9c94dddde704b719296b86180267f2a0806ce252
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50
51 struct end_io_wq {
52 struct bio *bio;
53 bio_end_io_t *end_io;
54 void *private;
55 struct btrfs_fs_info *info;
56 int error;
57 int metadata;
58 struct list_head list;
59 };
60
61 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
62 size_t page_offset, u64 start, u64 len,
63 int create)
64 {
65 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
66 struct extent_map *em;
67 int ret;
68
69 again:
70 spin_lock(&em_tree->lock);
71 em = lookup_extent_mapping(em_tree, start, len);
72 spin_unlock(&em_tree->lock);
73 if (em) {
74 goto out;
75 }
76 em = alloc_extent_map(GFP_NOFS);
77 if (!em) {
78 em = ERR_PTR(-ENOMEM);
79 goto out;
80 }
81 em->start = 0;
82 em->len = i_size_read(inode);
83 em->block_start = 0;
84 em->bdev = inode->i_sb->s_bdev;
85
86 spin_lock(&em_tree->lock);
87 ret = add_extent_mapping(em_tree, em);
88 spin_unlock(&em_tree->lock);
89
90 if (ret == -EEXIST) {
91 free_extent_map(em);
92 em = NULL;
93 goto again;
94 } else if (ret) {
95 em = ERR_PTR(ret);
96 }
97 out:
98 return em;
99 }
100
101 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
102 {
103 return btrfs_crc32c(seed, data, len);
104 }
105
106 void btrfs_csum_final(u32 crc, char *result)
107 {
108 *(__le32 *)result = ~cpu_to_le32(crc);
109 }
110
111 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
112 int verify)
113 {
114 char result[BTRFS_CRC32_SIZE];
115 unsigned long len;
116 unsigned long cur_len;
117 unsigned long offset = BTRFS_CSUM_SIZE;
118 char *map_token = NULL;
119 char *kaddr;
120 unsigned long map_start;
121 unsigned long map_len;
122 int err;
123 u32 crc = ~(u32)0;
124
125 len = buf->len - offset;
126 while(len > 0) {
127 err = map_private_extent_buffer(buf, offset, 32,
128 &map_token, &kaddr,
129 &map_start, &map_len, KM_USER0);
130 if (err) {
131 printk("failed to map extent buffer! %lu\n",
132 offset);
133 return 1;
134 }
135 cur_len = min(len, map_len - (offset - map_start));
136 crc = btrfs_csum_data(root, kaddr + offset - map_start,
137 crc, cur_len);
138 len -= cur_len;
139 offset += cur_len;
140 unmap_extent_buffer(buf, map_token, KM_USER0);
141 }
142 btrfs_csum_final(crc, result);
143
144 if (verify) {
145 int from_this_trans = 0;
146
147 if (root->fs_info->running_transaction &&
148 btrfs_header_generation(buf) ==
149 root->fs_info->running_transaction->transid)
150 from_this_trans = 1;
151
152 /* FIXME, this is not good */
153 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
154 u32 val;
155 u32 found = 0;
156 memcpy(&found, result, BTRFS_CRC32_SIZE);
157
158 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
159 printk("btrfs: %s checksum verify failed on %llu "
160 "wanted %X found %X from_this_trans %d "
161 "level %d\n",
162 root->fs_info->sb->s_id,
163 buf->start, val, found, from_this_trans,
164 btrfs_header_level(buf));
165 return 1;
166 }
167 } else {
168 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
169 }
170 return 0;
171 }
172
173 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
174 struct extent_buffer *eb,
175 u64 start)
176 {
177 struct extent_io_tree *io_tree;
178 int ret;
179 int num_copies = 0;
180 int mirror_num = 0;
181
182 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
183 while (1) {
184 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
185 btree_get_extent, mirror_num);
186 if (!ret) {
187 if (mirror_num)
188 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
189 return ret;
190 }
191 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
192 eb->start, eb->len);
193 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
194 if (num_copies == 1) {
195 printk("reading %Lu failed only one copy\n", eb->start);
196 return ret;
197 }
198 mirror_num++;
199 if (mirror_num > num_copies) {
200 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
201 return ret;
202 }
203 }
204 printk("read extent buffer page last\n");
205 return -EIO;
206 }
207
208 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
209 {
210 struct extent_io_tree *tree;
211 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
212 u64 found_start;
213 int found_level;
214 unsigned long len;
215 struct extent_buffer *eb;
216 int ret;
217
218 tree = &BTRFS_I(page->mapping->host)->io_tree;
219
220 if (page->private == EXTENT_PAGE_PRIVATE)
221 goto out;
222 if (!page->private)
223 goto out;
224 len = page->private >> 2;
225 if (len == 0) {
226 WARN_ON(1);
227 }
228 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
229 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
230 BUG_ON(ret);
231 btrfs_clear_buffer_defrag(eb);
232 found_start = btrfs_header_bytenr(eb);
233 if (found_start != start) {
234 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
235 start, found_start, len);
236 WARN_ON(1);
237 goto err;
238 }
239 if (eb->first_page != page) {
240 printk("bad first page %lu %lu\n", eb->first_page->index,
241 page->index);
242 WARN_ON(1);
243 goto err;
244 }
245 if (!PageUptodate(page)) {
246 printk("csum not up to date page %lu\n", page->index);
247 WARN_ON(1);
248 goto err;
249 }
250 found_level = btrfs_header_level(eb);
251 spin_lock(&root->fs_info->hash_lock);
252 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
253 spin_unlock(&root->fs_info->hash_lock);
254 csum_tree_block(root, eb, 0);
255 err:
256 free_extent_buffer(eb);
257 out:
