bio = bio;
859 async->mirror_num = mirror_num;
860 async->submit_bio_start = submit_bio_start;
861 async->submit_bio_done = submit_bio_done;
862
863 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
864 run_one_async_done, run_one_async_free);
865
866 async->bio_flags = bio_flags;
867 async->bio_offset = bio_offset;
868
869 async->error = 0;
870
871 atomic_inc(&fs_info->nr_async_submits);
872
873 if (bio->bi_rw & REQ_SYNC)
874 btrfs_set_work_high_priority(&async->work);
875
876 btrfs_queue_work(fs_info->workers, &async->work);
877
878 while (atomic_read(&fs_info->async_submit_draining) &&
879 atomic_read(&fs_info->nr_async_submits)) {
880 wait_event(fs_info->async_submit_wait,
881 (atomic_read(&fs_info->nr_async_submits) == 0));
882 }
883
884 return 0;
885 }
886
887 static int btree_csum_one_bio(struct bio *bio)
888 {
889 struct bio_vec *bvec;
890 struct btrfs_root *root;
891 int i, ret = 0;
892
893 bio_for_each_segment_all(bvec, bio, i) {
894 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
895 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
896 if (ret)
897 break;
898 }
899
900 return ret;
901 }
902
903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
906 {
907 /*
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
910 */
911 return btree_csum_one_bio(bio);
912 }
913
914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
915 int mirror_num, unsigned long bio_flags,
916 u64 bio_offset)
917 {
918 int ret;
919
920 /*
921 * when we're called for a write, we're already in the async
922 * submission context. Just jump into btrfs_map_bio
923 */
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
925 if (ret) {
926 bio->bi_error = ret;
927 bio_endio(bio);
928 }
929 return ret;
930 }
931
932 static int check_async_write(struct inode *inode, unsigned long bio_flags)
933 {
934 if (bio_flags & EXTENT_BIO_TREE_LOG)
935 return 0;
936 #ifdef CONFIG_X86
937 if (static_cpu_has(X86_FEATURE_XMM4_2))
938 return 0;
939 #endif
940 return 1;
941 }
942
943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
944 int mirror_num, unsigned long bio_flags,
945 u64 bio_offset)
946 {
947 int async = check_async_write(inode, bio_flags);
948 int ret;
949
950 if (bio_op(bio) != REQ_OP_WRITE) {
951 /*
952 * called for a read, do the setup so that checksum validation
953 * can happen in the async kernel threads
954 */
955 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
956 bio, BTRFS_WQ_ENDIO_METADATA);
957 if (ret)
958 goto out_w_error;
959 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
960 } else if (!async) {
961 ret = btree_csum_one_bio(bio);
962 if (ret)
963 goto out_w_error;
964 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
965 } else {
966 /*
967 * kthread helpers are used to submit writes so that
968 * checksumming can happen in parallel across all CPUs
969 */
970 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
971 inode, bio, mirror_num, 0,
972 bio_offset,
973 __btree_submit_bio_start,
974 __btree_submit_bio_done);
975 }
976
977 if (ret)
978 goto out_w_error;
979 return 0;
980
981 out_w_error:
982 bio->bi_error = ret;
983 bio_endio(bio);
984 return ret;
985 }
986
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space *mapping,
989 struct page *newpage, struct page *page,
990 enum migrate_mode mode)
991 {
992 /*
993 * we can't safely write a btree page from here,
994 * we haven't done the locking hook
995 */
996 if (PageDirty(page))
997 return -EAGAIN;
998 /*
999 * Buffers may be managed in a filesystem specific way.
1000 * We must have no buffers or drop them.
1001 */
1002 if (page_has_private(page) &&
1003 !try_to_release_page(page, GFP_KERNEL))
1004 return -EAGAIN;
1005 return migrate_page(mapping, newpage, page, mode);
1006 }
1007 #endif
1008
1009
1010 static int btree_writepages(struct address_space *mapping,
1011 struct writeback_control *wbc)
1012 {
1013 struct btrfs_fs_info *fs_info;
1014 int ret;
1015
1016 if (wbc->sync_mode == WB_SYNC_NONE) {
1017
1018 if (wbc->for_kupdate)
1019 return 0;
1020
1021 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1022 /* this is a bit racy, but that's ok */
1023 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024 BTRFS_DIRTY_METADATA_THRESH);
1025 if (ret < 0)
1026 return 0;
1027 }
1028 return btree_write_cache_pages(mapping, wbc);
1029 }
1030
1031 static int btree_readpage(struct file *file, struct page *page)
1032 {
1033 struct extent_io_tree *tree;
1034 tree = &BTRFS_I(page->mapping->host)->io_tree;
1035 return extent_read_full_page(tree, page, btree_get_extent, 0);
1036 }
1037
1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1039 {
1040 if (PageWriteback(page) || PageDirty(page))
1041 return 0;
1042
1043 return try_release_extent_buffer(page);
1044 }
1045
1046 static void btree_invalidatepage(struct page *page, unsigned int offset,
1047 unsigned int length)
1048 {
1049 struct extent_io_tree *tree;
1050 tree = &BTRFS_I(page->mapping->host)->io_tree;
1051 extent_invalidatepage(tree, page, offset);
1052 btree_releasepage(page, GFP_NOFS);
1053 if (PagePrivate(page)) {
1054 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055 "page private not zero on page %llu",
1056 (unsigned long long)page_offset(page));
1057 ClearPagePrivate(page);
1058 set_page_private(page, 0);
1059 put_page(page);
1060 }
1061 }
1062
1063 static int btree_set_page_dirty(struct page *page)
1064 {
1065 #ifdef DEBUG
1066 struct extent_buffer *eb;
1067
1068 BUG_ON(!PagePrivate(page));
1069 eb = (struct extent_buffer *)page->private;
1070 BUG_ON(!eb);
1071 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072 BUG_ON(!atomic_read(&eb->refs));
1073 btrfs_assert_tree_locked(eb);
1074 #endif
1075 return __set_page_dirty_nobuffers(page);
1076 }
1077
1078 static const struct address_space_operations btree_aops = {
1079 .readpage = btree_readpage,
1080 .writepages = btree_writepages,
1081 .releasepage = btree_releasepage,
1082 .invalidatepage = btree_invalidatepage,
1083 #ifdef CONFIG_MIGRATION
1084 .migratepage = btree_migratepage,
1085 #endif
1086 .set_page_dirty = btree_set_page_dirty,
1087 };
1088
1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1090 {
1091 struct extent_buffer *buf = NULL;
1092 struct inode *btree_inode = root->fs_info->btree_inode;
1093
1094 buf = btrfs_find_create_tree_block(root, bytenr);
1095 if (IS_ERR(buf))
1096 return;
1097 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1098 buf, 0, WAIT_NONE, btree_get_extent, 0);
1099 free_extent_buffer(buf);
1100 }
1101
1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1103 int mirror_num, struct extent_buffer **eb)
1104 {
1105 struct extent_buffer *buf = NULL;
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108 int ret;
1109
1110 buf = btrfs_find_create_tree_block(root, bytenr);
1111 if (IS_ERR(buf))
1112 return 0;
1113
1114 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115
1116 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117 btree_get_extent, mirror_num);
1118 if (ret) {
1119 free_extent_buffer(buf);
1120 return ret;
1121 }
1122
1123 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124 free_extent_buffer(buf);
1125 return -EIO;
1126 } else if (extent_buffer_uptodate(buf)) {
1127 *eb = buf;
1128 } else {
1129 free_extent_buffer(buf);
1130 }
1131 return 0;
1132 }
1133
1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1135 u64 bytenr)
1136 {
1137 return find_extent_buffer(fs_info, bytenr);
1138 }
1139
1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1141 u64 bytenr)
1142 {
1143 if (btrfs_is_testing(root->fs_info))
1144 return alloc_test_extent_buffer(root->fs_info, bytenr,
1145 root->nodesize);
1146 return alloc_extent_buffer(root->fs_info, bytenr);
1147 }
1148
1149
1150 int btrfs_write_tree_block(struct extent_buffer *buf)
1151 {
1152 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1153 buf->start + buf->len - 1);
1154 }
1155
1156 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1157 {
1158 return filemap_fdatawait_range(buf->pages[0]->mapping,
1159 buf->start, buf->start + buf->len - 1);
1160 }
1161
1162 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1163 u64 parent_transid)
1164 {
1165 struct extent_buffer *buf = NULL;
1166 int ret;
1167
1168 buf = btrfs_find_create_tree_block(root, bytenr);
1169 if (IS_ERR(buf))
1170 return buf;
1171
1172 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1173 if (ret) {
1174 free_extent_buffer(buf);
1175 return ERR_PTR(ret);
1176 }
1177 return buf;
1178
1179 }
1180
1181 void clean_tree_block(struct btrfs_trans_handle *trans,
1182 struct btrfs_fs_info *fs_info,
1183 struct extent_buffer *buf)
1184 {
1185 if (btrfs_header_generation(buf) ==
1186 fs_info->running_transaction->transid) {
1187 btrfs_assert_tree_locked(buf);
1188
1189 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1190 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1191 -buf->len,
1192 fs_info->dirty_metadata_batch);
1193 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 btrfs_set_lock_blocking(buf);
1195 clear_extent_buffer_dirty(buf);
1196 }
1197 }
1198 }
1199
1200 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1201 {
1202 struct btrfs_subvolume_writers *writers;
1203 int ret;
1204
1205 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1206 if (!writers)
1207 return ERR_PTR(-ENOMEM);
1208
1209 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1210 if (ret < 0) {
1211 kfree(writers);
1212 return ERR_PTR(ret);
1213 }
1214
1215 init_waitqueue_head(&writers->wait);
1216 return writers;
1217 }
1218
1219 static void
1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1221 {
1222 percpu_counter_destroy(&writers->counter);
1223 kfree(writers);
1224 }
1225
1226 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1227 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1228 u64 objectid)
1229 {
1230 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1231 root->node = NULL;
1232 root->commit_root = NULL;
1233 root->sectorsize = sectorsize;
1234 root->nodesize = nodesize;
1235 root->stripesize = stripesize;
1236 root->state = 0;
1237 root->orphan_cleanup_state = 0;
1238
1239 root->objectid = objectid;
1240 root->last_trans = 0;
1241 root->highest_objectid = 0;
1242 root->nr_delalloc_inodes = 0;
1243 root->nr_ordered_extents = 0;
1244 root->name = NULL;
1245 root->inode_tree = RB_ROOT;
1246 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1247 root->block_rsv = NULL;
1248 root->orphan_block_rsv = NULL;
1249
1250 INIT_LIST_HEAD(&root->dirty_list);
1251 INIT_LIST_HEAD(&root->root_list);
1252 INIT_LIST_HEAD(&root->delalloc_inodes);
1253 INIT_LIST_HEAD(&root->delalloc_root);
1254 INIT_LIST_HEAD(&root->ordered_extents);
1255 INIT_LIST_HEAD(&root->ordered_root);
1256 INIT_LIST_HEAD(&root->logged_list[0]);
1257 INIT_LIST_HEAD(&root->logged_list[1]);
1258 spin_lock_init(&root->orphan_lock);
1259 spin_lock_init(&root->inode_lock);
1260 spin_lock_init(&root->delalloc_lock);
1261 spin_lock_init(&root->ordered_extent_lock);
1262 spin_lock_init(&root->accounting_lock);
1263 spin_lock_init(&root->log_extents_lock[0]);
1264 spin_lock_init(&root->log_extents_lock[1]);
1265 mutex_init(&root->objectid_mutex);
1266 mutex_init(&root->log_mutex);
1267 mutex_init(&root->ordered_extent_mutex);
1268 mutex_init(&root->delalloc_mutex);
1269 init_waitqueue_head(&root->log_writer_wait);
1270 init_waitqueue_head(&root->log_commit_wait[0]);
1271 init_waitqueue_head(&root->log_commit_wait[1]);
1272 INIT_LIST_HEAD(&root->log_ctxs[0]);
1273 INIT_LIST_HEAD(&root->log_ctxs[1]);
1274 atomic_set(&root->log_commit[0], 0);
1275 atomic_set(&root->log_commit[1], 0);
1276 atomic_set(&root->log_writers, 0);
1277 atomic_set(&root->log_batch, 0);
1278 atomic_set(&root->orphan_inodes, 0);
1279 atomic_set(&root->refs, 1);
1280 atomic_set(&root->will_be_snapshoted, 0);
1281 atomic_set(&root->qgroup_meta_rsv, 0);
1282 root->log_transid = 0;
1283 root->log_transid_committed = -1;
1284 root->last_log_commit = 0;
1285 if (!dummy)
1286 extent_io_tree_init(&root->dirty_log_pages,
1287 fs_info->btree_inode->i_mapping);
1288
1289 memset(&root->root_key, 0, sizeof(root->root_key));
1290 memset(&root->root_item, 0, sizeof(root->root_item));
1291 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1292 if (!dummy)
1293 root->defrag_trans_start = fs_info->generation;
1294 else
1295 root->defrag_trans_start = 0;
1296 root->root_key.objectid = objectid;
1297 root->anon_dev = 0;
1298
1299 spin_lock_init(&root->root_item_lock);
1300 }
1301
1302 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1303 gfp_t flags)
1304 {
1305 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1306 if (root)
1307 root->fs_info = fs_info;
1308 return root;
1309 }
1310
1311 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1312 /* Should only be used by the testing infrastructure */
1313 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1314 u32 sectorsize, u32 nodesize)
1315 {
1316 struct btrfs_root *root;
1317
1318 if (!fs_info)
1319 return ERR_PTR(-EINVAL);
1320
1321 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1322 if (!root)
1323 return ERR_PTR(-ENOMEM);
1324 /* We don't use the stripesize in selftest, set it as sectorsize */
1325 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1326 BTRFS_ROOT_TREE_OBJECTID);
1327 root->alloc_bytenr = 0;
1328
1329 return root;
1330 }
1331 #endif
1332
1333 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info,
1335 u64 objectid)
1336 {
1337 struct extent_buffer *leaf;
1338 struct btrfs_root *tree_root = fs_info->tree_root;
1339 struct btrfs_root *root;
1340 struct btrfs_key key;
1341 int ret = 0;
1342 uuid_le uuid;
1343
1344 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1345 if (!root)
1346 return ERR_PTR(-ENOMEM);
1347
1348 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1349 tree_root->stripesize, root, fs_info, objectid);
1350 root->root_key.objectid = objectid;
1351 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 root->root_key.offset = 0;
1353
1354 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1355 if (IS_ERR(leaf)) {
1356 ret = PTR_ERR(leaf);
1357 leaf = NULL;
1358 goto fail;
1359 }
1360
1361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362 btrfs_set_header_bytenr(leaf, leaf->start);
1363 btrfs_set_header_generation(leaf, trans->transid);
1364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365 btrfs_set_header_owner(leaf, objectid);
1366 root->node = leaf;
1367
1368 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1369 BTRFS_FSID_SIZE);
1370 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1371 btrfs_header_chunk_tree_uuid(leaf),
1372 BTRFS_UUID_SIZE);
1373 btrfs_mark_buffer_dirty(leaf);
1374
1375 root->commit_root = btrfs_root_node(root);
1376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1377
1378 root->root_item.flags = 0;
1379 root->root_item.byte_limit = 0;
1380 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1381 btrfs_set_root_generation(&root->root_item, trans->transid);
1382 btrfs_set_root_level(&root->root_item, 0);
1383 btrfs_set_root_refs(&root->root_item, 1);
1384 btrfs_set_root_used(&root->root_item, leaf->len);
1385 btrfs_set_root_last_snapshot(&root->root_item, 0);
1386 btrfs_set_root_dirid(&root->root_item, 0);
1387 uuid_le_gen(&uuid);
1388 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1389 root->root_item.drop_level = 0;
1390
1391 key.objectid = objectid;
1392 key.type = BTRFS_ROOT_ITEM_KEY;
1393 key.offset = 0;
1394 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1395 if (ret)
1396 goto fail;
1397
1398 btrfs_tree_unlock(leaf);
1399
1400 return root;
1401
1402 fail:
1403 if (leaf) {
1404 btrfs_tree_unlock(leaf);
1405 free_extent_buffer(root->commit_root);
1406 free_extent_buffer(leaf);
1407 }
1408 kfree(root);
1409
1410 return ERR_PTR(ret);
1411 }
1412
1413 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1414 struct btrfs_fs_info *fs_info)
1415 {
1416 struct btrfs_root *root;
1417 struct btrfs_root *tree_root = fs_info->tree_root;
1418 struct extent_buffer *leaf;
1419
1420 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1421 if (!root)
1422 return ERR_PTR(-ENOMEM);
1423
1424 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1425 tree_root->stripesize, root, fs_info,
1426 BTRFS_TREE_LOG_OBJECTID);
1427
1428 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1429 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1430 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1431
1432 /*
1433 * DON'T set REF_COWS for log trees
1434 *
1435 * log trees do not get reference counted because they go away
1436 * before a real commit is actually done. They do store pointers
1437 * to file data extents, and those reference counts still get
1438 * updated (along with back refs to the log tree).
1439 */
1440
1441 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1442 NULL, 0, 0, 0);
1443 if (IS_ERR(leaf)) {
1444 kfree(root);
1445 return ERR_CAST(leaf);
1446 }
1447
1448 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1449 btrfs_set_header_bytenr(leaf, leaf->start);
1450 btrfs_set_header_generation(leaf, trans->transid);
1451 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1452 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1453 root->node = leaf;
1454
1455 write_extent_buffer(root->node, root->fs_info->fsid,
1456 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1457 btrfs_mark_buffer_dirty(root->node);
1458 btrfs_tree_unlock(root->node);
1459 return root;
1460 }
1461
1462 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1463 struct btrfs_fs_info *fs_info)
1464 {
1465 struct btrfs_root *log_root;
1466
1467 log_root = alloc_log_tree(trans, fs_info);
1468 if (IS_ERR(log_root))
1469 return PTR_ERR(log_root);
1470 WARN_ON(fs_info->log_root_tree);
1471 fs_info->log_root_tree = log_root;
1472 return 0;
1473 }
1474
1475 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1476 struct btrfs_root *root)
1477 {
1478 struct btrfs_root *log_root;
1479 struct btrfs_inode_item *inode_item;
1480
1481 log_root = alloc_log_tree(trans, root->fs_info);
1482 if (IS_ERR(log_root))
1483 return PTR_ERR(log_root);
1484
1485 log_root->last_trans = trans->transid;
1486 log_root->root_key.offset = root->root_key.objectid;
1487
1488 inode_item = &log_root->root_item.inode;
1489 btrfs_set_stack_inode_generation(inode_item, 1);
1490 btrfs_set_stack_inode_size(inode_item, 3);
1491 btrfs_set_stack_inode_nlink(inode_item, 1);
1492 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1493 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1494
1495 btrfs_set_root_node(&log_root->root_item, log_root->node);
1496
1497 WARN_ON(root->log_root);
1498 root->log_root = log_root;
1499 root->log_transid = 0;
1500 root->log_transid_committed = -1;
1501 root->last_log_commit = 0;
1502 return 0;
1503 }
1504
1505 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1506 struct btrfs_key *key)
1507 {
1508 struct btrfs_root *root;
1509 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1510 struct btrfs_path *path;
1511 u64 generation;
1512 int ret;
1513
1514 path = btrfs_alloc_path();
1515 if (!path)
1516 return ERR_PTR(-ENOMEM);
1517
1518 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1519 if (!root) {
1520 ret = -ENOMEM;
1521 goto alloc_fail;
1522 }
1523
1524 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1525 tree_root->stripesize, root, fs_info, key->objectid);
1526
1527 ret = btrfs_find_root(tree_root, key, path,
1528 &root->root_item, &root->root_key);
1529 if (ret) {
1530 if (ret > 0)
1531 ret = -ENOENT;
1532 goto find_fail;
1533 }
1534
1535 generation = btrfs_root_generation(&root->root_item);
1536 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1537 generation);
1538 if (IS_ERR(root->node)) {
1539 ret = PTR_ERR(root->node);
1540 goto find_fail;
1541 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1542 ret = -EIO;
1543 free_extent_buffer(root->node);
1544 goto find_fail;
1545 }
1546 root->commit_root = btrfs_root_node(root);
1547 out:
1548 btrfs_free_path(path);
1549 return root;
1550
1551 find_fail:
1552 kfree(root);
1553 alloc_fail:
1554 root = ERR_PTR(ret);
1555 goto out;
1556 }
1557
1558 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1559 struct btrfs_key *location)
1560 {
1561 struct btrfs_root *root;
1562
1563 root = btrfs_read_tree_root(tree_root, location);
1564 if (IS_ERR(root))
1565 return root;
1566
1567 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1568 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1569 btrfs_check_and_init_root_item(&root->root_item);
1570 }
1571
1572 return root;
1573 }
1574
1575 int btrfs_init_fs_root(struct btrfs_root *root)
1576 {
1577 int ret;
1578 struct btrfs_subvolume_writers *writers;
1579
1580 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1581 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1582 GFP_NOFS);
1583 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1584 ret = -ENOMEM;
1585 goto fail;
1586 }
1587
1588 writers = btrfs_alloc_subvolume_writers();
1589 if (IS_ERR(writers)) {
1590 ret = PTR_ERR(writers);
1591 goto fail;
1592 }
1593 root->subv_writers = writers;
1594
1595 btrfs_init_free_ino_ctl(root);
1596 spin_lock_init(&root->ino_cache_lock);
1597 init_waitqueue_head(&root->ino_cache_wait);
1598
1599 ret = get_anon_bdev(&root->anon_dev);
1600 if (ret)
1601 goto fail;
1602
1603 mutex_lock(&root->objectid_mutex);
1604 ret = btrfs_find_highest_objectid(root,
1605 &root->highest_objectid);
1606 if (ret) {
1607 mutex_unlock(&root->objectid_mutex);
1608 goto fail;
1609 }
1610
1611 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1612
1613 mutex_unlock(&root->objectid_mutex);
1614
1615 return 0;
1616 fail:
1617 /* the caller is responsible to call free_fs_root */
1618 return ret;
1619 }
1620
1621 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1622 u64 root_id)
1623 {
1624 struct btrfs_root *root;
1625
1626 spin_lock(&fs_info->fs_roots_radix_lock);
1627 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1628 (unsigned long)root_id);
1629 spin_unlock(&fs_info->fs_roots_radix_lock);
1630 return root;
1631 }
1632
1633 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1634 struct btrfs_root *root)
1635 {
1636 int ret;
1637
1638 ret = radix_tree_preload(GFP_NOFS);
1639 if (ret)
1640 return ret;
1641
1642 spin_lock(&fs_info->fs_roots_radix_lock);
1643 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1644 (unsigned long)root->root_key.objectid,
1645 root);
1646 if (ret == 0)
1647 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1648 spin_unlock(&fs_info->fs_roots_radix_lock);
1649 radix_tree_preload_end();
1650
1651 return ret;
1652 }
1653
1654 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1655 struct btrfs_key *location,
1656 bool check_ref)
1657 {
1658 struct btrfs_root *root;
1659 struct btrfs_path *path;
1660 struct btrfs_key key;
1661 int ret;
1662
1663 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1664 return fs_info->tree_root;
1665 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1666 return fs_info->extent_root;
1667 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1668 return fs_info->chunk_root;
1669 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1670 return fs_info->dev_root;
1671 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1672 return fs_info->csum_root;
1673 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1674 return fs_info->quota_root ? fs_info->quota_root :
1675 ERR_PTR(-ENOENT);
1676 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1677 return fs_info->uuid_root ? fs_info->uuid_root :
1678 ERR_PTR(-ENOENT);
1679 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1680 return fs_info->free_space_root ? fs_info->free_space_root :
1681 ERR_PTR(-ENOENT);
1682 again:
1683 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1684 if (root) {
1685 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1686 return ERR_PTR(-ENOENT);
1687 return root;
1688 }
1689
1690 root = btrfs_read_fs_root(fs_info->tree_root, location);
1691 if (IS_ERR(root))
1692 return root;
1693
1694 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1695 ret = -ENOENT;
1696 goto fail;
1697 }
1698
1699 ret = btrfs_init_fs_root(root);
1700 if (ret)
1701 goto fail;
1702
1703 path = btrfs_alloc_path();
1704 if (!path) {
1705 ret = -ENOMEM;
1706 goto fail;
1707 }
1708 key.objectid = BTRFS_ORPHAN_OBJECTID;
1709 key.type = BTRFS_ORPHAN_ITEM_KEY;
1710 key.offset = location->objectid;
1711
1712 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1713 btrfs_free_path(path);
1714 if (ret < 0)
1715 goto fail;
1716 if (ret == 0)
1717 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1718
1719 ret = btrfs_insert_fs_root(fs_info, root);
1720 if (ret) {
1721 if (ret == -EEXIST) {
1722 free_fs_root(root);
1723 goto again;
1724 }
1725 goto fail;
1726 }
1727 return root;
1728 fail:
1729 free_fs_root(root);
1730 return ERR_PTR(ret);
1731 }
1732
1733 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1734 {
1735 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1736 int ret = 0;
1737 struct btrfs_device *device;
1738 struct backing_dev_info *bdi;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1742 if (!device->bdev)
1743 continue;
1744 bdi = blk_get_backing_dev_info(device->bdev);
1745 if (bdi_congested(bdi, bdi_bits)) {
1746 ret = 1;
1747 break;
1748 }
1749 }
1750 rcu_read_unlock();
1751 return ret;
1752 }
1753
1754 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1755 {
1756 int err;
1757
1758 err = bdi_setup_and_register(bdi, "btrfs");
1759 if (err)
1760 return err;
1761
1762 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1763 bdi->congested_fn = btrfs_congested_fn;
1764 bdi->congested_data = info;
1765 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1766 return 0;
1767 }
1768
1769 /*
1770 * called by the kthread helper functions to finally call the bio end_io
1771 * functions. This is where read checksum verification actually happens
1772 */
1773 static void end_workqueue_fn(struct btrfs_work *work)
1774 {
1775 struct bio *bio;
1776 struct btrfs_end_io_wq *end_io_wq;
1777
1778 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1779 bio = end_io_wq->bio;
1780
1781 bio->bi_error = end_io_wq->error;
1782 bio->bi_private = end_io_wq->private;
1783 bio->bi_end_io = end_io_wq->end_io;
1784 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1785 bio_endio(bio);
1786 }
1787
1788 static int cleaner_kthread(void *arg)
1789 {
1790 struct btrfs_root *root = arg;
1791 int again;
1792 struct btrfs_trans_handle *trans;
1793
1794 do {
1795 again = 0;
1796
1797 /* Make the cleaner go to sleep early. */
1798 if (btrfs_need_cleaner_sleep(root))
1799 goto sleep;
1800
1801 /*
1802 * Do not do anything if we might cause open_ctree() to block
1803 * before we have finished mounting the filesystem.
1804 */
1805 if (!root->fs_info->open)
1806 goto sleep;
1807
1808 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1809 goto sleep;
1810
1811 /*
1812 * Avoid the problem that we change the status of the fs
1813 * during the above check and trylock.
1814 */
1815 if (btrfs_need_cleaner_sleep(root)) {
1816 mutex_unlock(&root->fs_info->cleaner_mutex);
1817 goto sleep;
1818 }
1819
1820 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1821 btrfs_run_delayed_iputs(root);
1822 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1823
1824 again = btrfs_clean_one_deleted_snapshot(root);
1825 mutex_unlock(&root->fs_info->cleaner_mutex);
1826
1827 /*
1828 * The defragger has dealt with the R/O remount and umount,
1829 * needn't do anything special here.
1830 */
1831 btrfs_run_defrag_inodes(root->fs_info);
1832
1833 /*
1834 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1835 * with relocation (btrfs_relocate_chunk) and relocation
1836 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1837 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1838 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1839 * unused block groups.