258 return 0;
259 }
260
261 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
262 {
263 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
264
265 csum_dirty_buffer(root, page);
266 return 0;
267 }
268
269 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
270 struct extent_state *state)
271 {
272 struct extent_io_tree *tree;
273 u64 found_start;
274 int found_level;
275 unsigned long len;
276 struct extent_buffer *eb;
277 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
278 int ret = 0;
279
280 tree = &BTRFS_I(page->mapping->host)->io_tree;
281 if (page->private == EXTENT_PAGE_PRIVATE)
282 goto out;
283 if (!page->private)
284 goto out;
285 len = page->private >> 2;
286 if (len == 0) {
287 WARN_ON(1);
288 }
289 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
290
291 btrfs_clear_buffer_defrag(eb);
292 found_start = btrfs_header_bytenr(eb);
293 if (found_start != start) {
294 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
295 ret = -EIO;
296 goto err;
297 }
298 if (eb->first_page != page) {
299 printk("bad first page %lu %lu\n", eb->first_page->index,
300 page->index);
301 WARN_ON(1);
302 ret = -EIO;
303 goto err;
304 }
305 found_level = btrfs_header_level(eb);
306
307 ret = csum_tree_block(root, eb, 1);
308 if (ret)
309 ret = -EIO;
310
311 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
312 end = eb->start + end - 1;
313 release_extent_buffer_tail_pages(eb);
314 err:
315 free_extent_buffer(eb);
316 out:
317 return ret;
318 }
319
320 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
321 static void end_workqueue_bio(struct bio *bio, int err)
322 #else
323 static int end_workqueue_bio(struct bio *bio,
324 unsigned int bytes_done, int err)
325 #endif
326 {
327 struct end_io_wq *end_io_wq = bio->bi_private;
328 struct btrfs_fs_info *fs_info;
329 unsigned long flags;
330
331 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
332 if (bio->bi_size)
333 return 1;
334 #endif
335
336 fs_info = end_io_wq->info;
337 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
338 end_io_wq->error = err;
339 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
340 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
341 queue_work(end_io_workqueue, &fs_info->end_io_work);
342
343 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
344 return 0;
345 #endif
346 }
347
348 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
349 int metadata)
350 {
351 struct end_io_wq *end_io_wq;
352 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
353 if (!end_io_wq)
354 return -ENOMEM;
355
356 end_io_wq->private = bio->bi_private;
357 end_io_wq->end_io = bio->bi_end_io;
358 end_io_wq->info = info;
359 end_io_wq->error = 0;
360 end_io_wq->bio = bio;
361 end_io_wq->metadata = metadata;
362
363 bio->bi_private = end_io_wq;
364 bio->bi_end_io = end_workqueue_bio;
365 return 0;
366 }
367
368 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
369 int mirror_num)
370 {
371 struct btrfs_root *root = BTRFS_I(inode)->root;
372 u64 offset;
373 int ret;
374
375 offset = bio->bi_sector << 9;
376
377 if (rw & (1 << BIO_RW)) {
378 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
379 }
380
381 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
382 BUG_ON(ret);
383
384 if (offset == BTRFS_SUPER_INFO_OFFSET) {
385 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
386 submit_bio(rw, bio);
387 return 0;
388 }
389 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
390 }
391
392 static int btree_writepage(struct page *page, struct writeback_control *wbc)
393 {
394 struct extent_io_tree *tree;
395 tree = &BTRFS_I(page->mapping->host)->io_tree;
396 return extent_write_full_page(tree, page, btree_get_extent, wbc);
397 }
398
399 static int btree_writepages(struct address_space *mapping,
400 struct writeback_control *wbc)
401 {
402 struct extent_io_tree *tree;
403 tree = &BTRFS_I(mapping->host)->io_tree;
404 if (wbc->sync_mode == WB_SYNC_NONE) {
405 u64 num_dirty;
406 u64 start = 0;
407 unsigned long thresh = 96 * 1024 * 1024;
408
409 if (wbc->for_kupdate)
410 return 0;
411
412 if (current_is_pdflush()) {
413 thresh = 96 * 1024 * 1024;
414 } else {
415 thresh = 8 * 1024 * 1024;
416 }
417 num_dirty = count_range_bits(tree, &start, (u64)-1,
418 thresh, EXTENT_DIRTY);
419 if (num_dirty < thresh) {
420 return 0;
421 }
422 }
423 return extent_writepages(tree, mapping, btree_get_extent, wbc);
424 }
425
426 int btree_readpage(struct file *file, struct page *page)
427 {
428 struct extent_io_tree *tree;
429 tree = &BTRFS_I(page->mapping->host)->io_tree;
430 return extent_read_full_page(tree, page, btree_get_extent);
431 }
432
433 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
434 {
435 struct extent_io_tree *tree;
436 struct extent_map_tree *map;
437 int ret;
438
439 if (page_count(page) > 3) {
440 /* once for page->private, once for the caller, once
441 * once for the page cache
442 */
443 return 0;
444 }
445 tree = &BTRFS_I(page->mapping->host)->io_tree;
446 map = &BTRFS_I(page->mapping->host)->extent_tree;
447 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
448 if (ret == 1) {
449 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
450 ClearPagePrivate(page);
451 set_page_private(page, 0);
452 page_cache_release(page);
453 }
454 return ret;
455 }
456
457 static void btree_invalidatepage(struct page *page, unsigned long offset)
458 {
459 struct extent_io_tree *tree;