1840 */
1841 btrfs_delete_unused_bgs(root->fs_info);
1842 sleep:
1843 if (!again) {
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 if (!kthread_should_stop())
1846 schedule();
1847 __set_current_state(TASK_RUNNING);
1848 }
1849 } while (!kthread_should_stop());
1850
1851 /*
1852 * Transaction kthread is stopped before us and wakes us up.
1853 * However we might have started a new transaction and COWed some
1854 * tree blocks when deleting unused block groups for example. So
1855 * make sure we commit the transaction we started to have a clean
1856 * shutdown when evicting the btree inode - if it has dirty pages
1857 * when we do the final iput() on it, eviction will trigger a
1858 * writeback for it which will fail with null pointer dereferences
1859 * since work queues and other resources were already released and
1860 * destroyed by the time the iput/eviction/writeback is made.
1861 */
1862 trans = btrfs_attach_transaction(root);
1863 if (IS_ERR(trans)) {
1864 if (PTR_ERR(trans) != -ENOENT)
1865 btrfs_err(root->fs_info,
1866 "cleaner transaction attach returned %ld",
1867 PTR_ERR(trans));
1868 } else {
1869 int ret;
1870
1871 ret = btrfs_commit_transaction(trans, root);
1872 if (ret)
1873 btrfs_err(root->fs_info,
1874 "cleaner open transaction commit returned %d",
1875 ret);
1876 }
1877
1878 return 0;
1879 }
1880
1881 static int transaction_kthread(void *arg)
1882 {
1883 struct btrfs_root *root = arg;
1884 struct btrfs_trans_handle *trans;
1885 struct btrfs_transaction *cur;
1886 u64 transid;
1887 unsigned long now;
1888 unsigned long delay;
1889 bool cannot_commit;
1890
1891 do {
1892 cannot_commit = false;
1893 delay = HZ * root->fs_info->commit_interval;
1894 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1895
1896 spin_lock(&root->fs_info->trans_lock);
1897 cur = root->fs_info->running_transaction;
1898 if (!cur) {
1899 spin_unlock(&root->fs_info->trans_lock);
1900 goto sleep;
1901 }
1902
1903 now = get_seconds();
1904 if (cur->state < TRANS_STATE_BLOCKED &&
1905 (now < cur->start_time ||
1906 now - cur->start_time < root->fs_info->commit_interval)) {
1907 spin_unlock(&root->fs_info->trans_lock);
1908 delay = HZ * 5;
1909 goto sleep;
1910 }
1911 transid = cur->transid;
1912 spin_unlock(&root->fs_info->trans_lock);
1913
1914 /* If the file system is aborted, this will always fail. */
1915 trans = btrfs_attach_transaction(root);
1916 if (IS_ERR(trans)) {
1917 if (PTR_ERR(trans) != -ENOENT)
1918 cannot_commit = true;
1919 goto sleep;
1920 }
1921 if (transid == trans->transid) {
1922 btrfs_commit_transaction(trans, root);
1923 } else {
1924 btrfs_end_transaction(trans, root);
1925 }
1926 sleep:
1927 wake_up_process(root->fs_info->cleaner_kthread);
1928 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1929
1930 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1931 &root->fs_info->fs_state)))
1932 btrfs_cleanup_transaction(root);
1933 set_current_state(TASK_INTERRUPTIBLE);
1934 if (!kthread_should_stop() &&
1935 (!btrfs_transaction_blocked(root->fs_info) ||
1936 cannot_commit))
1937 schedule_timeout(delay);
1938 __set_current_state(TASK_RUNNING);
1939 } while (!kthread_should_stop());
1940 return 0;
1941 }
1942
1943 /*
1944 * this will find the highest generation in the array of
1945 * root backups. The index of the highest array is returned,
1946 * or -1 if we can't find anything.
1947 *
1948 * We check to make sure the array is valid by comparing the
1949 * generation of the latest root in the array with the generation
1950 * in the super block. If they don't match we pitch it.
1951 */
1952 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1953 {
1954 u64 cur;
1955 int newest_index = -1;
1956 struct btrfs_root_backup *root_backup;
1957 int i;
1958
1959 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1960 root_backup = info->super_copy->super_roots + i;
1961 cur = btrfs_backup_tree_root_gen(root_backup);
1962 if (cur == newest_gen)
1963 newest_index = i;
1964 }
1965
1966 /* check to see if we actually wrapped around */
1967 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1968 root_backup = info->super_copy->super_roots;
1969 cur = btrfs_backup_tree_root_gen(root_backup);
1970 if (cur == newest_gen)
1971 newest_index = 0;
1972 }
1973 return newest_index;
1974 }
1975
1976
1977 /*
1978 * find the oldest backup so we know where to store new entries
1979 * in the backup array. This will set the backup_root_index
1980 * field in the fs_info struct
1981 */
1982 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1983 u64 newest_gen)
1984 {
1985 int newest_index = -1;
1986
1987 newest_index = find_newest_super_backup(info, newest_gen);
1988 /* if there was garbage in there, just move along */
1989 if (newest_index == -1) {
1990 info->backup_root_index = 0;
1991 } else {
1992 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993 }
1994 }
1995
1996 /*
1997 * copy all the root pointers into the super backup array.
1998 * this will bump the backup pointer by one when it is
1999 * done
2000 */
2001 static void backup_super_roots(struct btrfs_fs_info *info)
2002 {
2003 int next_backup;
2004 struct btrfs_root_backup *root_backup;
2005 int last_backup;
2006
2007 next_backup = info->backup_root_index;
2008 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2009 BTRFS_NUM_BACKUP_ROOTS;
2010
2011 /*
2012 * just overwrite the last backup if we're at the same generation
2013 * this happens only at umount
2014 */
2015 root_backup = info->super_for_commit->super_roots + last_backup;
2016 if (btrfs_backup_tree_root_gen(root_backup) ==
2017 btrfs_header_generation(info->tree_root->node))
2018 next_backup = last_backup;
2019
2020 root_backup = info->super_for_commit->super_roots + next_backup;
2021
2022 /*
2023 * make sure all of our padding and empty slots get zero filled
2024 * regardless of which ones we use today
2025 */
2026 memset(root_backup, 0, sizeof(*root_backup));
2027
2028 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029
2030 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031 btrfs_set_backup_tree_root_gen(root_backup,
2032 btrfs_header_generation(info->tree_root->node));
2033
2034 btrfs_set_backup_tree_root_level(root_backup,
2035 btrfs_header_level(info->tree_root->node));
2036
2037 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038 btrfs_set_backup_chunk_root_gen(root_backup,
2039 btrfs_header_generation(info->chunk_root->node));
2040 btrfs_set_backup_chunk_root_level(root_backup,
2041 btrfs_header_level(info->chunk_root->node));
2042
2043 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044 btrfs_set_backup_extent_root_gen(root_backup,
2045 btrfs_header_generation(info->extent_root->node));
2046 btrfs_set_backup_extent_root_level(root_backup,
2047 btrfs_header_level(info->extent_root->node));
2048
2049 /*
2050 * we might commit during log recovery, which happens before we set
2051 * the fs_root. Make sure it is valid before we fill it in.
2052 */
2053 if (info->fs_root && info->fs_root->node) {
2054 btrfs_set_backup_fs_root(root_backup,
2055 info->fs_root->node->start);
2056 btrfs_set_backup_fs_root_gen(root_backup,
2057 btrfs_header_generation(info->fs_root->node));
2058 btrfs_set_backup_fs_root_level(root_backup,
2059 btrfs_header_level(info->fs_root->node));
2060 }
2061
2062 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063 btrfs_set_backup_dev_root_gen(root_backup,
2064 btrfs_header_generation(info->dev_root->node));
2065 btrfs_set_backup_dev_root_level(root_backup,
2066 btrfs_header_level(info->dev_root->node));
2067
2068 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069 btrfs_set_backup_csum_root_gen(root_backup,
2070 btrfs_header_generation(info->csum_root->node));
2071 btrfs_set_backup_csum_root_level(root_backup,
2072 btrfs_header_level(info->csum_root->node));
2073
2074 btrfs_set_backup_total_bytes(root_backup,
2075 btrfs_super_total_bytes(info->super_copy));
2076 btrfs_set_backup_bytes_used(root_backup,
2077 btrfs_super_bytes_used(info->super_copy));
2078 btrfs_set_backup_num_devices(root_backup,
2079 btrfs_super_num_devices(info->super_copy));
2080
2081 /*
2082 * if we don't copy this out to the super_copy, it won't get remembered
2083 * for the next commit
2084 */
2085 memcpy(&info->super_copy->super_roots,
2086 &info->super_for_commit->super_roots,
2087 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088 }
2089
2090 /*
2091 * this copies info out of the root backup array and back into
2092 * the in-memory super block. It is meant to help iterate through
2093 * the array, so you send it the number of backups you've already
2094 * tried and the last backup index you used.
2095 *
2096 * this returns -1 when it has tried all the backups
2097 */
2098 static noinline int next_root_backup(struct btrfs_fs_info *info,
2099 struct btrfs_super_block *super,
2100 int *num_backups_tried, int *backup_index)
2101 {
2102 struct btrfs_root_backup *root_backup;
2103 int newest = *backup_index;
2104
2105 if (*num_backups_tried == 0) {
2106 u64 gen = btrfs_super_generation(super);
2107
2108 newest = find_newest_super_backup(info, gen);
2109 if (newest == -1)
2110 return -1;
2111
2112 *backup_index = newest;
2113 *num_backups_tried = 1;
2114 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2115 /* we've tried all the backups, all done */
2116 return -1;
2117 } else {
2118 /* jump to the next oldest backup */
2119 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2120 BTRFS_NUM_BACKUP_ROOTS;
2121 *backup_index = newest;
2122 *num_backups_tried += 1;
2123 }
2124 root_backup = super->super_roots + newest;
2125
2126 btrfs_set_super_generation(super,
2127 btrfs_backup_tree_root_gen(root_backup));
2128 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2129 btrfs_set_super_root_level(super,
2130 btrfs_backup_tree_root_level(root_backup));
2131 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2132
2133 /*
2134 * fixme: the total bytes and num_devices need to match or we should
2135 * need a fsck
2136 */
2137 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2138 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2139 return 0;
2140 }
2141
2142 /* helper to cleanup workers */
2143 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2144 {
2145 btrfs_destroy_workqueue(fs_info->fixup_workers);
2146 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2147 btrfs_destroy_workqueue(fs_info->workers);
2148 btrfs_destroy_workqueue(fs_info->endio_workers);
2149 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2150 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2151 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2152 btrfs_destroy_workqueue(fs_info->rmw_workers);
2153 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2154 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2156 btrfs_destroy_workqueue(fs_info->submit_workers);
2157 btrfs_destroy_workqueue(fs_info->delayed_workers);
2158 btrfs_destroy_workqueue(fs_info->caching_workers);
2159 btrfs_destroy_workqueue(fs_info->readahead_workers);
2160 btrfs_destroy_workqueue(fs_info->flush_workers);
2161 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2162 btrfs_destroy_workqueue(fs_info->extent_workers);
2163 }
2164
2165 static void free_root_extent_buffers(struct btrfs_root *root)
2166 {
2167 if (root) {
2168 free_extent_buffer(root->node);
2169 free_extent_buffer(root->commit_root);
2170 root->node = NULL;
2171 root->commit_root = NULL;
2172 }
2173 }
2174
2175 /* helper to cleanup tree roots */
2176 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2177 {
2178 free_root_extent_buffers(info->tree_root);
2179
2180 free_root_extent_buffers(info->dev_root);
2181 free_root_extent_buffers(info->extent_root);
2182 free_root_extent_buffers(info->csum_root);
2183 free_root_extent_buffers(info->quota_root);
2184 free_root_extent_buffers(info->uuid_root);
2185 if (chunk_root)
2186 free_root_extent_buffers(info->chunk_root);
2187 free_root_extent_buffers(info->free_space_root);
2188 }
2189
2190 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2191 {
2192 int ret;
2193 struct btrfs_root *gang[8];
2194 int i;
2195
2196 while (!list_empty(&fs_info->dead_roots)) {
2197 gang[0] = list_entry(fs_info->dead_roots.next,
2198 struct btrfs_root, root_list);
2199 list_del(&gang[0]->root_list);
2200
2201 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2202 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2203 } else {
2204 free_extent_buffer(gang[0]->node);
2205 free_extent_buffer(gang[0]->commit_root);
2206 btrfs_put_fs_root(gang[0]);
2207 }
2208 }
2209
2210 while (1) {
2211 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2212 (void **)gang, 0,
2213 ARRAY_SIZE(gang));
2214 if (!ret)
2215 break;
2216 for (i = 0; i < ret; i++)
2217 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2218 }
2219
2220 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2221 btrfs_free_log_root_tree(NULL, fs_info);
2222 btrfs_destroy_pinned_extent(fs_info->tree_root,
2223 fs_info->pinned_extents);
2224 }
2225 }
2226
2227 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228 {
2229 mutex_init(&fs_info->scrub_lock);
2230 atomic_set(&fs_info->scrubs_running, 0);
2231 atomic_set(&fs_info->scrub_pause_req, 0);
2232 atomic_set(&fs_info->scrubs_paused, 0);
2233 atomic_set(&fs_info->scrub_cancel_req, 0);
2234 init_waitqueue_head(&fs_info->scrub_pause_wait);
2235 fs_info->scrub_workers_refcnt = 0;
2236 }
2237
2238 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239 {
2240 spin_lock_init(&fs_info->balance_lock);
2241 mutex_init(&fs_info->balance_mutex);
2242 atomic_set(&fs_info->balance_running, 0);
2243 atomic_set(&fs_info->balance_pause_req, 0);
2244 atomic_set(&fs_info->balance_cancel_req, 0);
2245 fs_info->balance_ctl = NULL;
2246 init_waitqueue_head(&fs_info->balance_wait_q);
2247 }
2248
2249 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2250 struct btrfs_root *tree_root)
2251 {
2252 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2253 set_nlink(fs_info->btree_inode, 1);
2254 /*
2255 * we set the i_size on the btree inode to the max possible int.