460 tree = &BTRFS_I(page->mapping->host)->io_tree;
461 extent_invalidatepage(tree, page, offset);
462 btree_releasepage(page, GFP_NOFS);
463 }
464
465 #if 0
466 static int btree_writepage(struct page *page, struct writeback_control *wbc)
467 {
468 struct buffer_head *bh;
469 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
470 struct buffer_head *head;
471 if (!page_has_buffers(page)) {
472 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
473 (1 << BH_Dirty)|(1 << BH_Uptodate));
474 }
475 head = page_buffers(page);
476 bh = head;
477 do {
478 if (buffer_dirty(bh))
479 csum_tree_block(root, bh, 0);
480 bh = bh->b_this_page;
481 } while (bh != head);
482 return block_write_full_page(page, btree_get_block, wbc);
483 }
484 #endif
485
486 static struct address_space_operations btree_aops = {
487 .readpage = btree_readpage,
488 .writepage = btree_writepage,
489 .writepages = btree_writepages,
490 .releasepage = btree_releasepage,
491 .invalidatepage = btree_invalidatepage,
492 .sync_page = block_sync_page,
493 };
494
495 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
496 {
497 struct extent_buffer *buf = NULL;
498 struct inode *btree_inode = root->fs_info->btree_inode;
499 int ret = 0;
500
501 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
502 if (!buf)
503 return 0;
504 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
505 buf, 0, 0, btree_get_extent, 0);
506 free_extent_buffer(buf);
507 return ret;
508 }
509
510 static int close_all_devices(struct btrfs_fs_info *fs_info)
511 {
512 struct list_head *list;
513 struct list_head *next;
514 struct btrfs_device *device;
515
516 list = &fs_info->fs_devices->devices;
517 list_for_each(next, list) {
518 device = list_entry(next, struct btrfs_device, dev_list);
519 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
520 close_bdev_excl(device->bdev);
521 device->bdev = NULL;
522 }
523 return 0;
524 }
525
526 int btrfs_verify_block_csum(struct btrfs_root *root,
527 struct extent_buffer *buf)
528 {
529 return btrfs_buffer_uptodate(buf);
530 }
531
532 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
533 u64 bytenr, u32 blocksize)
534 {
535 struct inode *btree_inode = root->fs_info->btree_inode;
536 struct extent_buffer *eb;
537 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
538 bytenr, blocksize, GFP_NOFS);
539 return eb;
540 }
541
542 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
543 u64 bytenr, u32 blocksize)
544 {
545 struct inode *btree_inode = root->fs_info->btree_inode;
546 struct extent_buffer *eb;
547
548 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
549 bytenr, blocksize, NULL, GFP_NOFS);
550 return eb;
551 }
552
553
554 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
555 u32 blocksize)
556 {
557 struct extent_buffer *buf = NULL;
558 struct inode *btree_inode = root->fs_info->btree_inode;
559 struct extent_io_tree *io_tree;
560 int ret;
561
562 io_tree = &BTRFS_I(btree_inode)->io_tree;
563
564 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
565 if (!buf)
566 return NULL;
567
568 ret = btree_read_extent_buffer_pages(root, buf, 0);
569
570 if (ret == 0) {
571 buf->flags |= EXTENT_UPTODATE;
572 }
573 return buf;
574
575 }
576
577 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
578 struct extent_buffer *buf)
579 {
580 struct inode *btree_inode = root->fs_info->btree_inode;
581 if (btrfs_header_generation(buf) ==
582 root->fs_info->running_transaction->transid)
583 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
584 buf);
585 return 0;
586 }
587
588 int wait_on_tree_block_writeback(struct btrfs_root *root,
589 struct extent_buffer *buf)
590 {
591 struct inode *btree_inode = root->fs_info->btree_inode;
592 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
593 buf);
594 return 0;
595 }
596
597 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
598 u32 stripesize, struct btrfs_root *root,
599 struct btrfs_fs_info *fs_info,
600 u64 objectid)
601 {
602 root->node = NULL;
603 root->inode = NULL;
604 root->commit_root = NULL;
605 root->sectorsize = sectorsize;
606 root->nodesize = nodesize;
607 root->leafsize = leafsize;
608 root->stripesize = stripesize;
609 root->ref_cows = 0;
610 root->track_dirty = 0;
611
612 root->fs_info = fs_info;
613 root->objectid = objectid;
614 root->last_trans = 0;
615 root->highest_inode = 0;
616 root->last_inode_alloc = 0;
617 root->name = NULL;
618 root->in_sysfs = 0;
619
620 INIT_LIST_HEAD(&root->dirty_list);
621 memset(&root->root_key, 0, sizeof(root->root_key));
622 memset(&root->root_item, 0, sizeof(root->root_item));
623 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
624 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
625 init_completion(&root->kobj_unregister);
626 root->defrag_running = 0;
627 root->defrag_level = 0;
628 root->root_key.objectid = objectid;
629 return 0;
630 }
631
632 static int find_and_setup_root(struct btrfs_root *tree_root,
633 struct btrfs_fs_info *fs_info,
634 u64 objectid,
635 struct btrfs_root *root)
636 {
637 int ret;
638 u32 blocksize;
639
640 __setup_root(tree_root->nodesize, tree_root->leafsize,
641 tree_root->sectorsize, tree_root->stripesize,
642 root, fs_info, objectid);
643 ret = btrfs_find_last_root(tree_root, objectid,
644 &root->root_item, &root->root_key);
645 BUG_ON(ret);
646
647 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
648 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
649 blocksize);
650 BUG_ON(!root->node);
651 return 0;
652 }
653
654 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
655 struct btrfs_key *location)
656 {
657 struct btrfs_root *root;
658 struct btrfs_root *tree_root = fs_info->tree_root;
659 struct btrfs_path *path;
660 struct extent_buffer *l;
661 u64 highest_inode;
662 u32 blocksize;
663 int ret = 0;
664
665 root = kzalloc(sizeof(*root), GFP_NOFS);
666 if (!root)
667 return ERR_PTR(-ENOMEM);
668 if (location->offset == (u64)-1) {
669 ret = find_and_setup_root(tree_root, fs_info,
670 location->objectid, root);
671 if (ret) {
672 kfree(root);
673 return ERR_PTR(ret);
674 }
675 goto insert;
676 }
677
678 __setup_root(tree_root->nodesize, tree_root->leafsize,
679 tree_root->sectorsize, tree_root->stripesize,
680 root, fs_info, location->objectid);
681
682 path = btrfs_alloc_path();
683 BUG_ON(!path);
684 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
685 if (ret != 0) {
686 if (ret > 0)
687 ret = -ENOENT;
688 goto out;
689 }
690 l = path->nodes[0];
691 read_extent_buffer(l, &root->root_item,
692 btrfs_item_ptr_offset(l, path->slots[0]),
693 sizeof(root->root_item));
694 memcpy(&root->root_key, location, sizeof(*location));
695 ret = 0;
696 out:
697 btrfs_release_path(root, path);
698 btrfs_free_path(path);
699 if (ret) {
700 kfree(root);
701 return ERR_PTR(ret);
702 }
703 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
704 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
705 blocksize);
706 BUG_ON(!root->node);
707 insert:
708 root->ref_cows = 1;
709 ret = btrfs_find_highest_inode(root, &highest_inode);
710 if (ret == 0) {
711 root->highest_inode = highest_inode;
712 root->last_inode_alloc = highest_inode;
713 }
714 return root;
715 }
716
717 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
718 u64 root_objectid)
719 {
720 struct btrfs_root *root;
721
722 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
723 return fs_info->tree_root;
724 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
725 return fs_info->extent_root;
726
727 root = radix_tree_lookup(&fs_info->fs_roots_radix,
728 (unsigned long)root_objectid);
729 return root;
730 }
731
732 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
733 struct btrfs_key *location)
734 {
735 struct btrfs_root *root;
736 int ret;
737
738 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
739 return fs_info->tree_root;
740 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
741 return fs_info->extent_root;
742
743 root = radix_tree_lookup(&fs_info->fs_roots_radix,
744 (unsigned long)location->objectid);
745 if (root)
746 return root;
747
748 root = btrfs_read_fs_root_no_radix(fs_info, location);
749 if (IS_ERR(root))
750 return root;
751 ret = radix_tree_insert(&fs_info->fs_roots_radix,
752 (unsigned long)root->root_key.objectid,
753 root);
754 if (ret) {
755 free_extent_buffer(root->node);
756 kfree(root);
757 return ERR_PTR(ret);
758 }
759 ret = btrfs_find_dead_roots(fs_info->tree_root,
760 root->root_key.objectid, root);
761 BUG_ON(ret);
762
763 return root;
764 }
765
766 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
767 struct btrfs_key *location,
768 const char *name, int namelen)
769 {
770 struct btrfs_root *root;
771 int ret;
772
773 root = btrfs_read_fs_root_no_name(fs_info, location);
774 if (!root)
775 return NULL;
776
777 if (root->in_sysfs)
778 return root;
779
780 ret = btrfs_set_root_name(root, name, namelen);
781 if (ret) {
782 free_extent_buffer(root->node);
783 kfree(root);
784 return ERR_PTR(ret);
785 }
786
787 ret = btrfs_sysfs_add_root(root);
788 if (ret) {
789 free_extent_buffer(root->node);
790 kfree(root->name);
791 kfree(root);
792 return ERR_PTR(ret);
793 }
794 root->in_sysfs = 1;
795 return root;
796 }
797 #if 0
798 static int add_hasher(struct btrfs_fs_info *info, char *type) {
799 struct btrfs_hasher *hasher;
800
801 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
802 if (!hasher)
803 return -ENOMEM;
804 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
805 if (!hasher->hash_tfm) {
806 kfree(hasher);
807 return -EINVAL;
808 }
809 spin_lock(&info->hash_lock);
810 list_add(&hasher->list, &info->hashers);
811 spin_unlock(&info->hash_lock);
812 return 0;
813 }
814 #endif
815
816 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
817 {
818 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
819 int ret = 0;
820 struct list_head *cur;
821 struct btrfs_device *device;
822 struct backing_dev_info *bdi;
823
824 list_for_each(cur, &info->fs_devices->devices) {
825 device = list_entry(cur, struct btrfs_device, dev_list);
826 bdi = blk_get_backing_dev_info(device->bdev);
827 if (bdi && bdi_congested(bdi, bdi_bits)) {
828 ret = 1;
829 break;
830 }
831 }
832 return ret;
833 }
834
835 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
836 {
837 struct list_head *cur;
838 struct btrfs_device *device;
839 struct btrfs_fs_info *info;
840
841 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
842 list_for_each(cur, &info->fs_devices->devices) {
843 device = list_entry(cur, struct btrfs_device, dev_list);
844 bdi = blk_get_backing_dev_info(device->bdev);
845 if (bdi->unplug_io_fn) {
846 bdi->unplug_io_fn(bdi, page);
847 }
848 }
849 }
850
851 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
852 {
853 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
854 bdi_init(bdi);