2256 * the real end of the address space is determined by all of
2257 * the devices in the system
2258 */
2259 fs_info->btree_inode->i_size = OFFSET_MAX;
2260 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2261
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2264 fs_info->btree_inode->i_mapping);
2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2267
2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2269
2270 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 sizeof(struct btrfs_key));
2273 set_bit(BTRFS_INODE_DUMMY,
2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2275 btrfs_insert_inode_hash(fs_info->btree_inode);
2276 }
2277
2278 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2279 {
2280 fs_info->dev_replace.lock_owner = 0;
2281 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2282 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2283 rwlock_init(&fs_info->dev_replace.lock);
2284 atomic_set(&fs_info->dev_replace.read_locks, 0);
2285 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2286 init_waitqueue_head(&fs_info->replace_wait);
2287 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2288 }
2289
2290 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291 {
2292 spin_lock_init(&fs_info->qgroup_lock);
2293 mutex_init(&fs_info->qgroup_ioctl_lock);
2294 fs_info->qgroup_tree = RB_ROOT;
2295 fs_info->qgroup_op_tree = RB_ROOT;
2296 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2297 fs_info->qgroup_seq = 1;
2298 fs_info->quota_enabled = 0;
2299 fs_info->pending_quota_state = 0;
2300 fs_info->qgroup_ulist = NULL;
2301 mutex_init(&fs_info->qgroup_rescan_lock);
2302 }
2303
2304 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2305 struct btrfs_fs_devices *fs_devices)
2306 {
2307 int max_active = fs_info->thread_pool_size;
2308 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2309
2310 fs_info->workers =
2311 btrfs_alloc_workqueue(fs_info, "worker",
2312 flags | WQ_HIGHPRI, max_active, 16);
2313
2314 fs_info->delalloc_workers =
2315 btrfs_alloc_workqueue(fs_info, "delalloc",
2316 flags, max_active, 2);
2317
2318 fs_info->flush_workers =
2319 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2320 flags, max_active, 0);
2321
2322 fs_info->caching_workers =
2323 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2324
2325 /*
2326 * a higher idle thresh on the submit workers makes it much more
2327 * likely that bios will be send down in a sane order to the
2328 * devices
2329 */
2330 fs_info->submit_workers =
2331 btrfs_alloc_workqueue(fs_info, "submit", flags,
2332 min_t(u64, fs_devices->num_devices,
2333 max_active), 64);
2334
2335 fs_info->fixup_workers =
2336 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2337
2338 /*
2339 * endios are largely parallel and should have a very
2340 * low idle thresh
2341 */
2342 fs_info->endio_workers =
2343 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2344 fs_info->endio_meta_workers =
2345 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2346 max_active, 4);
2347 fs_info->endio_meta_write_workers =
2348 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2349 max_active, 2);
2350 fs_info->endio_raid56_workers =
2351 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2352 max_active, 4);
2353 fs_info->endio_repair_workers =
2354 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2355 fs_info->rmw_workers =
2356 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2357 fs_info->endio_write_workers =
2358 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2359 max_active, 2);
2360 fs_info->endio_freespace_worker =
2361 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2362 max_active, 0);
2363 fs_info->delayed_workers =
2364 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2365 max_active, 0);
2366 fs_info->readahead_workers =
2367 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2368 max_active, 2);
2369 fs_info->qgroup_rescan_workers =
2370 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2371 fs_info->extent_workers =
2372 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2373 min_t(u64, fs_devices->num_devices,
2374 max_active), 8);
2375
2376 if (!(fs_info->workers && fs_info->delalloc_workers &&
2377 fs_info->submit_workers && fs_info->flush_workers &&
2378 fs_info->endio_workers && fs_info->endio_meta_workers &&
2379 fs_info->endio_meta_write_workers &&
2380 fs_info->endio_repair_workers &&
2381 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2382 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2383 fs_info->caching_workers && fs_info->readahead_workers &&
2384 fs_info->fixup_workers && fs_info->delayed_workers &&
2385 fs_info->extent_workers &&
2386 fs_info->qgroup_rescan_workers)) {
2387 return -ENOMEM;
2388 }
2389
2390 return 0;
2391 }
2392
2393 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2394 struct btrfs_fs_devices *fs_devices)
2395 {
2396 int ret;
2397 struct btrfs_root *tree_root = fs_info->tree_root;
2398 struct btrfs_root *log_tree_root;
2399 struct btrfs_super_block *disk_super = fs_info->super_copy;
2400 u64 bytenr = btrfs_super_log_root(disk_super);
2401
2402 if (fs_devices->rw_devices == 0) {
2403 btrfs_warn(fs_info, "log replay required on RO media");
2404 return -EIO;
2405 }
2406
2407 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2408 if (!log_tree_root)
2409 return -ENOMEM;
2410
2411 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2412 tree_root->stripesize, log_tree_root, fs_info,
2413 BTRFS_TREE_LOG_OBJECTID);
2414
2415 log_tree_root->node = read_tree_block(tree_root, bytenr,
2416 fs_info->generation + 1);
2417 if (IS_ERR(log_tree_root->node)) {
2418 btrfs_warn(fs_info, "failed to read log tree");
2419 ret = PTR_ERR(log_tree_root->node);
2420 kfree(log_tree_root);
2421 return ret;
2422 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2423 btrfs_err(fs_info, "failed to read log tree");
2424 free_extent_buffer(log_tree_root->node);
2425 kfree(log_tree_root);
2426 return -EIO;
2427 }
2428 /* returns with log_tree_root freed on success */
2429 ret = btrfs_recover_log_trees(log_tree_root);
2430 if (ret) {
2431 btrfs_handle_fs_error(tree_root->fs_info, ret,
2432 "Failed to recover log tree");
2433 free_extent_buffer(log_tree_root->node);
2434 kfree(log_tree_root);
2435 return ret;
2436 }
2437
2438 if (fs_info->sb->s_flags & MS_RDONLY) {
2439 ret = btrfs_commit_super(tree_root);
2440 if (ret)
2441 return ret;
2442 }
2443
2444 return 0;
2445 }
2446
2447 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2448 struct btrfs_root *tree_root)
2449 {
2450 struct btrfs_root *root;
2451 struct btrfs_key location;
2452 int ret;
2453
2454 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2455 location.type = BTRFS_ROOT_ITEM_KEY;
2456 location.offset = 0;
2457
2458 root = btrfs_read_tree_root(tree_root, &location);
2459 if (IS_ERR(root))
2460 return PTR_ERR(root);
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->extent_root = root;
2463
2464 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2465 root = btrfs_read_tree_root(tree_root, &location);
2466 if (IS_ERR(root))
2467 return PTR_ERR(root);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 fs_info->dev_root = root;
2470 btrfs_init_devices_late(fs_info);
2471
2472 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2473 root = btrfs_read_tree_root(tree_root, &location);
2474 if (IS_ERR(root))
2475 return PTR_ERR(root);
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 fs_info->csum_root = root;
2478
2479 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2480 root = btrfs_read_tree_root(tree_root, &location);
2481 if (!IS_ERR(root)) {
2482 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2483 fs_info->quota_enabled = 1;
2484 fs_info->pending_quota_state = 1;
2485 fs_info->quota_root = root;
2486 }
2487
2488 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2489 root = btrfs_read_tree_root(tree_root, &location);
2490 if (IS_ERR(root)) {
2491 ret = PTR_ERR(root);
2492 if (ret != -ENOENT)
2493 return ret;
2494 } else {
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 fs_info->uuid_root = root;
2497 }
2498
2499 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2500 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2501 root = btrfs_read_tree_root(tree_root, &location);
2502 if (IS_ERR(root))
2503 return PTR_ERR(root);
2504 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 fs_info->free_space_root = root;
2506 }
2507
2508 return 0;
2509 }
2510
2511 int open_ctree(struct super_block *sb,
2512 struct btrfs_fs_devices *fs_devices,
2513 char *options)
2514 {
2515 u32 sectorsize;
2516 u32 nodesize;
2517 u32 stripesize;
2518 u64 generation;
2519 u64 features;
2520 struct btrfs_key location;
2521 struct buffer_head *bh;
2522 struct btrfs_super_block *disk_super;
2523 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2524 struct btrfs_root *tree_root;
2525 struct btrfs_root *chunk_root;
2526 int ret;
2527 int err = -EINVAL;
2528 int num_backups_tried = 0;
2529 int backup_index = 0;
2530 int max_active;
2531
2532 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2533 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2534 if (!tree_root || !chunk_root) {
2535 err = -ENOMEM;
2536 goto fail;
2537 }
2538
2539 ret = init_srcu_struct(&fs_info->subvol_srcu);
2540 if (ret) {
2541 err = ret;
2542 goto fail;
2543 }
2544
2545 ret = setup_bdi(fs_info, &fs_info->bdi);
2546 if (ret) {
2547 err = ret;
2548 goto fail_srcu;
2549 }
2550
2551 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2552 if (ret) {
2553 err = ret;
2554 goto fail_bdi;
2555 }
2556 fs_info->dirty_metadata_batch = PAGE_SIZE *
2557 (1 + ilog2(nr_cpu_ids));
2558
2559 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2560 if (ret) {
2561 err = ret;
2562 goto fail_dirty_metadata_bytes;
2563 }
2564
2565 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2566 if (ret) {
2567 err = ret;
2568 goto fail_delalloc_bytes;
2569 }
2570
2571 fs_info->btree_inode = new_inode(sb);
2572 if (!fs_info->btree_inode) {
2573 err = -ENOMEM;
2574 goto fail_bio_counter;
2575 }
2576
2577 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2578
2579 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2580 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2581 INIT_LIST_HEAD(&fs_info->trans_list);
2582 INIT_LIST_HEAD(&fs_info->dead_roots);
2583 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2584 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2585 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2586 spin_lock_init(&fs_info->delalloc_root_lock);
2587 spin_lock_init(&fs_info->trans_lock);
2588 spin_lock_init(&fs_info->fs_roots_radix_lock);
2589 spin_lock_init(&fs_info->delayed_iput_lock);
2590 spin_lock_init(&fs_info->defrag_inodes_lock);
2591 spin_lock_init(&fs_info->free_chunk_lock);
2592 spin_lock_init(&fs_info->tree_mod_seq_lock);
2593 spin_lock_init(&fs_info->super_lock);
2594 spin_lock_init(&fs_info->qgroup_op_lock);
2595 spin_lock_init(&fs_info->buffer_lock);
2596 spin_lock_init(&fs_info->unused_bgs_lock);
2597 rwlock_init(&fs_info->tree_mod_log_lock);
2598 mutex_init(&fs_info->unused_bg_unpin_mutex);
2599 mutex_init(&fs_info->delete_unused_bgs_mutex);
2600 mutex_init(&fs_info->reloc_mutex);
2601 mutex_init(&fs_info->delalloc_root_mutex);
2602 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2603 seqlock_init(&fs_info->profiles_lock);
2604
2605 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2606 INIT_LIST_HEAD(&fs_info->space_info);
2607 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2608 INIT_LIST_HEAD(&fs_info->unused_bgs);
2609 btrfs_mapping_init(&fs_info->mapping_tree);
2610 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2611 BTRFS_BLOCK_RSV_GLOBAL);
2612 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2613 BTRFS_BLOCK_RSV_DELALLOC);
2614 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2615 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2616 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2617 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2618 BTRFS_BLOCK_RSV_DELOPS);
2619 atomic_set(&fs_info->nr_async_submits, 0);
2620 atomic_set(&fs_info->async_delalloc_pages, 0);
2621 atomic_set(&fs_info->async_submit_draining, 0);
2622 atomic_set(&fs_info->nr_async_bios, 0);
2623 atomic_set(&fs_info->defrag_running, 0);
2624 atomic_set(&fs_info->qgroup_op_seq, 0);
2625 atomic_set(&fs_info->reada_works_cnt, 0);
2626 atomic64_set(&fs_info->tree_mod_seq, 0);
2627 fs_info->sb = sb;
2628 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2629 fs_info->metadata_ratio = 0;
2630 fs_info->defrag_inodes = RB_ROOT;
2631 fs_info->free_chunk_space = 0;
2632 fs_info->tree_mod_log = RB_ROOT;
2633 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2634 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2635 /* readahead state */
2636 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2637 spin_lock_init(&fs_info->reada_lock);
2638
2639 fs_info->thread_pool_size = min_t(unsigned long,
2640 num_online_cpus() + 2, 8);
2641
2642 INIT_LIST_HEAD(&fs_info->ordered_roots);
2643 spin_lock_init(&fs_info->ordered_root_lock);
2644 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2645 GFP_KERNEL);
2646 if (!fs_info->delayed_root) {
2647 err = -ENOMEM;
2648 goto fail_iput;
2649 }
2650 btrfs_init_delayed_root(fs_info->delayed_root);
2651
2652 btrfs_init_scrub(fs_info);
2653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2654 fs_info->check_integrity_print_mask = 0;
2655 #endif
2656 btrfs_init_balance(fs_info);
2657 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2658
2659 sb->s_blocksize = 4096;
2660 sb->s_blocksize_bits = blksize_bits(4096);
2661 sb->s_bdi = &fs_info->bdi;
2662
2663 btrfs_init_btree_inode(fs_info, tree_root);
2664
2665 spin_lock_init(&fs_info->block_group_cache_lock);
2666 fs_info->block_group_cache_tree = RB_ROOT;
2667 fs_info->first_logical_byte = (u64)-1;
2668
2669 extent_io_tree_init(&fs_info->freed_extents[0],
2670 fs_info->btree_inode->i_mapping);
2671 extent_io_tree_init(&fs_info->freed_extents[1],
2672 fs_info->btree_inode->i_mapping);
2673 fs_info->pinned_extents = &fs_info->freed_extents[0];
2674 fs_info->do_barriers = 1;
2675
2676
2677 mutex_init(&fs_info->ordered_operations_mutex);
2678 mutex_init(&fs_info->tree_log_mutex);
2679 mutex_init(&fs_info->chunk_mutex);
2680 mutex_init(&fs_info->transaction_kthread_mutex);
2681 mutex_init(&fs_info->cleaner_mutex);
2682 mutex_init(&fs_info->volume_mutex);
2683 mutex_init(&fs_info->ro_block_group_mutex);
2684 init_rwsem(&fs_info->commit_root_sem);
2685 init_rwsem(&fs_info->cleanup_work_sem);
2686 init_rwsem(&fs_info->subvol_sem);
2687 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2688
2689 btrfs_init_dev_replace_locks(fs_info);
2690 btrfs_init_qgroup(fs_info);
2691
2692 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2693 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2694
2695 init_waitqueue_head(&fs_info->transaction_throttle);
2696 init_waitqueue_head(&fs_info->transaction_wait);
2697 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2698 init_waitqueue_head(&fs_info->async_submit_wait);
2699
2700 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2701
2702 ret = btrfs_alloc_stripe_hash_table(fs_info);
2703 if (ret) {
2704 err = ret;
2705 goto fail_alloc;
2706 }
2707
2708 __setup_root(4096, 4096, 4096, tree_root,
2709 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2710
2711 invalidate_bdev(fs_devices->latest_bdev);
2712
2713 /*
2714 * Read super block and check the signature bytes only
2715 */
2716 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2717 if (IS_ERR(bh)) {
2718 err = PTR_ERR(bh);
2719 goto fail_alloc;
2720 }
2721
2722 /*
2723 * We want to check superblock checksum, the type is stored inside.