855 #endif
856 bdi->ra_pages = default_backing_dev_info.ra_pages * 4;
857 bdi->state = 0;
858 bdi->capabilities = default_backing_dev_info.capabilities;
859 bdi->unplug_io_fn = btrfs_unplug_io_fn;
860 bdi->unplug_io_data = info;
861 bdi->congested_fn = btrfs_congested_fn;
862 bdi->congested_data = info;
863 return 0;
864 }
865
866 static int bio_ready_for_csum(struct bio *bio)
867 {
868 u64 length = 0;
869 u64 buf_len = 0;
870 u64 start = 0;
871 struct page *page;
872 struct extent_io_tree *io_tree = NULL;
873 struct btrfs_fs_info *info = NULL;
874 struct bio_vec *bvec;
875 int i;
876 int ret;
877
878 bio_for_each_segment(bvec, bio, i) {
879 page = bvec->bv_page;
880 if (page->private == EXTENT_PAGE_PRIVATE) {
881 length += bvec->bv_len;
882 continue;
883 }
884 if (!page->private) {
885 length += bvec->bv_len;
886 continue;
887 }
888 length = bvec->bv_len;
889 buf_len = page->private >> 2;
890 start = page_offset(page) + bvec->bv_offset;
891 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
892 info = BTRFS_I(page->mapping->host)->root->fs_info;
893 }
894 /* are we fully contained in this bio? */
895 if (buf_len <= length)
896 return 1;
897
898 ret = extent_range_uptodate(io_tree, start + length,
899 start + buf_len - 1);
900 if (ret == 1)
901 return ret;
902 return ret;
903 }
904
905 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
906 void btrfs_end_io_csum(void *p)
907 #else
908 void btrfs_end_io_csum(struct work_struct *work)
909 #endif
910 {
911 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
912 struct btrfs_fs_info *fs_info = p;
913 #else
914 struct btrfs_fs_info *fs_info = container_of(work,
915 struct btrfs_fs_info,
916 end_io_work);
917 #endif
918 unsigned long flags;
919 struct end_io_wq *end_io_wq;
920 struct bio *bio;
921 struct list_head *next;
922 int error;
923 int was_empty;
924
925 while(1) {
926 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
927 if (list_empty(&fs_info->end_io_work_list)) {
928 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
929 flags);
930 return;
931 }
932 next = fs_info->end_io_work_list.next;
933 list_del(next);
934 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
935
936 end_io_wq = list_entry(next, struct end_io_wq, list);
937
938 bio = end_io_wq->bio;
939 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
940 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
941 was_empty = list_empty(&fs_info->end_io_work_list);
942 list_add_tail(&end_io_wq->list,
943 &fs_info->end_io_work_list);
944 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
945 flags);
946 if (was_empty)
947 return;
948 continue;
949 }
950 error = end_io_wq->error;
951 bio->bi_private = end_io_wq->private;
952 bio->bi_end_io = end_io_wq->end_io;
953 kfree(end_io_wq);
954 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
955 bio_endio(bio, bio->bi_size, error);
956 #else
957 bio_endio(bio, error);
958 #endif
959 }
960 }
961
962 struct btrfs_root *open_ctree(struct super_block *sb,
963 struct btrfs_fs_devices *fs_devices)
964 {
965 u32 sectorsize;
966 u32 nodesize;
967 u32 leafsize;
968 u32 blocksize;
969 u32 stripesize;
970 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
971 GFP_NOFS);
972 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
973 GFP_NOFS);
974 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
975 GFP_NOFS);
976 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
977 GFP_NOFS);
978 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
979 GFP_NOFS);
980 int ret;
981 int err = -EINVAL;
982 struct btrfs_super_block *disk_super;
983
984 if (!extent_root || !tree_root || !fs_info) {
985 err = -ENOMEM;
986 goto fail;
987 }
988 end_io_workqueue = create_workqueue("btrfs-end-io");
989 BUG_ON(!end_io_workqueue);
990
991 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
992 INIT_LIST_HEAD(&fs_info->trans_list);
993 INIT_LIST_HEAD(&fs_info->dead_roots);
994 INIT_LIST_HEAD(&fs_info->hashers);
995 INIT_LIST_HEAD(&fs_info->end_io_work_list);
996 spin_lock_init(&fs_info->hash_lock);
997 spin_lock_init(&fs_info->end_io_work_lock);
998 spin_lock_init(&fs_info->delalloc_lock);
999 spin_lock_init(&fs_info->new_trans_lock);
1000
1001 init_completion(&fs_info->kobj_unregister);
1002 sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1003 fs_info->tree_root = tree_root;
1004 fs_info->extent_root = extent_root;
1005 fs_info->chunk_root = chunk_root;
1006 fs_info->dev_root = dev_root;
1007 fs_info->fs_devices = fs_devices;
1008 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1009 INIT_LIST_HEAD(&fs_info->space_info);
1010 btrfs_mapping_init(&fs_info->mapping_tree);
1011 fs_info->sb = sb;
1012 fs_info->max_extent = (u64)-1;
1013 fs_info->max_inline = 8192 * 1024;
1014 setup_bdi(fs_info, &fs_info->bdi);
1015 fs_info->btree_inode = new_inode(sb);
1016 fs_info->btree_inode->i_ino = 1;
1017 fs_info->btree_inode->i_nlink = 1;
1018 fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
1019 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1020 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1021
1022 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1023 fs_info->btree_inode->i_mapping,
1024 GFP_NOFS);
1025 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1026 GFP_NOFS);
1027
1028 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1029
1030 extent_io_tree_init(&fs_info->free_space_cache,