2724 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2725 */
2726 if (btrfs_check_super_csum(bh->b_data)) {
2727 btrfs_err(fs_info, "superblock checksum mismatch");
2728 err = -EINVAL;
2729 brelse(bh);
2730 goto fail_alloc;
2731 }
2732
2733 /*
2734 * super_copy is zeroed at allocation time and we never touch the
2735 * following bytes up to INFO_SIZE, the checksum is calculated from
2736 * the whole block of INFO_SIZE
2737 */
2738 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2739 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2740 sizeof(*fs_info->super_for_commit));
2741 brelse(bh);
2742
2743 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2744
2745 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2746 if (ret) {
2747 btrfs_err(fs_info, "superblock contains fatal errors");
2748 err = -EINVAL;
2749 goto fail_alloc;
2750 }
2751
2752 disk_super = fs_info->super_copy;
2753 if (!btrfs_super_root(disk_super))
2754 goto fail_alloc;
2755
2756 /* check FS state, whether FS is broken. */
2757 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2758 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2759
2760 /*
2761 * run through our array of backup supers and setup
2762 * our ring pointer to the oldest one
2763 */
2764 generation = btrfs_super_generation(disk_super);
2765 find_oldest_super_backup(fs_info, generation);
2766
2767 /*
2768 * In the long term, we'll store the compression type in the super
2769 * block, and it'll be used for per file compression control.
2770 */
2771 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2772
2773 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2774 if (ret) {
2775 err = ret;
2776 goto fail_alloc;
2777 }
2778
2779 features = btrfs_super_incompat_flags(disk_super) &
2780 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2781 if (features) {
2782 btrfs_err(fs_info,
2783 "cannot mount because of unsupported optional features (%llx)",
2784 features);
2785 err = -EINVAL;
2786 goto fail_alloc;
2787 }
2788
2789 features = btrfs_super_incompat_flags(disk_super);
2790 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2791 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2792 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2793
2794 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2795 btrfs_info(fs_info, "has skinny extents");
2796
2797 /*
2798 * flag our filesystem as having big metadata blocks if
2799 * they are bigger than the page size
2800 */
2801 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2802 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2803 btrfs_info(fs_info,
2804 "flagging fs with big metadata feature");
2805 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2806 }
2807
2808 nodesize = btrfs_super_nodesize(disk_super);
2809 sectorsize = btrfs_super_sectorsize(disk_super);
2810 stripesize = sectorsize;
2811 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2812 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2813
2814 /*
2815 * mixed block groups end up with duplicate but slightly offset
2816 * extent buffers for the same range. It leads to corruptions
2817 */
2818 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2819 (sectorsize != nodesize)) {
2820 btrfs_err(fs_info,
2821 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2822 nodesize, sectorsize);
2823 goto fail_alloc;
2824 }
2825
2826 /*
2827 * Needn't use the lock because there is no other task which will
2828 * update the flag.
2829 */
2830 btrfs_set_super_incompat_flags(disk_super, features);
2831
2832 features = btrfs_super_compat_ro_flags(disk_super) &
2833 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2834 if (!(sb->s_flags & MS_RDONLY) && features) {
2835 btrfs_err(fs_info,
2836 "cannot mount read-write because of unsupported optional features (%llx)",
2837 features);
2838 err = -EINVAL;
2839 goto fail_alloc;
2840 }
2841
2842 max_active = fs_info->thread_pool_size;
2843
2844 ret = btrfs_init_workqueues(fs_info, fs_devices);
2845 if (ret) {
2846 err = ret;
2847 goto fail_sb_buffer;
2848 }
2849
2850 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2851 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2852 SZ_4M / PAGE_SIZE);
2853
2854 tree_root->nodesize = nodesize;
2855 tree_root->sectorsize = sectorsize;
2856 tree_root->stripesize = stripesize;
2857
2858 sb->s_blocksize = sectorsize;
2859 sb->s_blocksize_bits = blksize_bits(sectorsize);
2860
2861 mutex_lock(&fs_info->chunk_mutex);
2862 ret = btrfs_read_sys_array(tree_root);
2863 mutex_unlock(&fs_info->chunk_mutex);
2864 if (ret) {
2865 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2866 goto fail_sb_buffer;
2867 }
2868
2869 generation = btrfs_super_chunk_root_generation(disk_super);
2870
2871 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2872 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2873
2874 chunk_root->node = read_tree_block(chunk_root,
2875 btrfs_super_chunk_root(disk_super),
2876 generation);
2877 if (IS_ERR(chunk_root->node) ||
2878 !extent_buffer_uptodate(chunk_root->node)) {
2879 btrfs_err(fs_info, "failed to read chunk root");
2880 if (!IS_ERR(chunk_root->node))
2881 free_extent_buffer(chunk_root->node);
2882 chunk_root->node = NULL;
2883 goto fail_tree_roots;
2884 }
2885 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2886 chunk_root->commit_root = btrfs_root_node(chunk_root);
2887
2888 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2889 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2890
2891 ret = btrfs_read_chunk_tree(chunk_root);
2892 if (ret) {
2893 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2894 goto fail_tree_roots;
2895 }
2896
2897 /*
2898 * keep the device that is marked to be the target device for the
2899 * dev_replace procedure
2900 */
2901 btrfs_close_extra_devices(fs_devices, 0);
2902
2903 if (!fs_devices->latest_bdev) {
2904 btrfs_err(fs_info, "failed to read devices");
2905 goto fail_tree_roots;
2906 }
2907
2908 retry_root_backup:
2909 generation = btrfs_super_generation(disk_super);
2910
2911 tree_root->node = read_tree_block(tree_root,
2912 btrfs_super_root(disk_super),
2913 generation);
2914 if (IS_ERR(tree_root->node) ||
2915 !extent_buffer_uptodate(tree_root->node)) {
2916 btrfs_warn(fs_info, "failed to read tree root");
2917 if (!IS_ERR(tree_root->node))
2918 free_extent_buffer(tree_root->node);
2919 tree_root->node = NULL;
2920 goto recovery_tree_root;
2921 }
2922
2923 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2924 tree_root->commit_root = btrfs_root_node(tree_root);
2925 btrfs_set_root_refs(&tree_root->root_item, 1);
2926
2927 mutex_lock(&tree_root->objectid_mutex);
2928 ret = btrfs_find_highest_objectid(tree_root,
2929 &tree_root->highest_objectid);
2930 if (ret) {
2931 mutex_unlock(&tree_root->objectid_mutex);
2932 goto recovery_tree_root;
2933 }
2934
2935 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2936
2937 mutex_unlock(&tree_root->objectid_mutex);
2938
2939 ret = btrfs_read_roots(fs_info, tree_root);
2940 if (ret)
2941 goto recovery_tree_root;
2942
2943 fs_info->generation = generation;
2944 fs_info->last_trans_committed = generation;
2945
2946 ret = btrfs_recover_balance(fs_info);
2947 if (ret) {
2948 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2949 goto fail_block_groups;
2950 }
2951
2952 ret = btrfs_init_dev_stats(fs_info);
2953 if (ret) {
2954 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2955 goto fail_block_groups;
2956 }
2957
2958 ret = btrfs_init_dev_replace(fs_info);
2959 if (ret) {
2960 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2961 goto fail_block_groups;
2962 }
2963
2964 btrfs_close_extra_devices(fs_devices, 1);
2965
2966 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2967 if (ret) {
2968 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2969 ret);
2970 goto fail_block_groups;
2971 }
2972
2973 ret = btrfs_sysfs_add_device(fs_devices);
2974 if (ret) {
2975 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2976 ret);
2977 goto fail_fsdev_sysfs;
2978 }
2979
2980 ret = btrfs_sysfs_add_mounted(fs_info);
2981 if (ret) {
2982 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2983 goto fail_fsdev_sysfs;
2984 }
2985
2986 ret = btrfs_init_space_info(fs_info);
2987 if (ret) {
2988 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2989 goto fail_sysfs;
2990 }
2991
2992 ret = btrfs_read_block_groups(fs_info->extent_root);
2993 if (ret) {
2994 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2995 goto fail_sysfs;
2996 }
2997 fs_info->num_tolerated_disk_barrier_failures =
2998 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2999 if (fs_info->fs_devices->missing_devices >
3000 fs_info->num_tolerated_disk_barrier_failures &&
3001 !(sb->s_flags & MS_RDONLY)) {
3002 btrfs_warn(fs_info,
3003 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3004 fs_info->fs_devices->missing_devices,
3005 fs_info->num_tolerated_disk_barrier_failures);
3006 goto fail_sysfs;
3007 }
3008
3009 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3010 "btrfs-cleaner");
3011 if (IS_ERR(fs_info->cleaner_kthread))
3012 goto fail_sysfs;
3013
3014 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3015 tree_root,
3016 "btrfs-transaction");
3017 if (IS_ERR(fs_info->transaction_kthread))
3018 goto fail_cleaner;
3019
3020 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3021 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3022 !fs_info->fs_devices->rotating) {
3023 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3024 btrfs_set_opt(fs_info->mount_opt, SSD);
3025 }
3026
3027 /*
3028 * Mount does not set all options immediately, we can do it now and do
3029 * not have to wait for transaction commit
3030 */
3031 btrfs_apply_pending_changes(fs_info);
3032
3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3034 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3035 ret = btrfsic_mount(tree_root, fs_devices,
3036 btrfs_test_opt(tree_root->fs_info,
3037 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3038 1 : 0,
3039 fs_info->check_integrity_print_mask);
3040 if (ret)
3041 btrfs_warn(fs_info,
3042 "failed to initialize integrity check module: %d",
3043 ret);
3044 }
3045 #endif
3046 ret = btrfs_read_qgroup_config(fs_info);
3047 if (ret)
3048 goto fail_trans_kthread;
3049
3050 /* do not make disk changes in broken FS or nologreplay is given */
3051 if (btrfs_super_log_root(disk_super) != 0 &&
3052 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3053 ret = btrfs_replay_log(fs_info, fs_devices);
3054 if (ret) {
3055 err = ret;
3056 goto fail_qgroup;
3057 }
3058 }
3059
3060 ret = btrfs_find_orphan_roots(tree_root);
3061 if (ret)
3062 goto fail_qgroup;
3063
3064 if (!(sb->s_flags & MS_RDONLY)) {
3065 ret = btrfs_cleanup_fs_roots(fs_info);
3066 if (ret)
3067 goto fail_qgroup;
3068
3069 mutex_lock(&fs_info->cleaner_mutex);
3070 ret = btrfs_recover_relocation(tree_root);
3071 mutex_unlock(&fs_info->cleaner_mutex);
3072 if (ret < 0) {
3073 btrfs_warn(fs_info, "failed to recover relocation: %d",
3074 ret);
3075 err = -EINVAL;
3076 goto fail_qgroup;
3077 }
3078 }
3079
3080 location.objectid = BTRFS_FS_TREE_OBJECTID;
3081 location.type = BTRFS_ROOT_ITEM_KEY;
3082 location.offset = 0;
3083
3084 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3085 if (IS_ERR(fs_info->fs_root)) {
3086 err = PTR_ERR(fs_info->fs_root);
3087 goto fail_qgroup;
3088 }
3089
3090 if (sb->s_flags & MS_RDONLY)
3091 return 0;
3092
3093 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3094 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3095 btrfs_info(fs_info, "creating free space tree");
3096 ret = btrfs_create_free_space_tree(fs_info);
3097 if (ret) {
3098 btrfs_warn(fs_info,
3099 "failed to create free space tree: %d", ret);
3100 close_ctree(tree_root);
3101 return ret;
3102 }
3103 }
3104
3105 down_read(&fs_info->cleanup_work_sem);
3106 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3107 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3108 up_read(&fs_info->cleanup_work_sem);
3109 close_ctree(tree_root);
3110 return ret;
3111 }