1031 fs_info->btree_inode->i_mapping, GFP_NOFS);
1032 extent_io_tree_init(&fs_info->block_group_cache,
1033 fs_info->btree_inode->i_mapping, GFP_NOFS);
1034 extent_io_tree_init(&fs_info->pinned_extents,
1035 fs_info->btree_inode->i_mapping, GFP_NOFS);
1036 extent_io_tree_init(&fs_info->pending_del,
1037 fs_info->btree_inode->i_mapping, GFP_NOFS);
1038 extent_io_tree_init(&fs_info->extent_ins,
1039 fs_info->btree_inode->i_mapping, GFP_NOFS);
1040 fs_info->do_barriers = 1;
1041
1042 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1043 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1044 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1045 #else
1046 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1047 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1048 #endif
1049 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1050 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1051 sizeof(struct btrfs_key));
1052 insert_inode_hash(fs_info->btree_inode);
1053 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1054
1055 mutex_init(&fs_info->trans_mutex);
1056 mutex_init(&fs_info->fs_mutex);
1057
1058 #if 0
1059 ret = add_hasher(fs_info, "crc32c");
1060 if (ret) {
1061 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1062 err = -ENOMEM;
1063 goto fail_iput;
1064 }
1065 #endif
1066 __setup_root(4096, 4096, 4096, 4096, tree_root,
1067 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1068
1069 fs_info->sb_buffer = read_tree_block(tree_root,
1070 BTRFS_SUPER_INFO_OFFSET,
1071 4096);
1072
1073 if (!fs_info->sb_buffer)
1074 goto fail_iput;
1075
1076 read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1077 sizeof(fs_info->super_copy));
1078
1079 read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1080 (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1081 BTRFS_FSID_SIZE);
1082
1083 disk_super = &fs_info->super_copy;
1084 if (!btrfs_super_root(disk_super))
1085 goto fail_sb_buffer;
1086
1087 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1088 printk("Btrfs: wanted %llu devices, but found %llu\n",
1089 (unsigned long long)btrfs_super_num_devices(disk_super),
1090 (unsigned long long)fs_devices->num_devices);
1091 goto fail_sb_buffer;
1092 }
1093 nodesize = btrfs_super_nodesize(disk_super);
1094 leafsize = btrfs_super_leafsize(disk_super);
1095 sectorsize = btrfs_super_sectorsize(disk_super);
1096 stripesize = btrfs_super_stripesize(disk_super);
1097 tree_root->nodesize = nodesize;
1098 tree_root->leafsize = leafsize;
1099 tree_root->sectorsize = sectorsize;
1100 tree_root->stripesize = stripesize;
1101 sb_set_blocksize(sb, sectorsize);
1102
1103 i_size_write(fs_info->btree_inode,
1104 btrfs_super_total_bytes(disk_super));
1105
1106 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1107 sizeof(disk_super->magic))) {
1108 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1109 goto fail_sb_buffer;
1110 }
1111
1112 mutex_lock(&fs_info->fs_mutex);
1113
1114 ret = btrfs_read_sys_array(tree_root);
1115 BUG_ON(ret);
1116
1117 blocksize = btrfs_level_size(tree_root,
1118 btrfs_super_chunk_root_level(disk_super));
1119
1120 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1121 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1122
1123 chunk_root->node = read_tree_block(chunk_root,
1124 btrfs_super_chunk_root(disk_super),
1125 blocksize);
1126 BUG_ON(!chunk_root->node);
1127
1128 ret = btrfs_read_chunk_tree(chunk_root);
1129 BUG_ON(ret);
1130
1131 blocksize = btrfs_level_size(tree_root,
1132 btrfs_super_root_level(disk_super));
1133
1134
1135 tree_root->node = read_tree_block(tree_root,
1136 btrfs_super_root(disk_super),
1137 blocksize);
1138 if (!tree_root->node)
1139 goto fail_sb_buffer;
1140
1141
1142 ret = find_and_setup_root(tree_root, fs_info,
1143 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1144 if (ret)
1145 goto fail_tree_root;
1146 extent_root->track_dirty = 1;
1147
1148 ret = find_and_setup_root(tree_root, fs_info,
1149 BTRFS_DEV_TREE_OBJECTID, dev_root);
1150 dev_root->track_dirty = 1;
1151
1152 if (ret)
1153 goto fail_extent_root;
1154
1155 btrfs_read_block_groups(extent_root);
1156
1157 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1158 fs_info->data_alloc_profile = (u64)-1;
1159 fs_info->metadata_alloc_profile = (u64)-1;
1160 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1161
1162 mutex_unlock(&fs_info->fs_mutex);
1163 return tree_root;
1164
1165 fail_extent_root:
1166 free_extent_buffer(extent_root->node);
1167 fail_tree_root:
1168 mutex_unlock(&fs_info->fs_mutex);
1169 free_extent_buffer(tree_root->node);
1170 fail_sb_buffer:
1171 free_extent_buffer(fs_info->sb_buffer);
1172 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1173 fail_iput:
1174 iput(fs_info->btree_inode);
1175 fail:
1176 close_all_devices(fs_info);
1177 kfree(extent_root);
1178 kfree(tree_root);
1179 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1180 bdi_destroy(&fs_info->bdi);
1181 #endif
1182 kfree(fs_info);
1183 return ERR_PTR(err);
1184 }
1185
1186 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1187 {
1188 char b[BDEVNAME_SIZE];
1189
1190 if (uptodate) {
1191 set_buffer_uptodate(bh);
1192 } else {
1193 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1194 printk(KERN_WARNING "lost page write due to "
1195 "I/O error on %s\n",
1196 bdevname(bh->b_bdev, b));
1197 }
1198 set_buffer_write_io_error(bh);
1199 clear_buffer_uptodate(bh);
1200 }
1201 unlock_buffer(bh);
1202 put_bh(bh);
1203 }
1204
1205 int write_all_supers(struct btrfs_root *root)
1206 {
1207 struct list_head *cur;
1208 struct list_head *head = &root->fs_info->fs_devices->devices;
1209 struct btrfs_device *dev;
1210 struct extent_buffer *sb;
1211 struct btrfs_dev_item *dev_item;
1212 struct buffer_head *bh;
1213 int ret;
1214 int do_barriers;
1215
1216 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1217
1218 sb = root->fs_info->sb_buffer;
1219 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1220 dev_item);
1221 list_for_each(cur, head) {
1222 dev = list_entry(cur, struct btrfs_device, dev_list);
1223 btrfs_set_device_type(sb, dev_item, dev->type);
1224 btrfs_set_device_id(sb, dev_item, dev->devid);
1225 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1226 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1227 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1228 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1229 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1230 write_extent_buffer(sb, dev->uuid,
1231 (unsigned long)btrfs_device_uuid(dev_item),
1232 BTRFS_DEV_UUID_SIZE);
1233
1234 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1235 csum_tree_block(root, sb, 0);
1236
1237 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1238 root->fs_info->sb->s_blocksize,
1239 BTRFS_SUPER_INFO_SIZE);
1240
1241 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1242 dev->pending_io = bh;
1243
1244 get_bh(bh);
1245 set_buffer_uptodate(bh);
1246 lock_buffer(bh);
1247 bh->b_end_io = btrfs_end_buffer_write_sync;
1248
1249 if (do_barriers && dev->barriers) {
1250 ret = submit_bh(WRITE_BARRIER, bh);
1251 if (ret == -EOPNOTSUPP) {
1252 printk("btrfs: disabling barriers on dev %s\n",
1253 dev->name);
1254 set_buffer_uptodate(bh);
1255 dev->barriers = 0;
1256 get_bh(bh);
1257 lock_buffer(bh);
1258 ret = submit_bh(WRITE, bh);
1259 }
1260 } else {
1261 ret = submit_bh(WRITE, bh);
1262 }
1263 BUG_ON(ret);
1264 }
1265
1266 list_for_each(cur, head) {
1267 dev = list_entry(cur, struct btrfs_device, dev_list);
1268 BUG_ON(!dev->pending_io);
1269 bh = dev->pending_io;
1270 wait_on_buffer(bh);
1271 if (!buffer_uptodate(dev->pending_io)) {
1272 if (do_barriers && dev->barriers) {
1273 printk("btrfs: disabling barriers on dev %s\n",
1274 dev->name);
1275 set_buffer_uptodate(bh);
1276 get_bh(bh);
1277 lock_buffer(bh);
1278 dev->barriers = 0;
1279 ret = submit_bh(WRITE, bh);
1280 BUG_ON(ret);
1281 wait_on_buffer(bh);
1282 BUG_ON(!buffer_uptodate(bh));
1283 } else {
1284 BUG();
1285 }
1286
1287 }
1288 dev->pending_io = NULL;
1289 brelse(bh);
1290 }
1291 return 0;
1292 }
1293
1294 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1295 *root)
1296 {
1297 int ret;
1298
1299 ret = write_all_supers(root);
1300 #if 0
1301 if (!btrfs_test_opt(root, NOBARRIER))
1302 blkdev_issue_flush(sb->s_bdev, NULL);
1303 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1304 ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1305 super->start, super->len);
1306 if (!btrfs_test_opt(root, NOBARRIER))
1307 blkdev_issue_flush(sb->s_bdev, NULL);
1308 #endif
1309 return ret;
1310 }
1311
1312 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1313 {
1314 radix_tree_delete(&fs_info->fs_roots_radix,
1315 (unsigned long)root->root_key.objectid);
1316 if (root->in_sysfs)
1317 btrfs_sysfs_del_root(root);
1318 if (root->inode)
1319 iput(root->inode);
1320 if (root->node)
1321 free_extent_buffer(root->node);
1322 if (root->commit_root)
1323 free_extent_buffer(root->commit_root);
1324 if (root->name)
1325 kfree(root->name);
1326 kfree(root);
1327 return 0;
1328 }
1329
1330 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1331 {
1332 int ret;
1333 struct btrfs_root *gang[8];
1334 int i;
1335
1336 while(1) {
1337 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1338 (void **)gang, 0,
1339 ARRAY_SIZE(gang));
1340 if (!ret)
1341 break;
1342 for (i = 0; i < ret; i++)
1343 btrfs_free_fs_root(fs_info, gang[i]);
1344 }
1345 return 0;
1346 }
1347
1348 int close_ctree(struct btrfs_root *root)
1349 {
1350 int ret;
1351 struct btrfs_trans_handle *trans;
1352 struct btrfs_fs_info *fs_info = root->fs_info;
1353
1354 fs_info->closing = 1;
1355 btrfs_transaction_flush_work(root);
1356 mutex_lock(&fs_info->fs_mutex);
1357 btrfs_defrag_dirty_roots(root->fs_info);
1358 trans = btrfs_start_transaction(root, 1);
1359 ret = btrfs_commit_transaction(trans, root);
1360 /* run commit again to drop the original snapshot */
1361 trans = btrfs_start_transaction(root, 1);
1362 btrfs_commit_transaction(trans, root);
1363 ret = btrfs_write_and_wait_transaction(NULL, root);
1364 BUG_ON(ret);
1365 write_ctree_super(NULL, root);
1366 mutex_unlock(&fs_info->fs_mutex);
1367
1368 if (fs_info->delalloc_bytes) {
1369 printk("btrfs: at unmount delalloc count %Lu\n",
1370 fs_info->delalloc_bytes);
1371 }
1372 if (fs_info->extent_root->node)
1373 free_extent_buffer(fs_info->extent_root->node);
1374
1375 if (fs_info->tree_root->node)
1376 free_extent_buffer(fs_info->tree_root->node);
1377
1378 if (root->fs_info->chunk_root->node);
1379 free_extent_buffer(root->fs_info->chunk_root->node);
1380
1381 if (root->fs_info->dev_root->node);
1382 free_extent_buffer(root->fs_info->dev_root->node);
1383
1384 free_extent_buffer(fs_info->sb_buffer);
1385
1386 btrfs_free_block_groups(root->fs_info);