3112 up_read(&fs_info->cleanup_work_sem);
3113
3114 ret = btrfs_resume_balance_async(fs_info);
3115 if (ret) {
3116 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120
3121 ret = btrfs_resume_dev_replace_async(fs_info);
3122 if (ret) {
3123 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3124 close_ctree(tree_root);
3125 return ret;
3126 }
3127
3128 btrfs_qgroup_rescan_resume(fs_info);
3129
3130 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3131 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3132 btrfs_info(fs_info, "clearing free space tree");
3133 ret = btrfs_clear_free_space_tree(fs_info);
3134 if (ret) {
3135 btrfs_warn(fs_info,
3136 "failed to clear free space tree: %d", ret);
3137 close_ctree(tree_root);
3138 return ret;
3139 }
3140 }
3141
3142 if (!fs_info->uuid_root) {
3143 btrfs_info(fs_info, "creating UUID tree");
3144 ret = btrfs_create_uuid_tree(fs_info);
3145 if (ret) {
3146 btrfs_warn(fs_info,
3147 "failed to create the UUID tree: %d", ret);
3148 close_ctree(tree_root);
3149 return ret;
3150 }
3151 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3152 fs_info->generation !=
3153 btrfs_super_uuid_tree_generation(disk_super)) {
3154 btrfs_info(fs_info, "checking UUID tree");
3155 ret = btrfs_check_uuid_tree(fs_info);
3156 if (ret) {
3157 btrfs_warn(fs_info,
3158 "failed to check the UUID tree: %d", ret);
3159 close_ctree(tree_root);
3160 return ret;
3161 }
3162 } else {
3163 fs_info->update_uuid_tree_gen = 1;
3164 }
3165
3166 fs_info->open = 1;
3167
3168 /*
3169 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 * no need to keep the flag
3171 */
3172 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3173
3174 return 0;
3175
3176 fail_qgroup:
3177 btrfs_free_qgroup_config(fs_info);
3178 fail_trans_kthread:
3179 kthread_stop(fs_info->transaction_kthread);
3180 btrfs_cleanup_transaction(fs_info->tree_root);
3181 btrfs_free_fs_roots(fs_info);
3182 fail_cleaner:
3183 kthread_stop(fs_info->cleaner_kthread);
3184
3185 /*
3186 * make sure we're done with the btree inode before we stop our
3187 * kthreads
3188 */
3189 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3190
3191 fail_sysfs:
3192 btrfs_sysfs_remove_mounted(fs_info);
3193
3194 fail_fsdev_sysfs:
3195 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3196
3197 fail_block_groups:
3198 btrfs_put_block_group_cache(fs_info);
3199 btrfs_free_block_groups(fs_info);
3200
3201 fail_tree_roots:
3202 free_root_pointers(fs_info, 1);
3203 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3204
3205 fail_sb_buffer:
3206 btrfs_stop_all_workers(fs_info);
3207 fail_alloc:
3208 fail_iput:
3209 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3210
3211 iput(fs_info->btree_inode);
3212 fail_bio_counter:
3213 percpu_counter_destroy(&fs_info->bio_counter);
3214 fail_delalloc_bytes:
3215 percpu_counter_destroy(&fs_info->delalloc_bytes);
3216 fail_dirty_metadata_bytes:
3217 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3218 fail_bdi:
3219 bdi_destroy(&fs_info->bdi);
3220 fail_srcu:
3221 cleanup_srcu_struct(&fs_info->subvol_srcu);
3222 fail:
3223 btrfs_free_stripe_hash_table(fs_info);
3224 btrfs_close_devices(fs_info->fs_devices);
3225 return err;
3226
3227 recovery_tree_root:
3228 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3229 goto fail_tree_roots;
3230
3231 free_root_pointers(fs_info, 0);
3232
3233 /* don't use the log in recovery mode, it won't be valid */
3234 btrfs_set_super_log_root(disk_super, 0);
3235
3236 /* we can't trust the free space cache either */
3237 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3238
3239 ret = next_root_backup(fs_info, fs_info->super_copy,
3240 &num_backups_tried, &backup_index);
3241 if (ret == -1)
3242 goto fail_block_groups;
3243 goto retry_root_backup;
3244 }
3245
3246 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3247 {
3248 if (uptodate) {
3249 set_buffer_uptodate(bh);
3250 } else {
3251 struct btrfs_device *device = (struct btrfs_device *)
3252 bh->b_private;
3253
3254 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3255 "lost page write due to IO error on %s",
3256 rcu_str_deref(device->name));
3257 /* note, we don't set_buffer_write_io_error because we have
3258 * our own ways of dealing with the IO errors
3259 */
3260 clear_buffer_uptodate(bh);
3261 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3262 }
3263 unlock_buffer(bh);
3264 put_bh(bh);
3265 }
3266
3267 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3268 struct buffer_head **bh_ret)
3269 {
3270 struct buffer_head *bh;
3271 struct btrfs_super_block *super;
3272 u64 bytenr;
3273
3274 bytenr = btrfs_sb_offset(copy_num);
3275 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3276 return -EINVAL;
3277
3278 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3279 /*
3280 * If we fail to read from the underlying devices, as of now
3281 * the best option we have is to mark it EIO.
3282 */
3283 if (!bh)
3284 return -EIO;
3285
3286 super = (struct btrfs_super_block *)bh->b_data;
3287 if (btrfs_super_bytenr(super) != bytenr ||
3288 btrfs_super_magic(super) != BTRFS_MAGIC) {
3289 brelse(bh);
3290 return -EINVAL;
3291 }
3292
3293 *bh_ret = bh;
3294 return 0;
3295 }
3296
3297
3298 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3299 {
3300 struct buffer_head *bh;
3301 struct buffer_head *latest = NULL;
3302 struct btrfs_super_block *super;
3303 int i;
3304 u64 transid = 0;
3305 int ret = -EINVAL;
3306
3307 /* we would like to check all the supers, but that would make
3308 * a btrfs mount succeed after a mkfs from a different FS.
3309 * So, we need to add a special mount option to scan for
3310 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3311 */
3312 for (i = 0; i < 1; i++) {
3313 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3314 if (ret)
3315 continue;
3316
3317 super = (struct btrfs_super_block *)bh->b_data;
3318
3319 if (!latest || btrfs_super_generation(super) > transid) {
3320 brelse(latest);
3321 latest = bh;
3322 transid = btrfs_super_generation(super);
3323 } else {
3324 brelse(bh);
3325 }
3326 }
3327
3328 if (!latest)
3329 return ERR_PTR(ret);
3330
3331 return latest;
3332 }
3333
3334 /*
3335 * this should be called twice, once with wait == 0 and
3336 * once with wait == 1. When wait == 0 is done, all the buffer heads
3337 * we write are pinned.
3338 *
3339 * They are released when wait == 1 is done.
3340 * max_mirrors must be the same for both runs, and it indicates how
3341 * many supers on this one device should be written.
3342 *
3343 * max_mirrors == 0 means to write them all.
3344 */
3345 static int write_dev_supers(struct btrfs_device *device,
3346 struct btrfs_super_block *sb,
3347 int do_barriers, int wait, int max_mirrors)
3348 {
3349 struct buffer_head *bh;
3350 int i;
3351 int ret;
3352 int errors = 0;
3353 u32 crc;
3354 u64 bytenr;
3355
3356 if (max_mirrors == 0)
3357 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3358
3359 for (i = 0; i < max_mirrors; i++) {
3360 bytenr = btrfs_sb_offset(i);
3361 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3362 device->commit_total_bytes)
3363 break;
3364
3365 if (wait) {
3366 bh = __find_get_block(device->bdev, bytenr / 4096,
3367 BTRFS_SUPER_INFO_SIZE);
3368 if (!bh) {
3369 errors++;
3370 continue;
3371 }
3372 wait_on_buffer(bh);
3373 if (!buffer_uptodate(bh))
3374 errors++;
3375
3376 /* drop our reference */
3377 brelse(bh);
3378
3379 /* drop the reference from the wait == 0 run */
3380 brelse(bh);
3381 continue;
3382 } else {
3383 btrfs_set_super_bytenr(sb, bytenr);
3384
3385 crc = ~(u32)0;
3386 crc = btrfs_csum_data((char *)sb +
3387 BTRFS_CSUM_SIZE, crc,
3388 BTRFS_SUPER_INFO_SIZE -
3389 BTRFS_CSUM_SIZE);
3390 btrfs_csum_final(crc, sb->csum);
3391
3392 /*
3393 * one reference for us, and we leave it for the
3394 * caller
3395 */
3396 bh = __getblk(device->bdev, bytenr / 4096,
3397 BTRFS_SUPER_INFO_SIZE);
3398 if (!bh) {
3399 btrfs_err(device->dev_root->fs_info,
3400 "couldn't get super buffer head for bytenr %llu",
3401 bytenr);
3402 errors++;
3403 continue;
3404 }
3405
3406 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3407
3408 /* one reference for submit_bh */
3409 get_bh(bh);
3410
3411 set_buffer_uptodate(bh);
3412 lock_buffer(bh);
3413 bh->b_end_io = btrfs_end_buffer_write_sync;
3414 bh->b_private = device;
3415 }
3416
3417 /*
3418 * we fua the first super. The others we allow
3419 * to go down lazy.
3420 */
3421 if (i == 0)
3422 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3423 else
3424 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3425 if (ret)
3426 errors++;
3427 }
3428 return errors < i ? 0 : -1;
3429 }
3430
3431 /*
3432 * endio for the write_dev_flush, this will wake anyone waiting
3433 * for the barrier when it is done
3434 */
3435 static void btrfs_end_empty_barrier(struct bio *bio)
3436 {
3437 if (bio->bi_private)
3438 complete(bio->bi_private);
3439 bio_put(bio);
3440 }
3441
3442 /*
3443 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3444 * sent down. With wait == 1, it waits for the previous flush.
3445 *
3446 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3447 * capable
3448 */
3449 static int write_dev_flush(struct btrfs_device *device, int wait)
3450 {
3451 struct bio *bio;
3452 int ret = 0;
3453
3454 if (device->nobarriers)
3455 return 0;
3456
3457 if (wait) {
3458 bio = device->flush_bio;
3459 if (!bio)
3460 return 0;
3461
3462 wait_for_completion(&device->flush_wait);
3463
3464 if (bio->bi_error) {
3465 ret = bio->bi_error;
3466 btrfs_dev_stat_inc_and_print(device,
3467 BTRFS_DEV_STAT_FLUSH_ERRS);
3468 }
3469
3470 /* drop the reference from the wait == 0 run */
3471 bio_put(bio);
3472 device->flush_bio = NULL;
3473
3474 return ret;
3475 }
3476
3477 /*
3478 * one reference for us, and we leave it for the
3479 * caller
3480 */
3481 device->flush_bio = NULL;
3482 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3483 if (!bio)
3484 return -ENOMEM;
3485
3486 bio->bi_end_io = btrfs_end_empty_barrier;
3487 bio->bi_bdev = device->bdev;
3488 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3489 init_completion(&device->flush_wait);
3490 bio->bi_private = &device->flush_wait;
3491 device->flush_bio = bio;
3492
3493 bio_get(bio);
3494 btrfsic_submit_bio(bio);
3495
3496 return 0;
3497 }
3498
3499 /*
3500 * send an empty flush down to each device in parallel,
3501 * then wait for them
3502 */
3503 static int barrier_all_devices(struct btrfs_fs_info *info)
3504 {
3505 struct list_head *head;
3506 struct btrfs_device *dev;
3507 int errors_send = 0;
3508 int errors_wait = 0;
3509 int ret;
3510
3511 /* send down all the barriers */
3512 head = &info->fs_devices->devices;
3513 list_for_each_entry_rcu(dev, head, dev_list) {
3514 if (dev->missing)
3515 continue;
3516 if (!dev->bdev) {
3517 errors_send++;
3518 continue;
3519 }
3520 if (!dev->in_fs_metadata || !dev->writeable)
3521 continue;
3522
3523 ret = write_dev_flush(dev, 0);
3524 if (ret)
3525 errors_send++;
3526 }
3527
3528 /* wait for all the barriers */
3529 list_for_each_entry_rcu(dev, head, dev_list) {
3530 if (dev->missing)
3531 continue;
3532 if (!dev->bdev) {
3533 errors_wait++;
3534 continue;
3535 }
3536 if (!dev->in_fs_metadata || !dev->writeable)
3537 continue;
3538
3539 ret = write_dev_flush(dev, 1);
3540 if (ret)
3541 errors_wait++;
3542 }
3543 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3544 errors_wait > info->num_tolerated_disk_barrier_failures)
3545 return -EIO;
3546 return 0;
3547 }
3548
3549 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3550 {
3551 int raid_type;
3552 int min_tolerated = INT_MAX;
3553
3554 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3555 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3556 min_tolerated = min(min_tolerated,
3557 btrfs_raid_array[BTRFS_RAID_SINGLE].
3558 tolerated_failures);
3559
3560 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3561 if (raid_type == BTRFS_RAID_SINGLE)
3562 continue;
3563 if (!(flags & btrfs_raid_group[raid_type]))
3564 continue;
3565 min_tolerated = min(min_tolerated,
3566 btrfs_raid_array[raid_type].
3567 tolerated_failures);
3568 }
3569
3570 if (min_tolerated == INT_MAX) {
3571 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3572 min_tolerated = 0;
3573 }
3574
3575 return min_tolerated;
3576 }
3577
3578 int btrfs_calc_num_tolerated_disk_barrier_failures(
3579 struct btrfs_fs_info *fs_info)
3580 {
3581 struct btrfs_ioctl_space_info space;
3582 struct btrfs_space_info *sinfo;
3583 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3584 BTRFS_BLOCK_GROUP_SYSTEM,
3585 BTRFS_BLOCK_GROUP_METADATA,
3586 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3587 int i;
3588 int c;
3589 int num_tolerated_disk_barrier_failures =
3590 (int)fs_info->fs_devices->num_devices;
3591
3592 for (i = 0; i < ARRAY_SIZE(types); i++) {
3593 struct btrfs_space_info *tmp;
3594
3595 sinfo = NULL;
3596 rcu_read_lock();
3597 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3598 if (tmp->flags == types[i]) {
3599 sinfo = tmp;
3600 break;
3601 }
3602 }
3603 rcu_read_unlock();
3604
3605 if (!sinfo)
3606 continue;
3607
3608 down_read(&sinfo->groups_sem);
3609 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3610 u64 flags;
3611
3612 if (list_empty(&sinfo->block_groups[c]))
3613 continue;
3614
3615 btrfs_get_block_group_info(&sinfo->block_groups[c],
3616 &space);
3617 if (space.total_bytes == 0 || space.used_bytes == 0)
3618 continue;
3619 flags = space.flags;
3620
3621 num_tolerated_disk_barrier_failures = min(
3622 num_tolerated_disk_barrier_failures,
3623 btrfs_get_num_tolerated_disk_barrier_failures(
3624 flags));
3625 }
3626 up_read(&sinfo->groups_sem);
3627 }
3628
3629 return num_tolerated_disk_barrier_failures;
3630 }
3631
3632 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3633 {
3634 struct list_head *head;
3635 struct btrfs_device *dev;
3636 struct btrfs_super_block *sb;
3637 struct btrfs_dev_item *dev_item;
3638 int ret;
3639 int do_barriers;
3640 int max_errors;
3641 int total_errors = 0;
3642 u64 flags;
3643
3644 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3645 backup_super_roots(root->fs_info);
3646
3647 sb = root->fs_info->super_for_commit;
3648 dev_item = &sb->dev_item;
3649
3650 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3651 head = &root->fs_info->fs_devices->devices;
3652 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3653
3654 if (do_barriers) {
3655 ret = barrier_all_devices(root->fs_info);
3656 if (ret) {
3657 mutex_unlock(
3658 &root->fs_info->fs_devices->device_list_mutex);
3659 btrfs_handle_fs_error(root->fs_info, ret,
3660 "errors while submitting device barriers.");
3661 return ret;
3662 }
3663 }
3664
3665 list_for_each_entry_rcu(dev, head, dev_list) {
3666 if (!dev->bdev) {
3667 total_errors++;
3668 continue;
3669 }
3670 if (!dev->in_fs_metadata || !dev->writeable)
3671 continue;
3672
3673 btrfs_set_stack_device_generation(dev_item, 0);
3674 btrfs_set_stack_device_type(dev_item, dev->type);
3675 btrfs_set_stack_device_id(dev_item, dev->devid);
3676 btrfs_set_stack_device_total_bytes(dev_item,
3677 dev->commit_total_bytes);
3678 btrfs_set_stack_device_bytes_used(dev_item,
3679 dev->commit_bytes_used);
3680 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3681 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3682 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3683 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3684 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3685
3686 flags = btrfs_super_flags(sb);
3687 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3688
3689 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3690 if (ret)
3691 total_errors++;
3692 }
3693 if (total_errors > max_errors) {
3694 btrfs_err(root->fs_info, "%d errors while writing supers",
3695 total_errors);
3696 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3697
3698 /* FUA is masked off if unsupported and can't be the reason */
3699 btrfs_handle_fs_error(root->fs_info, -EIO,
3700 "%d errors while writing supers", total_errors);
3701 return -EIO;
3702 }
3703
3704 total_errors = 0;
3705 list_for_each_entry_rcu(dev, head, dev_list) {
3706 if (!dev->bdev)
3707 continue;
3708 if (!dev->in_fs_metadata || !dev->writeable)
3709 continue;
3710
3711 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3712 if (ret)
3713 total_errors++;
3714 }
3715 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3716 if (total_errors > max_errors) {
3717 btrfs_handle_fs_error(root->fs_info, -EIO,
3718 "%d errors while writing supers", total_errors);
3719 return -EIO;
3720 }
3721 return 0;
3722 }
3723
3724 int write_ctree_super(struct btrfs_trans_handle *trans,
3725 struct btrfs_root *root, int max_mirrors)
3726 {
3727 return write_all_supers(root, max_mirrors);
3728 }
3729
3730 /* Drop a fs root from the radix tree and free it. */
3731 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3732 struct btrfs_root *root)
3733 {
3734 spin_lock(&fs_info->fs_roots_radix_lock);
3735 radix_tree_delete(&fs_info->fs_roots_radix,
3736 (unsigned long)root->root_key.objectid);
3737 spin_unlock(&fs_info->fs_roots_radix_lock);
3738
3739 if (btrfs_root_refs(&root->root_item) == 0)
3740 synchronize_srcu(&fs_info->subvol_srcu);
3741
3742 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3743 btrfs_free_log(NULL, root);
3744
3745 if (root->free_ino_pinned)
3746 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3747 if (root->free_ino_ctl)
3748 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3749 free_fs_root(root);
3750 }
3751
3752 static void free_fs_root(struct btrfs_root *root)
3753 {
3754 iput(root->ino_cache_inode);
3755 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3756 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3757 root->orphan_block_rsv = NULL;
3758 if (root->anon_dev)
3759 free_anon_bdev(root->anon_dev);
3760 if (root->subv_writers)
3761 btrfs_free_subvolume_writers(root->subv_writers);
3762 free_extent_buffer(root->node);
3763 free_extent_buffer(root->commit_root);
3764 kfree(root->free_ino_ctl);
3765 kfree(root->free_ino_pinned);
3766 kfree(root->name);
3767 btrfs_put_fs_root(root);
3768 }
3769
3770 void btrfs_free_fs_root(struct btrfs_root *root)
3771 {
3772 free_fs_root(root);
3773 }
3774
3775 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3776 {
3777 u64 root_objectid = 0;
3778 struct btrfs_root *gang[8];
3779 int i = 0;
3780 int err = 0;
3781 unsigned int ret = 0;
3782 int index;
3783
3784 while (1) {
3785 index = srcu_read_lock(&fs_info->subvol_srcu);
3786 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3787 (void **)gang, root_objectid,
3788 ARRAY_SIZE(gang));
3789 if (!ret) {
3790 srcu_read_unlock(&fs_info->subvol_srcu, index);
3791 break;
3792 }
3793 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3794
3795 for (i = 0; i < ret; i++) {
3796 /* Avoid to grab roots in dead_roots */
3797 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3798 gang[i] = NULL;
3799 continue;
3800 }
3801 /* grab all the search result for later use */
3802 gang[i] = btrfs_grab_fs_root(gang[i]);
3803 }
3804 srcu_read_unlock(&fs_info->subvol_srcu, index);
3805
3806 for (i = 0; i < ret; i++) {
3807 if (!gang[i])
3808 continue;
3809 root_objectid = gang[i]->root_key.objectid;
3810 err = btrfs_orphan_cleanup(gang[i]);
3811 if (err)
3812 break;
3813 btrfs_put_fs_root(gang[i]);
3814 }
3815 root_objectid++;
3816 }
3817
3818 /* release the uncleaned roots due to error */
3819 for (; i < ret; i++) {
3820 if (gang[i])
3821 btrfs_put_fs_root(gang[i]);
3822 }
3823 return err;
3824 }
3825
3826 int btrfs_commit_super(struct btrfs_root *root)
3827 {
3828 struct btrfs_trans_handle *trans;
3829
3830 mutex_lock(&root->fs_info->cleaner_mutex);
3831 btrfs_run_delayed_iputs(root);
3832 mutex_unlock(&root->fs_info->cleaner_mutex);
3833 wake_up_process(root->fs_info->cleaner_kthread);
3834
3835 /* wait until ongoing cleanup work done */
3836 down_write(&root->fs_info->cleanup_work_sem);
3837 up_write(&root->fs_info->cleanup_work_sem);
3838
3839 trans = btrfs_join_transaction(root);
3840 if (IS_ERR(trans))
3841 return PTR_ERR(trans);
3842 return btrfs_commit_transaction(trans, root);
3843 }
3844
3845 void close_ctree(struct btrfs_root *root)
3846 {
3847 struct btrfs_fs_info *fs_info = root->fs_info;
3848 int ret;
3849
3850 fs_info->closing = 1;
3851 smp_mb();
3852
3853 /* wait for the qgroup rescan worker to stop */
3854 btrfs_qgroup_wait_for_completion(fs_info);
3855
3856 /* wait for the uuid_scan task to finish */
3857 down(&fs_info->uuid_tree_rescan_sem);
3858 /* avoid complains from lockdep et al., set sem back to initial state */
3859 up(&fs_info->uuid_tree_rescan_sem);
3860
3861 /* pause restriper - we want to resume on mount */
3862 btrfs_pause_balance(fs_info);
3863
3864 btrfs_dev_replace_suspend_for_unmount(fs_info);
3865
3866 btrfs_scrub_cancel(fs_info);
3867
3868 /* wait for any defraggers to finish */
3869 wait_event(fs_info->transaction_wait,
3870 (atomic_read(&fs_info->defrag_running) == 0));
3871
3872 /* clear out the rbtree of defraggable inodes */
3873 btrfs_cleanup_defrag_inodes(fs_info);
3874
3875 cancel_work_sync(&fs_info->async_reclaim_work);
3876
3877 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3878 /*
3879 * If the cleaner thread is stopped and there are
3880 * block groups queued for removal, the deletion will be
3881 * skipped when we quit the cleaner thread.
3882 */
3883 btrfs_delete_unused_bgs(root->fs_info);
3884
3885 ret = btrfs_commit_super(root);
3886 if (ret)
3887 btrfs_err(fs_info, "commit super ret %d", ret);
3888 }
3889
3890 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3891 btrfs_error_commit_super(root);
3892
3893 kthread_stop(fs_info->transaction_kthread);
3894 kthread_stop(fs_info->cleaner_kthread);
3895
3896 fs_info->closing = 2;
3897 smp_mb();
3898
3899 btrfs_free_qgroup_config(fs_info);
3900
3901 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3902 btrfs_info(fs_info, "at unmount delalloc count %lld",
3903 percpu_counter_sum(&fs_info->delalloc_bytes));
3904 }
3905
3906 btrfs_sysfs_remove_mounted(fs_info);
3907 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3908
3909 btrfs_free_fs_roots(fs_info);
3910
3911 btrfs_put_block_group_cache(fs_info);
3912
3913 btrfs_free_block_groups(fs_info);
3914
3915 /*
3916 * we must make sure there is not any read request to
3917 * submit after we stopping all workers.
3918 */
3919 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3920 btrfs_stop_all_workers(fs_info);
3921
3922 fs_info->open = 0;
3923 free_root_pointers(fs_info, 1);
3924
3925 iput(fs_info->btree_inode);
3926
3927 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3928 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3929 btrfsic_unmount(root, fs_info->fs_devices);
3930 #endif
3931
3932 btrfs_close_devices(fs_info->fs_devices);
3933 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3934
3935 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3936 percpu_counter_destroy(&fs_info->delalloc_bytes);
3937 percpu_counter_destroy(&fs_info->bio_counter);
3938 bdi_destroy(&fs_info->bdi);
3939 cleanup_srcu_struct(&fs_info->subvol_srcu);
3940
3941 btrfs_free_stripe_hash_table(fs_info);
3942
3943 __btrfs_free_block_rsv(root->orphan_block_rsv);
3944 root->orphan_block_rsv = NULL;
3945
3946 lock_chunks(root);
3947 while (!list_empty(&fs_info->pinned_chunks)) {
3948 struct extent_map *em;
3949
3950 em = list_first_entry(&fs_info->pinned_chunks,
3951 struct extent_map, list);
3952 list_del_init(&em->list);
3953 free_extent_map(em);
3954 }
3955 unlock_chunks(root);
3956 }
3957
3958 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3959 int atomic)
3960 {
3961 int ret;
3962 struct inode *btree_inode = buf->pages[0]->mapping->host;
3963
3964 ret = extent_buffer_uptodate(buf);
3965 if (!ret)
3966 return ret;
3967
3968 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3969 parent_transid, atomic);
3970 if (ret == -EAGAIN)
3971 return ret;
3972 return !ret;
3973 }
3974
3975 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3976 {
3977 struct btrfs_root *root;
3978 u64 transid = btrfs_header_generation(buf);
3979 int was_dirty;
3980
3981 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3982 /*
3983 * This is a fast path so only do this check if we have sanity tests
3984 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3985 * outside of the sanity tests.
3986 */
3987 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3988 return;
3989 #endif
3990 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3991 btrfs_assert_tree_locked(buf);
3992 if (transid != root->fs_info->generation)
3993 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3994 "found %llu running %llu\n",
3995 buf->start, transid, root->fs_info->generation);
3996 was_dirty = set_extent_buffer_dirty(buf);
3997 if (!was_dirty)
3998 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3999 buf->len,
4000 root->fs_info->dirty_metadata_batch);
4001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4003 btrfs_print_leaf(root, buf);
4004 ASSERT(0);
4005 }
4006 #endif
4007 }
4008
4009 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4010 int flush_delayed)
4011 {
4012 /*
4013 * looks as though older kernels can get into trouble with
4014 * this code, they end up stuck in balance_dirty_pages forever
4015 */
4016 int ret;
4017
4018 if (current->flags & PF_MEMALLOC)
4019 return;
4020
4021 if (flush_delayed)
4022 btrfs_balance_delayed_items(root);
4023
4024 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4025 BTRFS_DIRTY_METADATA_THRESH);
4026 if (ret > 0) {
4027 balance_dirty_pages_ratelimited(
4028 root->fs_info->btree_inode->i_mapping);
4029 }
4030 }
4031
4032 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4033 {
4034 __btrfs_btree_balance_dirty(root, 1);
4035 }
4036
4037 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4038 {
4039 __btrfs_btree_balance_dirty(root, 0);
4040 }
4041
4042 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4043 {
4044 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4045 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4046 }
4047
4048 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4049 int read_only)
4050 {
4051 struct btrfs_super_block *sb = fs_info->super_copy;
4052 u64 nodesize = btrfs_super_nodesize(sb);
4053 u64 sectorsize = btrfs_super_sectorsize(sb);
4054 int ret = 0;
4055
4056 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4057 printk(KERN_ERR "BTRFS: no valid FS found\n");
4058 ret = -EINVAL;
4059 }
4060 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4061 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4062 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4063 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4065 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4066 ret = -EINVAL;
4067 }
4068 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4069 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4070 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4071 ret = -EINVAL;
4072 }
4073 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4074 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4075 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4076 ret = -EINVAL;
4077 }
4078
4079 /*
4080 * Check sectorsize and nodesize first, other check will need it.