1387 del_fs_roots(fs_info);
1388
1389 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1390
1391 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1392 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1393 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1394 extent_io_tree_empty_lru(&fs_info->pending_del);
1395 extent_io_tree_empty_lru(&fs_info->extent_ins);
1396 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1397
1398 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1399 flush_workqueue(end_io_workqueue);
1400 destroy_workqueue(end_io_workqueue);
1401
1402 iput(fs_info->btree_inode);
1403 #if 0
1404 while(!list_empty(&fs_info->hashers)) {
1405 struct btrfs_hasher *hasher;
1406 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1407 hashers);
1408 list_del(&hasher->hashers);
1409 crypto_free_hash(&fs_info->hash_tfm);
1410 kfree(hasher);
1411 }
1412 #endif
1413 close_all_devices(fs_info);
1414 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1415
1416 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1417 bdi_destroy(&fs_info->bdi);
1418 #endif
1419
1420 kfree(fs_info->extent_root);
1421 kfree(fs_info->tree_root);
1422 kfree(fs_info->chunk_root);
1423 kfree(fs_info->dev_root);
1424 return 0;
1425 }
1426
1427 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1428 {
1429 struct inode *btree_inode = buf->first_page->mapping->host;
1430 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1431 }
1432
1433 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1434 {
1435 struct inode *btree_inode = buf->first_page->mapping->host;
1436 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1437 buf);
1438 }
1439
1440 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1441 {
1442 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1443 u64 transid = btrfs_header_generation(buf);
1444 struct inode *btree_inode = root->fs_info->btree_inode;
1445
1446 if (transid != root->fs_info->generation) {
1447 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1448 (unsigned long long)buf->start,
1449 transid, root->fs_info->generation);
1450 WARN_ON(1);
1451 }
1452 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1453 }
1454
1455 void btrfs_throttle(struct btrfs_root *root)
1456 {
1457 struct backing_dev_info *bdi;
1458
1459 bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1460 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1461 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1462 congestion_wait(WRITE, HZ/20);
1463 #else
1464 blk_congestion_wait(WRITE, HZ/20);
1465 #endif
1466 }
1467 }
1468
1469 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1470 {
1471 balance_dirty_pages_ratelimited_nr(
1472 root->fs_info->btree_inode->i_mapping, 1);
1473 }
1474
1475 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1476 {
1477 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1478 struct inode *btree_inode = root->fs_info->btree_inode;
1479 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1480 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1481 }
1482
1483 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1484 {
1485 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1486 struct inode *btree_inode = root->fs_info->btree_inode;
1487 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1488 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1489 GFP_NOFS);
1490 }
1491
1492 int btrfs_buffer_defrag(struct extent_buffer *buf)
1493 {
1494 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1495 struct inode *btree_inode = root->fs_info->btree_inode;
1496 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1497 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1498 }
1499
1500 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1501 {
1502 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1503 struct inode *btree_inode = root->fs_info->btree_inode;
1504 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1505 buf->start, buf->start + buf->len - 1,
1506 EXTENT_DEFRAG_DONE, 0);
1507 }
1508
1509 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1510 {
1511 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1512 struct inode *btree_inode = root->fs_info->btree_inode;
1513 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1514 buf->start, buf->start + buf->len - 1,
1515 EXTENT_DEFRAG_DONE, GFP_NOFS);
1516 }
1517
1518 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1519 {
1520 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1521 struct inode *btree_inode = root->fs_info->btree_inode;
1522 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1523 buf->start, buf->start + buf->len - 1,
1524 EXTENT_DEFRAG, GFP_NOFS);
1525 }
1526
1527 int btrfs_read_buffer(struct extent_buffer *buf)
1528 {
1529 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1530 int ret;
1531 ret = btree_read_extent_buffer_pages(root, buf, 0);
1532 if (ret == 0) {
1533 buf->flags |= EXTENT_UPTODATE;
1534 }
1535 return ret;
1536 }
1537
1538 static struct extent_io_ops btree_extent_io_ops = {
1539 .writepage_io_hook = btree_writepage_io_hook,
1540 .readpage_end_io_hook = btree_readpage_end_io_hook,
1541 .submit_bio_hook = btree_submit_bio_hook,
1542 /* note we're sharing with inode.c for the merge bio hook */
1543 .merge_bio_hook = btrfs_merge_bio_hook,
1544 };
This page took 0.085484 seconds and 5 git commands to generate.