4081 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4082 */
4083 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4084 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4085 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4086 ret = -EINVAL;
4087 }
4088 /* Only PAGE SIZE is supported yet */
4089 if (sectorsize != PAGE_SIZE) {
4090 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4091 sectorsize, PAGE_SIZE);
4092 ret = -EINVAL;
4093 }
4094 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4095 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4096 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4097 ret = -EINVAL;
4098 }
4099 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4100 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4101 le32_to_cpu(sb->__unused_leafsize),
4102 nodesize);
4103 ret = -EINVAL;
4104 }
4105
4106 /* Root alignment check */
4107 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4108 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4109 btrfs_super_root(sb));
4110 ret = -EINVAL;
4111 }
4112 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4113 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4114 btrfs_super_chunk_root(sb));
4115 ret = -EINVAL;
4116 }
4117 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4118 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4119 btrfs_super_log_root(sb));
4120 ret = -EINVAL;
4121 }
4122
4123 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4124 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4125 fs_info->fsid, sb->dev_item.fsid);
4126 ret = -EINVAL;
4127 }
4128
4129 /*
4130 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4131 * done later
4132 */
4133 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4134 btrfs_err(fs_info, "bytes_used is too small %llu",
4135 btrfs_super_bytes_used(sb));
4136 ret = -EINVAL;
4137 }
4138 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4139 btrfs_err(fs_info, "invalid stripesize %u",
4140 btrfs_super_stripesize(sb));
4141 ret = -EINVAL;
4142 }
4143 if (btrfs_super_num_devices(sb) > (1UL << 31))
4144 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4145 btrfs_super_num_devices(sb));
4146 if (btrfs_super_num_devices(sb) == 0) {
4147 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4148 ret = -EINVAL;
4149 }
4150
4151 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4152 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4153 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4154 ret = -EINVAL;
4155 }
4156
4157 /*
4158 * Obvious sys_chunk_array corruptions, it must hold at least one key
4159 * and one chunk
4160 */
4161 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4162 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4163 btrfs_super_sys_array_size(sb),
4164 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4165 ret = -EINVAL;
4166 }
4167 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4168 + sizeof(struct btrfs_chunk)) {
4169 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4170 btrfs_super_sys_array_size(sb),
4171 sizeof(struct btrfs_disk_key)
4172 + sizeof(struct btrfs_chunk));
4173 ret = -EINVAL;
4174 }
4175
4176 /*
4177 * The generation is a global counter, we'll trust it more than the others
4178 * but it's still possible that it's the one that's wrong.
4179 */
4180 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4181 printk(KERN_WARNING
4182 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4183 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4184 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4185 && btrfs_super_cache_generation(sb) != (u64)-1)
4186 printk(KERN_WARNING
4187 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4188 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4189
4190 return ret;
4191 }
4192
4193 static void btrfs_error_commit_super(struct btrfs_root *root)
4194 {
4195 mutex_lock(&root->fs_info->cleaner_mutex);
4196 btrfs_run_delayed_iputs(root);
4197 mutex_unlock(&root->fs_info->cleaner_mutex);
4198
4199 down_write(&root->fs_info->cleanup_work_sem);
4200 up_write(&root->fs_info->cleanup_work_sem);
4201
4202 /* cleanup FS via transaction */
4203 btrfs_cleanup_transaction(root);
4204 }
4205
4206 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4207 {
4208 struct btrfs_ordered_extent *ordered;
4209
4210 spin_lock(&root->ordered_extent_lock);
4211 /*
4212 * This will just short circuit the ordered completion stuff which will
4213 * make sure the ordered extent gets properly cleaned up.
4214 */
4215 list_for_each_entry(ordered, &root->ordered_extents,
4216 root_extent_list)
4217 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4218 spin_unlock(&root->ordered_extent_lock);
4219 }
4220
4221 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4222 {
4223 struct btrfs_root *root;
4224 struct list_head splice;
4225
4226 INIT_LIST_HEAD(&splice);
4227
4228 spin_lock(&fs_info->ordered_root_lock);
4229 list_splice_init(&fs_info->ordered_roots, &splice);
4230 while (!list_empty(&splice)) {
4231 root = list_first_entry(&splice, struct btrfs_root,
4232 ordered_root);
4233 list_move_tail(&root->ordered_root,
4234 &fs_info->ordered_roots);
4235
4236 spin_unlock(&fs_info->ordered_root_lock);
4237 btrfs_destroy_ordered_extents(root);
4238
4239 cond_resched();
4240 spin_lock(&fs_info->ordered_root_lock);
4241 }
4242 spin_unlock(&fs_info->ordered_root_lock);
4243 }
4244
4245 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4246 struct btrfs_root *root)
4247 {
4248 struct rb_node *node;
4249 struct btrfs_delayed_ref_root *delayed_refs;
4250 struct btrfs_delayed_ref_node *ref;
4251 int ret = 0;
4252
4253 delayed_refs = &trans->delayed_refs;
4254
4255 spin_lock(&delayed_refs->lock);
4256 if (atomic_read(&delayed_refs->num_entries) == 0) {
4257 spin_unlock(&delayed_refs->lock);
4258 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4259 return ret;
4260 }
4261
4262 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4263 struct btrfs_delayed_ref_head *head;
4264 struct btrfs_delayed_ref_node *tmp;
4265 bool pin_bytes = false;
4266
4267 head = rb_entry(node, struct btrfs_delayed_ref_head,
4268 href_node);
4269 if (!mutex_trylock(&head->mutex)) {
4270 atomic_inc(&head->node.refs);
4271 spin_unlock(&delayed_refs->lock);
4272
4273 mutex_lock(&head->mutex);
4274 mutex_unlock(&head->mutex);
4275 btrfs_put_delayed_ref(&head->node);
4276 spin_lock(&delayed_refs->lock);
4277 continue;
4278 }
4279 spin_lock(&head->lock);
4280 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4281 list) {
4282 ref->in_tree = 0;
4283 list_del(&ref->list);
4284 atomic_dec(&delayed_refs->num_entries);
4285 btrfs_put_delayed_ref(ref);
4286 }
4287 if (head->must_insert_reserved)
4288 pin_bytes = true;
4289 btrfs_free_delayed_extent_op(head->extent_op);
4290 delayed_refs->num_heads--;
4291 if (head->processing == 0)
4292 delayed_refs->num_heads_ready--;
4293 atomic_dec(&delayed_refs->num_entries);
4294 head->node.in_tree = 0;
4295 rb_erase(&head->href_node, &delayed_refs->href_root);
4296 spin_unlock(&head->lock);
4297 spin_unlock(&delayed_refs->lock);
4298 mutex_unlock(&head->mutex);
4299
4300 if (pin_bytes)
4301 btrfs_pin_extent(root, head->node.bytenr,
4302 head->node.num_bytes, 1);
4303 btrfs_put_delayed_ref(&head->node);
4304 cond_resched();
4305 spin_lock(&delayed_refs->lock);
4306 }
4307
4308 spin_unlock(&delayed_refs->lock);
4309
4310 return ret;
4311 }
4312
4313 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4314 {
4315 struct btrfs_inode *btrfs_inode;
4316 struct list_head splice;
4317
4318 INIT_LIST_HEAD(&splice);
4319
4320 spin_lock(&root->delalloc_lock);
4321 list_splice_init(&root->delalloc_inodes, &splice);
4322
4323 while (!list_empty(&splice)) {
4324 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4325 delalloc_inodes);
4326
4327 list_del_init(&btrfs_inode->delalloc_inodes);
4328 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4329 &btrfs_inode->runtime_flags);
4330 spin_unlock(&root->delalloc_lock);
4331
4332 btrfs_invalidate_inodes(btrfs_inode->root);
4333
4334 spin_lock(&root->delalloc_lock);
4335 }
4336
4337 spin_unlock(&root->delalloc_lock);
4338 }
4339
4340 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4341 {
4342 struct btrfs_root *root;
4343 struct list_head splice;
4344
4345 INIT_LIST_HEAD(&splice);
4346
4347 spin_lock(&fs_info->delalloc_root_lock);
4348 list_splice_init(&fs_info->delalloc_roots, &splice);
4349 while (!list_empty(&splice)) {
4350 root = list_first_entry(&splice, struct btrfs_root,
4351 delalloc_root);
4352 list_del_init(&root->delalloc_root);
4353 root = btrfs_grab_fs_root(root);
4354 BUG_ON(!root);
4355 spin_unlock(&fs_info->delalloc_root_lock);
4356
4357 btrfs_destroy_delalloc_inodes(root);
4358 btrfs_put_fs_root(root);
4359
4360 spin_lock(&fs_info->delalloc_root_lock);
4361 }
4362 spin_unlock(&fs_info->delalloc_root_lock);
4363 }
4364
4365 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4366 struct extent_io_tree *dirty_pages,
4367 int mark)
4368 {
4369 int ret;
4370 struct extent_buffer *eb;
4371 u64 start = 0;
4372 u64 end;
4373
4374 while (1) {
4375 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4376 mark, NULL);
4377 if (ret)
4378 break;
4379
4380 clear_extent_bits(dirty_pages, start, end, mark);
4381 while (start <= end) {
4382 eb = btrfs_find_tree_block(root->fs_info, start);
4383 start += root->nodesize;
4384 if (!eb)
4385 continue;
4386 wait_on_extent_buffer_writeback(eb);
4387
4388 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4389 &eb->bflags))
4390 clear_extent_buffer_dirty(eb);
4391 free_extent_buffer_stale(eb);
4392 }
4393 }
4394
4395 return ret;
4396 }
4397
4398 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4399 struct extent_io_tree *pinned_extents)
4400 {
4401 struct extent_io_tree *unpin;
4402 u64 start;
4403 u64 end;
4404 int ret;
4405 bool loop = true;
4406
4407 unpin = pinned_extents;
4408 again:
4409 while (1) {
4410 ret = find_first_extent_bit(unpin, 0, &start, &end,
4411 EXTENT_DIRTY, NULL);
4412 if (ret)
4413 break;
4414
4415 clear_extent_dirty(unpin, start, end);
4416 btrfs_error_unpin_extent_range(root, start, end);
4417 cond_resched();
4418 }
4419
4420 if (loop) {
4421 if (unpin == &root->fs_info->freed_extents[0])
4422 unpin = &root->fs_info->freed_extents[1];
4423 else
4424 unpin = &root->fs_info->freed_extents[0];
4425 loop = false;
4426 goto again;
4427 }
4428
4429 return 0;
4430 }
4431
4432 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4433 struct btrfs_root *root)
4434 {
4435 btrfs_destroy_delayed_refs(cur_trans, root);
4436
4437 cur_trans->state = TRANS_STATE_COMMIT_START;
4438 wake_up(&root->fs_info->transaction_blocked_wait);
4439
4440 cur_trans->state = TRANS_STATE_UNBLOCKED;
4441 wake_up(&root->fs_info->transaction_wait);
4442
4443 btrfs_destroy_delayed_inodes(root);
4444 btrfs_assert_delayed_root_empty(root);
4445
4446 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4447 EXTENT_DIRTY);
4448 btrfs_destroy_pinned_extent(root,
4449 root->fs_info->pinned_extents);
4450
4451 cur_trans->state =TRANS_STATE_COMPLETED;
4452 wake_up(&cur_trans->commit_wait);
4453
4454 /*
4455 memset(cur_trans, 0, sizeof(*cur_trans));
4456 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4457 */
4458 }
4459
4460 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4461 {
4462 struct btrfs_transaction *t;
4463
4464 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4465
4466 spin_lock(&root->fs_info->trans_lock);
4467 while (!list_empty(&root->fs_info->trans_list)) {
4468 t = list_first_entry(&root->fs_info->trans_list,
4469 struct btrfs_transaction, list);
4470 if (t->state >= TRANS_STATE_COMMIT_START) {
4471 atomic_inc(&t->use_count);
4472 spin_unlock(&root->fs_info->trans_lock);
4473 btrfs_wait_for_commit(root, t->transid);
4474 btrfs_put_transaction(t);
4475 spin_lock(&root->fs_info->trans_lock);
4476 continue;
4477 }
4478 if (t == root->fs_info->running_transaction) {
4479 t->state = TRANS_STATE_COMMIT_DOING;
4480 spin_unlock(&root->fs_info->trans_lock);
4481 /*
4482 * We wait for 0 num_writers since we don't hold a trans
4483 * handle open currently for this transaction.
4484 */
4485 wait_event(t->writer_wait,
4486 atomic_read(&t->num_writers) == 0);
4487 } else {
4488 spin_unlock(&root->fs_info->trans_lock);
4489 }
4490 btrfs_cleanup_one_transaction(t, root);
4491
4492 spin_lock(&root->fs_info->trans_lock);
4493 if (t == root->fs_info->running_transaction)
4494 root->fs_info->running_transaction = NULL;
4495 list_del_init(&t->list);
4496 spin_unlock(&root->fs_info->trans_lock);
4497
4498 btrfs_put_transaction(t);
4499 trace_btrfs_transaction_commit(root);
4500 spin_lock(&root->fs_info->trans_lock);
4501 }
4502 spin_unlock(&root->fs_info->trans_lock);
4503 btrfs_destroy_all_ordered_extents(root->fs_info);
4504 btrfs_destroy_delayed_inodes(root);
4505 btrfs_assert_delayed_root_empty(root);
4506 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4507 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4508 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4509
4510 return 0;
4511 }
4512
4513 static const struct extent_io_ops btree_extent_io_ops = {
4514 .readpage_end_io_hook = btree_readpage_end_io_hook,
4515 .readpage_io_failed_hook = btree_io_failed_hook,
4516 .submit_bio_hook = btree_submit_bio_hook,
4517 /* note we're sharing with inode.c for the merge bio hook */
4518 .merge_bio_hook = btrfs_merge_bio_hook,
4519 };
This page took 0.169343 seconds and 5 git commands to generate.